The Art of Seeking Hidden Risks

Sidney Resnick
School of Operations Research and Information Engineering
Rhodes Hall, Cornell University
Ithaca NY 14853 USA

http://people.orie.cornell.edu/~sid
sir1@cornell.edu sr2382@columbia.edu

ISI Kolkata

January 14, 2013

Page 1 of 37
Go Back

Full Screen

```
Close
```

Work with: B. Das, A. Mitra, J. Heffernan, K. Maulik

1. Background.

Suppose

$$
\boldsymbol{X}=\left(X_{1}, \ldots, X_{d}\right)
$$

is a risk vector. Imagine X_{i} is

- loss from i th asset in portfolio;
- concentration of i th pollutant;
- car maker's warranty exposure over a month for i th car model in lineup.

Goal: Estimate the probability of a risk region \mathcal{R}

$$
P[\boldsymbol{X} \in \mathcal{R}]
$$

where \mathcal{R} is beyond the range of observed data.

Example:

$d=2$ and
$\mathcal{R}=(\mathbf{x}, \infty]=\left(x_{1}, \infty\right] \times\left(x_{2}, \infty\right]$
and
$P[\boldsymbol{X} \in \mathcal{R}]=P\left[X_{1}>x_{1}, X_{2}>x_{2}\right]$.

CORNELL

Bckgnd
Strategy
Directions
HRV

General

Final
HDA
Title Page
Risk contagion: Can two or more components of the risk vector \boldsymbol{X} be simultaneously large? Typically,
large=beyond the range of the data.

Page 3 of 37

Go Back

Full Screen

Close

Quit

1.1. Asymptotic method for estimation

- Estimating probabilities of risk regions beyond the range of the data requires an assumption that enables extrapolation.
- Usual assumption: \boldsymbol{X} is in the domain of attraction (DOA) of an extreme value distribution; ie, $\exists a_{i}(n)>0, b_{i}(n) \in \mathbb{R}, i=$ $1, \ldots, d ; n \geq 1$ such that if $\{\boldsymbol{X}(m), m \geq 1\}$ are iid copies of \boldsymbol{X}, then

$$
\begin{aligned}
P\left[\bigvee_{m=1}^{n} \frac{\boldsymbol{X}(m)-\boldsymbol{b}(n)}{\boldsymbol{a}(n)}\right. & \leq \mathbf{x}]=\left(P\left[\frac{X_{i}-b_{i}(n)}{a_{i}(n)} \leq x_{i}, i=1, \ldots, d\right]\right)^{n} \\
& \rightarrow G(\mathbf{x})
\end{aligned}
$$

where G is a multivariate EV distribution with non-degenerate marginals. Equivalently,

$$
\begin{equation*}
n P\left[\frac{\boldsymbol{X}-\boldsymbol{b}(n)}{\boldsymbol{a}(n)} \in \cdot\right] \rightarrow \nu(\cdot) \tag{DOA}
\end{equation*}
$$

Title Page

Bckgnd

Strategy

Page 4 of 37

Go Back
where

$$
\nu\left([-\infty, \mathbf{x}]^{c}\right)=-\log G(\mathbf{x})
$$

- If one is determined to use asymptotic methods and \mathcal{R} is the risk region, (DOA) yields a method to estimate the risk probability:

$$
P[\boldsymbol{X} \in \mathcal{R}]=P\left[\frac{\boldsymbol{X}-\boldsymbol{b}(n)}{\boldsymbol{a}(n)} \in \frac{\mathcal{R}-\boldsymbol{b}(n)}{\boldsymbol{a}(n)}\right] \approx \frac{1}{n} \hat{\nu}\left(\frac{\mathcal{R}-\hat{\boldsymbol{b}}}{\hat{\boldsymbol{a}}}\right) .
$$

- Standardized version of (DOA) which expresses the condition as multivariate regular variation on $\mathbb{E}:=[\mathbf{0}, \infty] \backslash\{\mathbf{0}\}$: Set

$$
U_{i}(x)=\frac{1}{P\left[X_{i}>x\right]}
$$

and

$$
\boldsymbol{X}^{*}=\left(U_{i}\left(X_{i}\right), i=1, \ldots, d\right) .
$$

Then marginal convergence in (DOA) to non-degenerate EV distributions plus (DOA) is equivalent to

$$
n P\left[\frac{\boldsymbol{X}^{*}}{n} \in \cdot\right] \rightarrow \nu^{*}(\cdot)
$$

(StandRegVarE)
Title Page
4

Page 5 of 37

Go Back
on $\mathbb{E}=[\mathbf{0}, \boldsymbol{\infty}] \backslash\{\mathbf{0}\}$ where for $t>0$,

$$
\nu^{*}(t \cdot)=t^{-1} \nu^{*}(\cdot)
$$

This is just transformation to Pareto scale.

