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0, maps an integer = into a random integer with an interpretation that each of
x individuals in the (¢ — 1)th generation leaves behind a random number of
children, and all these numbers are independent and have the same distribu-
tion as some generic random variable, say A.
To introduce immigration in the model, we assume that another i.i.d. sequ-
ence

(B,B;,t €Z)

X, =0,0X,_,+ B, foreacht > 1
or in an alternative notation

X1
X, = Z Az@ + B, foreacht > 1

1=1



Motivation

Queueing theory - Altman (2002, 2004, 2005), Fiems and Altman (2002)
e polling systems - Resing (1993)

e infinite server queues
e processor sharing queues

e packet forwarding in delay-tolerant mobile ad-hoc networks

Time series theory (INteger AutoRegressive (INAR) processes) - Alosh and Al-
zaid (1987), Dion, Gauthier and Latour (1995)

Markov chain theory - Segers and Janf3en (2012)



Stationary distribution

Denote

fz)=E("Y,  g(z) = E(z")
Following Foster and Williamson (1971), the Markov chain (X;) is ergodic with
unique stationary distribution if and only if

"1—g(s)
/ ———ds < 0
o f(s)—s
In terms of moments, sufficient conditions are given in Seneta (1970). If
O<pu=FEA <1 and E(n(l+B)) <o

then the chain is ergodic with unique stationary distribution:

o0 o k-1 o0
d _
X, £ By 0/ Yo 0050 (Byy) = Be+Y (R0 (Biw) =) Cis
k=1 k=1 =0 k=0

where (C} ;)ren, is a sequence of independent random variables.



Another Markov chain

We can also consider a Markov chain (X/),cn, Which evolves as

X, =max{0;0 X] |, B;}  foreacht >1

The unique stationary distribution of (X/) exists since X; < X, and itis given
by:

X, 4 sup{ B;, Qgt_k) 0---0 Hﬁt__,ﬁl(Bt_k) k=1,2,...} =sup{C, : k >0}

Goal:

e Identify the tail behaviour of the distribution of the stationary solution X,
under assumption that the generic size of immigration 3 or generic size

of offsprings A has regularly varying distribution

e CLT for the heavy tailed partial sums
e prove that partial maxima have Fréchet limiting distribution




Regularly varying immigration ‘

O<p=FEA) <1
P(B > zx)=a “L(x)
for some o € (0, 2) and a slowly varying function L.

We consider here the case € (0,2) only. For & > 2 proofs become much

more involved, however, a technique is clearly suggested by the case a &
[1,2) For a € [1,2) we also assume that

E(A%) < o0

In particular, it means that:

P(A>zx)=0(P(B > x))

P (iAZ- > a:) ~ P(B > x/u)

=1




Main result

Theorem 1

Notations:

Recall that:




Idea of the proof

Step 1: Large deviation results give:

P(Ciy > x) = (@@ (B4 >:z:> ~ P(B > x/u")




|ldea of the proof

Step 2:

.. PO Cip > ) . PO Ctk>$ -
lim inf P > 1 o
v P(B>z) “ew~  PB>q) =D

k=0
Step 3: To establish an upper bound for the tail of X, it is enough to show that
P iy, G > )

W T gy

Similarly, to obtain an upper bound for the tail of X/, it is enough to show that

P(supgsp, Cri > )
Fo—00  zs00 P(B > x)

=0

lim lim sup

Observe that:
P> iy, Crr > )
P(B > 1)
Psupier, By > a1 —€)/u") | P> ik, Cralip<oti-oyuty > )
P(B > x) P(B > )




|ldea of the proof

The first term on the right hand side is bounded above by:

f: P(B > xz(1—¢)/u")
= P(B > )

One can use the Potter’s bounds to see that its limit is zero if we let first z and
then &k, converge to oo.

Upper bound of the second term

Case 0 < a < 1: We apply the Markov inequality, Karamata’s theorem in
combination with the Potter’s bounds.

