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Regular variation

For a probability distribution P on a space S such as R%, a Banach space, a sequence
space, a function space such as C[0, 1] and D|[0, 1], etc., regular variation can be
defined as follows:

there exists a nonzero measure p that assigns finite mass to sets bounded away from
O and a set E bounded away from O such that

P(tA)
LU P(tE) w(A)

for all Borel sets A bounded away from O such that u(0A) = 0.

It follows that u(AA) = \~*u(A) for all Borel sets A ¢ R%\ {0} and A > 0.
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Some thoughts
Looks like weak convergence.

It appears that only multiplication by a scalar is the relevant structure of the space that
IS needed.

In order to develop useful results with analogs in the weak-convergence theory (map-
ping theorems, characterizations of relative compactness, Portmanteau theorems,
etc.) it is desired to have some structure such as a separable and complete metric
space.

Perhaps one is interested in sets bounded away from some other subset rather than
the origin (if such a point exists). Possibility to consider hidden regular variation.

By having a flexible definition of multiplication by a scalar, possibility to allow for differ-
ent tail decay in different “directions”.
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Suggested setting

Let (S,d) be a complete separable metric space. Require that multiplication by a
scalar is a mapping (A, z) — Ax from (0, c0) x S into S such that

(A1) the mapping (A, z) — Ax is continuous,

(A2) 1x = x and )\1(>\2$) = (>\1>\2>CE.

Fix a closed cone C C S and set O = S\ C. Require that

(A3) d(z,C) < d(Az,C)if A\ >1andz € O.
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Some weak convergence theory

Let M be the class of Borel measures on O whose restriction to C” is finite for » > O,
where C" = {z € S : d(z,C) < r}.

tn — win Mg is equivalent to [ fdun, — [ fdu for all real-valued bounded and
continuous functions f on O for which there exists » > O such that f vanishes on C".

un — pin Mg is equivalent to pn(A) — p(A) for all A bounded away from C with
uw(0A) = 0.

Ly — @ in MS) is equivalent to the existence of a sequence r; | 0 such that the
restrictions 5%, 1) of i, 1 to O \ Ci satisfy u" — u(mi) weakly on O \ CTi.

M is metrizable as a complete and separable metric space.
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Regular variation
A sequence {vp},>1 In Mg is regularly varying if there exists a sequence {cn},>1
of positive numbers which is regularly varying and a nonzero u© € Mg such that

cnVn — N M@ as n — oo.

A measure v € Mg is regularly varying if the sequence {v(n-) },>1 in Mg is regularly
varying: cpv(n:) — u(-) in Mg as n — oo.

Equivalently,

There exist nonzero . € Mg and regularly varying function ¢ such that c(t)v(t-) —
u(-)in Mg ast — oc.

There exist nonzero © € Mg and set £ C O bounded away from C such that
v(tE) " lu(t) — p(.) in Mg as t — co.
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Scaling property

If v € Mg is regularly varying, according to any of the equivalent statements, then the
limit measure p satisfies
p(AA) = A" %u(A)

for some o > 0 and all Borel sets A € O.

The regular variation index « is determined if we specify what is meant by multiplication
by a scalar (not enough to specify v).
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Example 1

Let S = RZ and let C = {0}. Let X; be Pa(+y;) and X5 be Pa(~5) and independent.
Define (\, (z1,x2)) — (A1/71z1, A1/ 7225).

Fora,b >0

2P ((X1, X5) € t[(a,00) x (b,00)]) = tP(X71 > tY/Ma)tP (X5 > t1/72p)
— q 71p—2,

The limit measure therefore has the scaling property. Here,

p(A[(a, 00) x (b,00)]) = p((AMa,00) x (A/71b,00))
— \ 24 V1pT 2

= A"?u((a,00) x (b,00)).
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Example 2

let S = R2 and let C = R x {0}. Let X7 be N(0,1) and X, be Pa(y) and
independent. Define (A, (x1,22)) — (x1, Axo).

Fora,b > 0

t"P((X1,X5) € t[(a,o0) x (b,00)]) =t"P(X1 > a)P(X5 > tb)
— (]_ — Cb(a))b_’y.

The limit measure therefore has the scaling property. Here,

u(A[(a, 00) x (b,00)]) = u((a,00) x (Ab,00))
= A7l —=®(a))b 7
= A" "u((a,00) x (b,00)).
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