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Motivation
In banks and insurances, one always considers portfolio of risks⇒
aggregation of risks (modeled with rv’s) = basis of the internal model.

In practice, when assuming aggregation of iid observations in the
portfolio model, distribution of the yearly log returns of financial
assets : often approximated by a normal distribution (CLT) .

Two main drawbacks when using the CLT for moderate heavy tail
distributions (e.g. Pareto with a shape parameter larger than 2).

↪→ if the CLT may apply to the sample mean because of a finite
variance, it also provides a normal approximation with a very
slow rate of convergence ; may be improved when removing
extremes from the sample (see e.g. Hall).
Even if we are interested only in the sample mean, samples of
small or moderate sizes will lead to a bad approximation. To
improve the approximation, existence of moments of order larger
than 2 may appear as necessary.
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↪→ With aggregated data, a heavy tail may appear :
- clearly on high frequency data (e.g. daily ones)
- not visible anymore when aggregating them in e.g. yearly data (i.e.

short samples),

although known that the tail index of the underlying distribution
remains constant under aggregation.

Main objective : to obtain the most accurate evaluations of risk
measures when working on financial data under the presence of fat
tail. We explore various approaches to handle this problem,
theoretically and numerically.

With financial/actuarial applications in mind, we use power law
models, such as Pareto, for the marginal distributions of the risks.
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• Outline

• Introduction - existing methods

• Method 1 - A mixed normal and extremes limit

• Method 2 - A shifted normal limit

• Application to risk measures - Comparison

• Conclusion : further development
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Introduction
. Notation

X : (type I) Pareto r.v., with shape parameter α , df f , cdf F
(F(x) := 1− F(x) = x−α, α > 0, x ≥ 1).

Inverse function of F : F←(z) = (1− z)−
1
α , for 0 < z < 1.

Recall that
E(X) <∞ for α > 1 (E(X) =

α

α− 1
)

var(X) <∞ for α > 2 (var(X) =
α

(α− 1)2(α− 2)
)

Portfolio of heavy-tailed risks : modeled by a Pareto sum
Sn :=

∑n
i=1 Xi , with (Xi, i = 1, . . . , n) an n-sample with parent r.v.X

X(1) 6 · · · 6 X(n) denote the order statistics of (Xi)16i6n.

Φ, ϕ denote, respectively, the cdf and df of N (0, 1).
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Risk measures we consider :

- the Value-at-Risk VaR of order q of X, q ∈ (0, 1) :

VaRq(X) = inf{y ∈ R : P[X > y] ≤ 1− q} = F←X (q) (quantile of FX,
order q)

- if E|X| <∞, the Expected Shorfall ES (or Tail VaR) at confidence
level q ∈ (0, 1) :
ESq(X) = 1

1−q

∫ 1
q VaRβ(X) dβ or ESq(X) = E[X | X ≥ VaRq]
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. Existing methods to approximate the distribution of the Pareto
sum Sn

• A GCLT approach (see e.g. Samorodnitsky et al. 1994, Petrov
1995, Zaliapin et al. 2005, Furrer 2012)
The distribution of Sn can be approximated by

- a stable distribution whenever 0 < α < 2 (via the GCLT)
- a standard normal distribution for α ≥ 2 (via the CLT for α > 2 ; for
α = 2, comes back to a normal limit with a variance different from
var(X) =∞) :

If 0 < α < 2,
Sn − bn

n1/αCα
d→ Gα normalizedα-stable distribution

If α ≥ 2,
1
dn

(
Sn −

nα
α− 1

)
d→ Φ

with

bn =


0 if 0 < α < 1
πn2

2
∫∞

1 sin
(πx

2n
)

dF(x) ' n (log n + 1 − C − log(2/π)) if α = 1
n E(X) = nα/(α − 1) if 1 < α < 2

(C = Euler constant 0.5772)

Cα =

{
(Γ(1 − α) cos(πα/2))1/α if α 6= 1
π/2 if α = 1

; dn =


√

n var(X) =
√

nα
(α−1)2(α−2)

if α > 2

inf
{

x :
2n log x

x2 ≤ 1
}

if α = 2
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• An EVT approach
Under the assumption of regular variation of the tail distribution
(with non negative tail index), the tail of the cdf of the sum of iid
rv’s is mainly determined by the tail of the cdf of the maximum of
these rv’s :

P[Sn > x] ' P[ max
1≤i≤n

Xi > x] as x→∞

• A mixed approach by Zaliapin et al., in the case 2/3 < α < 2
(var(X) =∞).
- Idea of the method : to rewrite the sum of the Xi’s as the sum of
the order statistics X(i) and to separate it into two terms, one with
order statistics having finite variance and the other as the
complement

