
AN INTRODUCTION TO PARABOLIC SPDES

LECTURES IN PROBABILITY & STOCHASTIC PROCESSES XI
INDIAN STATISTICAL INSTITUTE, DELHI CENTER

NEW DELHI, INDIA
NOVEMBER 25–29, 2016

D. KHOSHNEVISAN
DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF UTAH

SALT LAKE CITY, UT 84112–0090, UNITED STATES
URL – HTTP://WWW.MATH.UTAH.EDU/~DAVAR

EMAIL – DAVAR@MATH.UTAH.EDU

Abstract. This is a synopsis of my lectures notes on stochastic partial differential equa-
tions for the lecture series, “Lectures in Probability & Stochastic Processes, XI,” held at
ISI-Delhi from November 25–29, 2016. The main topics are: Existence and regularity of
solutions; asymptotic analysis; the strong Markov property; and topics on comparison and
positivity principles.

I would like to thank ISI–Delhi, the United States’ National Science Foundation, and the
University of Utah for their financial and logistic support. My deepest thanks are due to Pro-
fessors Arijit Chakrabarty (ISI–Delhi), Manjunath Krishnapur (IISc–Bangalore), Parthanil
Roy (ISI–Kolkata), and Rajat Subhra Hazra (ISI–Kolkata) for their kind invitation, and for
their organizing this lecture series.

Research supported by the grant DMS-1307470 from the US National Science Foundation.
1



2

Contents

1. Remarks on the heat equation 3
2. Remarks on white noise 4
2.1. Warmup: White noise on [0 , 1] via Brownian motion 4
2.2. Space-time white noise via Brownian sheet 5
3. The Walsh integral 6
4. A stochastic heat equation on [0 ,1] 7
4.1. Existence and uniqueness 8
4.2. Higher moments 11
4.3. Regularity 11
5. Asymptotic analysis in the linear case 15
5.1. Large-time asymptotics 15
5.2. Small-time asymptotics 17
5.3. Small-time asymptotics in the non-linear setting 18
5.4. Comments on large-time asymptotics in the nonlinear setting 20
6. Random initial data 20
7. The strong Markov property 22
8. A comparison principle 23
8.1. An approximate SPDE 24
8.2. An approximate comparison principle 25
8.3. Putting it all together 26
9. Mueller’s positivity principle 27
9.1. Nonnegative solutions 27
9.2. Positive solutions 27
10. Deviation from linear growth 29
10.1. Proof of existence and uniqueness 30
10.2. Proof of Theorem 10.1 31
11. Stability 32
References 34



D. KHOSHNEVISAN: LPS XI COURSE ON SPDES 3

1. Remarks on the heat equation

Consider the solution u = u(t , x) to the following boundary-value problem: u̇ = u′′ on (0 ,∞)× [0 , 1], subject to

I.C.: u(0) = u0 on [0 , 1], and

B.C.: u(t , 0) = u(t , 1) = 0 ∀t > 0,

(1.1)

where u0 ∈ L2[0 , 1] is fixed.
We can solve (1.1) by using Fourier series as follows: First let

ψn(x) =
√

2 sin(nπx) ∀x ∈ [0 , 1], n > 1.

Then, write any L2[0 , 1]-solution u to (1.1) in Fourier sine series as

u(t , x) =
∞∑
n=1

un(t)ψn(x) where un(t) = (u(t) , ψn) :=

∫ 1

0

u(t , x)ψn(x) dx.

Now,

u̇n(t) = (u̇(t) , ψn) = (u′′(t) , ψn)

= (u(t) , ψ′′n) (integration by parts)

= −n2π2 (u(t) , ψn) = −n2π2un(t).

This is an ODE for un(t). Solve it in order to see that

un(t) = un(0)e−n
2π2t = (u0 , ψn)e−n

2π2t.

Therefore, in particular,

u(t , x) =
∞∑
n=1

(u0 , ψn)e−n
2π2tψn(x) in L2[0 , 1]. (1.2)

It is easy to rigorize this procedure in order to deduce

Theorem 1.1. If u0 ∈ L2[0 , 1], then (1.2) is the unique solution to (1.1) in L2[0 , 1].

Theorem 1.1 has a well-known connection to probability that deserves special mention.
Define for all t > 0 and x, y ∈ [0 , 1],

pt(x , y) :=
∞∑
n=1

ψn(x)ψn(y)e−n
2π2t (the “heat kernel”). (1.3)

For every fixed x ∈ [0 , 1], the function u(t , y) := pt(x , y) weakly solves (1.1) with u0 = δx.
Therefore, pt(x , y) > 0 ∀t > 0, (x , y) ∈ [0 , 1]2, by the maximum principle. (Consult, for
example, Evans [18].)

For all ϕ ∈ L2[0 , 1] define

(Ptϕ)(x) :=

∫ 1

0

pt(x , y)ϕ(y) dy ∀t > 0 and x, y ∈ [0 , 1], and P0ϕ := ϕ.

It is easy to see that

(Ptϕ)(x) =
∞∑
n=1

ψn(x)(ϕ , ψn)e−n
2π2t.
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Thanks to (1.2), u(t , x) := (Ptu0)(x) is the unique solution to (1.1). Moreover, {Pt}t>0 is a
semigroup; that is, Pt+s = PtPs for all s, t > 0. In fact, {Pt}t>0 is the semigroup associated
to Brownian motion killed upon leaving [0 , 1]. Here is a way to state this last assertion a
little more carefully: Let B denote a 1-dimensional Brownian motion and

τ := inf{t > 0 : B2t = 0 or 1}.
Then, it can be shown that

(Ptϕ)(x) = Ex [ϕ(B2t); τ > t] . (1.4)

See Bass’s book [3] on one-dimensional diffusions, for example. By letting ϕ approximate δy
we obtain the following:

Theorem 1.2. The mapping (t , x , y) 7→ pt(x , y) is the transition function for a Brownian
motion B – run at twice the standard speed – to go from x to y in t time units before B
leaves [0 , 1].

2. Remarks on white noise

2.1. Warmup: White noise on [0 , 1] via Brownian motion. Let {Xi}∞i=1 be i.i.d.
N(0 , 1) random variables, and define for all ϕ ∈ L2[0 , 1] and N > 1,

B′N(ϕ) :=
N∑
n=1

Xn(ϕ , ψn).

Then, B′N is a mean-zero Gaussian random field (GRF), indexed by L2[0 , 1], and

Cov[B′N(f) , B′N(g)] =
N∑
n=1

(f , ψn)(g , ψn)
(N→∞)−−−−→ (f , g) ∀f, g ∈ L2[0 , 1].

It follows easily from this that:

• B′(ϕ) := limN→∞B
′
N(ϕ) exists in L2(Ω) for every ϕ ∈ L2[0 , 1];

• ϕ 7→ B′(ϕ) is a linear mapping from L2[0 , 1] to L2(Ω);
• B′ is a mean-zero GRF with Cov[B′(f) , B′(g)] = (f , g); and as such
• B′ : L2[0 , 1] 7→ L2(Ω) is a linear isometry [the “isonormal process”].
• Let ξ(A) := B′(1A) for all Borel sets A ⊂ [0 , 1] to see that ξ is an L2(Ω)-valued

measure [“white noise”]. We may, and often do, identify ξ with B′ in this way.

Some notations:

• B′(ϕ) := the “Wiener integral of ϕ.”

• B′(ϕ) :=
∫ 1

0
B′(x)ϕ(x) dx :=

∫ 1

0
ϕ dW :=

∫ 1

0
ϕ dξ :=

∫ 1

0
ϕ(x) ξ(dx).

•
∫
A
ϕ dB :=

∫
A
ϕ(x)B(dx) :=

∫
A
ϕ(x) ξ(dx) :=

∫
A
ϕ dξ := B′(ϕ1A).

• If B′(x) made sense as a real-valued stochastic process, then it would have to be
B′(δx). This is purely formal since δx 6∈ L2[0 , 1]. In any case, formally speaking,
B′(x) =

∑∞
n=1Xnψn(x), though the series does not converge pointwise in L2(Ω).

• Since Cov[B′(f) , B′(g)] = (f , g), we formally replace f by δx and g by δy to obtain
the formal statement that {B′(x)}x∈[0,1] defines a mean-zero Gaussian process with

Cov[B′(x) , B′(y)] = δ0(x− y).

Since ξ(A) =
∫
A
B′(x) dx, we formally identify measures with their Radon–Nykodym

densities and say that {B′(x)}x∈[0,1] is “white noise on [0 , 1],” as well.
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Define B to be the “cdf” of B′. That is, let

B(x) :=

∫ x

0

B′(y) dy = B′(1[0,x]) ∀x ∈ [0 , 1]. (2.1)

In terms of the ψn’s,

B(x) =
∞∑
n=1

Xn(1[0,x] , ψn) =
∞∑
n=1

Xn

∫ x

0

ψn(y) dy, (2.2)

where {Xn}∞n=1 are i.i.d. N(0 , 1)s (Wiener’s construction). It is easy to see from this that B
is a mean-zero Gaussian process with

Cov[B(x) , B(y)] = (1[0,x] ,1[0,y]) = x ∧ y.

That is, B = Brownian motion. It follows from (2.1) that

B′(x) =
d

dx
B(x) in the sense of distributions.

A little more precisely put, for all ϕ ∈ C1
0 [0 , 1],∫ 1

0

ϕ′(x)B(x) dx =

∫ 1

0

ϕ′(x)B′(1[0,x]) dx = B′
(∫ 1

0

ϕ′(x)1[0,x](·) dx

)
= B′ (−ϕ(·)) = −B′(ϕ) = −

∫ 1

0

B′(x)ϕ(x) dx,

thanks to the linearity of the linear operator B′.

Remark 2.1. Though B(x+ ε)−B(x) scales pointwise as
√
ε, it scales weakly as ε: ∀ϕ ∈

C1
0 [0 , 1], ∫ 1

0

ϕ(x)
B(x+ ε)−B(x)

ε
dx = −

∫ 1

0

ϕ(x)− ϕ(x− ε)
ε

B(x) dx

(ε→0)−−−→ −
∫ 1

0

ϕ′(x)B(x) dx = B′(ϕ) a.s.,

where we have extended every function f on [0 , 1] to a function on R by defining f to be
zero outside [0 , 1].

2.2. Space-time white noise via Brownian sheet. Recall from the previous section that
if X1, X2, . . . are i.i.d. N(0 , 1)s, then the Gaussian process B(x) =

∑∞
n=1 Xn

∫ x
0
ψn(y) dy is

a Brownian motion. If we now replace the i.i.d. N(0 , 1)s by i.i.d. Brownian motions, all
now indexed by R+ instead of [0 , 1], then we obtain a “Brownian sheet.” More precisely,
let B1, B2, . . . denote i.i.d. Brownian motions, each indexed by R+, and define the following
infinite-dimensional version of (2.2):

W (t , x) :=
∞∑
n=1

Bn(t)

∫ x

0

ψn(y) dy ∀t > 0, x ∈ [0 , 1].

Elementary computations show that W is a [continuous] mean-zero Gaussian process with

Cov[W (t , x) ,W (s , y)] = (s ∧ t)(x ∧ y).
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Space-time “white noise” Ẇ can now be defined as follows, in analogy with white noise on
[0 , 1]:

Ẇ (t , x) :=
∂2

∂t ∂x
W (t , x) in the sense of distributions.

It might have been more clear to write Ẇ ′ for this mixed weak derivative, but we are simply
following the current standards and notations of the subject.

Formally, Ẇ is a mean-zero Gaussian random field with

Cov[Ẇ (t , x) , Ẇ (s , y)] = δ0(t− s)δ0(x− y).

