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θt ◦ x := θt(x) =

x∑
i=1

A
(t)
i , x ∈ N0

θt maps an integer x into a random integer with an interpretation that each of
x individuals in the (t − 1)th generation leaves behind a random number of
children, and all these numbers are independent and have the same distribu-
tion as some generic random variable, sayA.
To introduce immigration in the model, we assume that another i.i.d. sequ-
ence

(B,Bt , t ∈ Z)

Xt = θt ◦Xt−1 +Bt for each t ≥ 1

or in an alternative notation

Xt =

Xt−1∑
i=1

A
(t)
i +Bt for each t ≥ 1

Model
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Queueing theory - Altman (2002, 2004, 2005), Fiems and Altman (2002)

• polling systems - Resing (1993)

• infinite server queues

• processor sharing queues

• packet forwarding in delay-tolerant mobile ad-hoc networks

Time series theory (INteger AutoRegressive (INAR) processes) - Alosh and Al-
zaid (1987), Dion, Gauthier and Latour (1995)

Markov chain theory - Segers and Janßen (2012)

Motivation



4

Denote
f (z) = E(zA) , g(z) = E(zB)

Following Foster and Williamson (1971), the Markov chain (Xt) is ergodic with
unique stationary distribution if and only if∫ 1

0

1− g(s)
f (s)− s

ds <∞

In terms of moments, sufficient conditions are given in Seneta (1970). If

0 < µ := E(A) < 1 and E(ln(1 +B)) <∞

then the chain is ergodic with unique stationary distribution:

Xt
d
= Bt+

∞∑
k=1

θ
(t−k)
t ◦· · ·◦θ(t−k)

t−k+1(Bt−k) =: Bt+

∞∑
k=1

k−1⊗
i=0

θ
(t−k)
t−i (Bt−k) =:

∞∑
k=0

Ct,k

where (Ct,k)k∈N0
is a sequence of independent random variables.

Stationary distribution
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We can also consider a Markov chain (X ′t)t∈N0
which evolves as

X ′t = max{θt ◦X ′t−1, Bt} for each t ≥ 1

The unique stationary distribution of (X ′t) exists sinceX ′t ≤ Xt and it is given
by:

X ′t
d
= sup{Bt, θ

(t−k)
t ◦ · · · ◦ θ(t−k)

t−k+1(Bt−k) : k = 1, 2, . . .} = sup{Ct,k : k ≥ 0}

Goal:

• Identify the tail behaviour of the distribution of the stationary solutionXt

under assumption that the generic size of immigration B or generic size
of offspringsA has regularly varying distribution

• CLT for the heavy tailed partial sums

• prove that partial maxima have Fréchet limiting distribution

Another Markov chain
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0 < µ = E(A) < 1

P (B > x) = x−αL(x)

for some α ∈ (0, 2) and a slowly varying function L.
We consider here the case α ∈ (0, 2) only. For α > 2 proofs become much
more involved, however, a technique is clearly suggested by the case α ∈
[1, 2) For α ∈ [1, 2) we also assume that

E(A2) <∞

In particular, it means that:

P (A > x) = o(P (B > x))

Then:

P

(
B∑
i=1

Ai > x

)
∼ P (B > x/µ)

Regularly varying immigration
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Theorem 1

lim
x→∞

P (Xt > x)

P (B > x)
= lim

x→∞

P (X ′t > x)

P (B > x)
=

∞∑
k=0

µkα

Notations:
Ã(k) = θk ◦ · · · ◦ θ1 ◦ 1

Ã
(k)
i

d
=

A∑
j=1

Ã
(k−1)
j

Ct,k
d
=

Bt−k∑
j=1

Ã
(k)
j

Recall that:

Xt
d
=

∞∑
k=0

Ct,k

Main result
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Step 1: Large deviation results give:

P (Ct,k > x) = P

(
k−1⊗
i=0

θ
(t−k)
t−i (Bt−k) > x

)
∼ P (B > x/µk)

