On Adam Jakubowski’s approach to proving

asymptotic results for regularly varying sequences °

Thomas Mikosch
University of Copenhagen

www.math.ku.dk /~mikosch

Joint work with
Olivier Wintenberger (Paris Dauphine and CREST)

1Kolkata, January 2013



REGULARLY VARYING STATIONARY SEQUENCE

e An R%valued stationary sequence (X;) is regularly varying
with index a > 0 if its finite-dimensional distributions are
regularly varying with index a:

e For every kK > 1, there exists a non-null Radon measure p; on

@g which does not charge infinite points such that

Pz Y (X,...., X)) €) &
P(|Xo| > =)
The measures p; have the property pup(t-) =t~ *ur(-), t > 0, for

> p () -

some o > 0.

e If f is a continuous mapping such that f~1({0}) = {0}, then

P(f(z ' (X1,...,Xk)) € A)
P(|Xo| > x)

> 1 (F77(A)) -



e For example,

P(m_lSk - A)
P(| Xo| > =)

>uk({XEde:wl—l—---—l—mkeA}).



EXAMPLES OF REGULARLY VARYING STATIONARY SEQUENCES

Linear processes.

e A linear process
Xy = Z"ijt—ja t €z,
J

is regularly varying with index a > 0 if the iid sequence (Z;) is

regularly varying with index o, under conditions on (v;) which

are close to those in the 3-series theorem M. and Samorodnitsky (2000)
e Regular variation of X is in general not sufficient for regular

variation of Z(). Jacobsen, M., Samorodnitsky, Rosiriski (2009, 2012)



Solutions to stochastic recurrence equation.

e For an iid sequence ((A¢, Bt))tcz, A¢ > 0, the stochastic

recurrence equation
X =AXy 1+ By, tez,

has a unique stationary solution
t—1
X¢ = B + Z Ao+ A1 B;, teZ,

1=—00

provided Elog Ay < 0, Elog™ | By| < .
e The sequence (X;) is regularly varying with index a which is
the unique solution to FA; = 1, k > 0, (given this solution

exists) Kesten (1973), Goldie (1991) and for some c+ > 0, ¢, + c_ > 0,

P(Xo>x)~cyxz®, P(Xo<—x)~c_x ™ *, x— 0.



e The GARCH(1, 1) process Bollerslev (1986) satisfies a stochastic
recurrence equation: for an iid standard normal sequence (Z;),
positive parameters o, a1, 31,

o = oo + (e Zi | + Bi)o; ;.
The process X; = 04, is regularly varying with index «
satisfying E(a;Z2 + 3,)%/? = 1.
e -Stable stationary processes, a € (0, 2).

e Max-stable stationary processes with a-Fréchet marginals,

o > 0.



LOOKING BACKWARDS
e The approaches by
e Davis and Hsing (1995)

e Jakubowski (1993, 1997)

e Asymptotic theory for general regularly varying sequences
e Central limit theory with a-stable limits.
e Point process convergence.
e Convergence of maxima to a-Fréchet law.

e Large deviations.



THE DAVIS AND HSING (1995) APPROACH FOR POINT PROCESSES

e Assume P(|X,| > a,) ~ n~'. Consider the point processes
J
Npj =) €,1x,5 J=1,...,n, Npp=N,.
t=1

with state space Eg.
e Mixing condition A(a,): There exists a sequence

m = m,, — oo such that k,, = [n/m] — oo and
kn
Ee_fden_(Ee_fdenm) _)O’ fe@;_{’
e Anti-clustering condition (AC): For (m,) from A(a,),

lim limsup P( max |X > da, | |Xo| > da,) =0, 6 >0.

k—oo n—oo k<[t|<mn



e If (X;) is regularly varying, (AC) and .A(a,) hold then

® @) o0
N, 5 N = ZZEF?”O‘QM ’

i=1 j=1
(T';) is an increasing enumeration of the points of a

homogeneous Poisson process on (0, 00) with intensity -,
(Qij)j>1, ¢t =1,2,..., are iid sequences of points Q;; such that
sup,>; |Qij| = 1 a.s. and = is the extremal index of the
sequence (| Xi|).
e a-stable limit theory and large deviations are consequences.
e Alternative proof by Basrak and Segers (2009), using the tail

chain approach. Also show ~v > 0.
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THE JAKUBOWSKI (1993,1995) APPROACH TO (-STABLE LIMITS

e Based on Bartkiewicz, Jakubowski, M., Wintenberger (2011).

