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CARMA Processes



ARMA process A\‘(IT

llllllllllllllllllllllllllllll

An , P,g € Ng process (Y )kez is the solution of the
difference equation:

where

e B Is the backward shift operator,
e (¢x)kez Is aniid sequence of random variables,
e a(z):=zP+a;zP1+..+aywithay,..,ap €R,

e b(z):=bpz%+byz971 + ... +bq with by, ...,bg € R.
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Motivation:

A (CARMA(p,q)) process
(Y (t))ter, P.9 € No, p > q, is the solution of the stochas-
tic differential equation:

where

e D is the differential-operator (after t),
e (L(t))ier is a Lévy process,
e a(z):=zP+a;zP1+.. +apwithay,...,ap €R,

e b(z):=bpz%+byz971 + ... +bq with by, ...,bg € R.
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e bp#0.
( 0 0 - 0 )
O O - .
® — : 0 c RP*P
0 e ... 0
o b= (bg:-bg—pt1) €RP (bj=0forj <O0).

e {zc(C:a(z)=0}C(—0,0)+IiR.
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e bp#0.
[0 0 - 0 )
0 0 ' :
* A= 5 . . 0 c RP*P,
0 U
o b= (bg:-bg—pt1) €RP (bj=0forj <O0).

e {zc(C:a(z)=0}C(—0,0)+IiR.

o Jix>1l0g]x|[vi(dx) < co.
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Let
t
X (t) :/_ooeA<t_S)ede(s) fort € R

in RP with e, = (0,...,0,1)" € RP be the solution of the stochastic
differential equation

dX (t) = AX(t)dt +ep dL(t),
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t
X(t):/ eMt=Se dL(s) forteR

in RP with e, = (0,...,0,1)" € RP be the solution of the stochastic
differential equation

dX(t) = AX(t)dt +epdL(t),
then a (causal, stationary) Is defined as
X(t)

Example: Ornstein-Uhlenbeck process
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Let

t
X(t):/ eMt=Sle dL(s) forteR.

Then the process has the representation

= b'X(t)
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Define
f(s) =b'e*epliw)(s).
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Let
X(t):/tweA(tS>ede(s) fort € R.
Define
f(s) =b'e*epliw)(s).
Then the process has the representation

:/tf(t—s)dL(s) fort € R.
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Spectral Density Estimation



Observation Scheme

High-frequency observations

n=1 | l
0 Ay
n=2 | } }
0 A, 2A,
n=3 | | l l
0 Aj Aj 3A5
n | } l l } } l
0 A, 2A,

AplOasn— o and

AT

stitute of Technology
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e The zeros of a(-) are distinct,

e L isasymmetric a-stable Lévy process, a € (0,2,

e AplOasn— oandIlimy_wnAp= oo,
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Note if a = 2: The spectral density of Y 20 := (Y (KAn) )ken IS

1

o i W (kan)e ™ we [—m, ],

k:—OO

Ja, (W) =

and the spectral density of (Y (1)) - IS

of |b(iw)|?

. , welR.
Tlaio))2 S

1 [® B
QY(W):ZT/OOVY(S)G =¥ds =
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Note if a = 2: The spectral density of Y 20 := (Y (KAn) )ken IS

1

o i W (kAn)e ™, we [—m i,

k:—OO

Ja, (W) =

and the spectral density of (Y (1)) - IS

of |b(iw)|?

. . welRR.
T laiw)2 5

1 [® B
QY((U):ET/OOVY(S)G =¥ds =

Then

Mro]o Anga,(wAn) 1 w) =0y (w), weR.
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Theorem (Fasen and Fuchs (2013))
The (normalized) periodogram of the sampled sequence

Y A= (Y (KAp))ken is

n . 2
In’YAn(a)):‘n_l/“ZY(kAn)e_'“’k  wel-m,
k=1
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Theorem (Fasen and Fuchs (2013))
The (normalized) periodogram of the sampled sequence
Y A= (Y (KAp))ken is

| (w)—‘n‘l/“ S Y (kA e-iok | -
n,Y 2n (W) = > Y(kan)e , we |-,

k=1
Thenas n — oo,
2 = 1b(ic) |2 | 2
Aﬁ 1, v an(WAR) Q\‘ @) / ezdeLS , e R\{0}.
| 0,1)

a(iw)|3
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Theorem (Fasen and Fuchs (2013))
The (normalized) periodogram of the sampled sequence
Y A= (Y (KAp))ken is

| (w)—‘n‘l/“ S Y (kA e-iok | -
n,Y &n — Z ( n)e ’ O‘JE[ 7'[,7'[],

k=1
Then as n — oo,
22 2 |b(iw)|? - F
S TRPWES. (I S s

= |If a = 2 this means that as n — oo,

o 2

9 2T1'S
An | (AR = —0v (W) - / e-">dL
nlhvA ( n) O_EgY( ) | 0.1) S
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Let 0= (w,...,wm) € (R\{0})™. Then as n — oo,

where (S;”(@), S;”(w)), is a (2m)-dimensional
with characteristic function

E exp{ (%SD( >+v,s-D<&3>>} = exp{ 0" -K5(8, V)},
i J
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with K;(8, V) given as follows:

1. If wy, ..., Wy are (l.e. there is
no h € Z™, h #£ 0, such that (h, w) = 0),
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with K;(8, V) given as follows:

1. If wy, ..., Wy are (l.e. there is
no h € Z™, h # 0, such that (h, w) = 0), then

K (8, V) = /
01"

m a

Z 6 cos(2mx;) + v, sin(27x;)| d(Xg, ..., Xm).
j=1
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1. If wy, ..., Wy are (l.e. there is
no h € Z™, h # 0, such that (h, w) = 0), then
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with K;(8, V) given as follows:

1.

If wy, ..., Wy are (l.e. there is
no h € Z™, h # 0, such that (h, w) = 0), then

» a
Ko(8,0) = |
0,1

m

Z 6 cos(2mx;) + v, sin(27x;)| d(Xg, ..., Xm).
j=1

If ey, ..., Wy, are . then there is an
s e€{1,...,m—1} such that

6 cos(2rx;) +V; sin(271)
j=1

a

dA (M=) (xy, ..., Xm),

where .# = #(wy, ..., wm) 1S a (M — s)-dimensional linear
manifold in [0,1)™.
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ARMA processes (Kliuppelberg & Mikosch (1993)): a < 2

Have to distinguish if IS or

Have to distinguish if 271, wy, ..., wy, are linearly dependent
or independent over 7 (with @y, ..., wyn being irrational mul-
tiplies of 2m).

The manifolds are distinct.

: Thenas n — oo,

where N1 and N» are I1.I.d. standard normal random variables
and E is a standard exponential random variable.
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Theorem (Fasen and Fuchs (2012))

The self-normalized

In,YAn (w) —

periodogram of Y &n is

n —lwk 2
Sk—1Y (kAn)e

Sk_1Y?(KAq)

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

w e |-, 7.
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Theorem (Fasen and Fuchs (2012))
The self-normalized periodogram of Y @n is

R Sy Y (KAp) ek
I n 00 — y
n,y 20 () Ske1Y?2(kAp)

‘ 2

wE |-, .

Thenas n — oo,

-~ Tpliw)? [$7)°+[s7)°
Anly, yan (WAR) = (/ f%(s ds) B0 <2 ,

where (S#,S”,S) is a stable random vector.
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Theorem (Fasen and Fuchs (2012))
The self-normalized periodogram of Y @n is

N Sio1Y (kAp)e ek
In,YAn (w) —

‘ 2

Sk_1Y?(KAq) WE [~

Thenas n — oo,

N / . —1 0 (2 R 712
Anln,YAn(ouAn)%<o fz(s)ds) ‘Zé:g;z & }SZ[S | ,

where (S#,S”,S) is a stable random vector.

lim Anga, (WAR) 1[_AL AL]( w) =0y (w), weR.

N—00
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Theorem (Fasen and Fuchs (2012))
The self-normalized periodogram of Y 2n is

)

2
‘ Sk—1Y (KAp) e_'wk‘

| v An n - 2
n,Y ((Jl)) Zkzle(kA”) An(nAn)_E zE:]—YZ(kAn)

Thenas n — oo,

T,y an(00n) 5 (/Ooofz(s)ds-82> - |

where (S#,S”,S) is a stable random vector.

Iim Anga, (WAn) I n)(w) =gy (w), weR.
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The smoothed periodogram of Y 2n s

Tovon(@ = 5 Wo)lyyar (@47 ), wel-mm,

K|<mp
where

e myIs asequence in N such that

m
mp, — o  and " s0 asn— .
NAR
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The sequence of weight functions W, : Z — R satisfies the
following conditions:

® Wn(k):Wn(_k), Wn(k)ZO, \V/kEN,
® Z|k|<mn Wn(k) 1, vVn e N,

1
Mn

e Mmax Wz(k):o(

) as N — oo,
k|<mp
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Theorem (Fasen and Fuchs (2012))
The smoothed periodogram of Y 2n s

:r\n,YAn(w) = Z Wn(k)Tn,yAn (w+§> , WeE|—TL,7I.

k|<mp

Thenas n — oo,

o~ = ' 2
AnT, yan(WAR) — (/ f2(s ds> ‘22:3‘ w € R\{0}.
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Theorem (Fasen and Fuchs (2012))
The smoothed periodogram of Y 2n is
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Let a = 2.



