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Regularly varying stationary sequence

• An Rd-valued stationary sequence (Xt) is regularly varying

with index α > 0 if its finite-dimensional distributions are

regularly varying with index α:

• For every k ≥ 1, there exists a non-null Radon measure µk on

R
d

0 which does not charge infinite points such that

P (x−1(X1, . . . , Xk) ∈ ·)

P (|X0| > x)

v
→ µk(·) .

The measures µk have the property µk(t·) = t−αµk(·), t > 0, for

some α > 0.

• If f is a continuous mapping such that f−1({0}) = {0}, then

P (f
(
x−1(X1, . . . , Xk)

)
∈ A)

P (|X0| > x)
→ µk(f

−1(A)) .
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• For example,

P (x−1Sk ∈ A)

P (|X0| > x)
→ µk({x ∈ R

dk : x1 + · · · + xk ∈ A}) .
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Examples of regularly varying stationary sequences

Linear processes.

• A linear process

Xt =
∑

j

ψjZt−j, t ∈ Z,

is regularly varying with index α > 0 if the iid sequence (Zt) is

regularly varying with index α, under conditions on (ψj) which

are close to those in the 3-series theorem M. and Samorodnitsky (2000)

• Regular variation of X0 is in general not sufficient for regular

variation of Z0. Jacobsen, M., Samorodnitsky, Rosiński (2009, 2012)
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Solutions to stochastic recurrence equation.

• For an iid sequence ((At, Bt))t∈Z, At > 0, the stochastic

recurrence equation

Xt = AtXt−1 +Bt , t ∈ Z ,

has a unique stationary solution

Xt = Bt +

t−1∑

i=−∞

At · · ·Ai+1Bi , t ∈ Z,

provided E logA0 < 0, E log+ |B0| < ∞.

• The sequence (Xt) is regularly varying with index α which is

the unique solution to EAκ
0 = 1, κ > 0, (given this solution

exists) Kesten (1973), Goldie (1991) and for some c± ≥ 0, c+ + c− > 0,

P (X0 > x) ∼ c+ x
−α , P (X0 ≤ −x) ∼ c− x

−α , x → ∞ .
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• The GARCH(1, 1) process Bollerslev (1986) satisfies a stochastic

recurrence equation: for an iid standard normal sequence (Zt),

positive parameters α0, α1, β1,

σ2
t = α0 + (α1Z

2
t−1 + β1)σ

2
t−1 .

The process Xt = σtZt is regularly varying with index α

satisfying E(α1Z
2
0 + β1)

α/2 = 1.

• α-Stable stationary processes, α ∈ (0, 2).

• Max-stable stationary processes with α-Fréchet marginals,

α > 0.
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Looking backwards

• The approaches by

• Davis and Hsing (1995)

• Jakubowski (1993, 1997)

• Asymptotic theory for general regularly varying sequences

• Central limit theory with α-stable limits.

• Point process convergence.

• Convergence of maxima to α-Fréchet law.

• Large deviations.
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The Davis and Hsing (1995) approach for point processes

• Assume P (|X0| > an) ∼ n−1. Consider the point processes

Nnj =

j∑

t=1

εa−1
n Xt

, j = 1, . . . , n , Nnn = Nn .

with state space R
d

0.

• Mixing condition A(an): There exists a sequence

m = mn → ∞ such that kn = [n/m] → ∞ and

Ee−
∫
fdNn −

(
Ee−

∫
fdNnm

)kn
→ 0 , f ∈ C

+
K ,

• Anti-clustering condition (AC): For (mn) from A(an),

lim
k→∞

lim sup
n→∞

P ( max
k≤|t|≤mn

|Xt| > δan | |X0| > δan) = 0 , δ > 0 .
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• If (Xt) is regularly varying, (AC) and A(an) hold then

Nn
d

→ N =

∞∑

i=1

∞∑

j=1

ε
Γ

−1/α
i Qij

,

(Γi) is an increasing enumeration of the points of a

homogeneous Poisson process on (0,∞) with intensity γ,

(Qij)j≥1, i = 1, 2, . . ., are iid sequences of points Qij such that

supj≥1 |Qij| = 1 a.s. and γ is the extremal index of the

sequence (|Xt|).

• α-stable limit theory and large deviations are consequences.

• Alternative proof by Basrak and Segers (2009), using the tail

chain approach. Also show γ > 0.
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The Jakubowski (1993,1995) approach to α-stable limits

• Based on Bartkiewicz, Jakubowski, M., Wintenberger (2011).

• Partial sum process for d = 1, EX0 = 0 for α ∈ (1, 2),

S0 = 0 and Sn = X1 + · · · +Xn , n ≥ 1 .

• Mixing condition (MX): There exists a sequence

m = mn → ∞ such that kn = [n/m] → ∞ and

Eeita
−1
n Sn −

(
Eeita

−1
n Sm

)kn
→ 0 , t ∈ R .