Corresponding to white noise, we also have the formally-defined space-time Wiener integral,

Ẇ (ϕ) :=

∫
ϕ dW :=

∫
R+×[0,1]

ϕ(t , x)Ẇ (t , x) dt dx :=
∞∑
n=1

∫ ∞
0

dt

∫ 1

0

dx ϕ(t , x)ψn(x)B′n(t),

whose precise meaning is

Ẇ (ϕ) :=
∞∑
n=1

∫ ∞
0

(ϕ(t) , ψn)Bn(dt) ∀ϕ ∈ L2(R+ × [0 , 1]). (2.3)

Each integral inside the sum is a Wiener integral, as was defined in the last section, and the
sum converges in L2(Ω), as is not hard to verify directly. It is easy to verify the following
computation:

Cov[Ẇ (f) , Ẇ (g)] =

∫ ∞
0

dt

∫ 1

0

dx f(t , x)g(t , x) := (f , g) ∀f, g ∈ L2(R+ × [0 , 1]).

Thus, it follows that the space-time white noise Ẇ can be viewed as a linear isometry from
L2(R+ × [0 , 1]) to L2(Ω).

3. The Walsh integral

If B is Brownian motion and ϕ ∈ L2(R+) is non random, then the Wiener integral
∫∞

0
ϕ dB

is basically defined as it was earlier for Brownian motion on [0 , 1]; I will leave the requisite
adjustments to you. Recall that Itô introduced a generalization of the Wiener integral—this
is nowadays called the Itô integral—which included many random functions ϕ. The “Walsh
integral” is the natural extension of Itô’s integral against white noise/Brownian motion to a
stochastic integral against space-time white noise/Brownian sheet. Next is an outline of the
construction, and the first properties, of the Walsh integral.

Let Φ = Φ(t , x) be a “predictable random field.” That is:

(1) Φ(t) ∈ L2[0 , 1] for [almost] every t > 0;
(2) E

∑∞
n=1

∫∞
0

(Φ(t) , ψn)2 dt <∞; and
(3) t 7→ (Φ(t) , ψn) is predictable with respect to the filtration generated by the infinite-

dimensional Brownian motion (B1 , B2 , . . .).

For such a random field Φ, we may define the “Walsh integral,”

Ẇ (Φ) :=
∞∑
n=1

∫ ∞
0

(Φ(t) , ψn)Bn(dt),
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where every integral is an ordinary Itô integral. We might also use alternative notation such
as

Ẇ (Φ) :=

∫
R+×[0,1]

Φ dW :=

∫
R+×[0,1]

Φ(t , x)Ẇ (t , x) dt dx,

and analogous notation for definite Walsh integrals: For all Borel sets T ⊂ R+ and S ⊂ [0 , 1],∫
T×S

Φ(t , x)Ẇ (t , x) dt dx :=

∫
T×S

Φ dW := Ẇ (Φ1T×S),

etc. Now that things are set up correctly, one can readily deduce the following from well-
known properties of the Itô integral.

Theorem 3.1 (Pardoux, Krylov–Rozovsǩıi, Walsh, . . . ). For every predictable space-time
random field Φ,

Mt :=

∫
[0,t]×[0,1]

Φ(s , y) Ẇ (s , y) ds dy (t > 0)

defines a centered, continuous L2(Ω)-martingale with quadratic variation,

〈M〉t =

∫ t

0

ds

∫ 1

0

dy |Φ(s , y)|2 :=

∫ t

0

‖Φ(s)‖2
L2[0,1] ds ∀t > 0.

4. A stochastic heat equation on [0 ,1]

Let b, σ : R→ R be Lipschitz-continuous, non-random functions, and let Ẇ denote space-
time white noise, as before. We now wish to consider the random solution u = u(t , x) to the
following “stochastic heat equation”: u̇ = u′′ + b(u) + σ(u)Ẇ on (0 ,∞)× [0 , 1], subject to

u(0) = u0 on [0 , 1], and

u(t , 0) = u(t , 1) = 0 ∀t > 0.

(4.1)

For the sake of simplicity, we will restrict attention to Hölder continuous and non-random
initial functions u0 : [0 , 1]→ R.

Recall the heat semigroup {Pt}t>0, as well as the fact that u(t , x) = (Ptu0)(x) when
b ≡ σ ≡ 0. For more general choices of b and σ we formally apply Duhamel’s principle
(or variation of constants) to perturb the nonlinear stochastic PDE (or SPDE) off the case
b ≡ σ ≡ 0. Any integral that involves Ẇ will be interpretted as a Walsh integral. The end
result is the following rigorous interpretation of (4.1): We wish to find a predictable random
field u that solves the stochastic integral equation,

u(t , x) = (Ptu0)(x) +

∫
[0,t]×[0,1]

pt−s(x , y)b(u(s , y)) ds dy

+

∫
[0,t]×[0,1]

pt−s(x , y)σ(u(s , y))Ẇ (s , y) ds dy.

(4.2)

The first integral on the right is a Lebesgue integral, whereas the second is supposed to
be a Walsh integral. See Walsh’s St.-Flour notes [30] for the details of the argument that
leads to this—socalled “mild”—formulation of the SPDE (4.1). It is possible to appeal to
a “stochastic Fubini theorem” – see Walsh [30] – in order to prove that any mild solution
(4.2) to (4.1) is in fact a solution in the usual [weak] sense. That is, it is possible to
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show that if u solves (4.2) then for all smooth and non-random φ : R+ × [0 , 1] that satisfy
φ(t , 0) = φ(t , 1) = 0 for all t > 0,∫ 1

0

φ(0 , x)u0(x) dx−
∫
R+×[0,1]

φ̇(t , x)u(t , x) dt dx

=

∫
R+×[0,1]

φ′′(t , x)u(t , x) dt dx+

∫
R+×[0,1]

φ(t , x)σ(u(t , x)) Ẇ (t , x) dt dx.

(4.3)

Let us consider the simplest case where σ ≡ b ≡ 0. Then, the stochastic heat equation (4.1)
reduces to the heat equation (1.1). It is known that even in this simple setting, there can be
infinitely-many pointwise solutions to variations of (1.1) (consider the Tychonoff example [18]
for instance). However, there is a unique mild solution to (1.1); that is, u(t , x) = (Ptu0)(x).
In other words, by insisting on finding only mild solutions, we can ensure uniqueness – and
also a measure of additional regularity – in such settings. In loose terms, mild solutions to
stochastic PDEs are in some sense the only “physical” ones.

4.1. Existence and uniqueness. The main result of this section is the following basic
existence/uniqueness theorem, that marks the beginning of any, and every, meaningful con-
versation about the SPDE (4.1).

Theorem 4.1 (Pardoux, Krylov–Rozovsǩıi, Walsh, . . . ). There exists a unique predictable
random field u = {u(t , x); t > 0, x ∈ [0 , 1]} such that:

(1) u(t , x) solves (4.2) a.s. for every (t , x) ∈ (0 ,∞)× [0 , 1]; and
(2) supx∈[0,1] supt∈[0,T ] E(|u(t , x)|2) <∞ for every real number T > 0.

A careful proof requires some effort mainly because of the many implicit measurability
requirements that predictable random fields have. Therefore, we will merely outline the part
of the proof that does not discuss measurability issues.

Ideas of proof. In order to simplify the exposition, let us consider only the case that b ≡ 0.
It is possible to extend the following general argument so that it covers the case b 6≡ 0 as
well.

The bulk of the proof is a fixed-point argument. Let u0(t , x) := u0(x), and then iteratively
define

un+1(t , x) := (Ptu0)(x) +

∫
[0,t]×[0,1]

pt−s(x , y)σ(un(s , y)) Ẇ (s , y) ds dy, (4.4)

for every (t , x) ∈ (0 ,∞) × [0 , 1] and n ∈ N. Assuming that the stochastic integral is
inductively well defined, we might recall that, for every fixed T > 0,

Mt :=

∫
[0,t]×[0,1]

pT−s(x , y)σ(un(s , y)) Ẇ (s , y) ds dy (0 < t 6 T )

is a continuous, centered, L2(Ω)-martingale [M0 := 0] with quadratic variation

〈M〉t =

∫ t

0

ds

∫ 1

0

dy |pT−s(x , y)|2σ2(un(s , y)) ∀t ∈ (0 , T ].

Therefore, E(Mt) = 0 and E(M2
t ) = E[〈M〉t] for all t ∈ [0 , T ]. We specialize this with T := t

in order to see that

E
(
|un+1(t , x)|2

)
= |(Ptu0)(x)|2 + E

∫ t

0

ds

∫ 1

0

dy |pt−s(x , y)|2σ2(un(s , y)).
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Since u0 is bounded, the Brownian-motion representation (1.4) of Ptu0 shows that

|(Ptu0)(x)| = |Ex (u0(B2t); t < τ)| 6 sup
y∈[0,1]

|u0(y)| := K.

And by the Lipschitz continuity of σ, there exists a finite constant L such that

|σ(z)| 6 |σ(z)− σ(0)|+ |σ(0)| 6 L(|z|+ 1) ∀z ∈ R.

We may combine these bounds in order to see that

E
(
|un+1(t , x)|2

)
6 K2 + L2

∫ t

0

ds

∫ 1

0

dy |pt−s(x , y)|2E
(
|un(s , y)|2

)
. (4.5)

Let β > 0 be a fixed constant whose value will be determined shortly, and define for all
k > 0,

mk := sup
x∈[0,1]

sup
t>0

e−βtE
(
|uk(t , x)|2

)
.

Then, we can multiply both sides of (4.5) by exp(−βt) and optimize over (t , x) in order to
obtain the recursive inequality,

mn+1 6 K2 + L2mn sup
x∈[0,1]

sup
t>0

∫ t

0

ds

∫ 1

0

dy e−β(t−s)|pt−s(x , y)|2

= K2 + L2mn

∫ ∞
0

e−βs ds

∫ 1

0

dy |ps(x , y)|2.

Since ps(x , y) is the transition density of Brownian motion, run at twice its speed and killed
when it leaves [0 , 1], it is at most the transition density of free Brownian motion run at twice
the standard speed, viz.,

ps(x , y) 6 Γ(s , x− y),

where Γ denotes the “free-space heat kernel,”

Γ(s , a) =
1√
4πs

exp

(
−a

2

4s

)
∀a ∈ R, s > 0. (4.6)

Thus, a direct computation yields

mn+1 6 K2 + L2mn sup
x∈[0,1]

∫ ∞
0

e−βs‖Γ(s)‖2
L2(R) ds

= K2 + Cmn

∫ ∞
0

e−βs√
s

ds,

where C is an uninteresting, but fixed, finite constant. Another simple evaluation yields a
finite constant C1 such that

mn+1 6 K2 +
C1mn√

β
∀n > 0, (4.7)

and C1 is independent of β (though mn and mn+1 depend on β). Now we choose and fix
β := 4C2

1 in order to find that, for this choice of β, mn+1 6 K2 + 1
2
mn, uniformly for all

n > 0. From this we can conclude that

mn+1 6 K2 + 1
2

(
K2 + 1

2
mn−1

)
6 · · · 6 K2

(
1 + 1

2
+ 1

4
+ · · ·

)
+ 2−nm0 = 2K2 + 2−nm0,
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uniformly for all n > 0, provided that u1, . . . , un are predictable random fields. In particular,
the definition of the sequence {mn}∞n=0 yields

sup
x∈[0,1]

sup
t∈[0,T ]

E
(
|un(t , x)|2

)
6
(
2K2 +m0

)
eβT <∞, (4.8)

uniformly for all n > 0 for which u1, . . . , un are predictable random fields. It can be shown
that (4.8) and the very definition (4.4) of the sequence {un}∞n=0 together ensure this pre-
dictability. Hence, (4.8) holds uniformly for all n > 0, and unconditionally.

Next, define

dk := sup
x∈[0,1]

sup
t>0

e−βtE
(
|uk+1(t , x)− uk(t , x)|2

)
∀k > 0,

for the same value of β > 0 as before. A computation very similar to the one that led to
(4.7) yields

dn+1 6
C1dn√
β

= 1
2
dn ∀n > 0.