1.2. Curse of asymptotic independence

- If in (DOA), the limit G is a product

$$
G(\mathbf{x})=\prod_{i=1}^{d} G_{i}\left(x_{i}\right), \quad \text { (AsyIndep) }
$$

we say \boldsymbol{X} possesses asymptotic independence.

- Unintended consequence: (AsyIndep) \Rightarrow

$$
\nu\left(\left\{\mathbf{x}: x_{i}>y_{i}(0), x_{j}>y_{j}(0)\right\}\right)=0
$$ risk contagion since we estimate

for all $1 \leq i<j \leq d$ and thus such an asymptotic model has no
P [two or more components of \boldsymbol{X} are large simultaneously $] \approx 0$.

- In standardized form: (StandRegVarE) + (AsyIndep) mean when

44

$$
\nu^{*}\left(\mathbb{E}_{0}\right)=\nu^{*}((\mathbf{0}, \infty])=0,
$$

Full Screen

- Can we improve on this asymptotic method?

Bckgnd

Strategy

and ν^{*} concentrates on the axes through 0 .

1.3. How common is (AsyIndep)?

- For $d=2$: If \boldsymbol{X} satisfies (DOA) and $X_{1} \Perp X_{2}$ then \boldsymbol{X} possesses (AsyIndep).
- If $\boldsymbol{X}=\left(X_{1}, \ldots, X_{d}\right)$ is Gaussian with

$$
\operatorname{corr}\left(X_{i}, X_{j}\right)=\rho(i, j)<1,
$$

then \boldsymbol{X} possesses (AsyIndep) (Sibuya, 1960). Here the marginals of \boldsymbol{X} are Gaussian and

$$
G(\mathbf{x})=\prod_{i=1}^{d} \exp \left\{-e^{-x_{i}}\right\}
$$

- So using the Gaussian dependence copula means you are exposed to (AsyIndep) and lack of risk contagion.
- Let $U \sim U(0,1)$ and define

$$
\boldsymbol{X}=\left(\frac{1}{U}, \frac{1}{1-U}\right) .
$$

Page 7 of 37

Go Back
Since $1 / U$ and $1 /(1-U)$ cannot be simultaneously large, \boldsymbol{X} possesses (AsyIndep). The marginals of \boldsymbol{X} are Pareto and

$$
G(\mathbf{x})=\exp \left\{-\left(x_{1}^{-1}+x_{2}^{-1}\right)\right\}, \quad \mathbf{x}>\mathbf{0} .
$$

2. Strategy

(AsyIndep) + (StandRegVarE) implies the limit measure $\nu^{*}(\cdot)$ in Pareto scale concentrates on the axes through 0.

Hint: Consider the complement of the support of ν^{*} and seek a lower order regular variation on this new set.

Since ν^{*} concentrates on axes and puts zero mass on interior of quadrant, seek (hidden) regular variation on the interior $\mathbb{E}_{0}=(\mathbf{0}, \infty]$

Title Page
44

Page 8 of 37 with index <1. This would allow non-zero estimate of

Go Back

$$
P[\boldsymbol{X}>\mathbf{x}] .
$$

Example. For $d=2$: If $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ and $X_{1} \Perp X_{2}, X_{1}, X_{2}$ iid with

$$
P\left[X_{i}>y\right]=y^{-1}, \quad y>1 .
$$

Then for $x_{1}>0, x_{2}>0$, as $n \rightarrow \infty$

$$
\begin{aligned}
& n P\left[X_{i}>n x_{i}\right] \rightarrow x_{i}^{-1}, \quad i=1,2, \\
& n P\left[X_{1}>n x_{1}, X_{2}>n x_{2}\right] \rightarrow 0,
\end{aligned}
$$

so \boldsymbol{X} is regularly varying on \mathbb{E} with index 1 and limit measure concentrating on the axes, and

$$
\begin{gathered}
n P\left[X_{1}>\sqrt{n} x_{1}, X_{2}>\sqrt{n} x_{2}\right]=\sqrt{n} P\left[X_{1}>\sqrt{n} x_{1}\right] \cdot \sqrt{n} P\left[X_{2}>\sqrt{n} x_{2}\right] \\
\rightarrow \frac{1}{x_{1} x_{2}}, \quad x_{1}>0, x_{2}>0
\end{gathered}
$$

so \boldsymbol{X} is regularly varying on \mathbb{E}_{0} with index 2 and limit measure giving positive mass to (\mathbf{x}, ∞.

CORNELL

Bckgnd

Strategy

Directions

HRV

General

Final
HDA
Title Page

4

```
4
```

Page 9 of 37

Conclude for this example:

- \boldsymbol{X} is regularly varying on $\mathbb{E}=[\mathbf{0}, \infty] \backslash\{\mathbf{0}\}$ with index 1 (scale by n) and limit measure concentrating on lines through $\{\mathbf{0}\}$, and giving zero mass to $(\mathbf{0}, \infty]$.
- \boldsymbol{X} is regularly varying on $\mathbb{E}_{0}=(\mathbf{0}, \boldsymbol{\infty}]$ with index 2 (scale by \sqrt{n}) and the limit measure gives positive mass to $(\mathbf{0}, \infty]$.