Case 1 < a < 2: Note that it sufficient to prove that:

lim lim su P(Zzozko Cuoi > V) = lim limsu P«Z:O:ko Cip)” > ) _
e st P(B> @) ks e P(BE>a)



|ldea of the proof

Repeating a similar argument as for « € (0, 1), we obtain

P ((Ziiko Cta/f)Q > x)
P(B? > 1)

2
P(supysp, B2 ) > x(1—¢)/u?F) P ((Zk:kzo Otakl{Bf_k<v’U(1—E)/M2k}> = x)
- P(B? > ) i P(B? > )

The first term could be treated using the Potter’s bound since B? is regularly
varying. Using Markov inequality, the second one can be bounded above by:

2
E (Zk:ko Ot,k]—{Bfk<:L‘(1—z—:)/p2k}) - E (Zk:ko Czkl{B§k<af(1—€)/u2’“})
rP(B? > x) - rP(B? > x)
E (Z%Z;;o Ct,kct,l1{Bf_k<x<1—s>/u2k}1{Bf_l<x<1—e>/u2k})
rP(B? > x)

_|_

+ =: J1(ko) + Ja(ko)




|ldea of the proof

(Zk ko Ctkl{Bt p<z(l- 8)//ﬁ2’€}>
rP(B? > 1)

N 2
2 n<a(1-epr2yut B (Z.?:l A§k)) P(By=n)
rP(B? > x)

VB (Blpcai—o) ) o B (B’ {p2cn(1—) 0t
rP(B? > 1) = rP(B? > 1)

Since B?* is regularly varying with index /2 € (0, 1), Karamata’s theorem
applies again and we finally have

lim limsup Jia(ky) = 0

ko—=00 300




|ldea of the proof

If £(B) < o0, then Jy1(kg) is bounded by

and hence goesto 0 as x — oo. Slightly more complex is the case E(B) = o
(when o = 1) and we skip it here.
Likewise,

Z%ﬂ«‘o E <Ot,k1{Bt2_k<x(1—€)/u2k}) E (Ct,l]‘{Bf_l<l’(1_5)/M2k}>

JQ(kO) — s

rP(B? > 1)

> E ((’f + 1>NkBt—k1{Bfk<w<1—e>/u%})

kl=kq
o)

1
rP(B? > )

E ((l + 1)NlBt—11{BEl<x<1—e>/u%}>

lim limsup Jy(ko) =0

ko—oo 1 50




Regularly varying offspring

O<p:=FEA <1
P(A>uz)=2a"“L(x)

for some o € (1,2) and a slowly varying function L.
We consider here the case a € (1,2) only. For & > 2 the proof of the main
result of this subsection could be adopted.

i P(B > )
— =c
T—00 P(A > x)

where cis finite (possible equal 0) constant. If ¢ > 0 we need also to assume
that B is consistently varying.
Theorem 2




Asymptotics for maxima

Denote in the sequel by (a,,) a sequence of constants such that for any u > 0
as n— oa:

nP(Xy > a,u) — u

Theorem 3 Under assumptions of Model | or Model Il with o # 1, as n— oo it
holds that

P (% < ) — exp (—(1 = )

anp

for every z > 0 where M,, = max(Xy, ..., X,).




|ldea of the proof

We describe the asymptotic behavior of the following point processes

N, = Z 5(i/n,Xi/an) foralln € N.
1=1

It turns out by Theorem 2.3 in Basrak, Krizmanic and Segers (2012) that there
exist a point processes N | 4 > ( on the space [0, 1] x (u, co) with compo-
und Poisson structure such that as n— oo

N, N @

[0,1] % (u,00)




Behavior of large values

Theorem 4 Under assumptions of Model | or Model Il with o # 1 there is a
compound Poisson process N° on [0, 1] such that

N;’:Z(S;I{Xpan}iﬂ\fo, n — 0.

1=1

Moreover, the limiting process N° has the following representation

00
o d
N° = E K'i(STi
1=1

where > . 07, is a homogeneous Poisson point process on the interval [0, 1]
with intensity 6 and (k;);>1 is a sequence of i.i.d. random variables with va-
lues in N independent of it. Finally, random variables ~; have geometric di-

stribution:
P(ry = k) = p** (1 — ™)

forall £ € N.



Asymptotics for sums

Let

Theorem 5 For o« > 2 as n— oo

1
7= (Sy=nBB/(1 =) % N(0,0%)
where 02 = E(X)*+ >, F(X(X;) < co. Under the assumptions of Model
l, fora € (0, 1)

Sn .4 s,

n
Similarly, when « € (1,2) under assumptions of either Model | or Il and under
additional condition (3.2) of Davis and Hsing (1995):

S, — E21

X
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«
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