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Some basic facts

> If {(Xin, Yin,i < n,n > 1} is a triangular array of bivariate r.v.'s where each row is iid with

distribution identical to (X("), Y(M), then
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Some basic facts

> If {(Xin, Yin,i < n,n > 1} is a triangular array of bivariate r.v.'s where each row is iid with
distribution identical to (X(", Y("), then

V Xy~ b(n) VY= b(n)\
a0 am | "
o | X —b(n) Y — b(n) w
= P < a(n) 7 a(n) > = ] — PO

> [Sibuya, 1960] If (X, Y) ~ N (( ; ) , ( [1) . )) and b(n) is defined by b(n) = né(b(n)),
then

for0<p<1, nimoo P"[b(n)(X — b(n)) < x, b(n)(Y — b(n)) < y] =exp(—e™* —e™”)

for p =1, lim P"[b(n)(X — b(n)) < x, B(n)(Y — b(n)) < y] = exp(—e™ "),



Husler-Reiss’ celebrated result

> [Hiisler-Reiss, 1989] If {(X(", Y(M) n > 1} is a sequence of bivariate normal random variables

with Xy N (( 8 )7< p(ln) p(ln) ))

and 0 < p(n) < 1,(1 — p(n))log n — X2 € (0,00) as n — oo, then

lim P"[X(") < b(n) + ﬁ Y < b(n) + ﬁ] = Ha(x.y)

where

X—=y, _ y =Xy _
H = exp [ (A Y — oA+ Z—S)e .
A6 y) = ep [P+ — e A+ )e



Husler-Reiss’ celebrated result

> [Hiisler-Reiss, 1989] If {(X(", Y(M) n > 1} is a sequence of bivariate normal random variables

with Xy N (( 8 )7< p(ln) p(ln) ))

and 0 < p(n) < 1,(1 — p(n))log n — X2 € (0,00) as n — oo, then

lim P"[X(") < b(n) + ﬁ Y < b(n) + ﬁ] = Ha(x.y)

where

X—=y, _ y =Xy _
H = exp [ (A Y — oA+ Z—S)e .
A6 y) = ep [P+ — e A+ )e

» H, is max-stable and

lim Hy(x,y) = exp(—e~™"0Y}) and  lim Ha(x,y) = exp(—e > — e ™).
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A further motivating example

> 1F{(X(M, ¥(") n> 1} is a sequence of random variables such that

X Y
1 p(n)’ p(n)

and 0 < p(n) < 1 with (1 — p(n))logn — c € R as n — oo, then

(XM, y™y L (min ( ) ,Y) where (X, Y) are iid Exp(1)

lim P”[X(") <x+4logn Y <y +log n]

n—oo

exp(—e™Y) if x>y+c
exp(—e ™ —eY(1—-e"9) if x<y+c

=: Ge(x,y)



A further motivating example

> 1F{(X(M, ¥(") n> 1} is a sequence of random variables such that

X Y
1 p(n)’ p(n)

and 0 < p(n) < 1 with (1 — p(n))logn — c € R as n — oo, then

(XM, y™y L (min ( ) ,Y) where (X, Y) are iid Exp(1)

lim P”[X(") <x+4logn Y <y +log n]

n—oo
| exp(—e™Y) if x>y+c
T exp(—e ¥ —eV(1—-e"°)) if x<y+c
= Gc(Xv}/)

» G¢ is max-stable, continuous and

lim Ge(x,y) = exp(—e~ ™YY and  lim Go(x,y) = exp(—e X —e™Y).
c—0 c—o0



Some points to note about Hiisler-Reiss' result
> If (X, Y) are iid N(0,1), then

(XM Yy = (p(n)Y + 1/1 = p(n)2X, Y) := (f2(X, Y), Y).
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Some points to note about Hiisler-Reiss' result

> If (X, Y) are iid N(0,1), then

(XM Yy = (p(n)Y + 1/1 = p(n)2X, Y) := (f2(X, Y), Y).

» The crux of the result lies in proving the following
>

X —
J=e

i (n)
nILmoo nP[X'" > b(n) + b(m)

; (m) Y 1— v
nlm(x nP[YY" > b(n) + b(n)] =e

=)

lim nP[X") > b(n) + ﬁ, Y > b(n) + ﬁ] = /6(,\ T X;\

y

> Interestingly

/ <T>(>\ + XZ_/\Z)e’Z dz = e .

