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General definition of SV models

Many common models for financial time series are of the form

Xt = σtεt , t ∈ Z,

where εt , t ∈ Z, are i.i.d. standardized innovations and
(σt)t∈Z, is referred to as a “volatility” sequence.

Sometimes

σt ∈ σ(Xt ,Xt−1, . . . , σt−1, σt−2, . . . ), t ∈ Z,

e.g. for GARCH models.

Alternative: Volatility sequence (σt)t∈Z depends on an
additional source of randomness ⇒ SV models!
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Taylor’s SV model

A very common specification is

Taylor’s lognormal SV model (1982)

Xt = σtεt , t ∈ Z,

log(σ2
t )− µ = φ(log(σ2

t−1)− µ) + ξt , t ∈ Z,

where ξt , t ∈ Z, are i.i.d. standard normal, independent of (εt)t∈Z
and |φ| < 1.
⇒ Volatility sequence has a log-normal distribution.
With regard to real data examples, heavy-tailed (power law)
marginals are a preferable feature of models for financial time
series.
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SV models with heavy-tailed innovation sequence

Breiman’s lemma - ”the heaviest tail wins”

If |εt | is regularly varying with index −α, i.e.

c(u)P(|εt | > u)→ 1, u →∞,

for a regularly varying function c(·) with index α

and σt ≥ 0 independent of εt with E (σα+δ
t ) <∞ for some

δ > 0, it holds that

c(u)P(σt |εt | > u)→ E (σαt ), u →∞,

i.e. |Xt | = σt |εt | is tail-equivalent to |εt |.

⇒ Common model specification: Taylor’s log-normal SV model
with heavy-tailed innovations.
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Extremal dependence structure

What do we know about joint extremal behavior of(
X0

Xh

)
=

(
σ0 0
0 σh

)(
ε0

εh

)
, h > 0?

Multivariate Breiman (Basrak, Davis, Mikosch (2002))

Random vector X ∈ Rd multivariate regularly varying with
index −α, i.e.

c(u)P(u−1X ∈ ·) v→ µ(·)

for a regularly varying function c(·) with index α and a
measure µ on Rd \ {0},
random q × d matrix A, independent of X, with
0 < E (‖A‖α+δ) <∞ for some δ > 0. Then

c(u)P(u−1AX ∈ ·) v→ µ̃(·) := E
[
µ ◦ A−1(·)

]
.
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Extremal dependence structure

c(u)P(u−1X ∈ ·) v→ µ(·) ⇒ c(u)P(u−1AX ∈ ·) v→ µ̃(·) := E
[
µ ◦ A−1(·)

]
Application to Taylor’s log-normal SV model:(

X0

Xh

)
=

(
σ0 0
0 σh

)(
ε0

εh

)
(ε0, εt) bivariate regularly varying with µ
on [−∞,∞]× [−∞,∞] \ {(0, 0)}
concentrated on the axes
⇒ µ(As,t) = c(s−α + t−α).

⇒ (X0,Xh) is regularly varying with

µ̃(As,t) = E

[
µ ◦
(
σ−1

0 0

0 σ−1
h

)
(As,t)

]
= cE (σαh )(s−α + t−α)
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Hidden regular variation and coefficient of tail dependence

Hidden regular variation (Resnick (2002))

A multivariate regularly varying vector X ∈ Rd
+ with limit measure

µ concentrated on the axes shows hidden regular variation (HRV)
on (0,∞]d if a non-zero measure µ0 on (0,∞]d exists, such that

c0(u)P(u−1X ∈ ·) v→ µ0(·), u →∞,

for a regularly varying function c0(·) with index α0.

Coefficient of tail dependence (Ledford & Tawn (1998))

If X is standardized to index −1 of regular variation, we call
η = 1/α0 ∈ (0, 1] the coefficient of tail dependence.

⇒ Stochastic independence of X1,X2 implies η = 1/2 for (X1,X2)
since c0(u) = (P(X1 > u)P(X2 > u))−1 is regularly varying with
index 2.
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Breiman’s lemma for hidden regular variation

Remember the multivariate version of
Breiman’s lemma for a multivariate regularly
varying vector and a random matrix. Does
there exist an analogue for HRV?

In the MRV setting, sets must be bounded
away from 0, for HRV they must be bounded
away from the axes. Set
Fd = {x ∈ Rd

0,+ : min(x1, . . . , xd) = 0}.
Define d(x,B) := miny∈B ‖x− y‖ for
x ∈ Rd ,B ⊂ Rd , and
N d := {x ∈ Rd

0,+ : d(x,Fd) = 1}.
⇒ For a d × d matrix A define

τ(A) := sup
x∈N d

d(Ax,Fd) ∈ [0,∞].
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Breiman’s lemma for hidden regular variation

Multivariate Breiman for hidden regular variation (J. (2011))

Random vector X ∈ Rd
+ showing hidden regular variation on

(0,∞]d with index −α0 such that

c0(u)P(u−1X ∈ ·) v→ µ0(·)

random invertible d × d matrix A, independent of X with
τ(A) > 0 almost surely and E (τ(A)α

0+δ) <∞ for some
δ > 0. Then

c0(u)P(u−1AX ∈ ·) v→ µ̃0(·) := E
[
µ0 ◦ A−1(·)

]
.
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Implications for “classical” SV models

Let (σt)t∈Z a light-tailed volatility sequence and (εt)t∈Z i.i.d.
standardized regularly varying innovations independent of the
volatilities.