Thus, dn → 0 exponentially fast as n→∞; in particular,

sup
x∈[0,1]

sup
t∈[0,T ]

∞∑
k=0

E
(
|un+1(t , x)− un(t , x)|2

)
6 eβT

∞∑
k=0

dk <∞.

This proves that {un(t , x)}∞n=0 is a Cauchy sequence in L2(Ω) for every fixed space-time
point (t , x) ∈ (0 ,∞)× [0 , 1]. Let u(t , x) := limn→∞ un(t , x) in L2(Ω). One can then recycle
the preceding arguments to show that

lim
n→∞

∫
[0,t]×[0,1]

pt−s(x , y)σ(un(s , y)) Ẇ (s , y) ds dy

=

∫
[0,t]×[0,1]

pt−s(x , y)σ(u(s , y)) Ẇ (s , y) ds dy in L2(Ω).

We have argued that both sides of (4.4) converge in L2(Ω) to similar quantities that involve
u in place of un and un+1 everywhere. This completes the proof of existence in the case that
b ≡ 0.

In order to verify uniqueness suppose (4.1)—still with b ≡ 0—has two predictable random
field solutions u and v. Then,

u(t , x)− v(t , x) =

∫
[0,t]×[0,1]

pt−s(x , y) {σ(u(s , y))− σ(v(s , y))} Ẇ (s , y) ds dy.

This, and another martingale computation together yield a finite universal constant A such
that, for all (t , x) ∈ (0 ,∞)× [0 , 1],

E
(
|u(t , x)− v(t , x)|2

)
=

∫ t

0

ds

∫ 1

0

dy |pt−s(x , y)|2 E
(
|σ(u(s , y))− σ(v(s , y))|2

)
6 A

∫ t

0

ds

∫ 1

0

dy |pt−s(x , y)|2 E
(
|u(s , y)− v(s , y)|2

)
,

(4.9)

thanks to the Lipschitz continuity of σ. Define

D := sup
t>0

sup
x∈[0,1]

e−αtE
(
|u(t , x)− v(t , x)|2

)
,
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where α > 0 is a constant that will be described shortly. We multiply both sides of (4.9) by
exp{−αt} and optimize over (t , x) ∈ (0 ,∞)× [0 , 1] in order to see that

D 6 AD sup
x∈[0,1]

sup
t>0

∫ t

0

ds

∫ 1

0

dy e−α(t−s)|pt−s(x , y)|2 6 AD

∫ ∞
0

e−αs‖Γ(s)‖2
L2(R) ds =

ÃD√
α
,

after a direct computation, where Ã is a finite constant that does not depend on α. We now
choose α := Ã2/4 in order to see that, for this choice of α, D 6 D/2 and hence D = 0. This
proves that u(t , x) = v(t , x) a.s. for all (t , x) ∈ (0 ,∞) × [0 , 1], and completes the proof of
the uniqueness of the solution. �

4.2. Higher moments. The proof of part 2 of Theorem 4.1 yields a stronger result than
asserted. In fact, we have shown that there exist real number α, β > 0 such that

E
(
|u(t , x)|2

)
6 αeβt ∀t > 0, x ∈ [0 , 1].

Among other things, the proof hinged on the fact that E(M2
t ) = E〈M〉t for all t > 0,

whenever {Mt}t>0 is a continuous, L2(Ω)-martingale. Foondun and Khoshnevisan [20] have
produced moment bounds for higher moments of a closely-related object to u(t , x). Their
arguments imply the following.

Theorem 4.2. There exist real numbers A,B > 0 such that

E
(
|u(t , x)|k

)
6 Akkk/2eBk

3t ∀t > 0, x ∈ [0 , 1], k > 2;

the variable k need not be integral.

See also Conus, Joseph, and Khoshnevisan [12]. It is possible to prove that the constant
k3 is sharp; see Borodin and Corwin [5], Chen [10, 11], Conus, Joseph, and Khoshnevisan
[12], and Conus, Joseph, Khoshnevisan and Shiu [14], and Chapter 6 of Khoshnevisan [25]
for similar results. I will omit the lengthy proof. Suffice it to say that one adapts the proof of
the moment estimates of Theorem 4.1, but use the following form of the Burkholder–Davis–
Gundy inequality (hereforth, BDG):

Ck := sup
‖Mt‖2

Lk(Ω)

‖〈M〉t‖Lk/2(Ω)

<∞ ∀k > 2,

where the supremum is taken over all t > 0 and all continuous, L2(Ω)-martingales {Mt}t>0

that do not vanish a.s. The original BDG inequality (see [6]) contained an explicit but
suboptimal upper bound for Ck. But it was good enough to show that Ck <∞. Davis [15]
was able to compute Ck, and Carlen and Kree [7] showed that: (i) Ck 6 4k for all k > 2;
and (ii) Ck/k → 4 as k → ∞. To summarize, one of the key ingredients of Theorem 4.2 is
the following form of the BDG inequality that is valid for all continuous, L2(Ω)-martingales
{Mt}t>0:

E(Mk
t ) 6 (4k)k/2E

[
〈M〉k/2t

]
∀t > 0, k > 2. (4.10)

4.3. Regularity. The goal of this course is to analyze the solution to the SPDE (4.1). The
existence and uniqueness of that solution is guaranteed by Theorem 4.1. The following
regularity result is a prefatory foray into the analysis of the solution to (4.1).
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Theorem 4.3. If u0(0) = u0(1) = 0 and u0 is α-Hölder continuous for some α ∈ (0 , 1],
then u has a continuous modification. In fact, that modification a.s. satisfies the following:
For all real numbers T > 0, µ ∈ (0 , α ∧ (1/2)), and ρ ∈ (0 , (α/2) ∧ (1/4)), there exists an
a.s.-finite random variable VT such that, with probability one,

|u(t , x)− u(s , y)| 6 VT (|x− y|µ + |t− s|ρ) ∀x, y ∈ [0 , 1], s, t ∈ [0 , T ].

Thanks to a suitable form of the Kolmogorov continuity theorem (see, for example, [25]),
Theorem 4.3 follows readily from the following two quantitative bounds: For every k > 2
and T > 0 there exists Ck,T such that

E
(
|u(t , x)− u(t , y)|k

)
6 Ck,T |x− y|k{α∧(1/2)}, and

E
(
|u(t , x)− u(s , x)|k

)
6 Ck,T |t− s|k{(α/2)∧(1/4)},

(4.11)

simultaneously for all x, y ∈ [0 , 1], s, t ∈ [0 , T ], and k > 2.
We will sketch the proof of a weaker form of the first bound in (4.11). After that, we will

say a few things about the second bound as well. To simplify the exposition, we restrict
attention to the case that b ≡ 0 throughout. The details of the derivation of (4.11) will soon
appear in Dalang , Khoshnevisan, and Zhang [?].

First of all, it follows from Minkowski’s inequality and the mild formulation (4.2) of the
solution that

‖u(t , x)− u(t , y)‖Lk(Ω)

6 |(Ptu0)(x)− (Ptu0)(y)|+

∥∥∥∥∥∥∥
∫

[0,t]×[0,1]

{pt−s(x ,w)− pt−s(y , w)}σ(u(s , w))Ẇ (s , w) ds dw

∥∥∥∥∥∥∥
Lk(Ω)

.

We estimate the first term next. It might be helpful to recall that (t , x) 7→ (Ptu0)(x) solves
the non-random heat equation (1.1). Thus, the following is a spatial modulus-of-continuity
estimate for the solution to the heat equation (1.1).

Lemma 4.4. If u0 is Hölder continuous, then there exist α,L > 0 such that

|(Ptu0)(x)− (Ptu0)(y)| 6 L|x− y|α ∀t > 0, x, y ∈ [0 , 1].

Proof. Thanks to (1.3),

|(Ptu0)(x)− (Ptu0)(y)|2 6
[∫ 1

0

|pt(x , z)− pt(y , z)| |u0(z)| dz
]2

6 ‖u0‖2
L2[0,1]

∫ 1

0

[pt(x , z)− pt(y , z)]2 dz

= 2‖u0‖2
L2[0,1]

∞∑
n=1

| sin(nπx)− sin(nπy)|2e−2n2π2t.
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Because | sin(nπx)−sin(nπy)| 6 nπ|x−y|, it follows that there exists C = C(‖u0‖L2[0,1]) > 0
such that

|(Ptu0)(x)− (Ptu0)(y)|2 6 C|x− y|2
∞∑
n=1

n2e−2n2π2t 6 C|x− y|2
∫ ∞

0

w2e−2w2π2t dw

=
C ′|x− y|2

t3/2
,

for a constant C ′ that depends only on ‖u0‖L2[0,1]. In particular, if t > |x − y|, then

|(Ptu0)(x)− (Ptu0)(y)| 6 c|x− y|1/4 with c =
√
C ′.

Now consider the case that 0 < t < |x− y|. In this case, we proceed differently as follows:

|(Ptu0)(x)− (Ptu0)(y)| 6 |(Ptu0)(x)− u0(x)|+ |(Ptu0)(y)− u0(y)|+ |u0(x)− u0(y)|
6 |(Ptu0)(x)− u0(x)|+ |(Ptu0)(y)− u0(y)|+ c1|x− y|a,

where c1 > 0 and a > 0 account for the Hölder continuity of u0, and do not depend on
(t , x , y). Thanks to (1.4) and the facts that: (i) u0(B2τ ) = 0 a.s. on {τ < ∞}; and (ii)
0 < t < |x− y|,

|(Ptu0)(x)− Ex[u0(B2t)]| 6 Ex (|u0(B2t)|; τ 6 t)

6 c1Ex (|B2t −B2τ |a; τ 6 t)

6 c1Ex

(
sup
s∈[0,t]

|B2t −B2s|a
)
6 c2t

2/a 6 c2|x− y|2a,

where c2 does not depend on (t , x), thanks to a standard modulus-of-continuity estimate.
The very same estimate holds if we replace x by y in the left-most quantity. These estimates
together yield the desired result. �

Now we prove the first inequality in (4.11).

Proof of (4.11): First part. Lemma 4.4 and a suitable application of the BDG inequality
(4.10) together yield

‖u(t , x)− u(t , y)‖Lk(Ω)

6 L|x− y|α +

√∫ t

0

ds

∫ 1

0

dw {pt−s(x ,w)− pt−s(y , w)}2 ‖σ(u(s , y))‖2
Lk(Ω),

where L denotes the Lipschitz constant of u0. Let K denote the Lipschitz constant of σ.
Since |σ(z)| 6 |σ(0)| + K|z| for all z ∈ R, Theorem 4.2 implies that ‖σ(u(s , y))‖Lk(Ω) is
bounded uniformly in y ∈ [0 , 1] and t ∈ [0 , T ]. Therefore,

‖u(t , x)− u(t , y)‖Lk(Ω) 6 L|x− y|α + ck,T

√∫ t

0

ds

∫ 1

0

dw {pt−s(x ,w)− pt−s(y , w)}2.
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Apply Parseval’s identity – see also (1.3) – to compute∫ 1

0

{pt−s(x ,w)− pt−s(y , w)}2 dw =
∞∑
n=1

[ψn(x)− ψn(y)]2 e−2n2π2(t−s)

= 2
∞∑
n=1

[sin(nπx)− sin(nπy)]2 e−2n2π2(t−s)

6 c
∞∑
n=1

(
1 ∧ n2|x− y|2

)
e−2n2π2(t−s),

since | sin a− sin b| 6 2(1 ∧ |a− b|) for all a, b ∈ R. Therefore,∫ t

0

ds

∫ 1

0

dw {pt−s(x ,w)− pt−s(y , w)}2 6 c′
∞∑
n=1

1 ∧ n2|x− y|2

n2
.

Split the sum according to whether or not n > 1/|x− y| in order to see that∫ t

0

ds

∫ 1

0

dw {pt−s(x ,w)− pt−s(y , w)}2 6 c′′|x− y|.

