Extreme eigenvalues of random matrices with dependent entries

Rajat Subhra Hazra
Institut für Mathematik
Universität Zürich
January 16, 2013

Wigner matrix with dependent entries On going works with

Arijit Chakraborty, Parthanil Roy and Deepayan Sarkar

Wigner Matrix W_{n} : symmetric with IID random variables.

$$
W_{n}=\left[\begin{array}{cccccc}
x_{11} & x_{12} & x_{13} & \ldots & x_{1(n-1)} & x_{1 n} \\
x_{12} & x_{22} & x_{23} & \ldots & x_{2(n-1)} & x_{2 n} \\
& & & \vdots & & \\
x_{1 n} & x_{2 n} & x_{3 n} & \ldots & x_{(n-1) n} & x_{n n}
\end{array}\right]
$$

Problems of interest

- The limiting spectral distribution of empirical spectral distribution:

$$
L_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}}
$$

- Spectral radius: $\operatorname{Sp}(A)=\max \left\{\left|\lambda_{i}\right|: \lambda_{i}\right.$ eigenvalues of $\left.A\right\}$.
- Spectral Norm: $\|A\|=\sqrt{\lambda_{\max }\left(A^{*} A\right)}$.
- If A is self-adjoint matrix $\left(A=A^{*}\right)$ then $\operatorname{sp}(A)=\|A\|$.
- Universality of the results in light tailed case.
- Heavy Tailed case: behavior depends on the tail of the input sequence.

The model

- Suppose that $\left\{X_{i, j}: i, j \geq 1\right\}$ is a family of i.i.d. random variables such that

$$
P\left(\left|X_{11}\right|>\cdot\right) \in R V_{-\alpha} \text { for some } \alpha>0 .
$$

- $\left\{c_{i, j}: 0 \leq i, j \leq N\right\}$ are real numbers.
- Define

$$
Y_{k, I}:=\sum_{i=0}^{N} \sum_{j=0}^{N} c_{i j} X_{i+k, j+l}, 1 \leq k \leq l .
$$

- For $k>l$, set

$$
Y_{k, l}:=Y_{l, k} .
$$

- For $n \geq 1$, let A_{n} denote the $n \times n$ matrix whose (i, j)-th entry is $Y_{i, j}$.

The problem

- Problem: To find the asymptotics of $\left\|A_{n}\right\|$ as $n \rightarrow \infty$.
- Similar models with dependence considered for Covariance matrix by Davis, Pffafel, Stelzer (2011)
- i.i.d. entries + heavy tailed $(0 \leq \alpha \leq 2)$ - Soshnikov
- i.i.d. entries + heavy tailed $(2 \leq \alpha \leq 4)$-Ben Arous and Péche.

The result

Define

$$
\begin{aligned}
b(t) & :=\inf \left\{x: P\left(\left|X_{11}\right|>x\right) \leq t^{-1}\right\}, t>0 \\
C & :=\left[\begin{array}{cccccc}
0 & \ldots & 0 & c_{N N} & \ldots & c_{N 0} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 0 & c_{0 N} & \ldots & c_{00} \\
c_{N N} & \ldots & c_{0 N} & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
c_{N 0} & \ldots & c_{00} & 0 & \ldots & 0
\end{array}\right]_{(2 N+1) \times(2 N+1)}
\end{aligned}
$$

The result (contd.)

Theorem
If $0<\alpha<1$, then

$$
\frac{\left\|A_{n}\right\|}{b\left(n^{2} / 2\right)} \Longrightarrow\|C\| Z
$$

as $n \rightarrow \infty$, where Z is a Fréchet (α) random variable, with c.d.f.

$$
P(Z \leq x)=\exp \left(-x^{-\alpha}\right), x>0 .
$$

Some remarks about the proof

- We look at $A_{n}^{2 r}=U_{n}+V_{n}$.
- U_{n} contains all the $2 r$-th power and V_{n} other crossed terms.
- $\left\|V_{n}\right\|_{\infty}=o_{P}\left(b(n)^{2 r}\right)$. (Our proof fails here for $\alpha>1$).
- U_{n} gives the contributing terms as $r \rightarrow \infty$.
- $1 \leq \alpha \leq 4$ remains open!!
- $\alpha>4$?? Light tailed case- Gaussian??