Summary:

Lesson: If the support (eg, axes) of the limit measure is less than the full space (eg, $\mathbb{E})$:

- peel away the support (axes);
- look for extreme value behavior on what's left (eg, $\mathbb{E} \backslash\{$ axes $\}=$ \mathbb{E}_{0}).

Title Page

Bckgnd

Strategy

Directions

HRV

General

Final

HDA

44
\square
Page 10 of 37

Go Back

Full Screen

Close

Quit

3. Directions to pursue

Antecedents: Das et al. (2011), Draisma et al. (2004), Heffernan and Resnick (2005), Ledford and Tawn (1996, 1997), Maulik and Resnick (2005), Mitra and Resnick (2011a,b), Resnick (2002)

1. Hidden regular variation (HRV)
(a) HRV for $d=2$.
(b) HRV for $d>2$. Possibly seek regular variation on a progression of decreasing of cones. Must decide how to specify sequence of cones.
2. Hidden domain of attraction (HDA):

- \boldsymbol{X} satisfies (DOA) so that \boldsymbol{X}^{*} satisfies (StandRegVarE).
- (AsyIndep) holds so limit measure $\nu^{*}(\cdot)$ for \boldsymbol{X}^{*} concentrates on the axes through $\mathbf{0}$.
- However extreme value behavior other than regular variation holds in the interior of the state space. $\mathrm{Eg}, \vee_{i=1}^{d} X_{i}^{*}$ has a regularly varying distribution but $\wedge_{i=1}^{d} X_{i}^{*}$ has a distribution

Title Page

Directions

HRV

General

Final
HDA

4

Go Back in a one dimensional domain of attraction other than Fréchet.
3. More general unifying theory: Seek lower order regular variation on complement of support of the limit measure.

- Asymptotic full dependence: limit measure concentrates on the diagonal. Remove diagonal and seek regular variation on what is left. Do we need a new theory?
- Sequence of regular variation properties on successively smaller cones.

4. What is the unit sphere? What takes the place of the transformation to polar coordinates?
5. Mass on lines through ∞ ?

- For standardized regular variation on $[\mathbf{0}, \boldsymbol{\infty}] \backslash\{\mathbf{0}\}$, limit measures have a scaling property which precludes mass on lines through ∞.
- On smaller cones such as $(0, \infty]^{2}$, this is no longer true.
- Mass on lines through ∞ invalidates convergence to types:
- Under one normalization get a limit measure with mass on lines through ∞ but
- under another normalization all mass on $(0, \infty)^{2}$.
- Exclude mass on lines through ∞ ? Give up on the one-point uncompactification.

Title Page
44

Page 12 of 37

Go Back
6. Estimation?

- Non-parametric approach: Does the rank transform uncover all the hidden structure?
- What sub-cones do we examine?
- How to automate in high dimensions?
- How should we infer the support of the limit measure?

Cornell

Bckgnd

Strategy
Directions

HRV

General

Final
HDA

Title Page
4

Page 13 of 37

Go Back

Full Screen

Close

4. Hidden Regular Variation

4.1. $d=2$

Suppose $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ satisfies (DOA) and

$$
U_{i}(x)=\frac{1}{P\left[X_{i}>x\right]}, \quad \boldsymbol{X}^{*}=\left(U_{1}\left(X_{1}\right), U_{2}\left(X_{2}\right)\right)
$$

So \boldsymbol{X}^{*} satisfies (StandRegVarE) on $\mathbb{E}=[\mathbf{0}, \boldsymbol{\infty}] \backslash\{\mathbf{0}\}$; ie,

$$
n P\left[\frac{\boldsymbol{X}^{*}}{n} \in \cdot\right] \rightarrow \nu^{*}(\cdot)
$$

Bckgnd

Strategy

\boldsymbol{X}^{*} has hidden regular variation on $\mathbb{E}_{0}=(0, \infty]^{2}$ if in addition to (StandRegVarE):

- There is a measure $\nu_{0}^{*}(\cdot)$ on \mathbb{E}_{0}; and a
- There is a sequence $b_{0}(n) \rightarrow \infty$ such that $b_{0}(n) / n \rightarrow 0$; and
- On \mathbb{E}_{0}

$$
\begin{equation*}
n P\left[\frac{\boldsymbol{X}^{*}}{b_{0}(n)} \in \cdot\right] \rightarrow \nu_{0}^{*}(\cdot) \tag{HRVE0}
\end{equation*}
$$