For h > 0, vector (ε0, εh) shows HRV with coefficient of tail
dependence η = 1/2 (α0 = 2).

For invertible 2× 2-matrix Σh =

(
σ0 0
0 σh

)
one can show

that τ(Σh) = max(σ0, σh), thus E (τ(Σh)2+δ) exists for
light-tailed volatilities.

⇒ Aforementioned result implies that(
X0

Xh

)
=

(
σ0 0
0 σh

)(
ε0

εh

)
has the same coefficient of

tail dependence η = 1/2.
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General second order behavior of SV models

Previous section has shown: Product of light-tailed volatility
and heavy-tailed innovations ”inherits“ second order extremal
behavior of the innovations.

It is natural to assume the innovations to be independent, in
contrast to the volatility terms.

⇒ A heavy-tailed volatility sequence and light-tailed innovations
would offer us more flexibility with respect to the finer
modeling of the extremal dependence structure.
cf. also Mikosch and Rezapur (2013)
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Weibull-type log-volatilities

Assume that

Xt = σtεt , t ∈ Z,

log(σt)− µ =
∞∑
j=0

αjξt−j , t ∈ Z.

ξt , t ∈ Z, i.i.d. with distribution such that

P(ξt > z) ∼ Kzαe−z , z →∞,

for a real constant α 6= −1 and a positive constant K and
P(ξt < z) = o (ez) , z → −∞ (i.e. Exponential distribution).

with αi ∈ [0, 1],maxi∈N{αi} = 1, αi = o(i−θ), i →∞ for
some θ > 1.

Innovations εt , t ∈ Z, i.i.d. such that E (|εt |1+δ) <∞.
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Special case: Weibull-type AR(1) log-volatilities

Assume that

Xt = σtεt , t ∈ Z,

log(σt)− µ = φ(log(σt−1)− µ) + ξt , t ∈ Z.

with the same assumptions on the distributions of εt , ξt , t ∈ Z
as before and φ ∈ (0, 1).

Then obviously αi = φi ∈ [0, 1], i ∈ N, maxi∈N{αi} = 1 and
αi = o(i−θ), i →∞ or some θ > 1.

This may be regarded as an extension of Taylor’s ”standard”
SV model.
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Stationary distribution of this model

It follows from Rootzén (1986) that the corresponding
MA(∞) process is well defined and that

P(ln(σt)− µ > z) ∼ K̂ z α̂e−z , z →∞,

for certain constants K̂ > 0, α̂ ∈ R.

Thus, σt is regularly varying with index −1 (model can be
generalized to index −α by writing 1

αξt instead ξt).

Extremal behavior? Follows again from Rootzén that
(ln(σ0), ln(σh)) is asymptotically independent for all h > 0,
same holds true for (σ0, σh) and then by multivariate Breiman
also for (X0,Xh)
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Second order behavior of this model

We are interested in the asymptotic behavior of

P(ln(σt) > ln(x), ln(σt+h) > ln(x))

= P(σt > x , σt+h > x)
µ=0
= P

(
e
∑∞

j=0 ξt−jαj > x , e
∑∞

j=0 ξt+h−jαj > x
)

= P

 ∞∏
j=0

(
eξt−j

)αj

> x ,
∞∏
j=0

(
eξt+h−j

)αj

> x

 ,

where we know that eξt , t ∈ Z, are i.i.d. regularly varying with
index -1.
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A general result for weighted power products

Let Y1,Y2, . . . be i.i.d. regularly varying random variables with
index −1. Let αi , βi , i ∈ N, be two non-negative sequences. Then

P(
∞∏
i=1

Y αi
i > x ,

∞∏
j=1

Y
βj
j > x) ∼ P(Ys > xκs )P(Yt > xκt )

where s, t ∈ N, κs , κt ≥ 0 are such that

αsκs + αtκt ≥ 1, βsκs + βtκt ≥ 1

and κs + κt → min!

if a unique solution to this optimization problem exists.
”The most efficient tail combination wins”.

⇒ In our AR(1) model, this gives us that the coefficient of tail
dependence for vectors of lag h is equal to 1

2−φh .
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Résumé and Outlook

”Classic“ SV models with heavy-tailed innovations are (just
like GARCH(p, q) models) limited to a very specific range of
extremal behavior.

SV models with heavy-tailed volatility sequence share nice
probabilistic properties of well-known models while allowing
for a finer modelling of the extremal dependence structure.

Also needed for applications: Efficient estimation techniques.
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