This yields the inequality,

‖u(t , x)− u(t , y)‖Lk(Ω) 6 L|x− y|α + c′k,T
√
|x− y| 6 c′′k,T |x− y|α∧(1/2),

valid uniformly for all t ∈ [0 , T ] and x, y ∈ [0 , 1]. �

We will not spend too much time on the second bound in (4.11) since its proof is similar
to that of the first part. The following lemma is a point of departure, and replaces the role
of Lemma 4.4 in the preceding proof of the first part of (4.11). Also, it is worthy of record
that this is where the additional conditions u0(0) = u0(1) = 0 enter the proof.

Lemma 4.5. If u0(0) = u0(1) = 0 and u0 is Hölder continuous with index > α for some
α ∈ (0 , 1], then there exists a real number K > 0 such that

|(Ptu0)(x)− (Psu0)(x)| 6 K|t− s|α/2 ∀s, t > 0, x, y ∈ [0 , 1].

Proof. Recall that for all y ∈ [0 , 1] and s > 0, (Psu0)(y) = Ey[u0(B2s) ; τ > s] where B
denotes Brownian motion and τ denotes the first exit time of [0 , 1] by t 7→ B2t. Then,

(Pt+εu0)(x)− (Ptu0)(x) = Ex

[
u0(B2(t+ε))1{τ>t+ε} − u0(B2t)1{τ>t}

]
= Ex

[
u0(B2(t+ε))− u0(B2t); τ > t+ ε

]
− Ex [u0(B2t); t < τ 6 t+ ε] .

Thus, it follows from the triangle inequality that

|(Pt+εu0)(x)− (Ptu0)(x)| 6 E
(
|u0(B2(t+ε))− u0(B2t)|

)
+ Ex (|u0(B2t)|; t < τ 6 t+ ε) .

Since u0 is Hölder continuous, we can find a real number L such that

E
(
|u0(B2(t+ε))− u0(B2t)|

)
6 LE

(
|B2(t+ε) −B2t|α

)
6 Lεα/2 ∀t, ε > 0. (4.12)
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Because u0 vanishes on {0 , 1} and B2τ ∈ {0 , 1} a.s.,

Ex (|u0(B2t)|; t < τ 6 t+ ε) = Ex (|u0(B2t)− u0(B2τ )|; t < τ 6 t+ ε)

6 LEx (|B2t −B2τ |α; t < τ 6 t+ ε)

6 LE

(
sup
r∈[0,ε]

|B2(t+r) −B2t|α
)

= LE

(
sup
r∈[0,ε]

|B2r|α
)
,

which is equal to a constant real number times εα/2 by Brownian scaling. This fact and
(4.12) together imply the lemma. �

5. Asymptotic analysis in the linear case

Consider an idealized rod of unit length, and identify the rod with the interval [0 , 1]
in the usual way. Assume that, initially, heat density in the rod is given by the function
u0 : [0 , 1] → R, and suppose that the endpoints of the rod are continually cooled at zero
temperature. Then, the heat density u(t) at time t satisfies the heat equation (1.1). As we
saw in the first lecture, this heat density is explicitly given by

u(t , x) = (Ptu0)(x) =
∞∑
n=1

(u0 , ψn)e−n
2π2tψn(x).

This particular representation of the solution lets us see immediately that

sup
x∈[0,1]

|u(t , x)| ∼ 2e−π
2t

∣∣∣∣∫ 1

0

u0(y) sin(πy) dy

∣∣∣∣ as t→∞. (5.1)

In other words, heat dissipates uniformly, and exponentially rapidly, in the rod at ever-larger
times.

In this section we ask, and in part answer, similar dissipation questions about the stochastic
heat equation (4.1) in the relatively simple case that b ≡ 0 and the function σ is a non-zero
constant (still denoted by σ). We also will touch on small-time asymptotics.

5.1. Large-time asymptotics. First let us assume, in addition, that u0 ≡ 0. Thus, we
look for a random field Z = Z(t , x) such that[

Ż = Z ′′ + σẆ on (0 ,∞)× [0 , 1], subject to

Z(0) ≡ 0 on [0 , 1].
(5.2)

According to Theorem 4.1, the solution to (4.1) is unique as well as continuous. Moreover,
the solution can be written as follows (see (4.2)):

Z(t , x) = σ

∫
[0,t]×[0,1]

pt−s(x , y)Ẇ (s , y) ds dy. (5.3)

In particular, the construction of the Wiener integral ensures that the random field Z is a
mean-zero Gaussian random field with covariance,

Cov[Z(t , x) , Z(s , y)] = σ2

∫ s∧t

0

dr

∫ 1

0

dw pt−r(x ,w)ps−r(y , w)

= σ2

∫ t∧s

0

pt+s−2r(x , y) dr,

(5.4)
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thanks to the symmetry and the semigroup property of the heat semigroup.
It is natural to think of the solution u to a parabolic PDE (random or otherwise) as a

function x 7→ u(t , x) that evolves with time t. With this view in mind, we can first notice
that, owing to (5.4),

Cov[Z(t , x) , Z(t , y)] = σ2

∫ t

0

p2t−2r(x , y) dr = σ2t

∫ 1

0

p2t(1−s)(x , y) ds

= σ2t

∫ 1

0

p2ts(x , y) ds = σ2t
∞∑
n=1

∫ 1

0

ψn(x)ψn(y)e−2tsn2π2

ds

=
σ2

2π2

∞∑
n=1

ψn(x)ψn(y) · 1− e−2tn2π2

n2
.

(5.5)

Therefore,

Cov[Z(t , x) , Z(t , y)]
(t→∞)−−−−→ σ2

2

∞∑
n=1

ψn(x)ψn(y)

n2π2
. (5.6)

An inspection of the proof of (4.11) shows that for every k > 2 there exists Ck > 0 such that

E
(
|Z(t , x)− Z(t , y)|k

)
6 Ck|x− y|k/2,

simultaneously for every t > 0 and x, y ∈ [0 , 1]. An appeal to the Kolmogorov continuity
theorem then shows that the C[0 , 1]-valued process {Z(t)}t>0 is tight. It follows almost
immediately from this and (5.6) that

Z(t)
C[0,1]−−−→ η as t→∞,

where η := {η(x)}x∈[0,1] is a centered Gaussian process, with continuous trajectories, whose
covariance is

Cov[η(x) , η(y)] =
σ2

2

∞∑
n=1

ψn(x)ψn(y)

n2π2
∀x, y ∈ [0 , 1].

It is easy to use Fourier analysis to simplify this infinite sum. Let c0 := 1 and cn(a) :=√
2 cos(nπa) for n > 1 and a ∈ [0 , 1]. Then, {cn}∞n=0 is a complete, orthonormal system in

L2[0 , 1], and

(1[0,z] , cn) =
√

2

∫ z

0

cos(nπa) da =

√
2 sin(nπz)

nπ
=
ψn(z)

nπ
∀z ∈ [0 , 1], n > 1.

Therefore,
∞∑
n=1

ψn(x)ψn(y)

n2π2
=
∞∑
n=1

(1[0,x] , cn)(1[0,y] , cn) =
∞∑
n=0

(1[0,x] , cn)(1[0,y] , cn)− xy

= (1[0,x] ,1[0,y])− xy = (x ∧ y)− xy.
(5.7)

Let B denote a standard Brownian motion, and note that the “standard Brownian bridge,”

B0(x) := B(x)− xB(1) (0 6 x 6 1)

is a mean-zero Gaussian process with covariance Cov[B0(x) , B0(y)] = (x ∧ y) − xy. The
preceding calculation proves that

Cov[η(x) , η(y)] =
σ2

2
Cov[B0(x) , B0(y)] ∀x, y ∈ [0 , 1],
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which in turn implies that η has the same finite-dimensional distributions as (σ/
√

2)B0. We
have established the following.

Proposition 5.1 (Funaki [21]). Z(t)
C[0,1]−−−→ σ√

2
B0 as t ↓ 0.

In particular, we can see from an appeal to the continuous mapping theorem that, as t ↓ 0,
supx∈[0,1] |Z(t , x)| converges in distribution to supx∈[0,1] |η(x)| = (σ/

√
2) supx∈[0,1] |B0(x)|, and

hence is non zero almost surely. In other words, the solution to the the heat equation (5.2)
does not experience dissipation at all. [Rather, heat content reaches equilibrium at large
times.]

As part of a more general statement, we will soon see that the C[0 , 1]-valued stochastic
process t 7→ Z(t) is Markov. This fact and Proposition 5.1 together imply that the law of
the process (σ/

√
2)B0 – viewed as a probability measure on C[0 , 1] – is the unique invariant

measure of the C[0 , 1]-valued Markov process {Z(t)}t>0.
More generally still, if we consider (5.2), but with initial date u0 that is non random and

continuous (say), then the solution to our SPDE becomes Z(t , x) + (Ptu0)(x); see (4.2).
Since (Ptu0)(x) → 0 [see the first paragraph of this section], it follows that u(t) converges
weakly in C[0 , 1] to (σ/

√
2)B0, as does Z(t).

5.2. Small-time asymptotics. One can also use (5.5) to describe the small-time behavior
of t 7→ Z(t). Indeed, by (5.5),1

Cov[Z(t , x) , Z(t , y)] = σ2

∞∑
n=1

sin(nπx) sin(nπy) · 1− e−2tn2π2

n2π2
.

It follows readily from this fact, and a Riemann-sum approximation by an integral, that

Cov
[
Z
(
t , x
√
t
)
, Z
(
t , y
√
t
)]
∼ σ2

√
t

∫ ∞
0

sin(xπr) sin(yπr) · 1− e−2r2π2

r2π2
dr,

as t ↓ 0. In particular, we can deduce from the above that the finite-dimensional distri-
butions of x 7→ t−1/4Z(t , x

√
t) converge, as t ↓ 0, to the finite-dimensional distributions of

{σζ(x)}x∈[0,1] where ζ is a mean-zero Gaussian process with

Cov[ζ(x) , ζ(y)] =

∫ ∞
0

sin(xπr) sin(yπr) · 1− e−2r2π2

r2π2
dr.

One can construct the limiting object ζ(x) as the following Wiener integral process:

ζ(x) := σ

∫ ∞
0

sin(xπr)

πr

√
1− e−2r2π2 B(dr) (0 < x < 1),

where B denotes Brownian motion; equivalently, B′ denotes white noise on R+. This and a
tightness argument, which we omit, together imply the following.

1The integral is absolutely convergent because

0 6
1− exp{−2r2π2}

r2
6 2π2 ∧ 1

r2
∀r > 0.
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Proposition 5.2. As t ↓ 0,{
Z
(
t , x
√
t
)

t1/4

}
x∈[0,1]

C[0,1]−−−→ {σζ(x)}x∈[0,1] .

The next subsection contains a nontrivial generalization of Proposition 5.2.

5.3. Small-time asymptotics in the non-linear setting. We now make the transition
from the constant-coefficient, Gaussian, case to the general non-Gaussian case by presenting
the general nonlinear form of Proposition 5.2.

Theorem 5.3. Let u denote the solution to (4.1), where u0 is Hölder continuous with index
α ∈ (0 , 1], and vanishes on {0 , 1}. Then, as t ↓ 0,{

u
(
t , x
√
t
)

t1/4

}
x∈[0,1]

C[0,1]−−−→ {σ(u0(0))ζ(x)}x∈[0,1] .

Proof of the convergence of the finite-dimensional distributions. We will skip the proof of
tightness and prove only that{

u
(
t , x
√
t
)

t1/4

}
x∈[0,1]

f.d.d.−−−→ {σ(u0(0))ζ(x)}x∈[0,1] .

where “
f.d.d.−−−→” denotes the convergence of the finite-dimensional distributions.