Consequences

- Because $b_{0}(n)=o(n), \boldsymbol{X}^{*}$ and hence \boldsymbol{X} must have (AsyIndep).
- For some $\alpha_{0} \geq 1$,

$$
b_{0}(n) \in R V_{1 / \alpha_{0}} .
$$

- Hence to identify α_{0} or detect HRV:

$$
P\left[X_{1}^{*} \vee X_{2}^{*}>x\right] \in R V_{-1}, \quad P\left[X_{1}^{*} \wedge X_{2}^{*}>x\right] \in R V_{-\alpha_{0}}
$$

Example 1: $\boldsymbol{X}^{*}=\left(X_{1}, X_{2}\right), X_{1} \Perp X_{2}$ and

$$
P\left[X_{i}>x\right]=x^{-1}, \quad x>1, i=1,2 .
$$

Then $\alpha_{0}=2$. Consider $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{5000}$ iid.
possible to detect HRV.

5000 pairs of iid Pareto;

$$
\alpha=1 ; \quad \alpha_{0}=2 .
$$

Hill plot for minima of components.

Conclude: Maybe it is

Title Page
44

Page 15 of 37

Go Back

Full Screen

Bckgnd

Strategy

HRV

General

Final
HDA
CORNELL

Example 2: UNC Wed (S,R): Response data where S is size of response and R is average transmission rate $=$ size/(download time).

- Need non-standard model.
- Standardize using rank method. (Now marginal $\alpha=1$.)
- QQ plot of minimum component of rank transformed data using 1000 upper order statistics for UNC Wed (S,R).
- Method yields $\alpha=1$ and estimated $\hat{\alpha}_{0}=$ 1.6.

Bckgnd

Strategy

HRV

General

Final
HDA

Title Page
4

Page 16 of 37

Go Back

Full Screen

Example 3: Risk calculations.

Simulate data: $\left\{\left(\left(X_{1}(n), X_{2}(n)\right) ; 1 \leq n \leq 5000\right\}\right.$ iid where

- $X_{1}(n) \Perp X_{2}(n)$ for each n;
- $X_{1}(n) \sim \operatorname{Par}(1)$, $X_{2}(n) \sim \operatorname{Par}(2)$.
- Estimate the risk probability (exact value $=0.001$)
$P\left[X_{1}>100, X_{2}>\sqrt{10}\right]$ with spectral distribution estimator.
- Conclude: At least in

Cornell

Bckgnd

trategy

)irections
IRV
ieneral
inal
IDA
Title Page nice cases, this can work.
Go Back

Full Screen

5. General approach.

(Das et al., 2011)

Compare and contrast the two situations thought to be at opposite ends of the spectrum for regularly varying distributions when $d=2$.

2. Asymptotic full dependence: limit measure $\nu(\cdot)$ concentrates on the diagonal.

Asymptotic independence: limit measure $\nu(\cdot)$ concentrates on axes through 0.

Bckgnd

Strategy

General

Final

HDA

Title Page
HRV

4

Page 18 of 37

Go Back

Full Screen

Close

Quit

- In both cases, the limit measure has a support far smaller than $\mathbb{E}=[0, \infty] \backslash\{0\}$.
- For HRV, remove support and seek a regular variation property on the complement of the support $(\mathbf{0}, \infty]$ (when $d=2$).
- Standard case regular variation implies limit measure $\nu^{*}(\cdot)$ has scaling property:

$$
\nu^{*}(c \cdot)=c^{-1} \nu^{*}(\cdot), \quad c>0,
$$

which implies

$$
\text { support } \nu^{*}=\text { closed cone. }
$$

- This suggests unifying both asymptotic independence and asymptotic full dependence and ... under one theory:
- Identify support of the limit measure $\nu^{*}(\cdot)$.
- Seek lower order regular variation on the complement of the

Title Page
4
\square
Page 19 of 37

Go Back

5.1. Regular variation on cones.

Abandon the one point uncompactification of the positive quadrant; exclude lines through ∞. Let \mathbb{S} be CSMS and suppose $F_{1} \subset \mathbb{S}$ closed (cone) containing $\mathbf{0}$ and define

$$
\mathbb{S}_{F_{1}}=\mathbb{S} \backslash F_{1} .
$$

\rightarrow The random element $\boldsymbol{X} \in \mathbb{S}$ has a distribution with a regularly varying tail on $\mathbb{S}_{F_{1}}$ if $\exists b(t) \uparrow \infty$ and measure $\nu \not \equiv 0$ on $\mathbb{S}_{F_{1}}$ such that

$$
t P\left[\frac{\boldsymbol{X}}{b(t)} \in \cdot\right] \rightarrow \nu(\cdot), \quad \text { in } M^{*}\left(\mathbb{S}_{F_{1}}\right)
$$

Final

Let F_{2} be another closed (cone) containing $\mathbf{0}$ and set

$$
\mathbb{S}_{F_{1} \cup F_{2}}=\mathbb{S} \backslash\left(F_{1} \cup F_{1}\right) .
$$