Smoothed Periodogram ﬂ(".

Karlsruhe Institute of Technology

Theorem (Fasen and Fuchs (2012))
The smoothed periodogram of Y 2n s

Toyan(@) =% Wn(k)l, ya, (w+§>, we [—m, 1.

K|<mp

Let a = 2. Then as h — o,

p Tl
An Tn,YAn(wAﬂ) — ?gY(w)

L
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Theorem (Fasen and Fuchs (2012))
The smoothed periodogram of Y 2n is

Thyan(w) = Z Wi (K)1n v an (w+§> , WeE|—TL,7I.

K|<mp

Let a = 2. Then as h — o,

Bn Ty an (@) 50y (@) =1 W(@), ©ER\{0},

L
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Parameter estimation
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Let

a(z) = zP+azPt+ .. +ap,
b(z)

]
N
0
_I_
@)
=
N
O
|
=
_I_
_I_
o
o)

and the normalized power transfer function (spectral density)

b(iw)|*

YO = o)
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Let

a(z) = zP+a;zPt+.. +ap,
b(z) = z9+byz% 1 +.. 4Dy,

and the

My (0+T ) (0= i)
|_|JP:1 ((A)"")\J) ((JL)—I)\J)

where g, ..., Ug are the zeros of b(-) and Ay, ..., Ap are the zeros
of a(-).
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Assumption
The zeros g, ..., Ug and Ay, ..., Ap are all distinct and possess

strictly negative real parts.
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Assumption
The zeros g, ..., Ug and Ay, ..., Ap are all distinct and possess

strictly negative real parts.
Define

Then the parameters of the CARMA process are
from v(-;0).
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Suppose we have observed the CARMA(p, g) process on the
time grid {Ap, ..., NA,}. Then we choose m € N different fre-

quencies @ € (0,11/Ap), j=1,..., m,
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Suppose we have observed the CARMA(p, g) process on the
time grid {Ap, ..., NA,}. Then we choose m € N different fre-
quencies w € (0,71/An), j =1, ..., m, and solve the constrained

nonlinear least squares problem

with Cg = (J3f%(s)ds) .
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Suppose we have observed the CARMA(p, g) process on the
time grid {Ap, ..., NA,}. Then we choose m € N different fre-
quencies w € (0,71/An), j =1, ..., m, and solve the constrained

nonlinear least squares problem

with Cg = (J3f%(s)ds) .

~> variance stabilizing technique
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solution to
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Consider a CARMA(2,1) process which is the strictly stationary
solution to

i.e.a(z)=z?+aiz+axy=(z—A1)(z—Ax) and b(z) =z + .

In this case the normalized power transfer function can be

written as
o 1 2 2
WP +
f2(s)ds | Ww(w)=C(as,a, u)-
([ Peds) v =Clavann) grag b o

-1

—2.%1%
u+ay

with C(az,az, 1) = (5 f4(s)ds)
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log-log plots

I I I I I 1 I h 1 |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1072 10t
T T T T T T T T T T T

| | | | | | | | | L L L L L L L L L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1072 107t

Smoothed periodogram values plotted against frequencies for five selected time
series (pluses) in the Gaussian case (on top) and the 1.6-stable case (below).
The true spectral density and normalized power transfer function is plotted as a
solid line, respectively.

n = 15000; Ap = 0.1; m = 300; My = [v/NAy | = 38;Wy (k) = 57 for [k| < mp.
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oL ap ap H

True 1.5 2.0 0.1 0.2
Mean 1.5127 2.0859 0.1182 0.2159
a=2 Bias 0.0127 0.0859 0.0182 0.0159
Std. dev. 0.0392 0.1204 0.0358 0.0366
Mean - 2.0580 0.1108 0.2185
a—=1.8 Bias - 0.0580 0.0108 0.0185
Std. dev. - 0.1240 0.0372 0.0378
Mean - 2.0626 0.1079 0.2127
a=1.6 Bias - 0.0626 0.0079 0.0127
Std. dev. - 0.1130 0.0315 0.0361
Mean - 2.0659 0.1101 0.2129
a=14 Bias - 0.0659 0.0101 0.0129
Std. dev. - 0.1151 0.0311 0.0329

Simulation study for different values of a, based on 250 sample paths each.

n = 15000; A, = 0.1; m = 300; mp = |v/nAn]

= 38;Wh(k) =

>——= for |K| < mp.
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The results are proven for Lévy processes who are
either

e (-Stable, or

° E(L%) < 00,
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