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{X:} independent and identically distributed, with regularly
varying tails.
{©¢} nonnegative random variables.

> e
t

Arises in
@ Risk model proposed by Nyrhinen.

@ As stationary solutions to stochastic recurrence
equations.

@ In random coefficient linear processes.
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Fundamental question:
If X; € RV_,,

whenis 3, ©:X; regularly varying?

In particular, when {©;} and {X;} are NOT independent?
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@ {c;} positive real numbers.
® {Xi}iid. RV_,.
°

Deterministic weights

[o¢]
Dl <oo forsome0<d<anil.
=1

@ Then Y~ ctX; regularly varying with index —a.
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@ What if weights are random?
@ Have to consider
D e
t

where ©; random.
@ First must study behaviour of product

Ot Xt.
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, Theorem (Breiman; 1965)

Nonnegative X with tail distribution F € RV_,, with a > 0.
Nonnegative © independent of X.

\EIS
E(©°¢) < >
for some e > 0. Then

P(©X > x) ~ E(©%)P(X > x) as x — oo,

hence P(©X > x) € RV_,.
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Note:

@ Extra moment condition beyond a-th moment on ©, but
only a-th moment of © appears in final result.

@ Independence between X and © assumed.
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Joint work other. {X;} i.i.d with F € RV_,, o > 0.

with Prof

Krishanu When 0 < « < 1, there exists ¢ > 0 such thata« + ¢ < 1 and

Maulik
> E(67*) < oo
t

When o > 1, there exists € > 0 such that

SOt <o and S [E(OF9)]aE < oo,
t t

\ P[Z?i1 etXt > X] . s a
Then  lim PG > A ; E(e9).
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Note:

@ Extra moment condition beyond «-th moment on ©;,
but only a-th moment of ©; appears in final result..

@ Independence between {X;} and {©;} still retained.
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NGERET

Maulik @ Negligible left tail of X;:
P [Xt < —X]
PX =X

Zhang-Shen-Weng

@ {©:} nonnegative, independent of { X;}.
o {©;} satisfies Resnick-Willekens conditions.

Then Y22, ©:X;™ and sup;< .o, > i—1 ©tX; are regularly
varying with index —a.




Regularly
Varying
Distributions

Moumanti
Podder
Joint work

Denisov-Zwart

Removing extra moments

Theorem (Denisov and Zwart; 2007)




Removing extra moments

Regularly
Varying
Distributions

Moumanti

Theorem (Denisov and Zwart; 2007)
@ Nonnegative X, with

P[X > x] = F(x) = x *L(x),0 < a < o0.




Removing extra moments

Regularly
Varying
Distributions

Moumanti

(*]
(D2)

: Theorem (Denisov and Zwart; 2007)

@ Nonnegative X, with
Maulik P[X > x] = F(x) = x~*L(x),0 < a < o0.

lim sup L(y)/L(x) < occ.

X720 et x]




Removing extra moments

Regularly
Varying
Distributions

Moumanti

: Theorem (Denisov and Zwart; 2007)
: @ Nonnegative X, with

Maulik PIX > x] = I_-_(X) =Xx"*L(x),0 < a < o0.
(*]
(DZ) lim sup L(y)/L(x) < oc.
X—00 y€[1 ,X]

@ Nonnegative © independent of X.




Removing extra moments

Regularly
Varying
Distributions

Moumanti

Theorem (Denisov and Zwart; 2007)

@ Nonnegative X, with
PIX > x] = F(x) = x"“L(x),0 < o < o0.

°
(DZ) lim sup L(y)/L(x) < oc.

X720 et x]

@ Nonnegative © independent of X.
@ E(0%) <o and P{O© > x} =o0(P{X > x}).




Removing extra moments

Regularly
Varying
Distributions

Moumanti

Theorem (Denisov and Zwart; 2007)

@ Nonnegative X, with
PIX > x] = F(x) = x"“L(x),0 < o < o0.

°
(DZ) lim sup L(y)/L(x) < oc.

X720 et x]

@ Nonnegative © independent of X.
@ E(0%) <o and P{O© > x} =o0(P{X > x}).
Then P(©X > x) ~ E(©%)P(X > x).
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Theorem (Hazra and Maulik; 2012)

o F e RV_, with limy_, SUPycp 1 L(Y)/L(X) < oo.
@ {©,t > 1} independent of {X;, t > 1},

@ P[O: > x] = o(P[X; > x])

@ ForO<a<1, Y 2,E[0f] < oo;

@ Fora>1, Z&(E[@?])ﬁs < oo forsomece > 0.