\rightarrow The random \boldsymbol{X} has a distribution with hidden regular variation on $\mathbb{S}_{F_{1} \cup F_{2}}$ if there is regular variation on $\mathbb{S}_{F_{1}}$ AND if $\exists b_{1}(t) \uparrow \infty$ and a measure $\nu_{1}(\cdot) \not \equiv 0$ on $\mathbb{S}_{F_{1} \cup F_{2}}$ such that

$$
t P\left[\frac{\boldsymbol{X}}{b_{1}(t)} \in \cdot\right] \rightarrow \nu_{1}(\cdot), \quad \text { in } M^{*}\left(\mathbb{S}_{F_{1} \cup F_{2}}\right)
$$

AND

$$
b(t) / b_{1}(t) \rightarrow \infty
$$

(which makes the behavior on $\mathbb{S}_{F_{1} \cup F_{2}}$ hidden).

Examples for $d=2$:

1. Regular variation on the positive quadrant with conditional extreme value (CEV) model:

$$
\begin{aligned}
\mathbb{S} & =[\mathbf{0}, \infty), \quad F_{1}=\{\mathbf{0}\} \\
\mathbb{S}_{F_{1}} & =[\mathbf{0}, \infty) \backslash\{\mathbf{0}\}
\end{aligned}
$$

CEV on \mathbb{D}_{\square} :

$$
\begin{aligned}
\mathbb{F}_{2} & =\{(x, 0): x>0\} \\
\mathbb{S}_{F_{1} \cup F_{2}} & =[\mathbf{0}, \infty) \backslash(\{\mathbf{0}\} \cup\{(x, 0): x>0\}) \\
& =[0, \infty) \times(0, \infty) \\
& =: \mathbb{D}_{\Pi} .
\end{aligned}
$$

CORNELL

Bckgnd

Strategy

Directions

Title Page
44

Page 21 of 37
2. Asymptotic full dependence:

Regular variation on $[\mathbf{0}, \boldsymbol{\infty}) \backslash\{\mathbf{0}\}$ with limit measure concentrating on diagonal.

CORNELL

$$
\begin{aligned}
\mathbb{S} & =[\mathbf{0}, \infty), \mathbb{F}_{1}=\{\mathbf{0}\} \\
\mathbb{S}_{F_{1}} & =[\mathbf{0}, \infty) \backslash\{\mathbf{0}\}
\end{aligned}
$$

Bckgnd
Strategy
Directions
HRV
General
Final

Title Page

$$
\begin{aligned}
\mathbb{F}_{2} & =\{(x, x): x>0\} \\
\mathbb{S}_{F_{1} \cup F_{2}} & =\mathbb{C} \backslash\left(\mathbb{F} \cup \mathbb{F}_{1}\right) \\
& =[\mathbf{0}, \infty) \backslash\{(x, x): x \geq 0\}
\end{aligned}
$$

Remove diagonal:

Page 22 of 37

Example 3 (continued): Asymptotic full dependence.

Suppose $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ is regularly varying on $[\mathbf{0}, \infty) \backslash\{\mathbf{0}\}$ with asymptotic full dependence so the limit measure $\nu(\cdot)$ concentrates on $\{(x, x): x>0\}$. Suppose

$$
X_{i}=\text { one period loss of financial instrument } I_{i} .
$$

Construct the portfolio:

- Buy one unit of I_{1}. (Go long.)
- Sell one unit of I_{2}. (Go short.)

Title Page
One period loss for the portfolio is

$$
L=X_{1}-X_{2}
$$

and for large x, seek

$$
P\left[X_{1}-X_{2}>x\right] .
$$

Go Back

Full Screen

Under asymptotic full dependence, limit measure concentrates on the line $\{(x, x): x>0\}$ so we estimate probability as 0 :

$$
\widehat{P}\left[X_{1}-X_{2}>x\right]=0
$$

Conclude: A more general theory has applicability.

CORNELL

Bckgnd

Strategy
Directions
HRV
General

Final

HDA

Title Page

Page 24 of 37

Go Back

Full Screen

5.2. Consequences:

Useful to have a more general umbrella of HRV that includes:

- Asymptotic independence.
- Asymptotic full dependence.
- Other cases where the support of limit measure is strictly smaller than the state space.
- Stochastic processes.
- In high dimensional spaces want the possibility of a nested sequence cones each of which has a regular variation property.

Bckgnd

```
4
```

Page 25 of 37
Go Back
Full Screen

5.3. Topology: General approach.

What topology is appropriate? What are the bounded sets? Modify Hult and Lindskog (2006):

- $\mathbb{S}=\mathrm{CSMS}$.
- $F \in \mathcal{F}(\mathbb{S})$ (closed subset; often a closed cone).
- State space $=\mathbb{S}_{F}:=\mathbb{S} \backslash F$.
- Tail regions: any subset of \mathbb{S}_{F} which is bounded away from F; ie, $R \subset \mathbb{S}_{F}$ is a tail region if

$$
d_{\mathbb{S}}(R, F)>0 .
$$

- $M^{*}\left(\mathbb{S}_{F}\right)=$ measures on \mathbb{S}_{F} which are finite on sets bounded away from F.
- $\mathcal{C}\left(\mathbb{S}_{F}\right)=$ bounded, positive, continuous functions whose supports are bounded away from F.