In light of Proposition 5.2, it suffices to prove that, uniformly over all x ∈ [0 , 1],

E
(
|u(t , x)− σ(u0(x))Z(t , x)|2

)
= O(tα+(1/2)) as t ↓ 0, (5.8)

where Z solves (5.2) with σ ≡ 1. For then we can write

E

(∣∣∣u(t , x√t)− σ(u0(0))Z
(
t , x
√
t
)∣∣∣2)

6 2E
(
|u
(
t , x
√
t
)
− σ

(
u0

(
x
√
t
))

Z
(
t , x
√
t
)
|2
)

+ 2
∣∣∣σ (u0

(
x
√
t
))
− σ(u0(0))

∣∣∣2 E

(∣∣∣Z (t , x√t)∣∣∣2)
= O(tα+(1/2)) (t ↓ 0),

owing to the Lipschitz continuity of σ, the α-Hölder continuioty of u0, (5.8), and the fact
that every Lp(Ω)-norm of Z(t , x

√
t) behaves as t1/4, essentially by Proposition 5.2.

Choose and fix some x ∈ [0 , 1], and recall from (4.2) that for all t > 0,

u(t , x) = (Ptu0)(x) +

∫ t

0

ds

∫ 1

0

dy pt−s(x , y)b(u(s , y)) + I(t , x),

where

I(t , x) :=

∫
[0,t]×[0,1]

pt−s(x , y)σ(u(s , y))Ẇ (s , y) ds dy.
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By Minkowski’s inequality,∥∥∥∥∫ t

0

ds

∫ 1

0

dy pt−s(x , y)b(u(s , y))

∥∥∥∥
L2(Ω)

6
∫ t

0

ds

∫ 1

0

dy pt−s(x , y) ‖b(u(s , y))‖L2(Ω)

6 A

∫ t

0

ds

∫ 1

0

dy pt−s(x , y),

Since
∫ 1

0
pv(x , y) dy = Px{τ > v} 6 1, it follows that∥∥∥∥∫ t

0

ds

∫ 1

0

dy pt−s(x , y)b(u(s , y))

∥∥∥∥
L2(Ω)

= O(t) = o(t1/4) as t ↓ 0.

This estimate shows that the integral that contains b does not contribute to the limit theorem.
As a result, it remains to assume without loss of generality that b ≡ 0.

According to (5.1), we also have |(Ptu0)(x)| = o(t1/4) as t ↓ 0. Therefore, it remains to
prove that

sup
x∈[0,1]

E
(
|I(t , x)− (Ptu0)(x)− I1(t , x)|2

)
= O(tα+(1/2)) as t ↓ 0, (5.9)

where

I1(t , x) := σ(u0(x))Z(t , x) =

∫
[0,t]×[0,1]

pt−s(x , y)σ(u0(x))Ẇ (s , y) ds dy.

Define

I2(t , x) :=

∫
[0,t]×[0,1]

pt−s(x , y)σ(u0(y))Ẇ (s , y) ds dy.

Since we are assuming now that b ≡ 0,

E
(
|I(t , x)− (Ptu0)(x)− I2(t , x)|2

)
=

∫ t

0

ds

∫ 1

0

dy |pt−s(x , y)|2E
(
|σ(u(s , y))− σ(u0(y))|2

)
6 L

∫ t

0

ds

∫ 1

0

dy |pt−s(x , y)|2E
(
|u(s , y)− u(0 , y)|2

)
,

where L denotes the Lipschitz constant of σ. According to (4.11), E(|u(s , y)− u(0 , y)|2) 6
Csα where C is independent of s. We bound pt−s(x , y) from above by the free–space heat
kernel Γ(t− s , y − x) – see (4.6) – in order to see that

E
(
|I(t , x)− (Ptu0)(x)− I2(t , x)|2

)
6 CL

∫ t

0

sα ds

∫ ∞
−∞

dy |Γ(t− s , x− y)|2

= C ′
∫ t

0

sα√
t− s

ds = C ′′tα+(1/2).

Next we may observe that

E
(
|I1(t , x)− (Ptu0)(x)− I2(t , x)|2

)
=

∫ t

0

ds

∫ 1

0

dy |pt−s(x , y)|2 |σ(u0(x))− σ(u0(y))|2

6 L

∫ t

0

ds

∫ 1

0

dy |pt−s(x , y)|2 |u0(x)− u0(y)|2

6 L′
∫ t

0

ds

∫ 1

0

dy |pt−s(x , y)|2|x− y|2α,
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where L′/L denotes the Hölder exponent of u0. Once again we estimate the heat kernel p by
the free–space heat kernel Γ in order to obtain

E
(
|I1(t , x)− (Ptu0)(x)− I2(t , x)|2

)
6 L′

∫ t

0

ds

∫ ∞
−∞

dy |Γ(t−s , y−x)|2|x−y|2α = L′′tα+(1/2),

uniformly for all x ∈ [0 , 1] and t > 0. The preceding two bounds together imply (5.9). �

5.4. Comments on large-time asymptotics in the nonlinear setting. One might won-
der if the non-dissipation theorem, Proposition 5.1, has a non-linear generalization. This
turns out to be a quite delicate matter, and will not be treated here. For answers in
a physically-relevant special case keep an eye out for a preprint by Kim, Khoshnevisan,
Mueller, and Shiu some time in the near future.

6. Random initial data

Let us return to the general SPDE (4.1) with general Lipschitz-continuous, non-random
coefficient functions b and σ. Among other things, we have seen that if u is non random,
u(0) = u(1) = 0, and u is Hölder continuous, then (4.1) has a unique Hölder continuous
solution u = u(t , x). A quick inspection of our proof of Theorem 4.1 shows that in fact we
could have u(0) to be random, as long as it is independent of the white noise Ẇ . In that
case, essentially the same arguments as those used to prove Theorems 4.1, 4.2, and 4.3 can
be used to establish the following generalization of those stated theorems.

Theorem 6.1. Suppose the initial profile u(0) = {u(0 , x)}x∈[0,1] is a random process and is

independent of Ẇ . Then:

(1) If supx∈[0,1] E (|u(0 , x)|2) < ∞, then (4.1) has a solution that is unique subject to

supx∈[0,1] supt∈[0,T ] E(|u(t , x)|2) <∞ for all T > 0.

(2) If, in addition, supx∈[0,1] E(|u(0 , x)|k) <∞ for all k > 2, then

sup
t∈[0,T ]

sup
x∈[0,1]

E
(
|u(t , x)|k

)
<∞ ∀T > 0, k > 2.

(3) Suppose, yet in addition, that u(0 , 0) = u(0 , 1) = 0 a.s. and that there exists α ∈
(0 , 1] such that for all k > 2 there exists Ck > 0 such that

E
(
|u(0 , x)− u(0 , y)|k

)
6 Ck|x− y|kα ∀x, y ∈ [0 , 1].

Then, u has a Hölder-continuous modification.

Let us conclude this subsection with a neat application of Theorem 6.1.
Let B0 denote a Brownian bridge, independent of white noise Ẇ , and define

u0(x) :=
σ√
2
B0(x) ∀x ∈ [0 , 1]. (6.1)

Thanks to the mild formulation of the solution – see (4.2) – the random process

u(t , x) := (Ptu0)(x) + Z(t , x) [t > 0, 0 6 x 6 1]

is the unique solution to the SPDE,[
u̇ = u′′ + σẆ on (0 ,∞)× [0 , 1], subject to

u(0) = u0 on [0 , 1].
(6.2)
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In other words, u solves (5.2), but starting from its “invariant measure” u0. The following
shows that {u(t)}t>0 is a stationary process. This should remind you of facts that you might
know about the ergodic theory of [typically finite-dimensional] Markov processes.

Proposition 6.2. Let u denote the solution to (6.2), started from an independent Brownian
bridge initial profile (6.1). Then, the law of u(t) is the same as the law of u(0) for all t > 0.

Proof. The process u is a centered, continuous Gaussian process. Moreover,

Cov[u(t , x) , u(t , y)] = Cov [(Ptu0)(x) , (Ptu0)(y)] + Cov[Z(t , x) , Z(t , y)].

According to (5.5),

Cov[Z(t , x) , Z(t , y)] =
σ2

2π2

∞∑
n=1

ψn(x)ψn(y) · 1− e−2tn2π2

n2
. (6.3)

We compute the former quantity next:

Cov [(Ptu0)(x) , (Ptu0)(y)] =
σ2

2

∫ 1

0

pt(x ,w) dw

∫ 1

0

pt(y , z) dz Cov[B0(w) , B0(z)]

=
σ2

2

∫ 1

0

pt(x ,w) dw

∫ 1

0

pt(y , z) dz
∞∑
n=1

ψn(w)ψn(z)

n2π2
;

see (5.7). Plug in the eigenfunction expansion (1.3) of the heat kernel to see that the
preceding is equal to

σ2

2

∫ 1

0

∞∑
j=1

ψj(x)ψj(w)e−j
2π2t dw

∫ 1

0

∞∑
k=1

ψk(y)ψk(z)e−k
2π2t dz

∞∑
n=1

ψn(w)ψn(z)

n2π2

=
σ2

2π2

∞∑
n=1

ψn(x)ψn(y)

n2
e−2n2π2t (Fubini’s theorem & the orthonormality of the ψi’s).

This and (6.3), in turn, together imply that

Cov[u(t , x) , u(t , y)] =
σ2

2π2

∞∑
n=1

ψn(x)ψn(y)

n2
= Cov[u0(x) , u0(y)] ∀t > 0;

see (5.7). �

As in the preceding let u0 := (σ/
√

2)B0 where B0 is a Brownian bridge that is independent
of the white noise Ẇ . We saw earlier that the process u(t) := Ptu0 + Z(t) has the same law
as the process x 7→ (σ/

√
2)B0(x). Now,

(Ptu0)(x) =
∞∑
n=1

ψn(x)(u0 , ψn)e−n
2π2t

is clearly a C∞ function of x for every t > 0. Since Z(t) = u(t)−(Ptu0), it follows that at every

fixed time t > 0, Z(t) is a smooth perturbation of a scaled Brownian bridge u(t)
(d)
= (σ/

√
2)B0.
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7. The strong Markov property

For every t > 0, let F0
t denote the sigma-algebra generated by all Wiener integrals of the

form
∫

[0,t]×[0,1]
ϕ(x)Ẇ (s , x) ds dx, as ϕ ranges over all non-random functions in L2[0 , 1]. Let

F1
t denote the P-completion of F0

t , and finally define Ft to be the right-continuous version
of F1

t ; that is,

Ft :=
⋂
s>t

F1
s ∀t > 0.

Evidently, F := {Ft}t>0 is a filtration of sigma-algebras.
Let

Xt(ϕ) :=

∫
[0,t]×[0,1]

ϕ(x)Ẇ (s , x) ds dx ∀t > 0, ϕ ∈ L2[0 , 1].

Then, X(ϕ) is a mean-zero Gaussian process that is indexed by R+ and whose covariance
function is described as follows:

Cov[Xs(ϕ) , Xt(ϕ)] = (s ∧ t)‖ϕ‖2
L[0,1].

In other words, X(ϕ) is a Brownian motion, normalized so that its variance at time one is
‖ϕ‖2

L2[0,1]. Thus, we can view X := {Xt}t>0 as an infinite-dimensional Brownian motion,

taking values in the space of all linear functionals on L2[0 , 1].2

The filtration F is simply the right-continuous, augmented filtration that is associated to
the infinite-dimensional Brownian motion X. This observation motivates the following.

Definition 7.1. We refer to F as the “Brownian filtration.”

Let u continue to denote the solution to our SPDE (4.1). The construction of the
Walsh stochastic integral ensures that the infinite-dimensional stochastic process {u(t)}t>0

is adapted with respect to the filtration F .

Theorem 7.2 (The strong Markov property). Suppose u(0) is independent of Ẇ and satisfies
supx∈[0,1] E(|u(0 , x)|k) < ∞ for all k > 2. Suppose, in addition, that u(0 , 0) = u(0 , 1) = 0,
and that there exists α ∈ (0 , 1] such that for every k > 2 there exists Ck > 0 such that

sup
x∈[0,1]

E
(
|u(0 , x)− u(0 , y)|k

)
6 Ck|x− y|kα ∀x, y ∈ [0 , 1].