e Partial sum process for d =1, EXy = 0 for a € (1, 2),
S5o=0 and S, =X;+---+X,,, n>1.

e Mixing condition (MX): There exists a sequence

m = m,, — oo such that k,, = [n/m] — oo and

EeitaﬁlSn _ (Eeitaﬁlsm) o — 0, teR.

e Anti-clustering condition (AC’): For (m,) as in (MX)

lim lim sup k,, Z E|h(za '(S; — Si))h(za,'X )| =0, z=€R,

=0 n—oo 1<j<m

where h(y) = (y A 2) V (—2).



e The characteristic function of an a-stable random variable &,

for « € (0,1) U (1,2), by,b_ >0, b, +b_ > 0,

Ya(t) = exp(—[t|*Xa(t, by, b)), tER,
where x(t,b1,b_) is given by
I'2-— o)

1l -«
e Step 1. Under (MX), a_'S, -5 &, if and only if

(a;? Zfﬁl Simi) 4 &, for iid copies S,,; of S,,.

((b+ 1 b_) cos(ma/2) — isign(t)(by — b_) sin(w a/z)) , tER,

e Equivalently,
k. log Eettan Sm k., (Eeita#Sm - 1) — log Ee~, tcR.
e Step 2. Under (AC’),
lim lim sup ‘kn (Eeit"’gls’m — 1)

k—oo np—oo

—n ((Be™'Sk — 1) — (Eef®n Se1 — 1))| = 0.
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Since S; is regularly varying for every fixed £ > 1, t € R,
e | oy —1 ~ ~
n ((Eeztan Sk __ 1) — (Eeztan Sk—1 _ 1)) — log Yo k(t) — log o r_1(t) ,
where

Ja,k (t)/lza,k—l (t)
= exp [ — [Ha(t: by (k) — by (k — 1),b_(k) — b_(k — 1)) ,
and

lim n P(S; > a,) =by (k) and lim nP(Sy < —a,) =0b_(k).

e Step 3. In view of Steps 1 and 2, a_ 'S, 4 £, is proved if we

can show that the limiting cluster index

Jim (bs (k) — bi(k — 1)) = by

exists and is finite.



LARGE DEVIATIONS FOR A REGULARLY VARYING SEQUENCE, @ > 0

e If (X;) is regularly varying, the following limit exists:
P(Sk+1 > x) — P(S > x)

lim — b, (k+1) — by (k).

=0 P(| Xo| > z)
e Assume limg_,(by(k+ 1) — by (k)) = by exists.

e Using Jakubowski’s idea for fixed k > 2,

‘ P(S, > x) b
n P(| Xo| > @) "
< |P(Sn >x) —n(P(Sgr1 > x) — P(Sk > CIZ))‘
— n P(|Xo| > x)
‘P(Skz+1 >x) — P(S5>x) |
P(|X,| > =) ol

e Show that the green part is negligible.
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e Truncate the | X¢|’s from below at the level d x: S,
e Use lemma of Jakubowski (1993):

[P(S,, > x) —n(P(811 > ) — P(5 > 1))
k P(|Xo| > dx) ) “P(|X;| > dx,|Xo| > dx)

— nP(|Xo| > =) Jz::k P(|Xo| > =)
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e Theorem. 1. AC,. There exist 9, | 0 as k — oo and a sequence
of sets A,, C (0,00), n =1,2,..., with b, = inf A,, such that
n P(|X| > b,) — 0 as n — oo and

lim lim sup sup 5,€_O‘ZP(|XJ-| > x0 | | Xo| > xdr) = 0.

k—oco n—-oco reAp =k

2. For the sequences (A,), (dx) as above, and a sequence (&)

satisfying e, = o(k™') and (k + 1), < &4,

p ( 2im1 Xil{xi <o, ey > €km)
lim lim sup sup

= 0.
k—oco p—oo z€A, 'n,P(|X0| >ZIZ)

Then the large deviation principle holds:

P(S, > x) B
n P(| Xo| > @)

lim sup | b+‘ =0,



16

REGULARLY VARYING MARKOV CHAINS
o Let X; = f(®P;), t € Z, be regularly varying, (®;) an (irr., aper.)
stationary Markov chain satisfying AC, and DC, for every

pP< o
There exist constants 3 € (0,1), b > 0 and a small set A such

that for any v,

E(|X1P| ®o=y) < B|f(y)|” + bla(y).

e This condition implies geometric B-mixing of (X).