Title Page

4
\square

Page 26 of 37

- Topology on $M^{*}\left(\mathcal{S}_{F}\right)$ is smallest topology which makes

```
Go Back
```

$$
\mu \mapsto \mu(f)
$$

from

$$
M^{*}\left(\mathbb{S}_{F}\right) \mapsto \mathbb{R}_{+}
$$

continuous.

- Example: $\mathbb{S}=\mathbb{R}_{+}^{\infty}, F=F^{(j)}, j \geq 0$, where

Cornell

$$
\begin{aligned}
F^{(j)} & =\left\{\mathbf{x}:=\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}_{+}^{\infty}: \sum_{j=1}^{\infty} \epsilon_{x_{j}}(0, \infty) \leq j\right\} \\
& =\{\mathbf{x}: \text { at most } j \text { components }>0\}
\end{aligned}
$$

So

$$
\begin{aligned}
F^{(0)} & =\{\mathbf{0}\} \\
F^{(1)} & =\text { lines through } \mathbf{0}, \text { including } \mathbf{0} \\
& =\bigcup_{j=1}^{\infty}\{0\}^{j-1} \times(0, \infty) \times\{0\}^{\infty} \cup\{\mathbf{0}\},
\end{aligned}
$$

- Mapping theorem: Let $T: \mathbb{S}_{1} \backslash F_{1} \mapsto \mathbb{S}_{2} \backslash F_{2}$ be continuous and

Title Page
44
\square
Page 27 of 37 satisfy: If $D_{2} \in \mathcal{F}_{2}\left(\mathbb{S}_{2} \backslash F_{2}\right)$ is bounded away from F_{2} then $T^{-1}\left(D_{2}\right)$ is bounded away from F_{1}. Then $\hat{T}: M^{*}\left(\mathbb{S}_{1} \backslash F_{1}\right) \mapsto M^{*}\left(\mathbb{S}_{2} \backslash F_{2}\right)$ defined by

$$
\hat{T}\left(\mu_{1}\right)=\mu_{1} \circ T^{-1}
$$

is continuous.

- Mapping theorem variant: Suppose $T: \mathbb{S}_{1} \mapsto \mathbb{S}_{2}$ is uniformly continuous and suppose for $F_{1} \in \mathcal{F}\left(S_{1}\right)$ we have $T F_{1} \in \mathcal{F}\left(S_{2}\right)$. Then $\hat{T}: M^{*}\left(\mathbb{S}_{1} \backslash F_{1}\right) \mapsto M^{*}\left(\mathbb{S}_{2} \backslash F_{2}\right)$ is continuous.
- Example: $\mathbb{S}=\mathbb{R}_{+}^{\infty}$ and $\boldsymbol{X}=\left(X_{1}, X_{2} \ldots\right)$ has iid components with each X_{i} having a regularly varying tail with scaling function $b(t)$. Then as $t \rightarrow \infty$, for $j \geq 1$

$$
t P\left[\boldsymbol{X} / b\left(t^{1 / j}\right) \in \cdot\right] \rightarrow \nu^{(j)} \text { in } M^{*}\left(\mathbb{R}_{+}^{\infty} \backslash F^{(j-1)}\right)
$$

and $\nu^{(j)}$ concentrates on $F^{(j)} \backslash F^{(j-1)}$, the sequences with j positive components. Define

$$
\text { CUMSUM : } \mathbb{R}_{+}^{\infty} \mapsto \mathbb{R}_{+}^{\infty}
$$

by

$$
\operatorname{CUMSUM}(\mathbf{x})=\left(x_{1}, x_{1}+x_{2}, \ldots\right)
$$

and then

$$
t P\left[\operatorname{CUMSUM}(\boldsymbol{X}) / b\left(t^{1 / j}\right) \in \cdot\right] \rightarrow \nu^{(j)} \circ \mathrm{CUMSUM}^{-1}
$$

in $M^{*}\left(\mathbb{R}_{+}^{\infty} \backslash \operatorname{CUMSUM}\left(F^{(j-1)}\right)\right)$ and $\nu^{(j)} \circ \mathrm{CUMSUM}^{-1}$ concen-

Title Page
44
4
Page 28 of 37

Go Back

Full Screen trates on $\operatorname{CUMSUM}\left(F^{(j)} \backslash F^{(j-1)}\right)$), the set of sequences with j jumps.