Z)efz dz



Delving further into the proof of the Hiisler-Reiss example

» Note that
nPIX(") > b(n) + ﬁ, Y™ > b(n) + ﬁ
= nP[b(n)(p(n)X + /1 — p(n)2Y — b(n)) > x, b(n)(Y — b(n)) > y]

w >

=nP [(X, b(n)(Y — b(n))) € {(w7 z)
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> (CEV) Using the fact that (X, Y) are independent standard normal random variables,we have
that

lim nP[X < x,b(n)(Y — bp) > y] = ®(x) exp(—y).
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» (FC) Also, the assumptions on p(n) and the fact that b(n) ~ \/2Tog n, implies that as n — oo,
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Our setup and the questions | will try to answer

> If (X7, Yy = (£,(X,Y),Y), where Y € D(G,) with scaling and centering functions
a(-) > 0, b(-), then how to formulate conditions similar to (CEV) and (FC) such that

op [V = bn) Y —b(n)

a(n) a(n)

converges to a limit as n — oo and to get a grasp on the behavior of the limit.
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> If (X7, Yy = (£,(X,Y),Y), where Y € D(G,) with scaling and centering functions
a(-) > 0, b(-), then how to formulate conditions similar to (CEV) and (FC) such that

o [fX.Y) = b(n) Y~ b(n)
"{ A am) >y]

converges to a limit as n — oo and to get a grasp on the behavior of the limit.

> Formulate a condition similar to f;(X, Y) — Y such that we can get convergence of

P [%n}

» We will see that this is enough to generate classes of examples for Hiisler-Reiss type results.



Theorem 1

> (CEV) For the bivariate random vector (X, Y'), assume that there exists scaling and centering
functions a(-) > 0,a(-) > 0, 3(-) and b(-) and a Radon measure £ on [—o0, 0] x (17, u?],
such that in My ([—o0, 00] x (17, u™])

e[S ) o s

where £([—o00, 00] X (y, u?]) = —log(Gy(y)), for y € (I7,u”) and ¢ satisfies the
non-degeneracy conditions for the conditional extreme value model.
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function f(-, y) so that as n — oo,

fa(8(n) + a(n)u, b(n) + a(n)y) — b(n)
a(n)

for every continuity point u € R of the function (-, y).

= f(u,y)
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= f(u,y)




Theorem 1 contd.

> If (CC) and (FC) hold and additionally each f, is continuous in the first variable, then CEV
holds
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> If (CC) and (FC) hold and additionally each f, is continuous in the first variable, then CEV
holds

> (AN & I) For some sequence y, — /7 and for all x >/,
nln;o nP[X > f,,,(.,a(,,)yﬁb(,,))(a(n)x + b(n))] — 0
and

v((I7,00] x (I, u"]) = £({(w, z) | w > f(<:z)()<)7 u’ >z>1"}) < oo.
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Theorem 1 contd.

> If (CC) and (FC) hold and additionally each f, is continuous in the first variable, then CEV

holds
> (AN & 1) For some sequence y, — [7 and for all x >/,

nln;o nP[X > f,,,(.,a(,,)yﬁb(,,))(a(n)x + b(n))] — 0
and
V(17 00] % (1)) = &({(w, 2) | w > £, (0,07 > 2> 1'}) < 0.
> (MC) There exists a Radon measure p on (/7, 00] such that in M4 ((/, o0]])
f0X,Y)— b y
oo [FCYV) = B0) ]
a(n)

> If (CEV), (FC) and (AN & 1) all hold then (MC) holds. In fact we have

u((x,00]) = €{(w, 2) [ w > £, (x),u? 2 2> 1)),



Applications to the case of spherically symmetric r.v.'s (Gumbel)
Suppose R > 0 has distribution function F such that 1 — F is -varying with auxiliary function f
and (X, Y) are defined as

(X,Y) £ (Rcos, Rsin0)

where 6 is uniformly distributed in (—7, 7).
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> [Berman,1992] X, Y have identical distribution functionG which is also -varying with auxiliary
function f and
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Suppose R > 0 has distribution function F such that 1 — F is -varying with auxiliary function f
and (X, Y) are defined as

(X,Y) £ (Rcos, Rsin0)

where 6 is uniformly distributed in (—m, 7). Then

> [Berman,1992] X, Y have identical distribution functionG which is also -varying with auxiliary
function f and

X Y — b(n) v, .
P |:< et a(n) > S :| — &(+) in My ([—oo,oo] X (—oo,oo])7

where f([—oo,x] X (y,oo]) = d(x)e V.
> [Hashorva, 2005] If b(n) = G*(1 — 1), a(n) = f(b(n)) and

b(n)

(1= p(n)=—= — 22 as n — oo,

a(n)

then the sequence of independent random variables {(X(", Y(") n > 1} with
(X, YO) = (o(m)Y + /1~ p(n)2X, )

lim_ P [X(" < b(n) + a(n)x, Y < b(n) + a(n)y] = Ha(x,y).




Applications to the case of spherically symmetric r.v.'s (Reversed Weibull)

Suppose R > 0 has distribution function F with right endpoint 1 such that F € D(V ) for some
o* >0 and (X, Y) are defined as

(X,Y) 2 (Rcos, Rsin)

where 6 is uniformly distributed in (—7, 7).