e Then
—by = limg_,oo(byr(k+ 1) — by (k)) exists
— 2. of Theorem is satisfied Due to an exponential inequality of Bertail and
Clémencon (2009)

—and the large deviation principle holds

. P(S, > x)
lim sup

— —0
n—oogen, IR P(|X| >a) |

for A,, = (b,, e*"), where s, = o(n) and b,,/n%%t? — oo for

a>2,b,/n'/*t - oo for a € (0,2), any § > 0.
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e Due to regeneration

Ny(n)

Sn = i X+
where 74 is the ﬁrsiz::tlime the Markov chain hits the set A and
(S(k)) are block sums over independent cycles.

e The iid random variables S(k) are regularly varying with index
a and by Nagaev’s results
P(S, > x) 1

lim sup ——1 =0.
N—00 pc A, ’TLPA(SA > 213) ETy

e Also

P(S, > x) b P(S,>x,74 >mn)
nP(X|>z) "' nP(X|>a)
and P(14 > n) < e ""FEe"™4,



MOVING TOWARDS THE MULTIVARIATE CASE

e Assume that (X;) is an R%valued function of a (aper., irr.)
Markov chain.
e Then DC,, p < a, holds for every sequence (6'X;), 8 € S* 1, in

modified form

E(|0'X1|P | @0 =y) < E(|X4]? | @0 =y) < B|f(y)|” + bla(y).

e By regular variation of (X;) the limits

P(0'S
be(8) = lim 05k > )
z—oo P(|Xo| > @)

exist and DC,, p < a, implies that

0 c Sd_l,

b(6) = Jim (bi1(6) — bu(9)), 0 € '

e We call b the cluster index.
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e The following large deviation principle holds
. P(0'S, > cx)
lim sup —

n—=% zep, In P(|Xo| > @)

for A, = (b,, e°"), where s,, = o(n).

c_ab(H) :0, C>0,9€Sd_1,

e Consider the measures on the Borel o-field of @g
P(bls, €.

(&, <) , n>1.
nP(|Xo| > by)

e The latter limit relation implies that for sets A bounded away

pn(-) =

from zero

sup pn(A) < oo,
n>1

hence the measures (u,) are vaguely tight and
n({x:0'x>c}) - c b)), ¢>0,0c S,

e Subsequential limits of (u,) coincide on the sets {x : 8’x > c}.
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e If o is not an integer, or « is an odd integer and X is
symmetric, or b(0) = 0 for § € U, U C S%! open, one can show
Basrak, Davis, M. (2002), Boman, Lindskog (2008), Kliippelberg, Pergamenchikov (2007)

that

P(b,'Sp €) o
ZP(xIS0o) MO

pn(+) =

for a limit measure p which is uniquely determined by the

relations

p({x:0x>c}) =c >0, c>0, 6csi?,

and which has the property pu(tA) =t “u(A), t > 0.
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e For an iid R%valued regularly varying sequence (X, ) with

. . . . P(w_lXO S ) v
index o and limit measure v, i.e. > v(+) , one has
P(|Xo| > )

Jt = V. Hult, Lindskog, M. Samorodnitsky (2005)

AN INTERPRETATION OF THE CLUSTER INDEX

® Basrak, Segers (2009) prove that an R%valued regularly varying

stationary sequence satisfies the relation
Plx " (X_p,...,Xp) €| |Xo| >2) = P((Y_py...,Y3) €Y, h>0,
and the limiting vector has representation
(Yo p,ooos Yn) = |Yo| (O_py...,0n),

where |Yp| is independent of (©_p,...,0;) and
P(|Yo| > z) =27, = > 1.



e Then for 0 € S, k > 1,

P(6’'S — P(0'S
b11(0) — br(0) = lim 95 > 2) 95 > )

00 P(| Xo| > =)

- El(o3e) - (3@
and

b(0) = lim (by11(0) — by(0))

Fl(rS0) - (73]
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CONCLUDING REMARKS

® Balan and Louhichi (2009) use the Jakubowski approach to point
process convergence.

® M., Wintenberger (2011) use the Jakubowski approach to prove large
deviations for general regularly varying sequences for d = 1.

® M., Wintenberger (2011) use the Jakubowski approach to prove large
deviations and stable limit theory for regularly varying
functions of a Markov chain for d > 1.

e Hypothesis: The Jakubowski approach can be used for
functionals acting on a regularly varying sequence (X;), e.g.
ruin, supremum of random walk, length of longest strange

segment, maxima,... And



e Different functionals lead to different cluster indices.
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