• Anti-clustering condition (AC’): For (mn) as in (MX)

lim
l→∞

lim sup
n→∞

kn
∑

l≤j≤m

E
∣∣h(xa−1

n (Sj − Sl))h(xa−1
n X1)

∣∣ = 0 , x ∈ R ,

where h(y) = (y ∧ 2) ∨ (−2).
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• The characteristic function of an α-stable random variable ξα

for α ∈ (0, 1) ∪ (1, 2), b+, b− ≥ 0, b+ + b− > 0,

ψα(t) = exp(−|t|αχα(t, b+, b−)) , t ∈ R ,

where χα(t, b+, b−) is given by
Γ(2 − α)

1 − α

(
(b+ + b−) cos(πα/2) − i sign(t)(b+ − b−) sin(π α/2)

)
, t ∈ R ,

• Step 1. Under (MX), a−1
n Sn

d
→ ξα if and only if

(a−1
n

∑kn
i=1 Smi)

d
→ ξα for iid copies Smi of Sm.

• Equivalently,

kn logEeita
−1
n Sm ∼ kn

(
Eeita

−1
n Sm − 1

)
→ logEeitξα , t ∈ R .

• Step 2. Under (AC’),

lim
k→∞

lim sup
n→∞

∣∣kn
(
Eeita

−1
n Sm − 1

)

−n
(
(Eeita

−1
n Sk − 1) − (Eeita

−1
n Sk−1 − 1)

)∣∣ = 0 .
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Since Sk is regularly varying for every fixed k ≥ 1, t ∈ R,

n
(
(Eeita

−1
n Sk − 1) − (Eeita

−1
n Sk−1 − 1)

)
→ log ψ̃α,k(t) − log ψ̃α,k−1(t) ,

where

ψ̃α,k(t)
/
ψ̃α,k−1(t)

= exp
(

− |t|αχα(t, b+(k) − b+(k − 1), b−(k) − b−(k − 1))
)
,

and

lim
n→∞

nP (Sk > an) = b+(k) and lim
n→∞

nP (Sk ≤ −an) = b−(k) .

• Step 3. In view of Steps 1 and 2, a−1
n Sn

d
→ ξα is proved if we

can show that the limiting cluster index

lim
k→∞

(b±(k) − b±(k − 1)) = b±

exists and is finite.
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Large deviations for a regularly varying sequence, α > 0

• If (Xt) is regularly varying, the following limit exists:

lim
x→∞

P (Sk+1 > x) − P (Sk > x)

P (|X0| > x)
= b+(k + 1) − b+(k) .

• Assume limk→∞(b+(k + 1) − b+(k)) = b+ exists.

• Using Jakubowski’s idea for fixed k ≥ 2,
∣∣∣
P (Sn > x)

nP (|X0| > x)
− b+

∣∣∣

≤
∣∣∣
P (Sn > x) − n (P (Sk+1 > x) − P (Sk > x))

nP (|X0| > x)

∣∣∣

+
∣∣∣
P (Sk+1 > x) − P (Sk > x)

P (|X0| > x)
− b+

∣∣∣ .

• Show that the green part is negligible.
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• Truncate the |Xt|’s from below at the level δ x: Sk

• Use lemma of Jakubowski (1993):

|P (Sn > x) − n (P (Sk+1 > x) − P (Sk > x))|

nP (|X0| > x)

≤ 3
k P (|X0| > δ x)

nP (|X0| > x)
+ 2

n∑

j=k

P (|Xj| > δ x, |X0| > δ x)

P (|X0| > x)
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• Theorem. 1. ACα. There exist δk ↓ 0 as k → ∞ and a sequence

of sets Λn ⊂ (0,∞), n = 1, 2, . . ., with bn = inf Λn such that

nP (|X| > bn) → 0 as n → ∞ and

lim
k→∞

lim sup
n→∞

sup
x∈Λn

δ−α
k

n∑

j=k

P (|Xj| > xδk | |X0| > xδk) = 0 .

2. For the sequences (Λn), (δk) as above, and a sequence (εk)

satisfying εk = o(k−1) and (k + 1)δk ≤ εk,

lim
k→∞

lim sup
n→∞

sup
x∈Λn

P
( ∑n

i=1XiI{|Xi|≤δk x} > εkx
)

nP (|X0| > x)
= 0.

Then the large deviation principle holds:

lim
n→∞

sup
x∈Λn

∣∣∣
P (Sn > x)

nP (|X0| > x)
− b+

∣∣∣ = 0 ,
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Regularly varying Markov chains

• Let Xt = f(Φt), t ∈ Z, be regularly varying, (Φt) an (irr., aper.)

stationary Markov chain satisfying ACα and DCp for every

p < α :

There exist constants β ∈ (0, 1), b > 0 and a small set A such

that for any y,

E(|X1|
p | Φ0 = y) ≤ β |f(y)|p + b IA(y).

• This condition implies geometric β-mixing of (Xt).
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• Then

– b+ = limk→∞(b+(k + 1) − b+(k)) exists

– 2. of Theorem is satisfied Due to an exponential inequality of Bertail and

Clémencon (2009)

– and the large deviation principle holds

lim
n→∞

sup
x∈Λn

∣∣∣
P (Sn > x)

nP (|X| > x)
− b+

∣∣∣ = 0 ,

for Λn = (bn, e
sn), where sn = o(n) and bn/n

0.5+δ → ∞ for

α ≥ 2, bn/n
1/α+δ → ∞ for α ∈ (0, 2), any δ > 0.
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• Due to regeneration

Sn =

τA∑

i=1

Xi +

NA(n)∑

k=1

S(k) + · · · ,

where τA is the first time the Markov chain hits the set A and

(S(k)) are block sums over independent cycles.