Applications to the case of spherically symmetric r.v.'s (Reversed Weibull)

Suppose R > 0 has distribution function F with right endpoint 1 such that F € D(V ) for some
o* >0 and (X, Y) are defined as

(X,Y) 2 (Rcos, Rsin)

where 6 is uniformly distributed in (—m, 7). Then

> [Berman,1992] X, Y have identical distribution function G are identically distributed and the
identical distribution function G € D(¥_, 1) and G has right endpoint 1 and
2

X Y -1 Voo .
"[(uu)]*f () in M ([=o0,00] x (=000]),

where £* ([—00,x] X (y,0]) = tha= <X> (—y)a*'*'% and

V2(-y)
0, if  z< -1,
Vo) = FERR T s zel1)

1, if z>1.



Applications to the case of spherically symmetric r.v.'s (Reversed Weibull)

> Ifa(n) =1- G (1— 1) and

(1 = p(n)

—2X2asn— 00,
a(n

then the sequence of independent random variables {(X("), Y(")), n=1,2,...} with .
(X, vy L (p(n)Y + \/mX, Y).
has the property that for (x,y) € (—oo,0)?,
lim PPIX) <14 a(n)x, YO < 14 a(n)y] = Hav s /20(x,9).

where

Hax(x,y) = exp [—(—X)‘“%—; < 2(14) (“ y2_/\x)>

(=)ot ( 2(17)/) ()\+ Xz_/\y)ﬂ




A more general example

Assume that
> In M ([—00, 5] x (—o0, 00])

|G ) <120

where £([—o00, 00] X (y,0]) = e™¥, for y € R and ¢ satisfies the non-degeneracy conditions
for the conditional extreme value model.
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T

Define £,(X, Y) = c(n)X + d(n)Y where 0 < c(n), d(n) <1 and c(n)2%) — 7 > 0 and

a(n)
Sggg(l —d(n)) — 72 . Then for (X,Y) € R,

pn fa(X,Y) — b(n) <x Y — b(n)
a(n) - a(n)

—ep(—e ™ —E({(w.2) [w> T+ Ty > 2))

<y



A simple problem

> If for each n, {(X{",¥["), i=1,2,....n} areiiiid N (( 0 ) , ( p(ln)
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> Consider an iid. sample {(X;, Y;), i =1,2,..., m} where each (X, Y;) has distribution

(D))

» Using classical extreme value theory there are two possible limit distributions for the scaled
and centered maxima of {(X;,Y;), i =1,2,...,m}. Depending on whether p =1 or
0 < p < 1, we must have the limit distribution as Fo(x,y) = exp(—e™ M"{xy}) (complete
asymptotic dependence) or Foo(x,y) = exp(—e™> — e™Y) (complete asymptotic
independence) respectively. Either model would not give satisfactory estimates for values of p
significantly greater than O but not close to 1.
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> We propose using H),, as an approximation in these cases where Ay, = /(1 — p) log m.
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independence) respectively. Either model would not give satisfactory estimates for values of p
significantly greater than O but not close to 1.

> We propose using H),, as an approximation in these cases where Ay, = /(1 — p) log m.



Table : Actual value and estimates of mP[X > x, Y > y] where x = Rcos 6,y = Rsin6 and
(X,Y)~ BVN(0,0,1,1, p), m=1000. A value of 0 in the table indicates that the actual value is less than
1x107%.

0 = /10
Actual HR estimate  CD estimate
R=7 1.39e-008 1.61e-005 1.61e-005
p=07 | R=8 1.39e-011 8.32e-007 8.32e-007
R =9 | 0.00e+000 4.30e-008 4.30e-008
R=7 1.39e-008 1.61e-005 1.61e-005
p=08| R=8 1.39e-011 8.32e-007 8.32e-007
R =9 | 0.00e+000 4.30e-008 4.30e-008
R=7 1.39e-008 1.61e-005 1.61e-005
p=09 | R=8 1.39e-011 8.32e-007 8.32e-007
R =9 | 0.00e+000 4.30e-008 4.30e-008




Table : Actual value and estimates of mP[X > x, Y > y] where x = Rcos 6,y = Rsin6 and
(X,Y)~ BVN(0,0,1,1, p), m=1000. A value of 0 in the table indicates that the actual value is less than
1x107%.

0=m/4
Actual HR estimate  CD estimate
R=7 | 1.17e-005 4.95e-004 3.30e-003
p=07 | R=8 | 1.13e-007 5.47e-005 3.64e-004
R =9 | 6.19e-010 6.04e-006 4.02e-005
R =7 | 3.25e-005 7.92¢-004 3.30e-003
p=08 | R=8 | 4.05e-007 8.74e-005 3.64e-004
R =9 | 2.96e-009 9.65e-006 4.02e-005
R =7 | 8.88e-005 1.34e-003 3.30e-003
p=09 | R=8 | 1.40e-006 1.48e-004 3.64e-004
R =9 | 1.33e-008 1.63e-005 4.02e-005
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