Sn =

n∑
i=1

Xi =

n−2∑
i=1

X(i) +
(
X(n−1) + X(n)

)
Assuming the independence of the two subsums,

P(Sn ≤ x) '
n→∞

P
(
N
(
m1(α, n, 2), σ2(α, n, 2)

)
≤ x
)
×P
(

X(n−1)+X(n) ≤ x
)
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- Results :

Compared with the GCLT method, this approach provides

↪→ a better approximation for the Pareto sum, for any n, with a
higher degree of accuracy ;
↪→ a better result for the evaluation of the VaR

- Main drawbacks :

↪→ assuming a condition of independence between the two
dependent subsums
↪→ approximating the quantile of the Pareto sum as the sum of
the quantiles of each subsum
↪→ when considering the case α > 2, we still remain with a poor
normal approximation for the tail distribution
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. A general mixed approach for two alternative methods

• Main idea, inspired by the Zaliapin et al.’s method : to separate
mean behavior and extreme behavior, writing Sn as

Sn =
n∑

i=1

X(i)

• Main goal : to improve approximations of the distribution of Sn and
of the risk measures, when

- taking into account the dependence of the order statistics

- for any shape parameter α, in particular for the case 2 < α < 4 (for
financial application, e.g. market risk data known to have α in this
range)
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• Choice of the threshold k for the trimmed sum by removing the k
largest order statistics from the sample

k selected in order to use the CLT, but also to improve its fit since
we want to approximate the behavior of Tk by a normal one.

- The finitude of the 2nd moment of X may lead to a poor normal
approximation, if higher moments do not exist, as occurs for instance
with financial market data.

- The existence of the third moment provides a better rate of
convergence to the normal distribution in the CLT (Berry Esséen
inequality)

- Another information useful to improve the approximation of the
distribution of Sn with its limit distribution, is the Fisher index (kurtosis),

defined by the ratio γ =
E[(X−E(X))4]

(var(X))2
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Therefore, fixing p = 4, we select k = k(α) such that

E(Xp
(j))

{
<∞ ∀j ≤ n− k
=∞ ∀j > n− k

In our case of α-Pareto rv’s : k >
p
α
− 1

Note that the choice of k is independent of the sample size n

Value of the threshold k = k(α) for which the 4th moment is finite,
according to the set of definition of α :

α ∈ I(k) with I(k) = ] 1
2 ; 4

7 ] ] 4
7 ; 2

3 ] ] 2
3 ; 4

5 ] ] 4
5 ; 1 ]1; 4

3 ] ] 4
3 ; 2[ [2,4]

k = k(α) = 7 6 5 4 3 2 1
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• Two alternative methods

Common idea / step : to determine in an ’optimal way’ the
number k that corresponds to a threshold when separating the
mean behavior from the extreme one, one approximated by a
normal distribution, the second one having the k largest order
statistics with a specific treatment.

They differ from each other in two points :

↪→ the way of selecting this number k

↪→ the way of approximating the distribution of the sum of the largest
order statistics, which is of course related to the choice of k.
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Method 1 - A mixed normal and extremes limit
• Main steps

• A conditional decomposition

Because of the dependence between the two subsums
Tk :=

∑n−k
j=1 X(j) and Un−k :=

∑k−1
j=0 X(n−j), we decompose the

Pareto sum Sn in a slightly different way as

Sn = Tk + X(n−k+1) + Un−k+1

to use the property of conditional independence between
Tk/X(n−k+1) and Un−k+1/X(n−k+1).

• A normal approximation for the conditional trimmed sum

Now, since Tk/X(n−k+1)
d∼

n→∞

∑n−k
j=1 Yj with (Yj) an (n− k)-sample

with parent cdf defined by FY(.) = P
(

Xi ≤ . / Xi < X(n−k+1)

)
, the

CLT applies ; we have to compute the conditional first two moments.
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Proposition

L
(

Tk/(X(n−k+1) = y)
)

d∼
n→∞

N
(

m1(α, n, k, y), σ2(α, n, k, y)
)

where m1(α, n, k, y) =
n− k(α)

1− y−α
×


1−y1−α

1−1/α if α 6= 1

ln(y) if α = 1

σ2(α, n, k, y) :=
(
m2(α, n, k, y)− m2

1(α, n, k, y)
)

(y > 1)

m2(α, n, k, y) =
n− k(α)