P[ sup EH: OtXt > X] ~ P[Xs > X] ~ P[X1 > X] i E[©f]

1sn<oo j—y t=1

and X = Y72, ©:X;" is almost surely finite.
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@ Extra moment condition on ©; no longer assumed
beyond a-th moment.

@ But {X;} and {©;} still assumed independent.
Next obvious question
@ What if {X;} and {©;} are not independent?
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@ xeRandy >0, X~F, Y ~QG,
@ ¢4 and ¢» bounded, real-valued,
Suons °

E{61(X)} = E{¢2(Y)} =0,

@ 0 real constant,
°

1+ 0¢1(x)¢2(y) > 0.
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@ (X, Y) bivariate Sarmanov distribution,
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Theorem (Yang and Wang; 2012)
@ (X, Y) bivariate Sarmanov distribution,
@ P[X > x] = F(x) = x~*L(x), with

limsup sup L(x/y)/L(x) < oo,

X—00 1<y<x
@ E(Y?) < o0,
o G(x) = o(F(x)),
@ limy_, ¢1(x) = d; exists, finite.
P(XY > x) = H(x) ~ {E(Y?) 4+ 0ds E(¢2(Y) Y*)} F(x).
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@ (X,Y) bivariate Sarmanov, limy_,. ¢1(x) = d; exists,
finite.

@ X*, Y* independent, X* ~ F,Y* ~ G.

@ P[X*Y* > x]=H*(x) e RV, and G(x)=
o(H*(x)),
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Joint work @ (X,Y) bivariate Sarmanov, limx_,~, ¢1(x) = dj exists,

with Prof

shand finite.
@ X*, Y* independent, X* ~ F,Y* ~ G.
@ P[X*Y* > x]=H*(x) e RV, and G(x)=
o(H*(x)),
Then P[XY > x] = H(x) ~ P[X*Y; > x].
Yy, independent of X*, with

Gy(dy) = P[Yy € dy] = (1 + 0di¢2(y))G(dy).
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Krihany @ F(x) = x“L(x),a > 0, and G(x) = o(F(x)).
@ limsup,_, . SUP1<,<x L(X/y)/L(x) < c0.
@ E(Y?) < 0.

@ limy_, ¢1(x) = d; exists, finite.
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Mournant @ {(Xn, Yn)}nen i.i.d sequence, with generic random
Podder o .
Joint work vector (X, Y) bivariate Sarmanov.

with Prof

Krishanu @ F(x) = x"°L(x),a > 0, and G(x) = o(F(x)).
@ limsup,_, . SUP1<,<x L(X/y)/L(x) < c0.
@ E(Y?) < 0.

@ limy_, ¢1(x) = d; exists, finite.

P[ sup ZXHY>X]~

1<m<nl 1

{E(YO‘)}”

1 E(Y) [E(Y®) + 001 E(62(Y) Y*)F(x).
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Note
@ No extra moment of Y; beyond the a-th moment

assumed.
@ {X:} and {Y;} no longer independent.

@ Bivariate Sarmanov family includes many
generalizations of Farlie-Gumbel-Morgenstern (FGM)

distributions.

Yang Wang sum
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Infinite sum
case

Infinite sum case

Same set-up as in finite sum case of Yang and Wang, with

E(Yy) < 1.
Then
n i
Plsup > X J[ Y > xI ~
21—y =1

T By [E(Y") + 0k E0a( V)Y HF ().
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V(x) > W(x,m) = sup ZXYHY>X

1<n<m

From Yang and Wang (2012),

—{E(Y*)"
1 — E(Y®)

Outline of proof

V(x, m) ~ [E(Y*)+0di E(62(Y) Y)]F(x).

Let m — oo to get lower bound.
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n
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1<k<m

Z ©:Z > 5x] .

t=m+1

° P [maxgkg,n Sk, ez> (1 - 5)x] = W((1 - 8)x, m).

Outline of proof

jim (0 Z0xm)
X—00 F(X)
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> efzﬁ>x] < > Plezt>x]+

t=m+1 t=m+1

oo
Pl Y. ©Zgzieq>x|=A+B

t=m+1

Outline of proof

B should be small compared to A.
Get upper bound for B separately fora < 1 and o > 1.
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P[@tZt > X] < B,
Fx)  ~

for all large values of x, where

B, = BE[®f] = B{E[Y;])!

with

[oe)

Z Bi < oo fora<i
Outline of proof t=m-+1

and

> 1
Z Bi* <oo fora>1.
t=m+1
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