Regular variation for measures

Kolkata, January 16, 2013

Filip Lindskog, KTH Stockholm

Based on joint work with Henrik Hult

Page 1/9

Regular variation

For a probability distribution P on a space S such as \mathbb{R}^d , a Banach space, a sequence space, a function space such as C[0, 1] and D[0, 1], etc., regular variation can be defined as follows:

there exists a nonzero measure μ that assigns finite mass to sets bounded away from 0 and a set *E* bounded away from 0 such that

$$\lim_{t \to \infty} \frac{P(tA)}{P(tE)} = \mu(A)$$

for all Borel sets A bounded away from 0 such that $\mu(\partial A) = 0$.

It follows that $\mu(\lambda A) = \lambda^{-\alpha}\mu(A)$ for all Borel sets $A \subset \mathbb{R}^d \setminus \{0\}$ and $\lambda > 0$.

Some thoughts

Looks like weak convergence.

It appears that only multiplication by a scalar is the relevant structure of the space that is needed.

In order to develop useful results with analogs in the weak-convergence theory (mapping theorems, characterizations of relative compactness, Portmanteau theorems, etc.) it is desired to have some structure such as a separable and complete metric space.

Perhaps one is interested in sets bounded away from some other subset rather than the origin (if such a point exists). Possibility to consider hidden regular variation.

By having a flexible definition of multiplication by a scalar, possibility to allow for different tail decay in different "directions".

Suggested setting

Let (S, d) be a complete separable metric space. Require that multiplication by a scalar is a mapping $(\lambda, x) \mapsto \lambda x$ from $(0, \infty) \times S$ into S such that

(A1) the mapping $(\lambda, x) \mapsto \lambda x$ is continuous,

(A2) 1x = x and $\lambda_1(\lambda_2 x) = (\lambda_1 \lambda_2)x$.

Fix a closed cone $C \subset S$ and set $O = S \setminus C$. Require that

(A3) $d(x, \mathbf{C}) < d(\lambda x, \mathbf{C})$ if $\lambda > 1$ and $x \in \mathbf{O}$.

Some weak convergence theory

Let M_O be the class of Borel measures on O whose restriction to C^r is finite for r > 0, where $C^r = \{x \in S : d(x, C) < r\}$.

 $\mu_n \to \mu$ in $\mathbf{M}_{\mathbf{O}}$ is equivalent to $\int f d\mu_n \to \int f d\mu$ for all real-valued bounded and continuous functions f on \mathbf{O} for which there exists r > 0 such that f vanishes on \mathbf{C}^r .

 $\mu_n \to \mu$ in M_O is equivalent to $\mu_n(A) \to \mu(A)$ for all A bounded away from C with $\mu(\partial A) = 0$.

 $\mu_n \to \mu$ in $\mathbf{M}_{\mathbf{O}}$ is equivalent to the existence of a sequence $r_i \downarrow 0$ such that the restrictions $\mu_n^{(r_i)}, \mu^{(r_i)}$ of μ_n, μ to $\mathbf{O} \setminus \mathbf{C}^{r_i}$ satisfy $\mu_n^{(r_i)} \to \mu^{(r_i)}$ weakly on $\mathbf{O} \setminus \mathbf{C}^{r_i}$.

 M_{O} is metrizable as a complete and separable metric space.

Regular variation

A sequence $\{\nu_n\}_{n\geq 1}$ in $\mathbf{M}_{\mathbf{O}}$ is regularly varying if there exists a sequence $\{c_n\}_{n\geq 1}$ of positive numbers which is regularly varying and a nonzero $\mu \in \mathbf{M}_{\mathbf{O}}$ such that $c_n\nu_n \to \mu$ in $\mathbf{M}_{\mathbf{O}}$ as $n \to \infty$.

A measure $\nu \in \mathbf{M}_{\mathbf{O}}$ is regularly varying if the sequence $\{\nu(n\cdot)\}_{n\geq 1}$ in $\mathbf{M}_{\mathbf{O}}$ is regularly varying: $c_n\nu(n\cdot) \rightarrow \mu(\cdot)$ in $\mathbf{M}_{\mathbf{O}}$ as $n \rightarrow \infty$.

Equivalently,

There exist nonzero $\mu \in \mathbf{M}_{\mathbf{O}}$ and regularly varying function c such that $c(t)\nu(t \cdot) \rightarrow \mu(\cdot)$ in $\mathbf{M}_{\mathbf{O}}$ as $t \rightarrow \infty$.

There exist nonzero $\mu \in \mathbf{M}_{\mathbf{O}}$ and set $E \subset \mathbf{O}$ bounded away from \mathbf{C} such that $\nu(tE)^{-1}\nu(t\cdot) \rightarrow \mu(\cdot)$ in $\mathbf{M}_{\mathbf{O}}$ as $t \rightarrow \infty$.

Scaling property

If $\nu \in \mathbf{M}_{\mathbf{O}}$ is regularly varying, according to any of the equivalent statements, then the limit measure μ satisfies

$$\mu(\lambda A) = \lambda^{-\alpha} \mu(A)$$

for some $\alpha \geq 0$ and all Borel sets $A \in \mathbf{O}$.

The regular variation index α is determined if we specify what is meant by multiplication by a scalar (not enough to specify ν).

Example 1

Let $S = \mathbb{R}^2$ and let $C = \{0\}$. Let X_1 be $Pa(\gamma_1)$ and X_2 be $Pa(\gamma_2)$ and independent. Define $(\lambda, (x_1, x_2)) \mapsto (\lambda^{1/\gamma_1} x_1, \lambda^{1/\gamma_2} x_2)$.

For a, b > 0

$$t^{2} \mathbf{P}((X_{1}, X_{2}) \in t[(a, \infty) \times (b, \infty)]) = t \mathbf{P}(X_{1} > t^{1/\gamma_{1}}a) t \mathbf{P}(X_{2} > t^{1/\gamma_{2}}b)$$

= $a^{-\gamma_{1}}b^{-\gamma_{2}}$.

The limit measure therefore has the scaling property. Here,

$$\mu(\lambda[(a,\infty)\times(b,\infty)]) = \mu((\lambda^{1/\gamma_1}a,\infty)\times(\lambda^{1/\gamma_1}b,\infty))$$
$$= \lambda^{-2}a^{-\gamma_1}b^{-\gamma_2}$$
$$= \lambda^{-2}\mu((a,\infty)\times(b,\infty)).$$

Page 8/9

Example 2

Let $S = \mathbb{R}^2$ and let $C = \mathbb{R} \times \{0\}$. Let X_1 be N(0,1) and X_2 be $Pa(\gamma)$ and independent. Define $(\lambda, (x_1, x_2)) \mapsto (x_1, \lambda x_2)$.

For a, b > 0

$$t^{\gamma} \mathbf{P}((X_1, X_2) \in t[(a, \infty) \times (b, \infty)]) = t^{\gamma} \mathbf{P}(X_1 > a) \mathbf{P}(X_2 > tb)$$
$$= (1 - \Phi(a))b^{-\gamma}.$$

The limit measure therefore has the scaling property. Here,

$$\mu(\lambda[(a,\infty)\times(b,\infty)]) = \mu((a,\infty)\times(\lambda b,\infty))$$
$$= \lambda^{-\gamma}(1-\Phi(a))b^{-\gamma}$$
$$= \lambda^{-\gamma}\mu((a,\infty)\times(b,\infty)).$$

Page 9/9