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1. Background.

Suppose
X = (X1, . . . , Xd)

is a risk vector . Imagine Xi is

• loss from ith asset in portfolio;

• concentration of ith pollutant;

• car maker’s warranty exposure over a month for ith car model in
lineup.

Goal: Estimate the probability of a risk region R

P [X ∈ R]

where R is beyond the range of observed data.
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Example:

d = 2 and

R = (x,∞] = (x1,∞]×(x2,∞]

and

P [X ∈ R] = P [X1 > x1, X2 > x2].

0

x

Risk contagion: Can two or more components of the risk vector X be
simultaneously large? Typically,

large=beyond the range of the data.
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1.1. Asymptotic method for estimation

• Estimating probabilities of risk regions beyond the range of the
data requires an assumption that enables extrapolation.

• Usual assumption: X is in the domain of attraction (DOA) of
an extreme value distribution; ie, ∃ ai(n) > 0, bi(n) ∈ R, i =
1, . . . , d;n ≥ 1 such that if {X(m),m ≥ 1} are iid copies of X,
then

P
[ n∨
m=1

X(m)− b(n)

a(n)
≤ x

]
=
(
P
[Xi − bi(n)

ai(n)
≤ xi, i = 1, . . . , d

])n
→ G(x)

where G is a multivariate EV distribution with non-degenerate
marginals . Equivalently,

nP
[X − b(n)

a(n)
∈ ·
]
→ ν(·) (DOA)

where
ν
(
[−∞,x]c

)
= − logG(x).
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• If one is determined to use asymptotic methods and R is the risk
region, (DOA) yields a method to estimate the risk probability:

P [X ∈ R] = P
[X − b(n)

a(n)
∈ R− b(n)

a(n)

]
≈ 1

n
ν̂
(R− b̂

â

)
.

• Standardized version of (DOA) which expresses the condition as
multivariate regular variation on E := [0,∞] \ {0}: Set

Ui(x) =
1

P [Xi > x]

and
X∗ =

(
Ui(Xi), i = 1, . . . , d

)
.

Then marginal convergence in (DOA) to non-degenerate EV dis-
tributions plus (DOA) is equivalent to

nP
[X∗

n
∈ ·
]
→ ν∗(·) (StandRegVarE)

on E = [0,∞] \ {0} where for t > 0,

ν∗(t ·) = t−1ν∗(·).

This is just transformation to Pareto scale.
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1.2. Curse of asymptotic independence

• If in (DOA), the limit G is a product

G(x) =
d∏
i=1

Gi(xi), (AsyIndep)

we say X possesses asymptotic independence.

• Unintended consequence: (AsyIndep) ⇒

ν({x : xi > yi(0), xj > yj(0)}) = 0,

for all 1 ≤ i < j ≤ d and thus such an asymptotic model has no
risk contagion since we estimate

P [ two or more components of X are large simultaneously ] ≈ 0.

• In standardized form: (StandRegVarE)+(AsyIndep) mean when
d = 2,

ν∗
(
E0

)
= ν∗

(
(0,∞]

)
= 0,

and ν∗ concentrates on the axes through 0.

• Can we improve on this asymptotic method?
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1.3. How common is (AsyIndep)?

• For d = 2: If X satisfies (DOA) and X1 ⊥⊥ X2 then X possesses
(AsyIndep).

• If X = (X1, . . . , Xd) is Gaussian with

corr(Xi, Xj) = ρ(i, j) < 1,

then X possesses (AsyIndep) (Sibuya, 1960). Here the marginals
of X are Gaussian and

G(x) =
d∏
i=1

exp{−e−xi}.

• So using the Gaussian dependence copula means you are exposed
to (AsyIndep) and lack of risk contagion.

• Let U ∼ U(0, 1) and define

X =
( 1

U
,

1

1− U

)
.

Since 1/U and 1/(1−U) cannot be simultaneously large, X pos-
sesses (AsyIndep). The marginals of X are Pareto and

G(x) = exp{−(x−11 + x−12 )}, x > 0.
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2. Strategy

(AsyIndep) + (StandRegVarE)
implies the limit measure ν∗(·) in
Pareto scale concentrates on the
axes through 0.

Hint: Consider the complement of
the support of ν∗ and seek a lower
order regular variation on this new
set.