1− y−α
×


1− y2−α

1− 2/α
if α 6= 2

2 ln(y) if α = 2

+

(
n− k(α)

)(
n− k(α)− 1

)
(1− y−α)2 ×


(1−y1−α)2

(1−1/α)2 if α 6= 1

ln2(y) if α = 1
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• A Pareto distribution for the conditional sum of the largest order
statistics

Un−k+1/
(
X(n−k+1) = y

)
can be written as

Un−k+1/
(
X(n−k+1) = y

)
=
∑k−1

j=1 Zj

with (Zj) iid rv’s with parent cdf defined by
FZ(.) = P

[
X ≤ . / (X > X(n−k+1) = y)

]
= Pareto cdf with

parameters α and y(> 1).

Hence the density function of Un−k+1/
(
X(n−k+1) = y

)
is the

convolution product of order k − 1 of the df of Z :

fUn−k+1/(X(n−k+1)=y) = h?(k−1)
y , with hy(x) =

α yα

xα+1 1I(x≥y)
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• Main result - an approximation of the distribution of the Pareto
sum
The cdf of Sn can be approximated, for large n, by Gn,α,k defined
for any x ≥ 1 by

Gn,α,k(x) =


∫ x

1 f(n−k+1)(y)
∫ x−y

0 ϕm1(y),σ(y) ? h?(k−1)
y (v)dv dy if k ≥ 2

∫ x
1

f(n)(y)
σ(y)

∫ x−y
0 ϕ

(
v−m1(y)
σ(y)

)
dv dy if k = 1

For k = 1, the cdf of Sn is given by

Gn,α,1(x) = nα
∫ x

1

1
σ(y)

y−(1+α)(1− y−α)n−1
∫ x−y

0
ϕ

(
v− m1(y)

σ(y)

)
dv dy

For k ≥ 2 (but small), we have

Gn,α,k(x) =

∫ x

1

f(n−k+1)(y)

σ(y)

∫ x−y

0

(∫ v

0
ϕ
( v− u− m1(y)

σ(y)

)
h?(k−1)

y (u)du
)

dv dy

where the convolution product h?(k−1)
y can be numerically evaluated

using the recursive convolution equation applied to h, or, for α = 1, 2
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Comment

Recall also that our objective is to focus on a good evaluation of
the distribution of Sn, not only of its mean behavior but also of its
tail behavior, to be able to compute risk measures. Hence we
want to show that for large n, using only a normal approximation
is not the right thing to do, and that if we do so, we need to
consider an adding term when looking at the largest
observations.
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Method 2 - A shifted normal limit
• Idea of the method

We use limit theorems for both terms Tk and Un−k in the
decomposition Sn = Tk + Un−k (instead of proceeding via
conditional independence), namely

↗ the normal approximation for the (unconditional) trimmed sum Tk

⇒ k must satisfy k > p/α− 1 and if k = k(n), k/n→ 0 as n→∞ or
k = [nρ] with 0 < ρ < 1/2 (Csörgö et al., 86)

↘ a limit theorem for Un−k (⇒ to choose k as a function of n), based
on the following result :
For a sequence (Li)i∈N of iid rvs (with order stat. L(i)), 0 < γ < 1,

lim
n→∞

∑[n(1−γ)]−1
i=0 L(n−i)

[n(1− γ)]
= ESγ(L) a.s.

where ESγ(L)= Expected Shortfall of L.
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• CLT for the trimmed sum
Proposition. Take α > 1/4. Let p ≥ 2 and k = k(α) > [p/α− 1.
Then

L
(

Tk

)
d∼

n→∞
N
(

m1(α, n, k), σ2(α, n, k)
)

where the mean m1(α, n, k) and the variance σ2(α, n, k) are
defined respectively by

m1(α, n, k) :=

n−k∑
i=1

E(X(i)) =

n−k∑
i=1

n!Γ(n− i + 1− 1/α)

(n− i)!Γ(n + 1− 1/α)
=

n−k∑
i=1

i−1∏
j=0

n− j
n− j− 1/α

and σ(α, n, k) :=
√

m2(α, n, k)− m2
1(α, n, k), with

m2(α, n, k) :=

n−k∑
i=1

E(X2
(i)) + 2

n−k∑
j=2

j−1∑
i=1

E(X(i)X(j))

