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Generic set-up

{Xt} independent and identically distributed, with regularly
varying tails.

{Θt} nonnegative random variables.∑
t

ΘtXt

Arises in
Risk model proposed by Nyrhinen.
As stationary solutions to stochastic recurrence
equations.
In random coefficient linear processes.
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Fundamental question:

If Xt ∈ RV−α,
when is

∑
t ΘtXt regularly varying?

In particular, when {Θt} and {Xt} are NOT independent?
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Deterministic weights

{ct} positive real numbers.

{Xt} i.i.d. RV−α.

∞∑
t=1

cδt <∞ for some 0 < δ < α ∧ 1.

Then
∑∞

t=1 ctXt regularly varying with index −α.
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Random weights

What if weights are random?

Have to consider ∑
t

ΘtXt

where Θt random.
First must study behaviour of product

ΘtXt .
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Product

Theorem (Breiman; 1965)

Nonnegative X with tail distribution F̄ ∈ RV−α with α > 0.
Nonnegative Θ independent of X .

E(Θα+ε) <∞

for some ε > 0. Then

P(ΘX > x) ∼ E(Θα)P(X > x) as x →∞,

hence P(ΘX > x) ∈ RV−α.
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Note:

Extra moment condition beyond α-th moment on Θ, but
only α-th moment of Θ appears in final result.
Independence between X and Θ assumed.
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Extending to sum

Theorem (Resnick and Willekens; 1991)

Nonnegative {Xt , t ≥ 1}, {Θt , t ≥ 1} independent of each
other. {Xt} i.i.d with F̄ ∈ RV−α, α > 0.
When 0 < α < 1, there exists ε > 0 such that α + ε < 1 and∑

t

E(Θα±ε
t ) <∞.

When α ≥ 1, there exists ε > 0 such that∑
t

[E(Θα+ε
t )]

1
α+ε <∞ and

∑
t

[E(Θα−ε
t )]

1
α+ε <∞.

Then lim
x→∞

P[
∑∞

t=1 ΘtXt > x ]

P[X1 > x ]
=
∞∑

t=1

E(Θα
t ).
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Note:

Extra moment condition beyond α-th moment on Θt ,
but only α-th moment of Θt appears in final result..
Independence between {Xt} and {Θt} still retained.
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Theorem (Zhang, Shen and Weng; 2008)

{Xt} i.i.d regularly varying with index −α. [No longer
nonnegative].

Negligible left tail of Xt :

P[Xt < −x ]

P[Xt > x ]
→ 0.

{Θt} nonnegative, independent of {Xt}.
{Θt} satisfies Resnick-Willekens conditions.

Then
∑∞

t=1 ΘtX +
t and sup1≤n<∞

∑n
t=1 ΘtXt are regularly

varying with index −α.
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nonnegative].
Negligible left tail of Xt :

P[Xt < −x ]

P[Xt > x ]
→ 0.

{Θt} nonnegative, independent of {Xt}.
{Θt} satisfies Resnick-Willekens conditions.

Then
∑∞

t=1 ΘtX +
t and sup1≤n<∞

∑n
t=1 ΘtXt are regularly

varying with index −α.
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Removing extra moments

Theorem (Denisov and Zwart; 2007)

Nonnegative X, with
P[X > x ] = F̄ (x) = x−αL(x),0 < α <∞.

(DZ) lim
x→∞

sup
y∈[1,x ]

L(y)/L(x) <∞.

Nonnegative Θ independent of X .
E(Θα) <∞ and P{Θ > x} = o(P{X > x}).

Then P(ΘX > x) ∼ E(Θα)P(X > x).
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Theorem (Hazra and Maulik; 2012)

F̄ ∈ RV−α with limx→∞ supy∈[1,x ] L(y)/L(x) <∞.
{Θt , t ≥ 1} independent of {Xt , t ≥ 1},
P[Θt > x ] = o(P[Xt > x ])

For 0 < α < 1,
∑∞

t=1 E [Θα
t ] <∞;

For α ≥ 1,
∑∞

t=1(E [Θα
t ])

1
α+ε <∞ for some ε > 0.

