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Representations

Max-id processes

Definition
{Xt,t € T} is max-id if for all n,

(X, te T} 2 { max X" te T},

i=1,---,n

for some iid {X"". te T}, i=1,---

@ Ch. 5, Resnick (1987): Max-id laws in R” have the form:
F(x) = exp{—p(—00,x]}, x € R",

for some o—finite measure p on R" — Balkema and Resnick [1977],
Gerritse [1986] and Vatan [1985].

@ Balkema et al. [1993]: spectral representations for max-id processes.
Note: WLOG we will suppose
essinf(X;) =0, forallte T.



Representations
The Poisson calculus for max-id processes

o Let (E,&, ) be a o—finite measure space.
e Let N, = {U;, i € N} be a Poisson random measure on
(E, &) with intensity p.

Definition

LY(E,&, u) is the set of non-negative measurable functions
f: E — R4, such that

p{f > a} < oo, forall a>0.

Define

v
Iv(f)E/E fdl, = US:I'FI) f(U).
"

Note: For f € LY(E, 11), we have essinf(/¥(f)) = 0 and
P(IV(f) < x) = P(MN,N{f >x}) =0) = e #F>X (x> 0).



Representations

Spectral representations

For f, € LV(E,u), t € T it is easy to see that X; := f;/ fedM,, te Tis
a max-id process with fidi

P{Xy, <x;, i=1,-- ,k}:exp{ fu(Uf-‘zl {fs, >x,-})}, (x; > 0)

Conversely:

Definition

{X;, t € T} satisfies Condition S, if extists a countable To C T, s.t.

Vt, X; = plimX;,, for some t, € Tp.

Theorem (Balkema et al. [1993] & Kabluchko and S. [2012])

If{X;, t € T} is max-id satisfies Condition S and essinf(X;) = 0, then
there exist {f;, t € T} C LY(R,Leb)

(X, te TYL{IY(F), te T}

Note: {f;, t € T} above is called a spectral representation of X.



Representations
Examples

@ (mixed moving maxima)

Xi = \/ F,'(t — U,'), t € R2.

where the PPP M, = {(U;, Fi(-))} has intensity

wu(du, dF) = duP(dF), where P is the law of a random field

F = [F(8)}heenn.

Think of U; as storm locations and F;(-) as storm profiles.
o (Penrose type processes) & = {{(t)}+er process with

stationary increments. Then,

Xe :=min |U; + &(t)|, te€R,
1

is stationary min-id, where (U;,&i(+)) is a PPP with intensity
dudP.

@ See Kabluchko and S. [2012] for more examples: max-stable
processes, Poisson lines, U-id random sets.
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Minimality and uniqueness

A “new” minimality concept

Definition

The spec rep {fi}teT C LY(E, E, 1) of X is minimal if:

(i) o{fe,t € T} =€ (mod 1)

(i) supp{f;, t € T} = E (mod p) i.e. there is no A € & with
wu(A) > 0s.t. fy =0 on A.

A\

Theorem (Kabluchko and S. [2012])

Under Condition S the max-id process X has a minimal spec rep
on the space LY (R, Bg, 1), for some o-finite Borel measure p.

Notes:

@ The proof is not innovative — book-keeping -+ use of prior
results of Balkema et al. [1993], Vatan [1985], and
Kuratowski's Thm.

@ The definition is the “right one” because of the following
uniqueness result.



Minimality and uniqueness

Uniqueness

Theorem (Kabluchko and S. [2012])

If {fi}reT C LY(E,E, ) and {gt}eeT C LY(F,F,v) are two minimal
reps of X, then exists a measure space isomorphism ® : (E, u) — (F,v),
s.t.

Vt, fp =g o P, mod p.

Moreover, ® is mod u unique.