Since ν∗ concentrates on axes and
puts zero mass on interior of quad-
rant, seek (hidden) regular varia-
tion on the interior E0 = (0,∞]
with index < 1. This would allow
non-zero estimate of

P [X > x].
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Example. For d = 2: If X = (X1, X2) and X1 ⊥⊥ X2, X1, X2 iid with

P [Xi > y] = y−1, y > 1.

Then for x1 > 0, x2 > 0, as n→∞

nP [Xi > nxi]→ x−1i , i = 1, 2,

nP [X1 > nx1, X2 > nx2]→ 0,

so X is regularly varying on E with index 1 and limit measure concen-
trating on the axes, and

nP [X1 >
√
nx1,X2 >

√
nx2] =

√
nP [X1 >

√
nx1] ·

√
nP [X2 >

√
nx2]

→ 1

x1x2
, x1 > 0, x2 > 0,

so X is regularly varying on E0 with index 2 and limit measure giving
positive mass to (x,∞].
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Conclude for this example:

• X is regularly varying on E = [0,∞] \ {0} with index 1
(scale by n) and limit measure concentrating on lines through {0},
and giving zero mass to (0,∞].

• X is regularly varying on E0 = (0,∞] with index 2
(scale by

√
n) and the limit measure gives positive mass to (0,∞].

Summary:

Lesson: If the support (eg, axes) of the limit measure is less than the
full space (eg, E):

• peel away the support (axes);

• look for extreme value behavior on what’s left (eg, E \ {axes} =
E0).
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3. Directions to pursue

Antecedents: Das et al. (2011), Draisma et al. (2004), Heffernan and
Resnick (2005), Ledford and Tawn (1996, 1997), Maulik and Resnick
(2005), Mitra and Resnick (2011a,b), Resnick (2002)

1. Hidden regular variation (HRV)

(a) HRV for d = 2.

(b) HRV for d > 2. Possibly seek regular variation on a pro-
gression of decreasing of cones. Must decide how to specify
sequence of cones.

2. Hidden domain of attraction (HDA):

• X satisfies (DOA) so that X∗ satisfies (StandRegVarE).

• (AsyIndep) holds so limit measure ν∗(·) for X∗ concentrates
on the axes through 0.

• However extreme value behavior other than regular variation
holds in the interior of the state space. Eg, ∨di=1X

∗
i has a

regularly varying distribution but ∧di=1X
∗
i has a distribution

in a one dimensional domain of attraction other than Fréchet.
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3. More general unifying theory: Seek lower order regular variation
on complement of support of the limit measure.

• Asymptotic full dependence: limit measure concentrates on
the diagonal. Remove diagonal and seek regular variation on
what is left. Do we need a new theory?

• Sequence of regular variation properties on successively smaller
cones.

4. What is the unit sphere? What takes the place of the transfor-
mation to polar coordinates?

5. Mass on lines through ∞?

• For standardized regular variation on [0,∞]\{0}, limit mea-
sures have a scaling property which precludes mass on lines
through ∞.

• On smaller cones such as (0,∞]2, this is no longer true.

• Mass on lines through ∞ invalidates convergence to types:

– Under one normalization get a limit measure with mass
on lines through ∞ but

– under another normalization all mass on (0,∞)2.

• Exclude mass on lines through ∞? Give up on the one-point
uncompactification.
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6. Estimation?

• Non-parametric approach: Does the rank transform uncover
all the hidden structure?

• What sub-cones do we examine?

• How to automate in high dimensions?

• How should we infer the support of the limit measure?
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4. Hidden Regular Variation

4.1. d = 2

Suppose X = (X1, X2) satisfies (DOA) and

Ui(x) =
1

P [Xi > x]
, X∗ =

(
U1(X1), U2(X2)

)
.

So X∗ satisfies (StandRegVarE) on E = [0,∞] \ {0}; ie,

nP
[X∗

n
∈ ·
]
→ ν∗(·).

X∗ has hidden regular variation on E0 = (0,∞]2 if in addition to
(StandRegVarE):

• There is a measure ν∗0(·) on E0; and a

• There is a sequence b0(n)→∞ such that b0(n)/n→ 0; and

• On E0

nP [
X∗

b0(n)
∈ · ]→ ν∗0(·). (HRV E0)
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Consequences

• Because b0(n) = o(n), X∗ and hence X must have (AsyIndep).