Let

Xt,m =

m∑
k=0

Ct,k

and
X ′t,m = max{Ct,k : k = 0, . . . ,m}

Then

lim
x→∞

P (Xt,m > x)

P (B > x)
= lim

x→∞

P (X ′t,m > x)

P (B > x)
=

m∑
k=0

µkα

Idea of the proof
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Step 2:

lim inf
x→∞

P (
∑∞

k=0Ct,k > x)

P (B > x)
≥ lim

x→∞

P (
∑m

k=0Ct,k > x)

P (B > x)
≥

∞∑
k=0

µkα

Step 3: To establish an upper bound for the tail ofXt it is enough to show that

lim
k0→∞

lim sup
x→∞

P (
∑∞

k=k0
Ct,k > x)

P (B > x)
= 0

Similarly, to obtain an upper bound for the tail ofX ′t, it is enough to show that

lim
k0→∞

lim sup
x→∞

P (supk≥k0
Ct,k > x)

P (B > x)
= 0

Observe that:
P (
∑∞

k=k0
Ct,k > x)

P (B > x)

≤
P (supk≥k0

Bt−k > x(1− ε)/µk)
P (B > x)

+
P (
∑∞

k=k0
Ct,k1{Bt−k<x(1−ε)/µk} > x)

P (B > x)

Idea of the proof
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The first term on the right hand side is bounded above by:

∞∑
k=k0

P (B > x(1− ε)/µk)
P (B > x)

One can use the Potter’s bounds to see that its limit is zero if we let first x and
then k0 converge to∞.
Upper bound of the second term
Case 0 < α < 1: We apply the Markov inequality, Karamata’s theorem in
combination with the Potter’s bounds.
Case 1 ≤ α < 2: Note that it sufficient to prove that:

lim
k0→∞

lim sup
x→∞

P (
∑∞

k=k0
Ct,k >

√
x)

P (B >
√
x)

= lim
k0→∞

lim sup
x→∞

P ((
∑∞

k=k0
Ct,k)

2 > x)

P (B2 > x)
= 0

Idea of the proof
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Repeating a similar argument as for α ∈ (0, 1), we obtain

P
((∑∞

k=k0
Ct,k

)2
> x

)
P (B2 > x)

≤ P (supk≥k0
B2
t−k > x(1− ε)/µ2k)

P (B2 > x)
+

P

((∑∞
k=k0

Ct,k1{B2
t−k<x(1−ε)/µ2k}

)2
> x

)
P (B2 > x)

The first term could be treated using the Potter’s bound since B2 is regularly
varying. Using Markov inequality, the second one can be bounded above by:

E
(∑∞

k=k0
Ct,k1{B2

t−k<x(1−ε)/µ2k}

)2

xP (B2 > x)
≤
E
(∑∞

k=k0
C2
t,k1{B2

t−k<x(1−ε)/µ2k}

)
xP (B2 > x)

+

+
E
(∑∞

k,l=k0
k 6=l

Ct,kCt,l1{B2
t−k<x(1−ε)/µ2k}1{B2

t−l<x(1−ε)/µ2k}

)
xP (B2 > x)

=: J1(k0) + J2(k0)

Idea of the proof
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J1(k0) =
E
(∑∞

k=k0
C2
t,k1{B2

t−k<x(1−ε)/µ2k}

)
xP (B2 > x)

≤
∑
k=k0

∑
n≤(x(1−ε))1/2/µk E

(∑n
j=1 Ã

(k)
j

)2
P (Bt−k = n)

xP (B2 > x)

≤
∞∑
k=k0

C(k + 1)µk
E
(
B1{B2<x(1−ε)/µ2k}

)
xP (B2 > x)

+

∞∑
k=k0

µ2kE
(
B21{B2<x(1−ε)/µ2k}

)
xP (B2 > x)

= J11(k0) + J12(k0)