Notes:

@ Similar results are well-known in the stable and max—stable cases
under a somewhat different minimality concept. They imply
important structural results through connections with non-singular
flows and ergodic theory: Hardin Jr. [1982], Rosirski [1995],
Samorodnitsky [2005], Roy and Samorodnitsky [2008], Roy [2010],
de Haan and Pickands 111 [1986], Kabluchko [2009], Wang and
Stoev [2010].

@ How to use this uniqueness result?



Minimality and uniqueness

Stationry max-id processes and measure-preserving flows

If X is stationary,
{ft}teR and {gt}tER = {ft—T}teR7

are both minimal spec reps and then, for any 7 € R:
grob,=f_rodb, =1 (mod )
Uniqueness yields the flow property:
Prys = Prods (mod p)

and using “standard” techniques (Mackey [1962]) one can get a
measurable version of the flow {¢¢}+cr, defined everywhere.
Notes:

© Now ¢; : E — E is measure-preserving! Not just
non-singular...
@ Hence the spec rep has the flow representation:

fo="food: (mod p)



Minimality and uniqueness

The precise statement

Theorem (Kabluchko and S. [2012])

Let X ={X;, te Rd} be continuous in probability, stationary
max-id random field. Then

x < {/‘Evﬁ)o¢tdn“}teRd’

where fy € LY(E,E, 1) and {¢p+}cre is @ measurable, measure
preserving action on a o-finite Borel space (E, &, ).

Notes:
@ Recall that for convenience, we are assuming throughout:

essinf(X;) =0, te R

The result trivially extends to other max-id processes.
@ The spec rep {fy © ¢+};crs may me chosen to be minimal.
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Maharam and the stable case

Max-stable case

Let E = (0,00) x F and M, = {(¢;, V;)}ien be a PPP with intensity
p(dx, dv) = dxv(dv). Define fi(x,v) :=x"tg(v),

where gi € L} (F,v). Then

V:
Xt::/ftdl_lﬂz\/gt( ) orert
. :

. €j
ieN

is a max-stable process.
Notes:

@ X is well-defined because g; € L1 (v) implies f, € LY(E, p).
Indeed, for all a >0

u{fy > a} = /F/OOO I(g:(v) > ax)dxv(dv) = a! /th(v)y(dv) < 0.

@ Max-stability follows from thinning.



Maharam and the stable case

Max-stable case (cont'd)

More precisely, the fidi of X are:

P(Xt, < x;, - k) = exp{—pu(Ui{f, > x;}}

i=1,-
= exp / / _max ]I (gt.(v) > X,'X}dX)I/(dV)}
(- )

7r{1 X gt,/x, dz/}



Maharam and the stable case

Non-singular flows in the max-stable case

Recall

For a stationary max-stable 1-Fréchet process, we have

x4 {/FV (go o @t(v)d”doy“”f(v))/wl(dv)}

teR

where My is 1-Fréchet sup-measure on (F,F) with control measure v,
go € LY (v) and {¢:} is a non-singular flow on F.

Notes:

@ The flow ¢; : F — F is non-singular if v o ¢; ~ v and hence the
above Radon-Nikodym derivative dv o :/dr makes sense.

@ Question: X is max-id, so what is its measure-preserving flow
representation in terms of a PPP?!



Maharam and the stable case

From max-stable to max-id

o Let gr € L1 (F,v) and M; be a 1-Fréchet sup-measure.

@ Define the max-stable process
\%
X :/ gt(v)My(dv), te T.
F

@ What is the PPP spec rep of X = {X;}+cT as a max-id process?



Maharam and the stable case

From max-stable to max-id

o Let gr € L1 (F,v) and M; be a 1-Fréchet sup-measure.

@ Define the max-stable process
\%
X :/ gt(v)My(dv), te T.
F

@ What is the PPP spec rep of X = {X;}+cT as a max-id process?

Let £ :=(0,00) x F and M, = {(€j, Vi) }ien be a PPP with intensity
wu(dx, dv) = dxv(dv)

@ Note that M;(B) :=\/,¢; 'Ig(V;) is an independently scattered
1—Fréchet sup-measure.
@ Thus,
v v
/ x"tge(V)N,(dx, dv) = / g(v)My(dv).
(0,00)x F F

@ This gives the natural max-id spec rep of a max-stable process.