P[ sup
1≤n<∞

n∑
t=1

ΘtXt > x ] ∼ P[X∞ > x ] ∼ P[X1 > x ]
∞∑

t=1

E [Θα
t ]

and X∞ =
∑∞

t=1 ΘtX +
t is almost surely finite.
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Note
Extra moment condition on Θt no longer assumed
beyond α-th moment.

But {Xt} and {Θt} still assumed independent.
Next obvious question

What if {Xt} and {Θt} are not independent?
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Definition (Sarmanov bivariate distributions)

(X ,Y ) follows bivariate Sarmanov distribution if:

P(X ∈ dx ,Y ∈ dy) = (1 + θφ1(x)φ2(y))F (dx)G(dy),

x ∈ R and y ≥ 0, X ∼ F ,Y ∼ G,
φ1 and φ2 bounded, real-valued,

E{φ1(X )} = E{φ2(Y )} = 0,

θ real constant,

1 + θφ1(x)φ2(y) ≥ 0.
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Theorem (Yang and Wang; 2012)

(X ,Y ) bivariate Sarmanov distribution,

P[X > x ] = F (x) = x−αL(x), with

lim sup
x→∞

sup
1≤y≤x

L(x/y)/L(x) <∞,

E(Yα) <∞,
Ḡ(x) = o(F̄ (x)),

limx→∞ φ1(x) = d1 exists, finite.

P(XY > x) = H̄(x) ∼ {E(Yα) + θd1E(φ2(Y )Yα)}F̄ (x).
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(X ,Y ) bivariate Sarmanov distribution,
P[X > x ] = F (x) = x−αL(x), with

lim sup
x→∞

sup
1≤y≤x

L(x/y)/L(x) <∞,

E(Yα) <∞,
Ḡ(x) = o(F̄ (x)),

limx→∞ φ1(x) = d1 exists, finite.

P(XY > x) = H̄(x) ∼ {E(Yα) + θd1E(φ2(Y )Yα)}F̄ (x).
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Lemma
(X ,Y ) bivariate Sarmanov, limx→∞ φ1(x) = d1 exists,
finite.

X ∗,Y ∗ independent, X ∗ ∼ F ,Y ∗ ∼ G.
P[X ∗Y ∗ > x ] = H̄∗(x) ∈ RV−α and Ḡ(x) =
o(H̄∗(x)),

Then P[XY > x ] = H̄(x) ∼ P[X ∗Y ∗θ > x ].

Y ∗θ , independent of X ∗, with

Gθ(dy) = P[Y ∗θ ∈ dy ] = (1 + θd1φ2(y))G(dy).
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Theorem (Yang and Wang; 2012)

{(Xn,Yn)}n∈N i.i.d sequence, with generic random
vector (X ,Y ) bivariate Sarmanov.

F (x) = x−αL(x), α > 0, and Ḡ(x) = o(F̄ (x)).
lim supx→∞ sup1≤y≤x L(x/y)/L(x) <∞.
E(Yα) <∞.
limx→∞ φ1(x) = d1 exists, finite.

P[ sup
1≤m≤n

m∑
i=1

Xi

i∏
j=1

Yj > x ] ∼

1− {E(Yα)}n

1− E(Yα)
[E(Yα) + θd1E(φ2(Y )Yα)]F̄ (x).
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lim supx→∞ sup1≤y≤x L(x/y)/L(x) <∞.
E(Yα) <∞.
limx→∞ φ1(x) = d1 exists, finite.

P[ sup
1≤m≤n

m∑
i=1

Xi

i∏
j=1

Yj > x ] ∼

1− {E(Yα)}n

1− E(Yα)
[E(Yα) + θd1E(φ2(Y )Yα)]F̄ (x).



Regularly
Varying

Distributions

Moumanti
Podder

Joint work
with Prof.
Krishanu
Maulik

Introduction

Known results

Dependence
set-up
Sarmanov
distributions

Yang Wang product

Lemma

Yang Wang sum

Infinite sum
case

References

Theorem (Yang and Wang; 2012)

{(Xn,Yn)}n∈N i.i.d sequence, with generic random
vector (X ,Y ) bivariate Sarmanov.
F (x) = x−αL(x), α > 0, and Ḡ(x) = o(F̄ (x)).
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Note
No extra moment of Yt beyond the α-th moment
assumed.

