Functional Central Limit Theorem for Heavy Tailed Stationary Infinitely Divisible Processes Generated by Conservative Flows

Takashi Owada and Gennady Samorodnitsky

January 2013

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $\mathbf{X} = (X_1, X_2, ...)$ be a stationary stochastic process.

A (functional) central limit theorem for such a process is a statement of the type

$$\left(\frac{1}{c_n}\sum_{k=1}^{\lceil nt\rceil}X_k-h_nt,\,0\leq t\leq 1\right)\Rightarrow\left(Y(t),\,0\leq t\leq 1\right).$$

• $\mathbf{Y} = (Y(t), 0 \le t \le 1)$ is a non-degenerate process.

• By the Lamperti theorem, **Y** is self-similar with stationary increments.

We consider a class of stationary symmetric infinitely divisible processes withn regularly varying tails.

The main ergodic-theoretical property will be that of pointwise dual ergodicity.

The length of memory will be determined by the rate of growth of wandering rate sequence.

It will have one parameter, $0 < 1 - \beta < 1$, that will determine the limiting process **Y**.

The limiting process

Let $0 < \beta < 1$. We start with inverse process

$$M_eta(t)=S^\leftarrow_eta(t)=\infig\{u\ge0:\ S_eta(u)\ge tig\},\ t\ge 0\,.$$

- $\left(S_{\beta}(t), t \geq 0\right)$ is a (strictly) β -stable subordinator.
- $(M_{\beta}(t), t \ge 0)$ is called the Mittag-Leffler process.

The Mittag-Leffler process has a continuous and non-decreasing version.

- It is self-similar with exponent β .
- Its increments are neither stationary nor independent.
- All of its moments are finite.

$$E \exp\{\theta M_{\beta}(t)\} = \sum_{n=0}^{\infty} \frac{(heta t^{eta})^n}{\Gamma(1+neta)}, \quad heta \in \mathbb{R}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Define

$$Y_{lpha,eta}(t) = \int_{\Omega' imes [0,\infty)} M_etaig((t-x)_+,\omega'ig) dZ_{lpha,eta}(\omega',x), \quad t\geq 0.$$

Z_{α,β} is a SαS random measure on Ω' × [0,∞) with control measure P' × ν.

- ν a measure on $[0,\infty)$ given by $\nu(dx) = (1-\beta)x^{-\beta} dx$.
- M_{β} is a Mittag-Leffler process defined on $(\Omega', \mathcal{F}', P')$.

The process $(Y_{\alpha,\beta}(t), t \ge 0)$ is a well defined S α S process with stationary increments.

It is self-similar with exponent of self-similarity

$$H = \beta + (1 - \beta)/\alpha \,.$$

We call it the β -Mittag-Leffler (or β -ML) fractional S α S motion.

A connection: $\hat{\beta}$ -stable local time fractional S α S motion.

Let
$$\hat{eta} = (1-eta)^{-1} \in (1,\infty).$$

If $\hat{\beta} \in (1, 2)$, a $\hat{\beta}$ -stable local time fractional S α S motion was introduced in Dombry and Guillotin-Plantard (2009).

$$\hat{Y}_{lpha,eta}(t)=\int_{\Omega' imes \mathbb{R}}L_tig(x,\omega'ig)d\hat{Z}_lpha(\omega',x),\quad t\geq 0;$$

- \hat{Z}_{α} is a S α S random measure on $\Omega' \times \mathbb{R}$ with control measure $P' \times \text{Leb}$
- (L_t(x), t ≥ 0, x ∈ ℝ) is a jointly continuous local time process of a symmetric β̂-stable Lévy process.

In this range, the ML fractional S α S motion coincides, distributionaly, with the $\hat{\beta}$ -stable local time fractional S α S motion.

One can view the ML fractional SlphaS motion as

an extension of the $\hat{\beta}$ -stable local time fractional S α S motion from the range $1 < \hat{\beta} \le 2$ to the range $1 < \hat{\beta} < \infty$.

A bit of ergodic theory

Let (E, \mathcal{E}, μ) be a σ -finite, **infinite** measure space.

Let $T: E \to E$ be a measurable map that preserves the measure μ .

When the entire sequence T, T^2, T^3, \ldots of iterates of T is involved, we will sometimes refer to it as a flow.

