Minimal spectral representations of infinitely divisible and max-infinitely divisible processes

Stilian Stoev (sstoev@umich.edu) University of Michigan, Ann Arbor

January 17, 2013

Joint work with Zakhar Kabluchko, Ulm University, Germany

- 2 Uniqueness under a "new" notion of minimality
- Max-stable case: Connections to the "old" notion of minimality

4 Examples

5 Final comments

Representations Minimality and uniqueness Maharam and the stable case Examples Final comments References Appendix

Spectral Representations

Max-id processes

Definition

 $\{X_t, t \in T\}$ is max-id if for all n,

$$\{X_t, t \in T\} \stackrel{d}{=} \Big\{ \max_{i=1,\cdots,n} X_t^{(i,n)}, \ t \in T \Big\},\$$

for some iid $\{X_t^{(i,n)}, t \in T\}, i = 1, \cdots, n$.

• Ch. 5, Resnick (1987): Max-id laws in \mathbb{R}^n have the form:

$$F(x) = \exp\{-\mu(-\infty, x]^c\}, \ x \in \mathbb{R}^n,$$

for some σ -finite measure μ on \mathbb{R}^n – Balkema and Resnick [1977], Gerritse [1986] and Vatan [1985].

• Balkema et al. [1993]: spectral representations for max-id processes.

Note: WLOG we will suppose

 $\operatorname{essinf}(X_t) = 0$, for all $t \in T$.

The Poisson calculus for max-id processes

- Let (E, \mathcal{E}, μ) be a σ -finite measure space.
- Let $\Pi_{\mu} = \{U_i, i \in \mathbb{N}\}$ be a Poisson random measure on (E, \mathcal{E}) with intensity μ .

Definition

 $\mathcal{L}^{\vee}(E,\mathcal{E},\mu)$ is the set of non-negative measurable functions $f:E o\mathbb{R}_+$, such that

$$\mu\{f>a\}<\infty, \ \text{ for all } a>0.$$

Define

$$\mathcal{N}^{\vee}(f)\equiv\int_{E}^{\vee}fd\Pi_{\mu}:=\sup_{U\in\Pi_{\mu}}f(U).$$

Note: For $f \in \mathcal{L}^{\vee}(E,\mu)$, we have $\operatorname{essinf}(I^{\vee}(f)) = 0$ and $P(I^{\vee}(f) \leq x) = P(\Pi_{\mu} \cap \{f > x\}) = \emptyset) = e^{-\mu\{f > x\}}, \quad (x > 0).$

Spectral representations

For $f_t \in \mathcal{L}^{\vee}(E, \mu)$, $t \in T$ it is easy to see that $X_t := \int_E^{\vee} f_t d\Pi_{\mu}$, $t \in T$ is a max-id process with fidi

$$P\{X_{t_i} \le x_i, \ i = 1, \cdots, k\} = \exp\left\{-\mu\left(\cup_{i=1}^k \{f_{t_i} > x_i\}\right)\right\}, \ (x_i \ge 0)$$

Conversely:

Definition

 $\{X_t, t \in T\}$ satisfies Condition S, if extists a countable $T_0 \subset T$, s.t.

 $\forall t, X_t = \text{plim}X_{t_n}, \text{ for some } t_n \in T_0.$

Theorem (Balkema et al. [1993] & Kabluchko and S. [2012])

If $\{X_t, t \in T\}$ is max-id satisfies Condition S and $\operatorname{essinf}(X_t) = 0$, then there exist $\{f_t, t \in T\} \subset \mathcal{L}^{\vee}(\mathbb{R}, \operatorname{Leb})$

$$\{X_t, t \in T\} \stackrel{d}{=} \{I^{\vee}(f_t), t \in T\}.$$

Note: $\{f_t, t \in T\}$ above is called a spectral representation of $X_{t=1}$

Examples

• (mixed moving maxima)

$$X_t = \bigvee_i F_i(t - U_i), \ t \in \mathbb{R}^2.$$

where the PPP $\Pi_{\mu} = \{(U_i, F_i(\cdot))\}$ has intensity $\mu(du, dF) = duP(dF)$, where P is the law of a random field $F = \{F(t)\}_{t \in \mathbb{R}^2}$.

Think of U_i as storm locations and $F_i(\cdot)$ as storm profiles.