6. Remarks.

- Practical?
- Limitations of asymptotic methods: rates of convergence?
- Instead of estimating a risk probability as 0, estimate is a very small number.
- Need for more formal inference for estimation including confidence statements.
- General HRV technique requires knowing the support of the limit measure. Estimate support?
- High dimension problems? How to sift through different possible subcones?
- How to go from standard to more realistic non-standard case; still some inference problems.

Go Back

Full Screen

Close

7. Hidden Domain of attraction (HDA)

(Mitra and Resnick, 2011a)

Recall: Example 1: Let $U \sim U(0,1)$ and define

$$
\boldsymbol{X}=\left(X_{1}, X_{2}\right)=\left(\frac{1}{U}, \frac{1}{1-U}\right)
$$

Properties:

- \boldsymbol{X} satisfies (StandRegVarE) on $\mathbb{E}=[0, \infty]^{2} \backslash\{\mathbf{0}\}$.
- \boldsymbol{X} possesses (AsyIndep).
- $X_{1} \wedge X_{2} \leq 2$ so \boldsymbol{X} cannot have HRV. So is there an asymptotic regime that might help compute risk probabilities?

BUT

44
\square
Page 30 of 37

- $X_{1} \wedge X_{2} \leq 2$ belongs to the doa of the (reversed) Weibull EV distribution;

Go Back

- A property akin to HRV holds on a cone but...

Full Screen

- the cone is not a subcone of \mathbb{E}).

Blood and guts:

For $\left\{\left(x_{1}, x_{2}\right) \in(-\infty, \infty]^{2}: x_{1}+x_{2} \leq 0\right\}$, and large n,
CORNELL

$$
\begin{aligned}
n P\left[n\left(X_{1}-2\right)>\right. & \left.x_{1}, n\left(X_{2}-2\right)>x_{2}\right] \\
& =n P\left[1-\frac{1}{2+x_{2} / n}<U<\frac{1}{2+x_{1} / n}\right] \\
& =n\left(\frac{1}{2+x_{1} / n}-\left(1-\frac{1}{2+x_{2} / n}\right)\right) \\
& =\frac{n}{2}\left(-\frac{x_{1}+x_{2}}{2 n}+O\left(\frac{1}{n^{2}}\right)\right) \\
& \rightarrow-\left(x_{1}+x_{2}\right) / 4 \quad(n \rightarrow \infty),
\end{aligned}
$$

Bckgnd

Strategy

and if $x_{1}+x_{2} \geq 0$,

$$
n P\left[n\left(X_{1}-2\right)>x_{1}, n\left(X_{2}-2\right)>x_{2}\right] \rightarrow 0
$$

Hmmmm! Suggests concept of hidden domain of attraction (HDA):

7.1. $H D A: S t a n d a r d$ case; $d=2$.

Simple case: Suppose $d=2$ and $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ satisfies

- $X_{1} \stackrel{d}{=} X_{2}$.
- (DOA) holds with $\boldsymbol{b}_{n}=\left(b_{n}, b_{n}\right)=b_{n} \mathbf{1}$ and $\boldsymbol{a}_{n}=\left(a_{n}, a_{n}\right)=a_{n} \mathbf{1}$ with $a_{n}>0$ and

$$
\begin{aligned}
& n P\left[\frac{\boldsymbol{X}-b_{n} \mathbf{1}}{a_{n}} \in \cdot\right] \rightarrow \nu(\cdot), \\
& \text { on }[-\infty, \infty]^{2} \backslash\{-\infty\} \text { or }[0, \infty]^{2} \backslash\{\mathbf{0}\} .
\end{aligned}
$$

- (AsyIndep) holds:

$$
e^{-\nu\left([\boldsymbol{\infty}, \mathbf{x}]^{c}\right)}=G_{1}\left(x_{1}\right) G_{2}\left(x_{2}\right),
$$

and additionally,

Title Page

4

Page 32 of 37

- there exist positive scaling and real centering constants $\left\{c_{n}\right\}$ and

Go Back such that

```
Full Screen
```

$$
n P\left[\left(\boldsymbol{X}-d_{n} \mathbf{1}\right) / c_{n} \in \cdot\right] \rightarrow \nu_{0}(\cdot) \quad(n \rightarrow \infty)
$$

(ConvE0)
Then \boldsymbol{X} possesses standard case HDA.