=

n−k∑
j=1

(
j−1∏
l=0

n− l
n− l− 2/α

+ 2
j−1∑
i=1

i−1∏
l=0

n− l
n− l− 2/α

j−1∏
l=i

n− l
n− l− 1/α

)
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• Main result
Theorem. Let X be a α-Pareto rv (defined on [1,∞)), with α > 1,
and (Xi, i = 1, . . . , n) an n-sample with parent rv X.
Let us choose k = k(n, γ) such that

k = k(n, γ) = [n(1− γ)] with 1/2 ≤ γ < 1

Note that k satisfies k > p/α− 1. The cdf of Sn can be
approximated, for large n, by a normal approximation with mean
m1(α, n, k) + k ESγ and variance σ2(α, n, k) :

L(Sn) = L(Tk + Un−k)
d∼ N

(
m1(α, n, k) + k ESγ(X) , σ2(α, n, k)

)
where ESγ(X) =

α

(α− 1)
(1− γ)−1/α.

Comment.
This result is interesting since it shows that, even if we want to
consider a normal approximation, simply consider a shift of ESγ
for the mean. This approximation will be compared with a rough
normal approximation made directly on Sn.
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Application to VaR and Comparison
• Possible approximations of VaR

Approximations z(i)
q of the VaR of order q, deduced from the

various limit theorems :

. For 0 < α < 2 :

- via the GCLT :

z(1)
q = n1/αCα G←α (q) + bn (Gα (α, 1, 1, 0)-stable distribution)

for 1/2 < α < 2, and for q > 0.95,
z(1bis)

q = n1/αq−1/α + bn

- via the Max (EVT) approach, for high order q :

z(3)
q = n1/α

(
log(1/q)

)−1/α
+ bn
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- via the Zaliapin et al’s method, for α > 2/3 :

z(4)
q =

(
σ(α, n, 2) Φ←(q) + m1(α, n, 2)

)
+ T←α,n(q)

with Tα,n the cdf of
(
X(n−1) + X(n)

)
- via Method 1, with a mixed normal-extremes limit :

z(5)
q = G←n,α,k(q) with

Gn,α,k(x) =

∫ x

1

f(n−k+1)(y)

σ(y)

∫ x−y

0

(∫ v

0
ϕ
(v− u− m1(y)

σ(y)

)
h?(k−1)

y (u)du
)

dv dy

- via Method 2, with a shifted normal limit, for α > 1, 1/2 < γ < 1 :

z(6)
q = σ

(
α, n, [n(1− γ)]

)
Φ←(q)

+m1
(
α, n, [n(1− γ)]

)
+

α

(α− 1)
× [n(1− γ)] (1− γ)−1/α
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. For α = 2 :

- via the (G)CLT :

z(1)
q = dn Φ←(q) + 2n

- via the Max (EVT) approach, for high order q :

z(3)
q = n1/α

(
log(1/q)

)−1/α
+ bn

- via Method 1, with a mixed normal-extremes limit :

z(5)
q = G←n,α,2(q)

- via Method 2, with a shifted normal limit, 1/2 < γ < 1 :

z(6)
q = σ

(
α, n, [n(1− γ)]

)
Φ←(q)

+m1
(
α, n, [n(1− γ)]

)
+

α

(α− 1)
× [n(1− γ)] (1− γ)−1/α
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. For 2 < α ≤ 4 :

- via the CLT :

z(2)
q =

√
nα

(α− 1)
√
α− 2

Φ←(q) +
nα
α− 1

- via the Max (EVT) approach, for high order q :

z(3)
q = n1/α

(
log(1/q)

)−1/α
+ bn

- via Method 1, with a mixed normal-extremes limit :

z(5)
q = G←n,α,1(q) with

Gn,α,1(x) = nα
∫ x

1

1
σ(y)

y−(1+α)(1− y−α)n−1
∫ x−y

0
ϕ

(
v− m1(y)

σ(y)

)
dv dy

- via Method 2, with a shifted normal limit, k = k(n), 1/2 < γ < 1 :

z(6)
q = σ(α, n, k) Φ←(q) + m1(α, n, k) +

α

(α− 1)
× [n(1− γ)] (1− γ)−1/α
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• Numerical comparison - examples

Simulation of samples (Xi, i = 1, . . . , n) with parent r.v. X for
different shape parameters, namely α = 3/2; 2; 5/2; 3; 4,
respectively.