{Xt} and {Yt} no longer independent.
Bivariate Sarmanov family includes many
generalizations of Farlie-Gumbel-Morgenstern (FGM)
distributions.
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Infinite sum case

Theorem
Same set-up as in finite sum case of Yang and Wang, with

E(Yα
n ) < 1.

Then

P[sup
n≥1

n∑
i=1

Xi

i∏
j=1

Yj > x ] ∼

1
1− E(Yα)

[E(Yα) + θd1E{φ2(Y )Yα}]F̄ (x).
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Brief outline of proof

Lower bound:

Define Sn =
∑n

i=1 Xi
∏i

j=1 Yj ,
Ψ(x ,m) = P(sup1≤n≤m Sn > x), and
Ψ(x) = P(supn≥1 Sn > x).

Ψ(x) ≥ Ψ(x ,m) = P

 sup
1≤n≤m

n∑
i=1

XiYi

i−1∏
j=1

Yj > x

 .
From Yang and Wang (2012),

Ψ(x ,m) ∼ 1− {E(Yα)}m

1− E(Yα)
[E(Yα)+θd1E(φ2(Y )Yα)]F̄ (x).

Let m→∞ to get lower bound.
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Upper bound:

Define Θi =
∏i−1

j=1 Yj and Zi = XiYi .
For any m ∈ N,0 < δ < 1 and x ≥ 0, we get

P

[
sup

1≤n<∞

n∑
t=1

ΘtZt > x

]
≤

P

[
max

1≤k≤m

k∑
t=1

ΘtZt > (1− δ)x

]
+P

[ ∞∑
t=m+1

ΘtZ +
t > δx

]
.

P
[
max1≤k≤m

∑k
t=1 ΘtZt > (1− δ)x

]
= Ψ((1− δ)x ,m).

lim
x→∞

Ψ((1− δ)x ,m)

F (x)
=

(1− δ)−α
1− {E(Yα)}m

1− E(Yα)
E(Yα) + θd1E(φ2(Y )Yα).
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P

[
sup

1≤n<∞

n∑
t=1

ΘtZt > x

]
≤

P

[
max

1≤k≤m

k∑
t=1

ΘtZt > (1− δ)x

]
+P

[ ∞∑
t=m+1

ΘtZ +
t > δx

]
.

P
[
max1≤k≤m

∑k
t=1 ΘtZt > (1− δ)x

]
= Ψ((1− δ)x ,m).

lim
x→∞

Ψ((1− δ)x ,m)

F (x)
=

(1− δ)−α
1− {E(Yα)}m

1− E(Yα)
E(Yα) + θd1E(φ2(Y )Yα).
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Motivated by the principle of one large jump,

P

[ ∞∑
t=m+1

ΘtZ +
t > x

]
≤

∞∑
t=m+1

P
[
ΘtZ +

t > x
]

+

P

[ ∞∑
t=m+1

ΘtZ +
t 1[Θt Z +

t ≤x ] > x

]
= A + B.

B should be small compared to A.
Get upper bound for B separately for α < 1 and α ≥ 1.
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α < 1,
B

F (x)
≤ C

∞∑
t=m+1

P[ΘtZt > x ]

F (x)
.

α ≥ 1,

B
F (x)

≤
∞∑

t=m+1

P[ΘtZt > x ]

F (x)

+ C[
∞∑

t=m+1

(
P[ΘtZt > x ]

F (x)
)

1
α+ε ]α+ε.
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P[ΘtZt > x ]

F (x)
≤ Bt

for all large values of x , where

Bt = BE [Θα
t ] = B{E [Yα

1 ]}t−1

with

∞∑
t=m+1

Bt <∞ for α < 1

and
∞∑

t=m+1

B
1

α+ε

t <∞ for α ≥ 1.
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