Then, {u(t)}t>0 is a strong Markov process with respect to the filtration F .

The reader should be warned that while the infinite-dimensional process t 7→ u(t) is
Markovian, the finite-dimensional process t 7→ u(t , x) – where x ∈ (0 , 1) is fixed – is generally
non Markovian.

Sketch of the proof of Theorem 7.2. Choose and fix a time variable ρ > 0, and define

v(t , x) := u(t+ ρ , x) ∀t > 0, x ∈ [0 , 1].

It is possible to adapt a fixed-point argument – see the proof of Theorem 4.1 – in order to
prove that v solves (4.1) starting from random initial data v(0) = u(ρ), and with the noise
Ẇ replaced by a white noise ξ that is independent of u(ρ). Formally speaking, the white
noise ξ is obtained by setting

ξ(t , x) := Ẇ (t+ ρ , x) ∀t > 0, x ∈ [0 , 1].

2The infinite-dimensional process X is sometimes called cylindrical Brownian motion.
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More precisely, we define ξ by computing every Wiener integral of the form
∫
R+×[0,1]

ϕ dξ as∫
[ρ,∞)×[0,1]

ϕ(t− ρ , x)Ẇ (t , x) dt dx ∀ϕ ∈ L2(R+ × [0 , 1]).

Elementary properties of Wiener integrals show that ξ is independent of Fρ.
Let Pw denote the law of the random field v starting from any random initial profile w that

is independent of ξ and satisfies supx∈[0,1] E(|w(x)|2) <∞, and let Ew denote the associated
expectation operator. Since {u(t)}t>0 is adapted to F , ξ is independent of Fρ and hence
u(ρ) is independent of ξ. Therefore, the uniqueness of the solution to (4.1) – see Theorem
4.1 – implies that

E (F (u) | Fρ) = Eu(ρ)[F (v)] a.s. for all ρ > 0,

for every measurable function F : C((0 ,∞) × [0 , 1]) → R. This proves that the left-hand
side is measurable with respect to the sigma-algebra generated by u(ρ), which is another
way to say that {u(t)}t>0 is a [weak] Markov process. The hypotheses of the theorem on
u(0) ensure that the solution u is continuous; see Theorem 6.1. Therefore, more-or-less
standard arguments from Markov process theory show that the process {u(t)}t>0 is strong
Markov. �

8. A comparison principle

Let D be a compact set in Rd that has a smooth boundary, and consider any function
h : R+ ×D → R that is sufficiently smooth and satisfies the heat equation,

ḣ = ∆h on DT := (0 , T ]×D◦. (8.1)

Then, according to the “strong maximum principle,” h achieves its maximum on the “para-
bolic boundary” DT \DT of DT . More precisely put,

sup
(t,x)∈DT

h(t , x) = sup
DT \DT

h(t , x);

consult Evans [18] for instance.
We can consider −h instead of h to see that the minimum of h is also achieved on DT \DT .
Now consider the problem (8.1) subject to the initial value, h(0) = h0 on D◦, where h0 is

a smooth and non-negative function on D◦. Since h0 has a minimum value > 0, and because
h − h0 also solves (8.1), we may apply the strong maximum principle to h − h0 in order
to see that h(t , x) > inf h0 > 0 for all (t , x) ∈ DT . This latter property is the “positivity
principle” of the heat equation.

Because (8.1) is a linear PDE, we immediately obtain the following.

Proposition 8.1 (Comparison principle for PDEs). Suppose h and H respectively solve (8.1)
on DT with respective continuous initial profiles h0 and H0, and suppose h0(x) 6 H0(x) for
all x ∈ D◦. Then, h(t , x) 6 H(t , x) for all (t , x) ∈ DT .

Proof. Because H − h solves (8.1) and H0 − h0 > 0, the positivity principle of the heat
equation completes the proof. �

Unfortunately, the noisy version (4.1) of (8.1) fails to satisfy the strong maximum principle.
Nevertheless, it does satisfy a comparison principle.
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Theorem 8.2 (Comparison principle for SPDEs). Suppose u0, U0 : [0 , 1]→ R are non ran-
dom and bounded functions, and let u and U denote the respective solutions to the stochastic
heat equation (4.1) with respective initial values u0 and U0. If, in addition, u0 6 U0 pointwise
on [0 , 1], then P{u 6 U a.e.} = 1.

Remark 8.3. (1) If u0 and U0 are Hölder continuous in [0 , 1], and vanishing on the
boundary, then u and U are a.s. continuous; see Theorem 4.3. Therefore, under
those conditions, we have

u0(x) 6 U0(x) ∀x ∈ [0 , 1] ⇒ P {u(t , x) 6 U(t , x) ∀t > 0, x ∈ [0 , 1]} = 1.

(2) Theorem 8.2 continues to hold if u0 and U0 are random, independent of Ẇ , and
satisfy supx∈[0,1] E(|u0(x)|2) <∞ and supx∈[0,1] E(|U0(x)|2) <∞; see Theorem 6.1.

Whereas Proposition 8.1 is an elementary fact, Theorem 8.2 is not. In order to avoid
the several measure-theoretic details of the proof we merely sketch the argument. For the
details of this argument (in different forms), see Donati–Martin and Pardoux [17], Geiß and
Manthey [22], Kotelenez [26], Mueller [28], Shiga [29], . . . and most particularly the recent
article of Chen and Kim [9], where the details of the argument can be found.

8.1. An approximate SPDE. Define

Wε(t , x) :=

∫
[0,t]×[0,1]

pε(x , z)Ẇ (r , z) dr dz.

Then, Wε is a mean-zero Gaussian process with covariance function

Cov[Wε(t , x) ,Wε(s , y)] = (s ∧ t)
∫ 1

0

dz pε(x , z)pε(y , z)

= (s ∧ t)
∫ 1

0

dz pε(x , z)pε(z , y)

= (s ∧ t)p2ε(x , y) [the semigroup property].

(8.2)

In other words, if we hold fixed x ∈ [0 , 1] and ε > 0, then t 7→ Wε(t , x) is a Brownian motion,
normalized to have variance p2ε(x , x) at time one. Since p2ε(x , y) behaves as δ0(x − y) for
ε ≈ 0, one expects the Itô differential Wε(dt , x) := Ẇε(t , x) dt to behave as Ẇ (t , x) dt, and
hence Ẇε(t , x) ≈ Ẇ (t , x) when ε ≈ 0. And in any event, it is easy to see that for every
predictable random field Φ, the stochastic integral process of Φ against Ẇε is canonically
defined as ∫

[0,t]×[0,1]

Φ(s , y)Ẇε(s , y) ds dy :=

∫ 1

0

(∫ t

0

Φ(s , y) Ẇε(s , y) ds

)
dy,

provided that the inside integral – which is an Itô integral is defined, and Lebesgue integrable
as a function of y.

Now let us consider the SPDE (4.1) in the special case that b ≡ 0 in order to simplify the
exposition, as before. That is, u̇ = u′′ + σ(u)Ẇ on (0 ,∞)× [0 , 1], subject to

u(0) = u0 on [0 , 1], and

u(t , 0) = u(t , 1) = 0 ∀t > 0.

(8.3)
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We have seen that if u0 is bounded and (say) non random, then u exists and is unique
(subject to a natural moment condition). And that if u0 vanishes on the boundary of [0 , 1]
and is Hölder continuous, then u is Hölder continuous as well.

Next let us consider the SPDE, u̇ε = Lεuε + σ(uε)Ẇε on (0 ,∞)× [0 , 1], subject to

uε(0) = u0 on [0 , 1], and

uε(t , 0) = uε(t , 1) = 0 ∀t > 0,

(8.4)

where Lε is the following linear operator, and can be viewed as a “regularized second deriv-
ative operator”:

(Lεf)(x) :=
(Pεf)(x)− f(x)

ε
∀f ∈ L∞[0 , 1], ε > 0.

The following justifies the claim that Lε is a regularized second derivative.

Proposition 8.4. If f ∈ C4[0 , 1], then∫ 1

0

|(Lεf)(x)− f ′′(x)|2 dx 6 9ε2

∫ 1

0

|f (iv)(x)|2 dx ∀ε > 0.

Proof. Recall that (f ′′ , ψn) = (f , ψ′′n) = −n2π2(f , ψn). Also, pt(x , y) = pt(y , x), and
hence Pε – hence also Lε – is self-adjoint on L2[0 , 1]. Because of (1.3), (Pεψn)(x) =
exp{−n2π2ε}ψn(x). We combine these observations to find that

(Lεf − f ′′ , ψn) = (f , Lεψn) + n2π2(f , ψn) =

(
e−n

2π2ε − 1 + n2π2ε

ε

)
(f , ψn).

Apply the Parseval identity to find that

‖Lεf − f ′′‖2
L2[0,1] =

∞∑
n=1

(
e−n

2π2ε − 1 + n2π2ε

ε

)2

|(f , ψn)|2 6 9π8ε2

∞∑
n=1

n8|(f , ψn)|2,

since |e−z − 1 − z| 6 3z2 for all z > 0. Because (f (iv) , ψn) = (f , ψ
(iv)
n ) = n4π4(f , ψn) for

every positive integer n, it follows from the Parseval identity that π8
∑∞

n=1 n
8|(f , ψn)|2 =

‖f (iv)‖2
L2[0,1]. Together, these facts imply the proposition. �

8.2. An approximate comparison principle. Now let Uε be the solution to (8.4) but
with initial profile U0 instead of u0. We now prove that

Uε(t , x) > uε(t , x) a.s. for all t > 0 and x ∈ [0 , 1]. (8.5)

In order to prove (8.5) let us integrate (8.4) with respect to time in order to see that

uε(t , x) = u0(x) +

∫ t

0

(Lε[uε(s)]) (x) ds+

∫ t

0

σ(uε(s , x))Wε(dt , x),

and there is an analogous expression for Uε. Therefore,

Dε(t , x) := Uε(t , x)− uε(t , x)

satisfies

Dε(t , x) = U0(x)−u0(x)+

∫ t

0

(Lε[Dε(s)]) (x) ds+

∫ t

0

{σ(Uε(s , x))− σ(uε(s , x))}Wε(ds , x).
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By Itô’s formula, if F : R→ R is smooth and bounded, and vanishes on (0 ,∞), then

E [F (Dε(t , x))] = E

∫ t

0

F ′(Dε(s , x)) (Lε[Dε(s)]) (x) ds

+ 1
2
p2ε(x , x)E

∫ t

0

F ′′(Dε(s , x)) {σ(Uε(s , x))− σ(uε(s , x))}2 ds

6 E

∫ t

0

F ′(Dε(s , x)) (Lε[Dε(s)]) (x) ds+ 1
2
Lp2ε(x , x)E

∫ t

0

F ′′(Dε(s , x)) {Dε(s , x))}2 ds,

provided additionally that F is convex. [The coefficient p2ε(x , x) appears due to the qua-
dratic variation of Wε(• , x); see (8.2).] By the definition of Lε,

E [F (Dε(t , x))] 6
1

ε
E

[∫ t

0

F ′(Dε(s , x)) (Pε[Dε(s)]) (x) ds

]
− 1

ε
E

[∫ t

0

F ′(Dε(s , x))Dε(s , x) ds

]
+
Lp2ε(x , x)

2ε
E

[∫ t

0

F ′′(Dε(s , x)) {Dε(s , x))}2 ds

]
.