• For some α0 ≥ 1,
b0(n) ∈ RV1/α0 .

• Hence to identify α0 or detect HRV:

P [X∗1 ∨X∗2 > x] ∈ RV−1, P [X∗1 ∧X∗2 > x] ∈ RV−α0 .

Example 1: X∗ = (X1, X2), X1 ⊥⊥ X2 and

P [Xi > x] = x−1, x > 1, i = 1, 2.

Then α0 = 2. Consider X1, . . . ,X5000 iid.

5000 pairs of iid Pareto;

α = 1; α0 = 2.

Hill plot for minima of
components.

Conclude: Maybe it is
possible to detect HRV.
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Example 2: UNC Wed (S,R): Response data where S is size of re-
sponse and R is average transmission rate= size/(download time).

• Need non-standard
model.

• Standardize using
rank method. (Now
marginal α = 1.)

• QQ plot of minimum
component of rank
transformed data us-
ing 1000 upper order
statistics for UNC Wed
(S,R).

• Method yields α = 1
and estimated α̂0 =
1.6.

• Conclude: For d = 2,
detection is not hope-
less.

*****************************************************************************************************
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*****************************************************************************

***************************************************
****************************
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Example 3: Risk calculations.
Simulate data: {((X1(n), X2(n)); 1 ≤ n ≤ 5000} iid where

• X1(n) ⊥⊥ X2(n) for
each n;

• X1(n) ∼ Par(1),

X2(n) ∼ Par(2).

• Estimate the risk
probability (exact
value=0.001)

P [X1 > 100, X2 >
√

10]

with spectral distribu-
tion estimator .

• Conclude: At least in
nice cases, this can
work.
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5. General approach.

(Das et al., 2011)
Compare and contrast the two situations thought to be at opposite
ends of the spectrum for regularly varying distributions when d = 2.

1. Asymptotic inde-
pendence: limit measure
ν(·) concentrates on axes
through 0.

2. Asymptotic full de-
pendence: limit measure
ν(·) concentrates on the di-
agonal.
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• In both cases, the limit measure has a support far smaller than
E = [0,∞] \ {0}.

• For HRV, remove support and seek a regular variation property
on the complement of the support (0,∞] (when d = 2).

• Standard case regular variation implies limit measure ν∗(·) has
scaling property:

ν∗(c·) = c−1ν∗(·), c > 0,

which implies
support ν∗ = closed cone.

• This suggests unifying both asymptotic independence and asymp-
totic full dependence and . . . under one theory:

– Identify support of the limit measure ν∗(·).
– Seek lower order regular variation on the complement of the

support.
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5.1. Regular variation on cones.

Abandon the one point uncompactification of the positive quadrant;
exclude lines through ∞. Let S be CSMS and suppose F1 ⊂ S closed
(cone) containing 0 and define

SF1 = S \ F1.

→ The random element X ∈ S has a distribution with a regularly
varying tail on SF1 if ∃ b(t) ↑ ∞ and measure ν 6≡ 0 on SF1 such that

tP [
X

b(t)
∈ · ]→ ν(·), in M∗(SF1).

Let F2 be another closed (cone) containing 0 and set

SF1∪F2 = S \ (F1 ∪ F1).

→ The random X has a distribution with hidden regular variation on
SF1∪F2 if there is regular variation on SF1 AND if ∃ b1(t) ↑ ∞ and a
measure ν1(·) 6≡ 0 on SF1∪F2 such that

tP [
X

b1(t)
∈ · ]→ ν1(·), in M∗(SF1∪F2),

AND
b(t)/b1(t)→∞

(which makes the behavior on SF1∪F2 hidden).
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Examples for d = 2:

1. Regular variation on the positive quadrant with conditional ex-
treme value (CEV) model:

S =[0,∞), F1 = {0},
SF1 =[0,∞) \ {0}.

CEV on Du:

F2 ={(x, 0) : x > 0},
SF1∪F2 =[0,∞) \

(
{0} ∪ {(x, 0) : x > 0}

)
=[0,∞)× (0,∞)

=:Du.

E E⊓

E= E0
0

0

0

0

∞ ∞

∞ ∞

Figure 1. The different cones in 2-dimensions

1
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2. Asymptotic full dependence:

Regular variation on [0,∞)\{0} with limit
measure concentrating on diagonal.

S =[0,∞), F1 = {0},
SF1 =[0,∞) \ {0}.

Remove diagonal:

F2 ={(x, x) : x > 0},
SF1∪F2 =C \ (F ∪ F1)

=[0,∞) \ {(x, x) : x ≥ 0}
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Example 3 (continued): Asymptotic full dependence.

Suppose X = (X1, X2) is regularly varying on [0,∞) \ {0} with
asymptotic full dependence so the limit measure ν(·) concentrates on
{(x, x) : x > 0}. Suppose

Xi = one period loss of financial instrument Ii.

Construct the portfolio:

• Buy one unit of I1. (Go long.)

• Sell one unit of I2. (Go short.)

One period loss for the portfolio is

L = X1 −X2

and for large x, seek
P [X1 −X2 > x].
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Under asymptotic full de-
pendence, limit measure
concentrates on the line
{(x, x) : x > 0} so we
estimate probability as 0:

P̂ [X1 −X2 > x] = 0.

Conclude: A more general
theory has applicability.

x

∞

0
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5.2. Consequences:

Useful to have a more general umbrella of HRV that includes:

• Asymptotic independence.

• Asymptotic full dependence.

• Other cases where the support of limit measure is strictly smaller
than the state space.

• Stochastic processes.

• In high dimensional spaces want the possibility of a nested se-
quence cones each of which has a regular variation property.
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5.3. Topology: General approach.

What topology is appropriate? What are the bounded sets? Modify
Hult and Lindskog (2006):

• S = CSMS.

• F ∈ F(S) (closed subset; often a closed cone).

• State space=SF := S \ F .

• Tail regions: any subset of SF which is bounded away from F ; ie,
R ⊂ SF is a tail region if

dS(R,F ) > 0.

• M∗(SF ) = measures on SF which are finite on sets bounded away
from F .

• C(SF ) = bounded, positive, continuous functions whose supports
are bounded away from F .

• Topology on M∗(SF ) is smallest topology which makes

µ 7→ µ(f)

from
M∗(SF ) 7→ R+

continuous.
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• Example: S = R∞+ , F = F (j), j ≥ 0, where

F (j) ={x := (x1, x2, . . . ) ∈ R∞+ :
∞∑
j=1

εxj(0,∞) ≤ j}

={x : at most j components > 0}.

So

F (0) ={0}
F (1) =lines through 0, including 0

=
∞⋃
j=1

{0}j−1 × (0,∞)× {0}∞ ∪ {0},

...

• Mapping theorem: Let T : S1 \ F1 7→ S2 \ F2 be continuous and
satisfy: If D2 ∈ F2(S2\F2) is bounded away from F2 then T−1(D2)

is bounded away from F1. Then T̂ : M∗(S1 \ F1) 7→ M∗(S2 \ F2)
defined by

T̂ (µ1) = µ1 ◦ T−1

is continuous.
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• Mapping theorem variant: Suppose T : S1 7→ S2 is uniformly
continuous and suppose for F1 ∈ F(S1) we have TF1 ∈ F(S2).

Then T̂ : M∗(S1 \ F1) 7→M∗(S2 \ F2) is continuous.

• Example: S = R∞+ and X = (X1, X2 . . . ) has iid components with
each Xi having a regularly varying tail with scaling function b(t).
Then as t→∞, for j ≥ 1

tP [X/b(t1/j) ∈ ·]→ ν(j) in M∗(R∞+ \ F (j−1))

and ν(j) concentrates on F (j)\F (j−1), the sequences with j positive
components. Define

CUMSUM : R∞+ 7→ R∞+

by
CUMSUM(x) = (x1, x1 + x2, . . . )

and then

tP [CUMSUM(X)/b(t1/j) ∈ ·]→ ν(j) ◦ CUMSUM−1

in M∗(R∞+ \ CUMSUM(F (j−1))) and ν(j) ◦ CUMSUM−1 concen-

trates on CUMSUM(F (j) \ F (j−1))), the set of sequences with j
jumps.
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6. Remarks.

• Practical?

– Limitations of asymptotic methods: rates of convergence?

– Instead of estimating a risk probability as 0, estimate is a
very small number.

• Need for more formal inference for estimation including confidence
statements.

• General HRV technique requires knowing the support of the limit
measure. Estimate support?

• High dimension problems? How to sift through different possible
subcones?