Since B2 is regularly varying with index α/2 ∈ (0, 1), Karamata’s theorem
applies again and we finally have

lim
k0→∞

lim sup
x→∞

J12(k0) = 0

Idea of the proof
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IfE(B) <∞, then J11(k0) is bounded by

J11(k0) ≤ C

∞∑
k=k0

(k + 1)µk
E(B)

xP (B2 > x)

and hence goes to 0 asx→∞. Slightly more complex is the caseE(B) =∞
(when α = 1) and we skip it here.
Likewise,

J2(k0) =

∑∞
k,l=k0

k 6=l
E
(
Ct,k1{B2

t−k<x(1−ε)/µ2k}

)
E
(
Ct,l1{B2

t−l<x(1−ε)/µ2k}

)
xP (B2 > x)

≤
∞∑

k,l=k0
k 6=l

E
(
(k + 1)µkBt−k1{B2

t−k<x(1−ε)/µ2k}

)
E
(
(l + 1)µlBt−l1{B2

t−l<x(1−ε)/µ2k}

) 1

xP (B2 > x)

and
lim
k0→∞

lim sup
x→∞

J2(k0) = 0

Idea of the proof
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0 < µ := E(A) < 1

P (A > x) = x−αL(x)

for some α ∈ (1, 2) and a slowly varying function L.
We consider here the case α ∈ (1, 2) only. For α > 2 the proof of the main
result of this subsection could be adopted.

lim
x→∞

P (B > x)

P (A > x)
= c

where c is finite (possible equal 0) constant. If c > 0 we need also to assume
thatB is consistently varying.
Theorem 2

lim
x→∞

P (Xt > x)

P (A > x)
= lim

x→∞

P (X ′t > x)

P (A > x)
=

∞∑
k=0

ψk

Regularly varying offspring
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Denote in the sequel by (an) a sequence of constants such that for any u > 0
as n→∞:

nP (X0 > anu)→ u−α

Theorem 3 Under assumptions of Model I or Model II with α 6= 1, as n→∞ it
holds that

P

(
Mn

an
≤ x

)
→ exp (−(1− µα)x−α)

for every x ≥ 0 whereMn = max(X1, . . . , Xn).

Asymptotics for maxima
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We describe the asymptotic behavior of the following point processes

Nn =

n∑
i=1

δ(i/n,Xi/an) for all n ∈ N.

It turns out by Theorem 2.3 in Basrak, Krizmanić and Segers (2012) that there
exist a point processesN (u) , u > 0 on the space [0, 1]× (u,∞) with compo-
und Poisson structure such that as n→∞

Nn

∣∣∣∣
[0,1]×(u,∞)

d−→ N (u)

Idea of the proof
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Theorem 4 Under assumptions of Model I or Model II with α 6= 1 there is a
compound Poisson processN ◦ on [0, 1] such that

N ◦n =

n∑
i=1

δ i
n
1{Xi>an}

d−→ N ◦, n→∞.

Moreover, the limiting processN ◦ has the following representation

N ◦
d
=

∞∑
i=1

κiδTi

where
∑

i δTi
is a homogeneous Poisson point process on the interval [0, 1]

with intensity θ and (κi)i≥1 is a sequence of i.i.d. random variables with va-
lues in N independent of it. Finally, random variables κi have geometric di-
stribution:

P (κ1 = k) = µ−α(k−1)(1− µ−α)
for all k ∈ N.

Behavior of large values



18

Let
Sn = X1 + · · · +Xn

Theorem 5 For α > 2 as n→∞
1√
n

(Sn − nEB/(1− µ))
d−→ N(0, σ2)

where σ2 = E(X0)
2+
∑∞

i=1E(X0Xi) <∞. Under the assumptions of Model
I, for α ∈ (0, 1)

Sn
an

d−→ Sα

Similarly, whenα ∈ (1, 2) under assumptions of either Model I or II and under
additional condition (3.2) of Davis and Hsing (1995):

Sn − EXi

an
1{ |Xi|

an
≤1}

an

d−→ Sα

Asymptotics for sums
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