By a standard approximation procedure, we may apply the preceding to the function F (a) :=
a−; in that case, F ′ = −1(−∞,0) and F ′′ = δ0 as a distribution. The second expectation on the
right-hand side of the preceding display is non positive, and the third expectation vanishes.
Thus,

E
[
(Dε(t , x))−

]
6 −1

ε
E

[∫ t

0

1{Dε(s ,x)<0} (Pε[Dε(s)]) (x) ds

]
= −1

ε
E

[∫ t

0

1{Dε(s ,x)<0}

(∫ 1

0

pε(x , y)Dε(s , y) dy

)
ds

]
6

1

ε

∫ t

0

ds

∫ 1

0

dy pε(x , y)E
[
(Dε(s , y))−

]
.

Because
∫ 1

0
pε(x , y) dy 6 1, it follows that the function

Q(t) := sup
x∈[0,1]

E
[
(Dε(t , x))−

]
[t > 0]

satisfies Q(t) 6 ε−1
∫ t

0
Q(s) ds for all t > 0, which implies that Q ≡ 0, owing to Gronwall’s

inequality. It follows immediately from this that (Dε(t , x))− = 0 a.s. for all t > 0 and
x ∈ [0 , 1]. This fact immediately implies (8.5).

8.3. Putting it all together. We are in position to briefly sketch the proof of the compar-
ison theorem, Theorem 8.2.

First, recall that the mild solution u – see (4.2) – is also a weak solution; see (4.3). In
a similar manner, using a stochastic Fubini argument, one can show that whenever φ :
R+ × [0 , 1]→ R is smooth and φ(t , 0) = φ(t , 1) = 0 for all T > t > 0,∫ 1

0

φ(0 , x)u0(x) dx−
∫

[0,T ]×[0,1]

φ̇(t , x)uε(t , x) dt dx

=

∫
[0,T ]×[0,1]

(Lε[φ(t)])(x)uε(t , x) dt dx+

∫
[0,T ]×[0,1]

φ(t , x)σ(u(t , x)) Ẇε(t , x) dt dx.

(8.6)
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It follows easily from Proposition 8.4 that Lε[φ(t)] → φ′′(t) as ε ↓ 0, uniformly for all
t ∈ [0 , T ]. We have argued, intuitively, that Ẇε ≈ Ẇ when ε ≈ 0. This can be proved to hold
in the sense that

∫
[0,T ]×[0,1]

Φ(t , x)Ẇε(t , x) dt dx→
∫

[0,T ]×[0,1]
Φ(t , x)Ẇ (t , x) dt dx in L2(Ω) as

ε ↓ 0 for all predictable random fields Φ. Once this is accomplished, one can appeal to a fixed-
point argument to show that

∫
[0,T ]×[0,1]

φ̇(t , x)uε(t , x) dt dx →
∫

[0,T ]×[0,1]
φ̇(t , x)u(t , x) dt dx

in L2(Ω) as ε ↓ 0. The same fact holds if uε and u are respectively replaced by Uε and U . I
will skip the many technical details.

Since φ ∈ C∞(R+× [0 , 1]) and T > 0 are arbitrary and Uε(t , x) > uε(t , x) the comparison
result (Theorem 8.2) follows. �

It is possible to enhance Theorem 8.2 in different directions. Here is one such refine-
ment. Its proof requires making small modifications to the derivation of Theorem 8.2, and is
omitted. See Donati–Martin and Pardoux [17] and Geiß and Manthey [22] for more details.

Theorem 8.5. Let u be the solution to (4.1), and let U solve (4.1) in the case that (b , u0)
are replaced with (B ,U0) where B : R → R is non-random and Lipschitz continuous, and
U0 : [0 , 1]→ R is non-random and continuous. If, in addition, b 6 B pointwise, and u0 6 U0

pointwise, then P{u 6 U a.e.} = 1.

9. Mueller’s positivity principle

9.1. Nonnegative solutions. As was implied earlier, parabolic SPDEs possess positivity
principles, though they do not satisfy a maximum principle. The following ready corollary
of Theorem 8.5 is one such possibility for a positivity principle.

Corollary 9.1. Let u be the solution to (4.1), and suppose in addition that σ(0) = 0 and
b > 0 pointwise. Then, P{u > 0 a.e.} = 1.

Proof. First consider the case that b = u0 = 0. Let u0(t , x) := 0 and

un+1(t , x) =

∫
[0,t]×[0,1]

pt−s(x , y)σ(un(s , y))Ẇ (s , y) ds dy.

Since u0 = 0 and σ(0) = 0, it follows that u1 = 0. Apply induction to see that un ≡ 0 for
all n > 0. Since un(t , x) → u(t , x) in L2(Ω) as n → ∞ [see the proof of Theorem 4.1], it
follows that u(t , x) = 0 when u0 = b = 0.

In general, one can use Theorem 8.5 in order to compare the solution of (4.1) to the
solution in the case that b = u0 = 0. �

9.2. Positive solutions. As it turns out there is a much deeper version of Corollary 9.1 that
we state and prove next. This result, and its many variants, form one of the cornerstones of
the modern aspects of the theory of stochastic partial differential equations.

Theorem 9.2 (Mueller’s positivity principle). Let u be the solution to (4.1), and suppose in
addition that u0 is Hölder continuous and vanishes on {0 , 1}, u0 > 0 on (0 , 1), and σ(0) = 0
and b > 0 pointwise. Then,

P
{
u(t , x) > 0 ∀t > 0, x ∈ (0 , 1)

}
= 1.

Proof. The proof generally follows ideas of Mueller [28]. The details of the method were
worked out in Conus, Joseph, and Khoshnevisan [13], which is the reference that we follow
(and adapt) here.
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Choose and fix some η ∈ (0 , 1/2). It suffices to prove that

P
{
u(t , x) > 0 ∀t > 0, x ∈ (η , 1− η)

}
= 1. (9.1)

We can apply the comparison theorem (Theorem 8.5), and compare u to the solution to
(4.1) in the case that b ≡ 0. In this way, we may assume without loss in generality that
b ≡ 0. Thus, u can be seen as the unique solution to the following:

u(t , x) = (Ptu0)(x) +

∫
[0,t]×[0,1]

pt−s(x , y)σ(u(s , y))Ẇ (s , y) ds dy.

There exists a δ > 0 such that

u0(x) > v0(x) := δ1(η,1−η)(x) ∀x ∈ [0 , 1].

Let v(t , x) denote the solution to (4.1), but with initial profile v0 instead of u0. The com-
parison theorem (Theorem 8.2) ensures that u(t , x) > v(t , x) for all t > 0 and x ∈ [0 , 1].
Thus, we may assume without loss in generality that u0(x) = δ1(η,1−η)(x) for all x ∈ [0 , 1].

Define T0 := 0, and then for all n > 0 let

Tn+1 := inf

{
t > Tn : inf

x∈(η,1−η)
u(t , x) 6 e−(n+1)

}
,

where inf ∅ := ∞. Then, T1 < T2 < . . . are stopping times with respect to the Brownian
filtration F . Since u is continuous (Theorem 4.3) and nonnegative (Corollary 9.1), the
following holds for every n > 1:

u(Tn , x) > e−n δ1(η,1−η)(x) ∀x ∈ [0 , 1], a.s. on {Tn <∞}.
We may apply the strong Markov property at time Tn (Theorem 7.2), together with the
comparison principle, in order to see that u(t + Tn , x) > V (t , x) for all t > 0 and x ∈
[0 , 1], a.s. on {Tn < ∞}, where V = V (n) solves the SPDE (4.1) starting from V (0 , x) :=
e−n δ1(η,1−η)(x) with a white noise that is independent of FTn . In this connection, see also
Theorem 6.1. Define

Ṽ (t , x) = Ṽ (n)(t , x) := e−nV (t , x).

Then, Ṽ solves (4.1) with initial data Ṽ0 := δ1(η,1−η), where the function σ is now replaced
by

σ̃(x) := enσ(e−nx) ∀x ∈ R.
The Lipschitz constant of σ̃ is at most that of σ; in particular, it does not depend on n.
Thus, one can enhance Theorems 4.2 and 4.3 in order to see that for every k > 2, τ ∈ [0 , 1],
and % ∈ (0 , 1/4), there exists real number C = C(%) > 0 – independent of (n , k) – such that

E

(
sup

x∈[−1,1]

sup
s∈[0,τ ]

∣∣∣Ṽ (s , x)− Ṽ (0 , x)
∣∣∣k) 6 Ckkk/2τ k% exp

{
Ck3τ

}
.

Thus, Chebyshev’s inequality ensures that for all integers N > 1, k > 2, and n = 0, . . . , N ,
and every t > 0, the following is valid almost surely on {Tn 6 t}:

P (Tn+1 − Tn 6 2t/N | FTn) 6 P

{
sup
x∈[0,1]

sup
s∈[0,2t/N ]

∣∣∣Ṽ (s , x)− Ṽ (0 , x)
∣∣∣ > 1− e−1

}

6
Ckkk/2 (2t/N)k% e2Ck3t/N

(1− e−1)k
.
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Choose and fix an arbitrary t > 0. The preceding can be used with k := A
√
N logN , for

a large-enough choice of A – independent of (n ,N) – to see that there exists a real number
L = L(t , η) > 0 – independent of (n ,N) – such that

P (Tn+1 − Tn 6 2t/N | FTn) 6 Le−LN
1/2(logN)3/2 ∀N > 100, n = 0, . . . , N.

If TN < t, then by the triangle inequality, there exist at least bN/2c distinct values of
n ∈ {0 , . . . , N − 1} such that Tn+1 − Tn 6 2t/N . [This argument is sometimes known as
the “pigeonhole principle”; see Alon and Spencer [1].] Thus, we may apply repeatedly the
preceding conditional probability estimate, together with a simple union bound, in order to
see that for all N > 100,

P{TN < t} 6
(

N

bN/2c

)(
Le−LN

1/2(logN)3/2
)bN/2c

.

The above inequality and the Stirling formula – originally due to de Moivre – together imply
the existence of a real number K > 1 such that

P

{
inf

x∈(η,1−η)
inf

s∈(0,t)
u(s , x) 6 e−N

}
= P{TN < t} 6 K exp

(
−(N logN)3/2

K

)
,

for all N > 100. This verifies (9.1) and completes the proof. �

Let us mention the following by-product of the proof.

Corollary 9.3. Assume that the hypotheses of Theorem 9.2 are met. Then, for every t > 0
and η ∈ (0 , 1) there exist real numbers K = K(t , η) > 1 and ε0 = ε0(t , η) such that

P

{
inf

x∈(η,1−η)
inf

s∈(0,t)
u(s , x) 6 ε

}
6 K exp

(
− [log(1/ε) · log log(1/ε)]3/2

K

)
∀ε ∈ (0 , ε0).

Other, similar, strict-positivity results can be found in Chen and Huang [8], Chen and
Kim [9], and Moreno-Flores [27].

10. Deviation from linear growth

Consider first the non-random reaction-diffusion equation,[
u̇ = u′′ + b(u) on (0 ,∞)× [0 , 1], subject to

u(0) = u0 on [0 , 1],
(10.1)

where we assume, for the sake of simplicity, that u0 is Hölder continuous and vanishes on
{0 , 1}. There is a huge literature on this sort of equation. Perhaps the best-known result
here is that if b is Lipschitz continuous, then (10.1) has a unique, Hölder-continuous solution.
These results follow also from our stochastic PDE Theorems 4.1 and 4.3: Simply set σ ≡ 0.

Now let us suppose that b is merely locally Lipschitz continuous. Another well-known
result is that, if in addition b has “linear growth,” that is, if

lim sup
|x|→∞

b(x)

|x|
<∞,

then (10.1) has a unique contiuous solution.
Suppose now that b is a locally Lipschitz, non-negative convex function that does not

have linear growth. That is, lim sup|x|→∞ |x|−1|b(x)| = ∞. It is well known that there
are infinitely-many such reaction terms b for which the solution to (10.1) exists globally;
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see for example the survey article by Bandle and Brunner [2] together with its voluminous
bibliography. In fact, there are locally-Lipschitz functions, convex, non-negative functions b
that satisfy the Osgood-type condition,∫ ∞

1

dx

b(x)
=∞, (10.2)

for which (10.1) is well posed.
By contrast, Bonder and Groisman [4] have proved the surprising fact that the stochastic

version of (10.1) does not have this property.