The dual operator \widehat{T} is an operator $L^1(\mu) \to L^1(\mu)$ defined by

$$\widehat{T}f=\frac{d(\nu_f\circ T^{-1})}{d\mu},$$

with ν_f a signed measure on (E, \mathcal{E}) given by $\nu_f(A) = \int_A f d\mu$, $A \in \mathcal{E}$.

The dual operator satisfies the relation

$$\int_{E} \widehat{T}f \cdot g \, d\mu = \int_{E} f \cdot g \circ T \, d\mu$$

for $f \in L^1(\mu)$, $g \in L^{\infty}(\mu)$.

An ergodic conservative measure preserving map T is called pointwise dual ergodic if there is a sequence of positive constants $a_n \rightarrow \infty$ such that

$$rac{1}{a_n}\sum_{k=1}^n \widehat{T}^k f o \int_E f \, d\mu$$
 a.e.

for every $f \in L^1(\mu)$.

Pointwise dual ergodicity rules out invertibility of the map T.

The stationary process X

We consider infinitely divisible processes of the form

$$X_n = \int_E f_n(x) dM(x), \quad n = 1, 2, \dots$$

- M is a homogeneous symmetric infinitely divisible random measure on a (E, ε).
- μ has an infinite, σ-finite, control measure μ and local Lévy measure ρ: for every A ∈ ε with μ(A) < ∞, u ∈ ℝ,

$$Ee^{iuM(A)} = \exp\left\{-\mu(A)\int_{\mathbb{R}}(1-\cos(ux))\rho(dx)
ight\}.$$

The functions f_n , n = 1, 2, ... are deterministic functions of the form

$$f_n(x) = f \circ T^n(x) = f(T^n x), x \in E, n = 1, 2, ...$$

- *f* : *E* → ℝ is a measurable function, satisfying certain integrability assumptions;
- $T: E \rightarrow E$ a pointwise dual ergodic map.

We assume that the local Lévy measure ρ has a regularly varying tail with index $-\alpha$, $0 < \alpha < 2$:

$$ho(\cdot,\infty)\in RV_{-lpha}$$
 at infinity.

With a proper integrability assumption on the function f:

the process X has regularly varying finite-dimensional distributions, with the same tail exponent $-\alpha$.

Theorem

Assume that the normalizing sequence (a_n) in the pointwise dual ergodicity is regularly varying with exponent $0 < \beta < 1$ and that $\mu(f) = \int f \ d\mu \neq 0$. Then for some sequence (c_n) that is regularly varying with exponent $\beta + (1 - \beta)/\alpha$,

$$\frac{1}{c_n}\sum_{k=1}^{\lfloor n \cdot \rfloor} X_k \Rightarrow |\mu(f)| Y_{\alpha,\beta} \quad \text{in } D[0,\infty).$$

Example Consider an irreducible null recurrent Markov chain with state space \mathbb{Z} and transition matrix $P = (p_{ij})$.

Let $\{\pi_j, j \in \mathbb{Z}\}$ be the unique invariant measure of the Markov chain that satisfies $\pi_0 = 1$.

Define a σ -finite measure on $(E, \mathcal{E}) = (\mathbb{Z}^{\mathbb{N}}, \mathcal{B}(\mathbb{Z}^{\mathbb{N}}))$ by

$$\mu(\cdot) = \sum_{i \in \mathbb{Z}} \pi_i P_i(\cdot) \,,$$

Let $T: \mathbb{Z}^{\mathbb{N}} \to \mathbb{Z}^{\mathbb{N}}$ be the left shift map

$$T(x_0, x_1, \dots) = (x_1, x_2, \dots) \text{ for } \{x_k, k = 0, 1, \dots\} \in \mathbb{Z}^{\mathbb{N}}.$$

Let $A = \{x \in \mathbb{Z}^{\mathbb{N}} : x_0 = 0\}$ and the corresponding first entrance time $\varphi(x) = \min\{n \ge 1 : x_n = 0\}, x \in \mathbb{Z}^{\mathbb{N}}.$

Assume that

$$P_0(\varphi \geq k) \in RV_{-\beta}$$
.

The assumptions of the theorem hold, for example, if $f = \mathbf{1}_A$.

The length of memory in the process **X** is quantified by the tail of the first return time φ .

In the general case, the length of memory is still quantified by a single parameter β . It is also related to return times.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <