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Spectral Representations
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Max-id processes

Definition

{Xt , t ∈ T} is max-id if for all n,

{Xt , t ∈ T} d
=
{

max
i=1,··· ,n

X
(i,n)
t , t ∈ T

}
,

for some iid {X (i,n)
t , t ∈ T}, i = 1, · · · , n.

Ch. 5, Resnick (1987): Max-id laws in Rn have the form:

F (x) = exp{−µ(−∞, x ]c}, x ∈ Rn,

for some σ−finite measure µ on Rn – Balkema and Resnick [1977],
Gerritse [1986] and Vatan [1985].

Balkema et al. [1993]: spectral representations for max-id processes.

Note: WLOG we will suppose

essinf(Xt) = 0, for all t ∈ T .
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The Poisson calculus for max-id processes

Let (E , E , µ) be a σ−finite measure space.

Let Πµ = {Ui , i ∈ N} be a Poisson random measure on
(E , E) with intensity µ.

Definition

L∨(E , E , µ) is the set of non-negative measurable functions
f : E → R+, such that

µ{f > a} <∞, for all a > 0.

Define

I∨(f ) ≡
∫ ∨
E

fdΠµ := sup
U∈Πµ

f (U).

Note: For f ∈ L∨(E , µ), we have essinf(I∨(f )) = 0 and

P(I∨(f ) ≤ x) = P(Πµ ∩ {f > x}) = ∅) = e−µ{f>x}, (x > 0).
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Spectral representations

For ft ∈ L∨(E , µ), t ∈ T it is easy to see that Xt :=
∫ ∨
E

ftdΠµ, t ∈ T is
a max-id process with fidi

P{Xti ≤ xi , i = 1, · · · , k} = exp
{
− µ

(
∪ki=1 {fti > xi}

)}
, (xi ≥ 0)

Conversely:

Definition

{Xt , t ∈ T} satisfies Condition S, if extists a countable T0 ⊂ T , s.t.

∀t, Xt = plimXtn , for some tn ∈ T0.

Theorem (Balkema et al. [1993] & Kabluchko and S. [2012])

If {Xt , t ∈ T} is max-id satisfies Condition S and essinf(Xt) = 0, then
there exist {ft , t ∈ T} ⊂ L∨(R,Leb)

{Xt , t ∈ T} d
= {I∨(ft), t ∈ T}.

Note: {ft , t ∈ T} above is called a spectral representation of X .



Representations Minimality and uniqueness Maharam and the stable case Examples Final comments References Appendix

Examples

(mixed moving maxima)

Xt =
∨
i

Fi (t − Ui ), t ∈ R2.

where the PPP Πµ = {(Ui ,Fi (·))} has intensity
µ(du, dF ) = duP(dF ), where P is the law of a random field
F = {F (t)}t∈R2 .
Think of Ui as storm locations and Fi (·) as storm profiles.

(Penrose type processes) ξ = {ξ(t)}t∈R process with
stationary increments. Then,

Xt := min
i
|Ui + ξi (t)|, t ∈ R,

is stationary min-id, where (Ui , ξi (·)) is a PPP with intensity
dudPξ.

See Kabluchko and S. [2012] for more examples: max-stable
processes, Poisson lines, ∪-id random sets.
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Pictures of max-id random fields
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Minimality
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A “new” minimality concept

Definition

The spec rep {ft}t∈T ⊂ L∨(E , E , µ) of X is minimal if:
(i) σ{ft , t ∈ T} = E (mod µ)
(ii) supp{ft , t ∈ T} = E (mod µ) i.e. there is no A ∈ E with
µ(A) > 0 s.t. ft = 0 on A.

Theorem (Kabluchko and S. [2012])

Under Condition S the max-id process X has a minimal spec rep
on the space L∨(R,BR, µ), for some σ-finite Borel measure µ.

Notes:
1 The proof is not innovative – book-keeping + use of prior

results of Balkema et al. [1993], Vatan [1985], and
Kuratowski’s Thm.

2 The definition is the “right one” because of the following
uniqueness result.
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Uniqueness

Theorem (Kabluchko and S. [2012])

If {ft}t∈T ⊂ L∨(E , E , µ) and {gt}t∈T ⊂ L∨(F ,F , ν) are two minimal
reps of X , then exists a measure space isomorphism Φ : (E , µ)→ (F , ν),
s.t.

