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Symmetric α-Stable Distribution

X is said to follow a SαS distribution with scale parameter
σ > 0 ,(i.e. X ∼ SαS(σ)) if

E
(
eiθX ) = e−σ

α|θ|α , 0 < α ≤ 2.

These arise as the limits of sums of i .i .d . symmetric random
variables.

α = 1 =⇒ X ∼ Cauchy , α = 2 =⇒ X ∼ Normal

0 < α < 2 =⇒ P (X > x) ∼ Cαx−α =⇒ no αth moment
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Stationary SαS Random Fields

Let T = Z or R . {Xt}t∈T d is called a stationary SαS field if

1. ∀ t1, t2, · · · , tn ∈ T d , and ∀ c1, c2, · · · , cn ∈ R,

n∑
i=1

ciXti ∼ SαS.

2. {Xt}t∈T d
d
= {Xt+s}t∈T d ∀s ∈ T d .

α = 2 =⇒ Gaussian RF. But we assume: 0 < α < 2.
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Why study Moments of Maxima?

Define Mn = max
0≤ti≤(n−1),∀ i=1(.)d

|X(t1,t2,··· ,td )|.

It is easy to check that E |Mn|β <∞ if and only if β < α.

Open Problem (Xiao (2010)): Can we give “sharp lower
and upper bound” on E |Mn|β for β ∈ (0, α)?
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Motivation behind this Open Problem

Suppose d = 2 and {Y(u,v)}(u,v)∈R2 is a SαS random field.

Question: How smooth/rough are the paths of
{Y(u,v)}(u,v)∈R2?

Smoothness of {Y(u,v)}(u,v)∈R2 depends on how small the
quantity

E

(
max

1≤i≤2n
max

1≤j≤2n

∣∣∣∣Y( i+1
2n ,

j
2n

) − Y( i
2n ,

j
2n

)∣∣∣∣β
)

is for β ∈ (0, α) and for large n.

Assume {Y(u,v)}(u,v)∈R2 has stationary increments and is
self-similar.
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Motivation

E

(
max

1≤i≤2n
max

1≤j≤2n

∣∣∣∣Y( i+1
2n ,

j
2n

) − Y( i
2n ,

j
2n

)∣∣∣∣β
)

= 2−nHE
(

max
0≤i≤2n−1

max
0≤j≤2n−1

∣∣Y(i+1,j) − Y(i,j)
∣∣β)

= 2−nHE
(

max
0≤i≤(2n−1)

max
0≤j≤(2n−1)

∣∣X(i,j)
∣∣β) , (1)

NOTE: This quantity is nothing but 2−nHE |M2n |β and
therefore, a sharp upper bound on E |M2n |β can help
determine the smoothness of the paths.
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SαS Random Measure

L0(Ω) = All r.v.’s on (Ω,F ,P)

(S,S, µ) = A σ-finite measure space

S0 = {A ∈ S : µ(A) <∞}

An independently scattered and σ-additive

M : S0 → L0(Ω)

is called an SαS Random Measure on (S,S) with control
measure µ if

M(A) ∼ SαS((µ(A)1/α).
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Non-singular Zd -action on S

(S,S, µ) is a σ-finite measure space.{φt}t∈Zd is a
non-singular Zd -action on S if

1. φt : S → S is measurable ∀t

2. φ0(s) = s ∀s ∈ S

3. φt1+t2 = φt1 ◦ φt2 ∀ t1, t2 ∈ Zd

4. µ ◦ φ−1
t ∼ µ ∀ t ∈ Zd .
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The Rosinski (1995, 2000) Integral
Representation

Xt
d
=

∫
S

ft (s)M(ds), t ∈ Zd

E
(
ei(θ1X1+···θd Xd )

)
= exp

{
−
∫

S |
∑d

j=1 θj fj(s)|µ(ds)
}

ft (s) = ±
(

dµ ◦ φt

dµ
(s)

)1/α

f ◦ φt (s)

where, {φt}t∈Zd is a non-singular Zd -action, f ∈ Lα(S, µ).