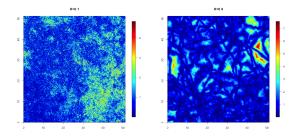
(Penrose type processes) ξ = {ξ(t)}_{t∈ℝ} process with stationary increments. Then,

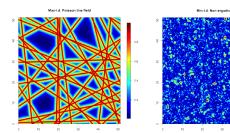
$$X_t := \min_i |U_i + \xi_i(t)|, \ \ t \in \mathbb{R},$$

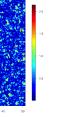
is stationary min-id, where $(U_i, \xi_i(\cdot))$ is a PPP with intensity $dudP_{\xi}$.

● See Kabluchko and S. [2012] for more examples: max-stable processes, Poisson lines, U-id random sets.

Pictures of max-id random fields







Minimality

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A "new" minimality concept

Definition

The spec rep
$$\{f_t\}_{t\in T} \subset \mathcal{L}^{\vee}(E, \mathcal{E}, \mu)$$
 of X is minimal if:
(i) $\sigma\{f_t, t\in T\} = \mathcal{E} \pmod{\mu}$
(ii) $\sup\{f_t, t\in T\} = E \pmod{\mu}$ i.e. there is no $A \in \mathcal{E}$ with
 $\mu(A) > 0$ s.t. $f_t = 0$ on A.

Theorem (Kabluchko and S. [2012])

Under Condition S the max-id process X has a minimal spec rep on the space $\mathcal{L}^{\vee}(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu)$, for some σ -finite Borel measure μ .

Notes:

- The proof is not innovative book-keeping + use of prior results of Balkema et al. [1993], Vatan [1985], and Kuratowski's Thm.
- The definition is the "right one" because of the following uniqueness result.

Uniqueness

Theorem (Kabluchko and S. [2012])

If $\{f_t\}_{t\in T} \subset \mathcal{L}^{\vee}(E, \mathcal{E}, \mu)$ and $\{g_t\}_{t\in T} \subset \mathcal{L}^{\vee}(F, \mathcal{F}, \nu)$ are two minimal reps of X, then exists a measure space isomorphism $\Phi : (E, \mu) \to (F, \nu)$, s.t.

$$\forall t, f_t = g_t \circ \Phi, \mod \mu.$$

Moreover, Φ is mod μ unique.

Notes:

- Similar results are well-known in the stable and max-stable cases under a somewhat different minimality concept. They imply important structural results through connections with non-singular flows and ergodic theory: Hardin Jr. [1982], Rosiński [1995], Samorodnitsky [2005], Roy and Samorodnitsky [2008], Roy [2010], de Haan and Pickands III [1986], Kabluchko [2009], Wang and Stoev [2010].
- 2 How to use this uniqueness result?

Stationry max-id processes and measure-preserving flows

If X is stationary,

$$\{f_t\}_{t\in\mathbb{R}}$$
 and $\{g_t\}_{t\in\mathbb{R}} := \{f_{t-\tau}\}_{t\in\mathbb{R}}$,

are both minimal spec reps and then, for any $\tau \in \mathbb{R}$:

$$g_t \circ \Phi_{\tau} \equiv f_{t-\tau} \circ \Phi_{\tau} = f_t \pmod{\mu}$$

Uniqueness yields the flow property:

$$\Phi_{t+s} = \Phi_t \circ \Phi_s \pmod{\mu}$$

and using "standard" techniques (Mackey [1962]) one can get a measurable version of the flow $\{\phi_t\}_{t\in\mathbb{R}}$, defined everywhere. Notes:

- Now φ_t : E → E is measure-preserving! Not just non-singular...
- e Hence the spec rep has the flow representation:

$$f_t = f_0 \circ \phi_t \pmod{\mu}$$

The precise statement

Theorem (Kabluchko and S. [2012])

Let $X = \{X_t, t \in \mathbb{R}^d\}$ be continuous in probability, stationary max-id random field. Then

$$X\stackrel{d}{=}\left\{\int_{E}^{\vee}f_{0}\circ\phi_{t}d\Pi_{\mu}\right\}_{t\in\mathbb{R}^{d}},$$

where $f_0 \in \mathcal{L}^{\vee}(E, \mathcal{E}, \mu)$ and $\{\phi_t\}_{t \in \mathbb{R}^d}$ is a measurable, measure preserving action on a σ -finite Borel space (E, \mathcal{E}, μ) .

Notes:

Recall that for convenience, we are assuming throughout:

$$\operatorname{essinf}(X_t) = 0, \ t \in \mathbb{R}^d.$$

The result trivially extends to other max-id processes.