• How to go from standard to more realistic non-standard case; still
some inference problems.
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7. Hidden Domain of attraction (HDA)

(Mitra and Resnick, 2011a)
Recall: Example 1: Let U ∼ U(0, 1) and define

X = (X1, X2) =
( 1

U
,

1

1− U

)
.

Properties:

• X satisfies (StandRegVarE) on E = [0,∞]2 \ {0}.

• X possesses (AsyIndep).

• X1 ∧ X2 ≤ 2 so X cannot have HRV. So is there an asymptotic
regime that might help compute risk probabilities?

BUT

• X1 ∧ X2 ≤ 2 belongs to the doa of the (reversed) Weibull EV
distribution;

• A property akin to HRV holds on a cone but . . .

• the cone is not a subcone of E).
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Blood and guts:

For {(x1, x2) ∈ (−∞,∞]2 : x1 + x2 ≤ 0}, and large n,

nP
[
n(X1 − 2) > x1, n(X2 − 2) > x2

]
=nP

[
1− 1

2 + x2/n
< U <

1

2 + x1/n

]
=n
( 1

2 + x1/n
−
(
1− 1

2 + x2/n

))
=
n

2

(
−x1 + x2

2n
+O(

1

n2
)
)

→− (x1 + x2)/4 (n→∞),

and if x1 + x2 ≥ 0,

nP
[
n(X1 − 2) > x1, n(X2 − 2) > x2

]
→ 0.

Hmmmm! Suggests concept of hidden domain of attraction (HDA):
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7.1. HDA: Standard case; d = 2.

Simple case: Suppose d = 2 and X = (X1, X2) satisfies

• X1
d
= X2.

• (DOA) holds with bn = (bn, bn) = bn1 and an = (an, an) = an1
with an > 0 and

nP
[X − bn1

an
∈ ·
]
→ ν(·),

on [−∞,∞]2 \ {−∞} or [0,∞]2 \ {0}.

• (AsyIndep) holds:

e−ν([∞,x]c) = G1(x1)G2(x2),

and additionally,

• there exist positive scaling and real centering constants {cn} and
{dn} and a non-zero measure ν0 on a cone E0 = (0,∞] or (−∞,∞]
such that

nP [(X − dn1)/cn ∈ · ]→ν0(·) (n→∞). (ConvE0)

Then X possesses standard case HDA.
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Notes:

1. It is not necessarily the case that the cone E0 ⊂ E. For

X =
( 1

U
,

1

1− U

)
,

we have

E = [0,∞] \ {0}, E0 = {x ∈ (−∞,∞] : x1 + x2 ≤ 0.}.

2. Since X1 ∧X2 is in a doa, set

U∧(x) =
1

P [X1 ∧X2 > x]
.

Then (ConvE0) can be expressed as standard regular variation on
(0,∞]:

nP

[(
U∧(X1)

n
,
U∧(X2)

n

)
∈ ·
]
→ν̃0(·),

where ν̃0(·) is obtained from ν0(·) and satisfies

ν̃0(c·) = c−1ν̃0(·), c > 0. (homog)

(homog) allows disintegration of ν̃0(·) as a product measure in
the correct coordinate system and permits definition of a spectral
measure.
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3. Suppose X1

d

6= X2 but X satisfies (DOA). Standardize:

Ui(x) =
1

P [Xi > x]
, i = 1, 2

and set
X∗ = (X∗1 , X

∗
2 ) = (U1(X1), U2(X2).

Since X satisfies (DOA), X∗ satisfies (StandRegVarE). Assume
also (AsyIndep). Can now apply the HDA definition to X∗:

• Ask if there exist positive scaling and real centering constants
{cn} and {dn} and a non-zero measure ν∗0 on a cone E0 such
that (ConvE0) holds with X∗ replacing X.

• If so, set

U∗∧(x) =
1

P [X∗1 ∧X∗2 > x]
,

and then set

X∗∗ = (U∗∧(X∗1 ), U∗∧(X∗2 ) =
(
U∗∧ ◦ U1(X1), U

∗∧ ◦ U2(X2)
)

• Conclude:

– The distribution of X∗ is standard regularly varying on
[0,∞] \ {0} and (AsyIndep) holds.

– X∗∗ has a distribution standard regularly varying on (0,∞].

– Ingenuity may be required to do estimation.
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