NOTE: We say that the random field {Xt}t∈Zd is generated
by {φt}t∈Zd and f .
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Conservative Actions

Conservative actions are those which tend to come back as
t runs in Zd .

W ⊆ S is called a wandering set for {φt}t∈Zd if its translates
{φt (W )}t∈Zd are pairwise disjoint.

{φt}t∈Zd is called a conservative Zd -action if it has no
wandering set of positive measure.
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Connection of Long Range Dependence with
Extreme Value Theory

RECALL: Xt =

∫
S

(
dµ ◦ φt

dµ
(s)

)1/α

f ◦ φt (s)M(ds).

If Xt is generated by a conservative Zd -action, then the field
has longer memory and the extreme values grow in a slower
rate because longer memory prevents erratic changes in Xt
even when t becomes large (say, in Euclidean norm).

This was formalized by Samorodnitsky (2004) for d = 1.
Roy and Samorodnitsky (2008) established a
generalization of this for d > 1. Continuous parameter
extension is handled in another paper of Samorodnitsky
(2004) (d = 1 case) and a paper of Roy (2010) (d > 1
case).
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Result on Rate of Growth of Moments of
Extreme Values

RECALL: Mn = max
0≤ti≤(n−1)∀ i=1(.)d

|X(t1,t2,··· ,td )|.

Theorem

Let 0 < β < α.
If {φt}t∈Zd is conservative then,

E
(

Mβ
n

)
= o(ndβ/α).

Otherwise, for some a > 0,

E
(

Mβ
n

)
∼ andβ/α.
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An Example

S = R, µ = Leb, d = 2, φ(i,j)(s) = s + i − j (measure
preserving),
M = SαS random measure on R with control measure µ.

Define X(i,j) =
∫

R f ◦ φ(i,j)(s)M(ds), i , j ∈ Z.
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Example Contd.

S = R, µ = Leb, d = 2, φ(i,j)(s) = s + i − j (measure
preserving)

NOTE:j = i + k , φ(i,j) = φ(0,k) =⇒ X(i,j) = X(0,k).



Moments of
Maxima

Snigdha
Panigrahi

Example Contd.

S = R, µ = Leb, d = 2, φ(i,j)(s) = s + i − j (measure
preserving)

NOTE:j = i + k , φ(i,j) = φ(0,k) =⇒ X(i,j) = X(0,k).



Moments of
Maxima

Snigdha
Panigrahi

Example Contd.

Mn+1 = max
0≤i,j≤n

|X(i,j)| = max
−n≤k≤n

|X(0,k)|
d
= max

0≤k≤2n
|X(0,k)|.

Since
{

X(0,k)

}
k∈Z is generated by

{
φ(0,k)

}
k∈Z, which is not

conservative, we have,

E (Mn)β ∼ cnβ/α for some c > 0.
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Understanding the example

Here, we see a reduction of “effective dimension” of the
random field. If we view algebraically, what we did boils
down to quotienting Z2 by the diagonal K = {(i , j) : i = j}.

Note that K is the kernel of the group homomorphism
(i , j)→ φ(i,j) in this case.

Reduction of dimension occurs because Z2/K ∼= Z.

In general, if K =
{

t ∈ Zd : φt = idS
}

, is it true that
Zd/K ∼= Zp for some p ≤ d?
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Some Abelian Group Theory

Let K =
{

t ∈ Zd : φt = idS
}

.

By the Structure Theorem for finitely generated Abelian
Groups,

Zd/K = F̄ ⊕ N̄

N̄ is a finite group and F̄ ∼= Zp p ≤ d .

An Algebraic Fact:F̄ has an isomorphic copy F sitting
inside Zd .
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Result on Moments of Extreme Values for
Conservative Flows

Clearly p = rank(F ) ≤ d . It is the effective dimension of the
random field. This notion was formalized by Roy and
Samorodnitsky (2008) (discrete parameter case) and
extended by Chakrabarty and Roy (2011) (continuous
parameter case).

Theorem

Let 0 < β < α.
If {φt}t∈F is conservative then,

E
(

Mβ
n

)
= o(npβ/α).

Otherwise, for some a > 0,

E
(

Mβ
n

)
∼ anpβ/α.
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