Light tailed: LSD

Theorem (A. Chakraborty, R, D. Sarkar)

The limiting spectral distribution for light tailed entries converge to compactly supported measure μ.
The Stieltjes transform \mathcal{G} of μ, defined by

$$
\mathcal{G}(z):=\int_{\mathbb{R}} \frac{\mu(d x)}{z-x}, z \in \mathbb{C} \backslash \mathbb{R}
$$

is given by

$$
\mathcal{G}(z)=\int_{0}^{1} \mathcal{H}(z, x) d x
$$

where \mathcal{H} is a function from $\mathbb{C} \times[0,1]$ to \mathbb{C}, satisfying

$$
z \mathcal{H}(z, x)=1+\mathcal{H}(z, x) \int_{0}^{1} f(x, y) \mathcal{H}(z, y) d y, 0 \leq x \leq 1
$$

Largest Eigenvalue of Sample Autocovariance matrix On going works with Bikramjit Das and Souvik Ghosh

- Let $\left(X_{i}\right)_{i \in \mathbb{Z}}$ be a stationary process with mean $\mu=\mathrm{E} X_{i}$,
- $\gamma_{k}=E\left[\left(X_{0}-\mu\right)\left(X_{k}-\mu\right)\right], k \in \mathbb{Z}$, its autocovariances.

$$
\Sigma_{n}=\left(\gamma_{i-j}\right)_{1 \leq i, j \leq n}
$$

is the autocovariance matrix of $\left(X_{1}, \ldots, X_{n}\right)$.

- Given observations $X_{1}, X_{2}, \cdots, X_{n}$ with $E\left[X_{i}\right]=0$ consider

$$
\begin{equation*}
\hat{\Sigma}_{n}=\left(\hat{\gamma}_{i-j}\right)_{1 \leq i, j \leq n}, \text { where } \hat{\gamma}_{k}=\frac{1}{n} \sum_{i=|k|+1}^{n} X_{i-|k|} X_{i} \tag{2.1}
\end{equation*}
$$

- Aim: Asymptotics of the spectral norm of $\widehat{\Sigma_{n}}$.

Existing Works

- Wu and Pourhamadi (2009) : $\left\|\widehat{\Sigma_{n}}-\Sigma\right\| \nrightarrow 0$ in probability.
- Xiao and Wu (2012):

$$
\lim _{n \rightarrow \infty} \mathrm{P}\left[C^{-1} \log n \leq\left\|\widehat{\Sigma_{n}}-\Sigma\right\| \leq C \log n\right] \rightarrow 1
$$

- Related works on Autocovariance matrix estimation: Basak and Bose (2012) and Cai, Zhang and Zhou (2010).
- Banded consistent estimator can also be formed-Xiao and Wu (2012) and McMurry and Politis(2010)

$$
X_{t}=\sum_{i=0}^{\infty} a_{i} \epsilon_{t-i} .
$$

Conjecture 1:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left\|\hat{\Sigma}_{n}\right\|}{2 \pi \max _{\theta} f(\theta) \log n}=C(?) \quad \text { almost surely. } \tag{2.2}
\end{equation*}
$$

Conjecture 2:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\left\|\hat{\Sigma}_{n}\right\|}{2 \pi \max _{\theta} f(\theta) \log n}=C \quad \text { in probability. } \tag{2.3}
\end{equation*}
$$

Conjecture 3:

$$
\frac{\left\|\hat{\Sigma}_{n}\right\|-a_{n}}{b_{n}} \Longrightarrow \Lambda \text { where } \Lambda(x)=\exp \left(-e^{-x}\right)
$$

$$
\hat{\Sigma}_{n}=\left[\begin{array}{ccccc}
\hat{\gamma}_{0} & \hat{\gamma}_{1} & \cdots & \hat{\gamma}_{n-2} & \hat{\gamma}_{n-1} \\
\hat{\gamma}_{1} & \hat{\gamma}_{0} & \hat{\gamma}_{1} & \cdots & \hat{\gamma}_{n-2} \\
\vdots & \hat{\gamma}_{1} & \hat{\gamma}_{0} & \ddots & \vdots \\
\hat{\gamma}_{n-2} & \vdots & \ddots & \ddots & \hat{\gamma}_{1} \\
\hat{\gamma}_{n-1} & \hat{\gamma}_{n-2} & \cdots & \hat{\gamma}_{1} & \hat{\gamma}_{0}
\end{array}\right]=\left(\left(\hat{\gamma}_{|i-j|}\right)\right)_{0 \leq i, j \leq n}
$$

Motivation coming from works of Sen and Virag (2012) on Toeplitz matrices.

Brockwell and Davis: $\hat{\Sigma}_{n}=\frac{1}{n} T T^{\prime}$ where T is the following $n \times 2 n$ matrix:

$$
T_{n \times 2 n}=\left[\begin{array}{cccccccc}
0 & 0 & \cdots & 0 & X_{0} & X_{1} & \cdots & X_{n-1} \\
0 & 0 & \cdots & X_{0} & X_{1} & \cdots & X_{n-1} & 0 \\
\vdots & & & & & & \ddots & \vdots \\
0 & 0 & X_{0} & X_{1} & \cdots & X_{n-1} & 0 & \cdots \\
0 & X_{0} & X_{1} & \cdots & X_{n-1} & 0 & 0 & \cdots
\end{array}\right]
$$

T is $n \times 2 n$ principal submatrix of a Reverse Circulant matrix. A reverse circulant matrix of order $2 n \times 2 n$ is of the following form,

$$
\mathbf{R}_{2 n}=\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \ldots & a_{2 n-2} & a_{2 n-1} \\
a_{1} & a_{2} & a_{3} & \ldots & a_{2 n-1} & a_{0} \\
a_{2} & a_{3} & a_{4} & \ldots & a_{0} & a_{1} \\
& & & \vdots & & \\
a_{2 n-1} & a_{0} & a_{1} & \ldots & a_{2 n-3} & a_{2 n-2}
\end{array}\right]
$$

Now if you take $a_{j}=0$ for $0 \leq j \leq n-1$ and $a_{j+n}=X_{j}$ for $0 \leq j \leq n$

Now note that any Reverse circulant of order $2 n \times 2 n$ can be written in the block form as

$$
\left[\begin{array}{cc}
\mathrm{H}_{1} & \mathrm{H}_{2} \\
\mathrm{H}_{2} & \mathrm{H}_{1} .
\end{array}\right]
$$

With the above choice of a_{j} we can write $T=\left[\begin{array}{ll}\mathrm{H}_{1} & \mathrm{H}_{2}\end{array}\right]$. So we can write,

$$
\left[\begin{array}{ll}
\hat{\Sigma}_{n} & O_{n} \\
O_{n} & O_{n}
\end{array}\right]=\frac{1}{n}\left[\begin{array}{ll}
\mathbf{H}_{1} & \mathbf{H}_{2} \\
O_{n} & O_{n}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{H}_{1} & O_{n} \\
\mathbf{H}_{2} & O_{n}
\end{array}\right]=\frac{1}{n} \mathbf{Q}_{2 n} \mathbf{R}_{2 n} \mathbf{R}_{2 n} \mathbf{Q}_{2 n}
$$

where $\mathbf{Q}_{2 n}$ denote the following projection matrix

$$
\mathbf{Q}_{2 n}=\left[\begin{array}{ll}
\mathbf{I}_{n} & 0_{n} \\
0_{n} & 0_{n}
\end{array}\right]
$$

- $\hat{\Sigma}_{n}$ has the same non zero eigenvalues as $2 \mathbf{P}_{2 n} \mathbf{D}_{2 n}^{\dagger} \mathbf{P}_{2 n}$.
- $\mathbf{P}_{2 n}=\mathbf{U}_{2 n}^{*} \mathbf{Q}_{2 n} \mathbf{U}_{2 n}$.
- $\mathbf{D}_{2 n}^{\dagger}=\operatorname{diag}\left(d_{0}, d_{1}, \ldots, d_{2 n-1}\right)$.

$$
d_{k}=\frac{1}{2 n}\left|\left[\sum_{j=0}^{n-1} X_{j} \exp \left(\frac{2 \pi i j k}{2 n}\right)\right]\right|^{2} .
$$

- $d_{k}=d_{2 n-k}$.
- $\left\|\mathbf{P}_{2 n} D_{2 n}^{\dagger} \mathbf{P}_{2 n}\right\| \leq \max _{1 \leq k \leq n} d_{k}$.

$$
d_{k}=\frac{1}{2 n}\left|\left[\sum_{j=0}^{n-1} X_{j} \exp \left(\frac{2 \pi i j k}{2 n}\right)\right]\right|^{2}=C_{k}^{2}+S_{k}^{2}
$$

- For $\left\{X_{j}\right\}$ i.i.d. Gaussian, C_{j}, S_{j} approximately χ^{2} with 1-degree of freedom.
- d_{k} is approximately exponential, but having dependence.
- For k-l odd,

$$
\operatorname{Cov}\left(C_{k}, S_{l}\right)=\frac{1}{n}\left[\cot \left(\frac{\pi(k+l)}{2 n}\right)+\cot \left(\frac{\pi(l-k)}{2 n}\right)\right]
$$

Suppose $\left\{X_{j}\right\}$ are i.i.d. Gaussian. Using the methods of Berman (1964), and using, $\sum_{1 \leq k-l: ~ o d d \leq n} \operatorname{Cov}\left(C_{k}, S_{l}\right) \sim \log n$

Theorem

$$
\mathrm{P}\left[\max _{1 \leq k \leq n-1} d_{k}<2 x+2 \log n\right] \rightarrow \exp \left(-e^{-x}\right) .
$$

Corollary

$$
\frac{\left\|\widehat{\Sigma_{n}}\right\|}{2 \pi \max _{\theta} f(\theta)}=\mathrm{O}_{\mathrm{P}}(2 \log n) .
$$

For $X_{t}=\sum_{j=1}^{\infty} \psi_{j} Z_{t-j}$ one has to assume $\sum_{j=1}^{\infty} j^{\frac{1}{2}}\left|\psi_{j}\right|<\infty$ and $f(\lambda)>0$ for all $\lambda \in[0, \pi]$.
We use some results on Periodogram from Walker(1965) to show the above theorem.

Concluding remarks

- Using $\left\|\mathbf{P}_{2 n}\right\| \leq 1$ loses most of information about the constant.
- $\mathrm{P}_{2 n} \sim \Pi: \ell^{2}(\mathbb{Z}) \rightarrow \ell^{2}(\mathbb{Z})$.
- $\left\|\mathbf{P}_{2 n} \mathbf{D}_{2 n}^{\dagger} \mathbf{P}_{2 n}\right\| \approx\left\|\Pi_{2 n} \mathbf{D}_{2 n}^{\dagger} \Pi_{2 n}\right\| \approx \log n\left\|\Pi_{2 n}^{\dagger} \Pi_{2 n}^{\dagger}\right\|$.
- $\left\|\Pi_{2 n}^{\dagger} \Pi_{2 n}^{\dagger}\right\| \approx 0.8$.

Thank you for your attention ©