Maharam and the stable case

Dorothy Maharam's construction

If o; - F — F is a non-singular flow
on (F,v), then

dv o p;

on(x,v) = (F ) e(v)

is a measure-preserving flow on

((0,00) x F,dxv(dv)).




Maharam and the stable case

Dorothy Maharam's construction

If o; - F — F is a non-singular flow
on (F,v), then

dv o p;

01, v) = (T () (V)

is a measure-preserving flow on

((0,00) x F,dxv(dv)).
Now, as above, define f;(x, v) := x"1g;(v) and note that

dvo
lx,v) = o0 du(x,v) = xS E (Vg o pu(v)

Since \/; ¢; (Vi) = My(B), recall that

/(v xilgt(V)l_lu(dx, dv) = /v g:(v)My(dv),

0,00)x F F

The max-id spec rep is generated by a measure-preserving flow!



Maharam and the stable case

Old and new minimality

Let X = {X;}tcT be max-stable with spec rep

(Xeheer 2 / g (VM) }eer. (g € LL(F. ).

Recall that {g;}:c7 is minimal if:
© (ratio o-alg) p{gt, t € T} :=0{g:/gs, t,s€ T} ~F (mod v).
@ (full support) supp{g:, t € T} = F (mod v).
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What is the connection b/w new and old minimality?



Maharam and the stable case

Old and new minimality

Let X = {X;}tcT be max-stable with spec rep

v
Xheer £ [ aM(dn)}eer, (g € LL(F 7).
F
Recall that {g;}:c7 is minimal if:
© (ratio o-alg) p{gt, t € T} :=0{g:/gs, t,s€ T} ~F (mod v).
@ (full support) supp{g:, t € T} = F (mod v).

What is the connection b/w new and old minimality?
Lemma (“ Old" = * New")

If {gt}teT C LL(F,v) is minimal then {f;}¢scT C LY(E, p) is minimal.

Notes:

@ "Old" = “New" is great news! Because all “old" resuts on
max-stable proc can be reproduced with the “new"” tools.

@ Proof is a nice exercise.

© Open problem: | don't know if “New” = “Old".
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You may wonder...

What about the sum infinitely divisible case?



Final comments

You may wonder...

What about the sum infinitely divisible case?

@ Define the class L7(E,p) > f: [ 1A|fPdp < oc.
@ Let M, ={U;, i € N} be a PPP on (E, ;1) and define

() = plim, o 3 AVIIFW)] > o) - / (e < |f] < 1)dn).

ven E

Theorem (Kabluchko and S. [2012])

Under Condition S, any sum-id process X has a minimal spec rep

{Xitter < {I+(ft) + Ct}eeTs

for some constants c;, over a Borel o-finite (E, ).

Notes: In close paralel with the max-id case:
@ minimal spec reps are unique.

@ stationary processes corresond to measure-preserving flows.



Final comments

Main messages and contributions

@ Provide PPP-based stochastic integal representations for both
sum and max-id processes.

@ Unifing and simple notion of a minimal spec rep was
developed.

@ Stationary sum and max-id processes can be associated with
measure-preserving flows.

@ Tools for classification and ergodic theory decompositions!

o Clarified/cleaned-up a bit the theory on spec rep's of
continuous-time sum-id processes.
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Appendix

Shift-invariant U-id random sets

A random set A is U-id if for all n € N
d
A:Al,nU"'UAn,na

for some iid A; ,, i =1,---,n.
Note: X; :=I4(t) is a max-id process.

Theorem

If A is a shift-invariant U-id random set in RY that is continuous in
probability. Then exists a o-finite Borel space (E, ) with a PPP
M, and a measure-preserving action ¢, : E — E, such that

AL {te R M,Ne(Ad) # 0},

for some non-random Ay with p(Ag) < 0.
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