Notes:

1. It is not necessarily the case that the cone $\mathbb{E}_{0} \subset \mathbb{E}$. For

$$
\boldsymbol{X}=\left(\frac{1}{U}, \frac{1}{1-U}\right)
$$

we have

$$
\mathbb{E}=[\mathbf{0}, \infty] \backslash\{\mathbf{0}\}, \quad \mathbb{E}_{0}=\left\{\mathbf{x} \in(-\infty, \infty]: x_{1}+x_{2} \leq 0 .\right\}
$$

2. Since $X_{1} \wedge X_{2}$ is in a doa, set

$$
U^{\wedge}(x)=\frac{1}{P\left[X_{1} \wedge X_{2}>x\right]}
$$

Title Page
Then (ConvE0) can be expressed as standard regular variation on $(0, \infty]$:

$$
n P\left[\left(\frac{U^{\wedge}\left(X_{1}\right)}{n}, \frac{U^{\wedge}\left(X_{2}\right)}{n}\right) \in \cdot\right] \rightarrow \tilde{\nu}_{0}(\cdot),
$$

where $\tilde{\nu}_{0}(\cdot)$ is obtained from $\nu_{0}(\cdot)$ and satisfies

$$
\tilde{\nu}^{0}(c \cdot)=c^{-1} \tilde{\nu}^{0}(\cdot), \quad c>0
$$

(homog) allows disintegration of $\tilde{\nu}^{0}(\cdot)$ as a product measure in the correct coordinate system and permits definition of a spectral measure.
3. Suppose $X_{1} \stackrel{d}{\neq} X_{2}$ but \boldsymbol{X} satisfies (DOA). Standardize:

CORNELL

$$
U_{i}(x)=\frac{1}{P\left[X_{i}>x\right]}, \quad i=1,2
$$

and set

$$
\boldsymbol{X}^{*}=\left(X_{1}^{*}, X_{2}^{*}\right)=\left(U_{1}\left(X_{1}\right), U_{2}\left(X_{2}\right)\right.
$$

Since \boldsymbol{X} satisfies (DOA), \boldsymbol{X}^{*} satisfies (StandRegVarE). Assume also (AsyIndep). Can now apply the HDA definition to \boldsymbol{X}^{*} :

- Ask if there exist positive scaling and real centering constants $\left\{c_{n}\right\}$ and $\left\{d_{n}\right\}$ and a non-zero measure ν_{0}^{*} on a cone E_{0} such that (ConvE0) holds with \boldsymbol{X}^{*} replacing \boldsymbol{X}.

Title Page

- If so, set

$$
U^{* \wedge}(x)=\frac{1}{P\left[X_{1}^{*} \wedge X_{2}^{*}>x\right]},
$$

and then set

$$
\boldsymbol{X}^{* *}=\left(U^{* \wedge}\left(X_{1}^{*}\right), U^{* \wedge}\left(X_{2}^{*}\right)=\left(U^{* \wedge} \circ U_{1}\left(X_{1}\right), U^{* \wedge} \circ U_{2}\left(X_{2}\right)\right)\right.
$$

- Conclude:
- The distribution of \boldsymbol{X}^{*} is standard regularly varying on $[\mathbf{0}, \boldsymbol{\infty}] \backslash\{\mathbf{0}\}$ and (AsyIndep) holds.
$-\boldsymbol{X}^{* *}$ has a distribution standard regularly varying on $(\mathbf{0}, \boldsymbol{\infty}]$.
- Ingenuity may be required to do estimation.

Contents

Bckgnd

CORNELL

Strategy

Directions
HRV
General
Final
HDA

Title Page

Page 35 of 37

Go Back

Full Screen

Close

References

B. Das, A. Mitra, and S. Resnick. Living on the multi-dimensional edge: Seeking hidden risks using regular variation. ArXiv e-prints 1108.5560, August 2011.
G. Draisma, H. Drees, A. Ferreira, and L. de Haan. Bivariate tail estimation: dependence in asymptotic independence. Bernoulli, 10 (2):251-280, 2004.
J.E. Heffernan and S.I. Resnick. Hidden regular variation and the rank transform. Adv. Appl. Prob., 37(2):393-414, 2005.
H. Hult and F. Lindskog. Regular variation for measures on metric spaces. Publ. Inst. Math. (Beograd) (N.S.), 80(94):121-140, 2006. ISSN 0350-1302. doi: 10.2298/PIM0694121H. URL http://dx. doi.org/10.2298/PIM0694121H.
A.W. Ledford and J.A. Tawn. Statistics for near independence in multivariate extreme values. Biometrika, 83(1):169-187, 1996. ISSN 0006-3444.
A.W. Ledford and J.A. Tawn. Modelling dependence within joint tail regions. J. Roy. Statist. Soc. Ser. B, 59(2):475-499, 1997. ISSN 0035-9246.
K. Maulik and S.I. Resnick. Characterizations and examples of hidden regular variation. Extremes, 7(1):31-67, 2005.
A. Mitra and S.I. Resnick. Modeling multiple risks: Hidden domain of attraction. Technical report, Cornell University, 2011a. URL http://arxiv.org/abs/1110.0561.
A. Mitra and S.I. Resnick. Hidden regular variation and detection of hidden risks. Stochastic Models, 27(4):591-614, 2011b.
S.I. Resnick. Hidden regular variation, second order regular variation and asymptotic independence. Extremes, 5(4):303-336 (2003), 2002. ISSN 1386-1999.
M. Sibuya. Bivariate extreme statistics. Ann. Inst. Stat. Math., 11: 195-210, 1960.