∀t, ft = gt ◦ Φ, mod µ.

Moreover, Φ is mod µ unique.

Notes:

1 Similar results are well-known in the stable and max–stable cases
under a somewhat different minimality concept. They imply
important structural results through connections with non-singular
flows and ergodic theory: Hardin Jr. [1982], Rosiński [1995],
Samorodnitsky [2005], Roy and Samorodnitsky [2008], Roy [2010],
de Haan and Pickands III [1986], Kabluchko [2009], Wang and
Stoev [2010].

2 How to use this uniqueness result?
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Stationry max-id processes and measure-preserving flows

If X is stationary,

{ft}t∈R and {gt}t∈R := {ft−τ}t∈R,

are both minimal spec reps and then, for any τ ∈ R:

gt ◦ Φτ ≡ ft−τ ◦ Φτ = ft (mod µ)

Uniqueness yields the flow property:

Φt+s = Φt ◦ Φs (mod µ)

and using “standard” techniques (Mackey [1962]) one can get a
measurable version of the flow {φt}t∈R, defined everywhere.
Notes:

1 Now φt : E → E is measure-preserving! Not just
non-singular...

2 Hence the spec rep has the flow representation:

ft = f0 ◦ φt ( mod µ)
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The precise statement

Theorem (Kabluchko and S. [2012])

Let X = {Xt , t ∈ Rd} be continuous in probability, stationary
max-id random field. Then

X
d
=
{∫ ∨

E
f0 ◦ φtdΠµ

}
t∈Rd

,

where f0 ∈ L∨(E , E , µ) and {φt}t∈Rd is a measurable, measure
preserving action on a σ-finite Borel space (E , E , µ).

Notes:
1 Recall that for convenience, we are assuming throughout:

essinf(Xt) = 0, t ∈ Rd .

The result trivially extends to other max-id processes.
2 The spec rep {f0 ◦ φt}t∈Rd may me chosen to be minimal.
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Max-stable case
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Max-stable case

Let E = (0,∞)× F and Πµ = {(εi ,Vi )}i∈N be a PPP with intensity

µ(dx , dv) = dxν(dv). Define ft(x , v) := x−1gt(v),

where gt ∈ L1
+(F , ν). Then

Xt :=

∫
E

ftdΠµ ≡
∨
i∈N

gt(Vi )

εi
, t ∈ T

is a max-stable process.
Notes:

1 Xt is well-defined because gt ∈ L1
+(ν) implies ft ∈ L∨(E , µ).

Indeed, for all a > 0

µ{ft > a} =

∫
F

∫ ∞
0

I(gt(v) > ax)dxν(dv) = a−1

∫
F

gt(v)ν(dv) <∞.

2 Max-stability follows from thinning.
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Max-stable case (cont’d)

More precisely, the fidi of X are:

P(Xti ≤ xi , i = 1, · · · , k) = exp{−µ(∪i{fti > xi}}

= exp
{
−
∫
F

(∫ ∞
0

max
i=1,··· ,k

I(gti (v) > xix}dx
)
ν(dv)

}
= exp

{
−
∫
F

( max
i=1,··· ,k

gti/xi )dν
}
.



Representations Minimality and uniqueness Maharam and the stable case Examples Final comments References Appendix

Non-singular flows in the max-stable case

Recall

Fact

For a stationary max-stable 1-Fréchet process, we have

X
d
=
{∫ ∨

F

(
g0 ◦ ϕt(v)

dν ◦ ϕt

dν
(v)
)

M1(dv)
}
t∈R

where M1 is 1-Fréchet sup-measure on (F ,F) with control measure ν,
g0 ∈ L1

+(ν) and {ϕt} is a non-singular flow on F .

Notes:

1 The flow ϕt : F → F is non-singular if ν ◦ ϕt ∼ ν and hence the
above Radon-Nikodym derivative dν ◦ ϕt/dν makes sense.

2 Question: X is max-id, so what is its measure-preserving flow
representation in terms of a PPP?!
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From max-stable to max-id

Let gt ∈ L1
+(F , ν) and M1 be a 1-Fréchet sup-measure.

Define the max-stable process

Xt =

∫ ∨
F

gt(v)M1(dv), t ∈ T .

What is the PPP spec rep of X = {Xt}t∈T as a max-id process?

Let E := (0,∞)× F and Πµ = {(εi ,Vi )}i∈N be a PPP with intensity
µ(dx , dv) = dxν(dv)

Note that M1(B) :=
∨

i ε
−1
i IB(Vi ) is an independently scattered

1−Fréchet sup-measure.

Thus, ∫ ∨
(0,∞)×F

x−1gt(v)Πµ(dx , dv) =

∫ ∨
F

gt(v)M1(dv).

This gives the natural max-id spec rep of a max-stable process.
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Dorothy Maharam’s construction

If ϕt : F → F is a non-singular flow
on (F , ν), then

φt(x , v) :=
(dν ◦ ϕt

dν
(v)−1x , ϕt(v)

)
is a measure-preserving flow on

((0,∞)× F , dxν(dv)).

Now, as above, define ft(x , v) := x−1gt(v) and note that

ft(x , v) = f0 ◦ φt(x , v) = x−1 dν ◦ ϕt

dν
(v)gt ◦ ϕt(v)

Since
∨

i ε
−1
i IB(Vi ) = M1(B), recall that∫ ∨

(0,∞)×F
x−1gt(v)Πµ(dx , dv) =

∫ ∨
F

gt(v)M1(dv),

The max-id spec rep is generated by a measure-preserving flow!
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Old and new minimality

Let X = {Xt}t∈T be max-stable with spec rep

{Xt}t∈T
d
= {
∫ ∨
F

gt(v)M1(dv)}t∈T , (gt ∈ L1
+(F ,Fν)).

Recall that {gt}t∈T is minimal if:

1 (ratio σ-alg) ρ{gt , t ∈ T} := σ{gt/gs , t, s ∈ T} ∼ F (mod ν).

2 (full support) supp{gt , t ∈ T} = F (mod ν).

What is the connection b/w new and old minimality?

Lemma (“ Old” ⇒ “ New”)

If {gt}t∈T ⊂ L1
+(F , ν) is minimal then {ft}t∈T ⊂ L∨(E , µ) is minimal.

Notes:

1 “Old” ⇒ “New” is great news! Because all “old” resuts on
max-stable proc can be reproduced with the “new” tools.

2 Proof is a nice exercise.

3 Open problem: I don’t know if “New” ⇒ “Old”.
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You may wonder...

What about the sum infinitely divisible case?

Define the class L+(E , µ) 3 f :
∫
E

1 ∧ |f |2dµ <∞.
Let Πµ = {Ui , i ∈ N} be a PPP on (E , µ) and define

I +(f ) := plimε↓0

(∑
U∈Π

f (U)I(|f (U)| > ε)−
∫
E

f I(ε < |f | ≤ 1)dµ
)
.

Theorem (Kabluchko and S. [2012])

Under Condition S, any sum-id process X has a minimal spec rep

{Xt}t∈T
d
= {I +(ft) + ct}t∈T ,

for some constants ct , over a Borel σ-finite (E , µ).

Notes: In close paralel with the max-id case:

minimal spec reps are unique.

stationary processes corresond to measure-preserving flows.
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Main messages and contributions

Provide PPP-based stochastic integal representations for both
sum and max-id processes.

Unifing and simple notion of a minimal spec rep was
developed.

Stationary sum and max-id processes can be associated with
measure-preserving flows.

Tools for classification and ergodic theory decompositions!

Clarified/cleaned-up a bit the theory on spec rep’s of
continuous-time sum-id processes.
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Shift-invariant ∪-id random sets

A random set A is ∪-id if for all n ∈ N

A
d
= A1,n ∪ · · · ∪ An,n,

for some iid Ai ,n, i = 1, · · · , n.
Note: Xt := IA(t) is a max-id process.

Theorem

If A is a shift-invariant ∪-id random set in Rd that is continuous in
probability. Then exists a σ-finite Borel space (E , µ) with a PPP
Πµ and a measure-preserving action ϕt : E → E , such that

A
d
= {t ∈ Rd : Πµ ∩ ϕt(A0) 6= ∅},

for some non-random A0 with µ(A0) <∞.
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