Approximative relative error :

δ(i) = δ(i)(q) =
z(i)

q

zq
− 1
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- Case α = 3/2

n = 250 Simul GCLT Max Method1

q zq z(1)
q z(3)

q z(5)
q

δ(1) (%) δ(3)(%) δ(5)(%)

95% 1017.64 1103.27 1037.47 1019.1
8.42 1.95 0.14

99% 1594.97 1676.63 1602.13 1596
5.12 0.45 0.06

99.5% 2099.49 2179.73 2104.94
3.82 0.26

n = 500 Simul GCLT Max Method1

q zq z(1)
q z(3)

q z(5)
q

δ(1) (%) δ(3) (%) δ(5) (%)
95% 1929.32 2060.79 1956.32 1930

6.81 1.40 0.04
99% 2850.51 2970.93 2852.67 2855

4.22 0.076 0.15
99.5% 3651.13 3769.55 3650.84 -

3.24 -0.79 -
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- Case α = 2
n = 250 Simul GCLT Max Method1

q zq z(1)
q z(3)

q z(5)
q

δ(1) (%) δ(3) (%) δ(5) (%)
95% 576.82 571.42 569.81 577

-0.93 -1.21 0.03
99% 666.66 601.01 657.72 669.3

-9.85 -1.34 0.40
99.5% 730.79 611.85 723.33 765

-16.28 -1.02 4.68

n = 500 Simul GCLT Max Method1

q zq z(1)
q z(3)

q z(5)
q

δ(1) (%) δ(3) (%) δ(5) (%)
95% 1113.04 1106.19 1098.73 1113.1

-0.62 -1.29 0.01
99% 1240.02 1150.18 1223.05 1242

-7.25 -1.37 0.16
99.5% 1330.40 1166.29 1315.83 1355

-12.33 -1.1 1.85
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- Case α = 5/2

n = 250 Simul CLT Max Method1

q zq z(1)
q z(3)

q z(5)
q

δ(1) (%) δ(3) (%) δ(5) (%)
95% 454.76 455.44 446.53 454

0.15 -1.81 -0.17
99% 484.48 471.5 473.99 484

-2.68 -2.17 -0.10
99.5% 501.02 477.38 492.38 501.6

-4.72 -1.73 0.12

n = 500 Simul CLT Max Method1

q zq z(1)
q z(3)

q z(5)
q

δ(1) (%) δ(3) (%) δ(5) (%)
95% 888 888.16 872.74 886.2

0.02 -1.72 -0.20
99% 928.8 910.88 908.97 925.5

-1.93 -2.14 -0.35
99.5% 950.9 919.19 933.23 949

-3.33 -1.86 -0.19
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- Case α = 4
n = 250 Simul CLT Max Method1

q zq z(1)
q z(3)

q z(5)
q

δ(1) (%) δ(3) (%) δ(5) (%)
95% 346.31 345.59 341.69 346.1

-0.21 -1.33 -0.06
99% 352.97 350.67 345.89 352.4

-0.65 -2.00 -0.16
99.5% 355.74 352.53 348.28 355.2

-0.90 -2.19 -0.15

n = 500 Simul CLT Max Method1

q zq z(1)
q z(3)

q z(5)
q

δ(1) (%) δ(3) (%) δ(5) (%)
95% 684.99 684 676.60 685.5

-0.14 -1.22 0.07
99% 693.85 691.19 681.60 695

-0.38 -1.77 0.16
99.5% 697. 36 693.81 684.44 698.5

0.51 -1.85 0.16
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Comments

• Method 1 always gives sharp results (error less than 0.5% and
often extremely close) ; it appears more or less independent of n.

• The max-method overestimates for α < 2 and underestimates for
α ≥ 2 ; it improves a bit when n increases.

• The GCLT method (α < 2) overestimates the quantiles but
improves with higher quantiles and when n increases.

• The CLT method underestimates the quantiles and the higher the
quantile, the higher the underestimation ; it improves slightly
when n increases.
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Conclusion
• Summary

Main study :
approximation methods of the distribution of a Pareto sum ;
application to the evaluation of the VaR

↪→ Review on the existing methods : GCLT, Max-method, method with
order stat

↪→ A method mixing CLT and a given and small number of the largest
order statistics ; sharp approximation for any n and any α

↪→ A shifted normal CLT, to stay in the Gaussian realm ; a simple tool,
for large n
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• Next steps

↪→ End of the numerical application

↪→ Use of the GPD

↪→ Extension to the dependent case, via
- GCLT method : using the theorem on stable limits for sums of

dependent infinite variance r.v. (Bartkiewicz et al., 2010) / LDP
(Mikosch et al.)

- CLT under weak dependence theorem
- Max method (no need of independence)

in particular to generalize the shifted CLT (method 2)

↪→ Study of the scaling behavior of VaR under aggregation

↪→ Application to real data
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