2 The spec rep $\{f_0 \circ \phi_t\}_{t \in \mathbb{R}^d}$ may me chosen to be minimal.

Max-stable case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Max-stable case

Let $E = (0,\infty) \times F$ and $\Pi_{\mu} = \{(\epsilon_i, V_i)\}_{i \in \mathbb{N}}$ be a PPP with intensity

 $\mu(dx, dv) = dx\nu(dv)$. Define $f_t(x, v) := x^{-1}g_t(v)$,

where $g_t \in L^1_+(F, \nu)$. Then

$$X_t := \int_E f_t d\Pi_\mu \equiv \bigvee_{i \in \mathbb{N}} rac{g_t(V_i)}{\epsilon_i}, \ t \in T$$

is a max-stable process. Notes:

 X_t is well-defined because g_t ∈ L¹₊(ν) implies f_t ∈ L[∨](E, μ). Indeed, for all a > 0

$$\mu\{f_t > a\} = \int_F \int_0^\infty \mathbb{I}(g_t(v) > ax) dx \nu(dv) = a^{-1} \int_F g_t(v) \nu(dv) < \infty.$$

2 Max-stability follows from thinning.

Max-stable case (cont'd)

More precisely, the fidi of X are:

$$P(X_{t_i} \le x_i, i = 1, \cdots, k) = \exp\{-\mu(\bigcup_i \{f_{t_i} > x_i\}\}$$

= $\exp\{-\int_F \left(\int_0^\infty \max_{i=1,\cdots,k} \mathbb{I}(g_{t_i}(\mathbf{v}) > x_ix\}dx\right)\nu(d\mathbf{v})\}$
= $\exp\{-\int_F (\max_{i=1,\cdots,k} g_{t_i}/x_i)d\nu\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Non-singular flows in the max-stable case

Recall

Fact

For a stationary max-stable 1-Fréchet process, we have

$$X \stackrel{d}{=} \left\{ \int_{F}^{\vee} \left(g_{0} \circ \varphi_{t}(v) \frac{d\nu \circ \varphi_{t}}{d\nu}(v) \right) M_{1}(dv) \right\}_{t \in \mathbb{R}}$$

where M_1 is 1-Fréchet sup-measure on (F, \mathcal{F}) with control measure ν , $g_0 \in L^1_+(\nu)$ and $\{\varphi_t\}$ is a non-singular flow on F.

Notes:

- The flow $\varphi_t : F \to F$ is non-singular if $\nu \circ \varphi_t \sim \nu$ and hence the above Radon-Nikodym derivative $d\nu \circ \varphi_t/d\nu$ makes sense.
- Question: X is max-id, so what is its measure-preserving flow representation in terms of a PPP?!

From max-stable to max-id

- Let $g_t \in L^1_+(F, \nu)$ and M_1 be a 1-Fréchet sup-measure.
- Define the max-stable process

$$X_t = \int_F^{\vee} g_t(v) M_1(dv), \ t \in T.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• What is the PPP spec rep of $X = \{X_t\}_{t \in T}$ as a max-id process?

From max-stable to max-id

- Let $g_t \in L^1_+(F,\nu)$ and M_1 be a 1-Fréchet sup-measure.
- Define the max-stable process

$$X_t = \int_F^{\vee} g_t(v) M_1(dv), \ t \in T.$$

• What is the PPP spec rep of $X = \{X_t\}_{t \in T}$ as a max-id process?

Let $E := (0, \infty) \times F$ and $\Pi_{\mu} = \{(\epsilon_i, V_i)\}_{i \in \mathbb{N}}$ be a PPP with intensity $\mu(dx, dv) = dx\nu(dv)$

- Note that M₁(B) := V_i ϵ_i⁻¹ I_B(V_i) is an independently scattered 1−Fréchet sup-measure.
- Thus,

$$\int_{(0,\infty)\times F}^{\vee} x^{-1}g_t(v)\Pi_{\mu}(dx,dv) = \int_{F}^{\vee} g_t(v)M_1(dv).$$

This gives the natural max-id spec rep of a max-stable process.
 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dorothy Maharam's construction

If $\varphi_t : F \to F$ is a non-singular flow on (F, ν) , then

$$\phi_t(\mathbf{x},\mathbf{v}) := \left(\frac{d\nu \circ \varphi_t}{d\nu}(\mathbf{v})^{-1}\mathbf{x},\varphi_t(\mathbf{v})\right)$$

is a measure-preserving flow on

 $((0,\infty) \times F, dx\nu(dv)).$

Dorothy Maharam's construction

If $\varphi_t : F \to F$ is a non-singular flow on (F, ν) , then

$$\phi_t(\mathbf{x},\mathbf{v}) := \left(\frac{d\nu \circ \varphi_t}{d\nu}(\mathbf{v})^{-1}\mathbf{x},\varphi_t(\mathbf{v})\right)$$

is a measure-preserving flow on

 $((0,\infty) \times F, dx\nu(dv)).$

Now, as above, define $f_t(x, v) := x^{-1}g_t(v)$ and note that

$$f_t(x, \mathbf{v}) = f_0 \circ \phi_t(x, \mathbf{v}) = x^{-1} \frac{d\nu \circ \varphi_t}{d\nu}(\mathbf{v}) g_t \circ \varphi_t(\mathbf{v})$$

Since $\bigvee_i \epsilon_i^{-1} \mathbb{I}_B(V_i) = M_1(B)$, recall that

$$\int_{(0,\infty)\times F}^{\vee} x^{-1}g_t(\mathbf{v})\Pi_{\mu}(d\mathbf{x}, d\mathbf{v}) = \int_{F}^{\vee} g_t(\mathbf{v})M_1(d\mathbf{v}),$$

The max-id spec rep is generated by a measure-preserving flow!

Old and new minimality

Let $X = \{X_t\}_{t \in T}$ be max-stable with spec rep

$$\{X_t\}_{t\in\mathcal{T}}\stackrel{d}{=} \{\int_F^{\vee} g_t(v)M_1(dv)\}_{t\in\mathcal{T}}, \ (g_t\in L^1_+(F,\mathcal{F}\nu)).$$

Recall that $\{g_t\}_{t \in T}$ is minimal if:

 $(ratio \ \sigma-alg) \ \rho\{g_t, \ t \in T\} := \sigma\{g_t/g_s, \ t, s \in T\} \sim \mathcal{F} \ (mod \ \nu).$

(full support) supp $\{g_t, t \in T\} = F \pmod{\nu}$.

Old and new minimality

Let $X = \{X_t\}_{t \in T}$ be max-stable with spec rep

$$\{X_t\}_{t\in\mathcal{T}}\stackrel{d}{=} \{\int_F^{\vee} g_t(v)M_1(dv)\}_{t\in\mathcal{T}}, \ (g_t\in L^1_+(F,\mathcal{F}\nu)).$$

Recall that $\{g_t\}_{t \in T}$ is minimal if:

 $(ratio \ \sigma-alg) \ \rho\{g_t, \ t \in T\} := \sigma\{g_t/g_s, \ t, s \in T\} \sim \mathcal{F} \ (mod \ \nu).$

(full support) supp $\{g_t, t \in T\} = F \pmod{\nu}$.

What is the connection b/w new and old minimality?

Old and new minimality

Let $X = \{X_t\}_{t \in \mathcal{T}}$ be max-stable with spec rep

$$\{X_t\}_{t\in\mathcal{T}}\stackrel{d}{=} \{\int_F^{\vee} g_t(v)M_1(dv)\}_{t\in\mathcal{T}}, \ (g_t\in L^1_+(F,\mathcal{F}\nu)).$$

Recall that $\{g_t\}_{t \in T}$ is minimal if:

- $(ratio \ \sigma-alg) \ \rho\{g_t, \ t \in T\} := \sigma\{g_t/g_s, \ t, s \in T\} \sim \mathcal{F} \ (mod \ \nu).$
- (full support) supp $\{g_t, t \in T\} = F \pmod{\nu}$.

What is the connection b/w new and old minimality?

Lemma (" Old" \Rightarrow " New")

If $\{g_t\}_{t\in T} \subset L^1_+(F,\nu)$ is minimal then $\{f_t\}_{t\in T} \subset \mathcal{L}^{\vee}(E,\mu)$ is minimal.

Notes:

- Old" ⇒ "New" is great news! Because all "old" resuts on max-stable proc can be reproduced with the "new" tools.
- Proof is a nice exercise.
- **3** Open problem: I don't know if "New" \Rightarrow "Old".

You may wonder...

What about the sum infinitely divisible case?

You may wonder...

What about the sum infinitely divisible case?

- Define the class $\mathcal{L}^+(E,\mu) \ni f : \int_E 1 \wedge |f|^2 d\mu < \infty$.
- Let $\Pi_{\mu} = \{U_i, i \in \mathbb{N}\}$ be a PPP on (E, μ) and define

$$I^+(f) := \operatorname{plim}_{\epsilon \downarrow 0} \Big(\sum_{U \in \Pi} f(U) \mathbb{I}(|f(U)| > \epsilon) - \int_E f \mathbb{I}(\epsilon < |f| \le 1) d\mu \Big).$$

Theorem (Kabluchko and S. [2012])

Under Condition S, any sum-id process X has a minimal spec rep

$${X_t}_{t\in T} \stackrel{d}{=} {I^+(f_t) + c_t}_{t\in T},$$

for some constants c_t , over a Borel σ -finite (E, μ) .

Notes: In close paralel with the max-id case:

- minimal spec reps are unique.
- stationary processes corresond to measure-preserving flows.

Main messages and contributions

- Provide PPP-based stochastic integal representations for both sum and max-id processes.
- Unifing and simple notion of a minimal spec rep was developed.
- Stationary sum and max-id processes can be associated with measure-preserving flows.

- Tools for classification and ergodic theory decompositions!
- Clarified/cleaned-up a bit the theory on spec rep's of continuous-time sum-id processes.

- A. A. Balkema and S. I. Resnick. Max-infinite divisibility. Journal of Applied Probability, 14(2):309–319, 1977. ISSN 0021-9002.
- A. A. Balkema, L. de Haan, and R. L. Karandikar. Asymptotic distribution of the maximum of n independent stochastic processes. J. Appl. Probab., 30(1):66–81, 1993. ISSN 0021-9002.
- L. de Haan and J. Pickands III. Stationary min–stable stochastic processes. Probability Theory and Related Fields, 72(4):477–492, 1986. ISSN 0178-8051.
- Gerard Gerritse. Supremum self-decomposable random vectors. Probab. Theory Relat. Fields, 72(1):17–33, 1986. ISSN 0178-8051. doi: 10.1007/BF00343894. URL http://dx.doi.org/10.1007/BF00343894.
- C. D. Hardin Jr. On the linearity of regression. Zeitschrift f
 ür Wahrscheinlichkeitstheorie und verwandte Gebiete, 61:293–302, 1982.
- Z. Kabluchko and S. Stoev. Minimal spectral representations of infinitely divisible and max-infinitely divisible processes. Preprint on the ArXiv., 2012.
- Zakhar Kabluchko. Spectral representations of sum- and max-stable processes. Extremes, 12(4):401–424, 2009. ISSN 1386-1999.
- G.W. Mackey. Point realizations of transformation groups. Illinois Journal of Mathematics, 6:327-335, 1962.
- J. Rosiński. On the structure of stationary stable processes. The Annals of Probability, 23:1163-1187, 1995.
- E. Roy. Maharam extension and stationary stable processes. The Annals of Probability, 40(3):1357-1374O, 2012.
- P. Roy. Nonsingular group actions and stationary SαS random fields. Proc. Amer. Math. Soc., 138(6):2195–2202, 2010.
- P. Roy and G. Samorodnitsky. Stationary symmetric α-stable discrete parameter random fields. J. Theoret. Probab., 21(1):212–233, 2008.
- Gennady Samorodnitsky. Null flows, positive flows and the structure of stationary symmetric stable processes. Ann. Probab., 33(5):1782–1803, 2005. ISSN 0091-1798.
- P. Vatan. Max-infinite divisibility and max-stability in infinite dimensions. Probability in Banach spaces V. Lect. Notes Math. 1153, 400–425., 1985.
- Y. Wang and S.A. Stoev. On the structure and representations of max-stable processes. Advances in Applied Probability, 42(3):855–877, 2010.

Shift-invariant ∪-id random sets

A random set A is \cup -id if for all $n \in \mathbb{N}$

$$A\stackrel{d}{=} A_{1,n}\cup\cdots\cup A_{n,n},$$

for some iid $A_{i,n}$, $i = 1, \dots, n$. **Note:** $X_t := \mathbb{I}_A(t)$ is a max-id process.

Theorem

If A is a shift-invariant \cup -id random set in \mathbb{R}^d that is continuous in probability. Then exists a σ -finite Borel space (E, μ) with a PPP Π_{μ} and a measure-preserving action $\varphi_t : E \to E$, such that

$$A \stackrel{d}{=} \{t \in R^d : \Pi_\mu \cap \varphi_t(A_0) \neq \emptyset\},$$

for some non-random A_0 with $\mu(A_0) < \infty$.