• The iid random variables S(k) are regularly varying with index

α and by Nagaev’s results

lim
n→∞

sup
x∈Λn

∣∣∣
P (Sn > x)

nPA(SA > x)
−

1

EτA

∣∣∣ = 0 .

• Also

P (Sn > x)

nP (|X| > x)
∼ b+ +

P (Sn > x , τA > n)

nP (|X| > x)

and P (τA > n) ≤ e−κnEeκτA.
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Moving towards the multivariate case

• Assume that (Xt) is an Rd-valued function of a (aper., irr.)

Markov chain.

• Then DCp, p < α, holds for every sequence (θ′Xt), θ ∈ S
d−1, in

modified form

E(|θ′X1|
p | Φ0 = y) ≤ E(|X1|

p | Φ0 = y) ≤ β |f(y)|p + b IA(y).

• By regular variation of (Xt) the limits

bk(θ) = lim
x→∞

P (θ′Sk > x)

P (|X0| > x)
, θ ∈ S

d−1 ,

exist and DCp, p < α, implies that

b(θ) = lim
k→∞

(bk+1(θ) − bk(θ)) , θ ∈ S
d−1 .

• We call b the cluster index.
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• The following large deviation principle holds

lim
n→∞

sup
x∈Λn

∣∣∣
P (θ′Sn > cx)

nP (|X0| > x)
− c−αb(θ)

∣∣∣ = 0 , c > 0 , θ ∈ S
d−1 ,

for Λn = (bn, e
sn), where sn = o(n).

• Consider the measures on the Borel σ-field of R
d

0

µn(·) =
P (b−1

n Sn ∈ ·)

nP (|X0| > bn)
, n ≥ 1 .

• The latter limit relation implies that for sets A bounded away

from zero

sup
n≥1

µn(A) < ∞ ,

hence the measures (µn) are vaguely tight and

µn({x : θ′x > c}) → c−αb(θ) , c > 0 , θ ∈ S
d−1 .

• Subsequential limits of (µn) coincide on the sets {x : θ′x > c}.
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• If α is not an integer, or α is an odd integer and X is

symmetric, or b(θ) = 0 for θ ∈ U , U ⊂ Sd−1 open, one can show

Basrak, Davis, M. (2002), Boman, Lindskog (2008), Klüppelberg, Pergamenchikov (2007)

that

µn(·) =
P (b−1

n Sn ∈ ·)

nP (|X| > bn)

v
→ µ(·)

for a limit measure µ which is uniquely determined by the

relations

µ({x : θ′x > c}) = c−αb(θ) , c > 0 , θ ∈ S
d−1 ,

and which has the property µ(tA) = t−αµ(A), t > 0.
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• For an iid Rd-valued regularly varying sequence (Xn) with

index α and limit measure ν, i.e.
P (x−1X0 ∈ ·)

P (|X0| > x)

v
→ ν(·) , one has

µ = ν. Hult, Lindskog, M. Samorodnitsky (2005)

An interpretation of the cluster index

• Basrak, Segers (2009) prove that an Rd-valued regularly varying

stationary sequence satisfies the relation

P (x−1(X−h, . . . , Xh) ∈ · | |X0| > x)
w
→ P ((Y−h, . . . , Yh) ∈ ·) , h ≥ 0 ,

and the limiting vector has representation

(Y−h, . . . , Yh) = |Y0| (Θ−h, . . . ,Θh) ,

where |Y0| is independent of (Θ−h, . . . ,Θh) and

P (|Y0| > x) = x−α, x > 1.
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• Then for θ ∈ Sd−1, k ≥ 1,

bk+1(θ) − bk(θ) = lim
x→∞

P (θ′Sk+1 > x) − P (θ′Sk > x)

P (|X0| > x)

= E
[(
θ′

k∑

t=0

Θt

)α
+

−
(
θ′

k∑

t=1

Θt

)α
+

]

and

b(θ) = lim
k→∞

(bk+1(θ) − bk(θ))

= E
[(
θ′

∞∑

t=0

Θt

)α
+

−
(
θ′

∞∑

t=1

Θt

)α
+

]
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Concluding remarks

• Balan and Louhichi (2009) use the Jakubowski approach to point

process convergence.

• M., Wintenberger (2011) use the Jakubowski approach to prove large

deviations for general regularly varying sequences for d = 1.

• M., Wintenberger (2011) use the Jakubowski approach to prove large

deviations and stable limit theory for regularly varying

functions of a Markov chain for d ≥ 1.

• Hypothesis: The Jakubowski approach can be used for

functionals acting on a regularly varying sequence (Xt), e.g.

ruin, supremum of random walk, length of longest strange

segment, maxima,... And
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• Different functionals lead to different cluster indices.