Theorem 10.1 (Bonder and Groisman [4]). Consider the stochastic PDE[
u̇ = u′′ + b(u) + σẆ on (0 ,∞)× [0 , 1], subject to

u(0) = u0 on [0 , 1],
(10.3)

where σ > 0, u0 is Hölder continuous and vanishes on {0 , 1}, and b : R→ (0 ,∞) is locally
Lipschitz, convex, and satisfies (10.2). Then, the solution exists up to a finite stopping time
T , is continuous, and blows up at time T in the sense that

lim
t↑T

sup
x∈[0,1]

|u(t , x)| =∞ a.s.

10.1. Proof of existence and uniqueness. For every integer N > 1 define

bN(z) :=


b(z) if |z| 6 N,

b(N) if z > N,

b(−N) if z < N.

Every bN is a bounded, globally Lipschitz-continuous function. Therefore, Theorems 4.1 and
4.3 together imply that the following SPDE has a unique mild solution uN = uN(t , x) that
is Hölder continuous:[

u̇N = u′′N + bN(uN) + σẆ on (0 ,∞)× [0 , 1], subject to

uN(0) = u0 on [0 , 1].
(10.4)

Define

TN := inf

{
t > 0 : sup

x∈[0,1]

|uN(t , x)| > N

}
[inf ∅ :=∞].

Then, every TN is a stopping time with respect to the Brownian filtration F . By the
uniqueness portion of Theorem 4.1, uN(s , x) = uN+1(s , x) = uN+2(s , x) = · · · for all
s ∈ [0 , TN) and x ∈ [0 , 1] a.s. Let

u(s , x) := lim inf
N→∞

uN(s , x) ∀s > 0, x ∈ [0 , 1].

Choose and fix some t > 0 and note that u(s , x) = uN(s , x) for all s ∈ [0 , t] and x ∈ [0 , 1],
a.s. on the event {TN > t}. It is not hard to check that u solves the SPDE (4.1) up to time
t a.s. on the event {TN > t}. Now consider the F -stopping time

T ′N := inf

{
t > 0 : sup

x∈[0,1]

|u(t , x)| > N

}
.

Evidently, T ′N 6 T ′N+1, and hence T := limN→∞ T
′
N exists a.s. Of course, T might be finite

with positive probability. But certainly T > 0 a.s.
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The construction of the uN ’s and u together ensure that T ′N 6 TN . Therefore, u(s , x) =
uN(s , x) for all s ∈ [0 , t] and x ∈ [0 , 1] a.s. on {T ′N > t}. Let N → ∞ to see that u is the
unique continuous solution to (4.1) up to time t a.s. on {T > t}. Since T > 0 a.s., this shows
that (4.1) has a unique short-time mild solution that is continuous [up to time to blow up,
if there is such a time].

10.2. Proof of Theorem 10.1. Define

Xt :=

∫ 1

0

u(t , x)ψ1(x) dx =
√

2

∫ 1

0

u(t , x) sin(πx) dx,

for all t > 0 such that u(t) is defined. Since the mild solution is also a weak solution, and
since ψ1 > 0 on [0 , 1] and vanishes on {0 , 1}, we may multiply (10.3) by ψ1 and integrate
[dt dx] in order to see that

Xt =

∫ t

0

ds

∫ 1

0

dx ψ′′1(x)u(s , x) +

∫ t

0

ds

∫ 1

0

dx ψ1(x)b(u(s , x))

+ σ

∫
[0,t]×[0,1]

ψ1(x) Ẇ (s , x) ds dx.

The first term on the right-hand side is −π2
∫ t

0
Xs ds since ψ′′1 = −π2ψ1. Because b is convex,

Jensen’s inequality then yields

Xt > −π2

∫ t

0

Xs ds+

∫ t

0

b(Xs) ds+ σβt,

where βt :=
∫

[0,t]×[0,1]
ψ1(x) Ẇ (s , x) ds dx. The defining properties of Wiener integrals imply

that β is a mean-zero Gaussian process with β0 = 0 and

Cov[βt , βT ] =

∫ t∧T

0

ds

∫ 2

0

dx |ψ1(x)|2 = t ∧ T ∀t, T > 0.

Thus, β is a Brownian motion, and X solves the Itô-type stochastic differential inequality,

dXt > −π2Xt dt+ b(Xt) dt+ σdβt,

subject to X0 = 0. Now consider the Itô SDE, dYt = −π2Yt dt + b(Yt) dt + σdβt, subject to
Y0 = 0. That is,

Yt = −π2

∫ t

0

Ys ds+

∫ t

0

b(Ys) ds+ σβt.

Let F (t) := Xt − Yt to see that

F (t) > −π2

∫ t

0

F (s) ds+

∫ t

0

b(Xs)− b(Ys)
Xs − Ys

F (s) ds,

for all t > 0 such that u(t) is well defined.3 In other words, F satisfies the differential
inequality,

F ′(t) > F (t)

[
−π2 +

b(Xt)− b(Yt)
Xt − Yt

]
,

3We are defining B(x , y) := (b(x) − b(y))/(x − y) to be zero when x = y. Since b is locally Lipschitz
continuous, the two-variable function B is locally bounded.
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for all t > 0 such that u(t) is well defined. Since F (0) = 0, it follows from this differential
inequality that

F (t) > F (0) exp

{
−π2t+

∫ t

0

b(Xs)− b(Ys)
Xs − Ys

ds

}
= 0,

for all t > 0 such that u(t) is well defined. In particular, Xt > Yt for all such t > 0. Because

|Xt| 6 sup
x∈[0,1]

|u(t , x)| ·
∫ 1

0

ψ1(x) dx =
2
√

2

π
sup
x∈[0,1]

|u(t , x)|,

it remains to verify that Yt = +∞ for all sufficiently-large [random] t > 0. But Y is a
nice diffusion, and since

∫∞
1

dx/b(x) = ∞, one can appeal to Feller’s test for explosions of
diffusions (see Itô and McKean [24]) to verify that, almost surely, Yt = ∞ for all t > 0
sufficiently large. We skip the remaining details. �

Thus, we learn from Theorem 10.1 that if there exists ε > 0 such that b(z) � |z|(log |z|)1+ε

for all sufficiently-large z, then under the additional conditions of Theorem 10.1 we have
finite-time blowup. This condition is in a sense sharp, as the following shows.

Theorem 10.2 (Dalang, Khoshnevisan, and Zhang, in process). Suppose b > 0 is locally
Lipschitz and satisfies b(z) = O(|z| log |z|) as |z| → ∞. Then, the stochastic PDE (10.3)
has a unique mild solution for all time.

We will not prove Theorem 10.2 here. It will become publicly available some time in the
near future. Although the following sort of argument does not play a role in the actual
proof of Theorem 10.2, we offer the following as anecdotal evidence for the truth of Theorem
10.2: The diffusion Y of the proof of Theorem 10.1 does not blow up in finite time if
b(z) = O(|z| log |z|); see Fang and Zhang [19].

11. Stability

We conclude these notes with a basic theorem on stability of the solution to (4.1). I
had originally intended to include this as a last example of a set of useful renewal-theoretic
techniques in SPDEs, but was not able to because of time constraints.

The following essentially states that if u and v solve (4.1) with respective initial profiles
u0 and v0, and if u0 ≈ v0, then u(t) ≈ v(t) for all t > 0. The following makes these remarks
more precise.

Theorem 11.1. Let u solve (4.1), and let v solve (4.1) with u0 replaced by v0, both with
b ≡ 0 (to keep things simpler). Suppose supx∈[0,1] |u0(x)− v0(x)| 6 δ for some δ > 0. Then,
for every ε ∈ (0 , 1),

sup
x∈[0,1]

E
(
|u(t , x)− v(t , x)|2

)
6 4e4Lt δ2 ∀t > 0,

where L := the Lipschitz constant of σ.

Remark 11.2. One can write the conclusion of Theorem 11.1 in the following equivalent,
perhaps less cryptic, form:

sup
x∈[0,1]

‖u(t , x)− v(t , x)‖L2(Ω) 6 2e2Lt sup
x∈[0,1]

|u0(x)− v0(x)|.
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Remark 11.3. If b 6≡ 0 then a similar statement continues to hold. We leave the details to
the interested reader as exercise.

It is possible to formulate much stronger theorems that are likely valid under more stringent
requirements on u0 and v0. For example, it should be possible to prove that if, in addition,
u0 and v0 both vanish on {0 , 1} and are both Hölder continuous, then for every T > 0 there
exists a real number CT – independently of supx∈[0,1] |u0(x)− v0(x)| – such that

E

(
sup
t∈[0,T ]

sup
x∈[0,1]

|u(t , x)− v(t , x)|2
)
6 CT sup

x∈[0,1]

|u0(x)− v0(x)|2.

I have not tried to verify the details of this assertion, and will leave it to you as [a potentially
challenging] exercise.

First we prove the following technical result, which is a certain generalization of the
Gronwall inequality.

Lemma 11.4 (Foondun and Khoshnevisan [20]). Suppose F,G : R+ → R+ are locally
bounded and measurable functions that satisfy the following for some constant a > 0:

F (t) 6 a+

∫ t

0

F (s)G(t− s) ds ∀t > 0.

Then, F (t) 6 (1− ε)−1a exp{β(ε)t} for all t > 0 and ε ∈ (0 , 1), where

β(ε) := inf

{
α > 0 :

∫ ∞
0

e−αsG(s) ds 6 ε

}
[inf ∅ :=∞].

Remark 11.5. Before we prove this result, we digress to point out a non-trivial connection
to classical renewal theory. Georgiou, Joseph, Khoshnevisan, and Shiu [23] have shown that
F (t) 6 R(t), where R solves the Choquet–Deny type convolution equation,

R(t) = a+

∫ t

0

R(s)G(t− s) ds := a+ (R ∗G)(t) ∀t > 0.

Note that exp{−β(1)t}G(t) is frequently a probability density function. Define two new
functions, R0(t) := exp{−β(1)t}R(t) and G0(t) := exp{−β(1)t}G(t). Then, R0(t) =
a exp{−β(1)t} + (F0 ∗ G0)(t) is a renewal equation of classical probability. Blackwell’s re-
newal theorem easily shows that ` := limt→∞R0(t) exists and is finite. Therefore, R(t) ∼
` exp{−β(1)t} as t → ∞. In particular, F (t) 6 (` + o(1)) exp{−β(1)t}. Because β(1) =
limε↑1 β(ε), this shows that the exponential part of the bound in Lemma 11.4 is essentially
unimproveable. A similar observation was made earlier by Döring and Savov [16].

Proof of Lemma 11.4. Define, for all T > 0, Fβ(T ) := supt∈[0,T ] e−βtF (t). For all t ∈ [0 , T ],

F (t) 6 a+ Fβ(T ) ·
∫ t

0

eβsG(t− s) ds = a+ Fβ(T )eβt ·
∫ t

0

e−βsG(s) ds.

Multiply both sides by exp{−βt} and optimize to see that

Fβ(T ) 6 a+ Fβ(T )

∫ ∞
0

e−βsG(s) ds = a+ εFβ(T ).

Thus, Fβ(T ) 6 a/(1− ε). Let T ↑ ∞ to deduce the result. �

Now we prove Theorem 11.1.
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Proof of Theorem 11.1. Define D(t , x) := u(t , x)−v(t , x) for all t > 0 and x ∈ [0 , 1]. Then,
we can write u and v in mild form (4.2) to see that

D(t , x) = (PtD0)(x) +

∫
[0,t]×[0,1]

pt−s(x , y) [σ(u(s , y))− σ(v(s , y))] Ẇ (s , y) ds dy.

Note that

|(PtD0)(x)| 6
∫ 1

0

pt(x , y)|D0(y)| dy 6 sup
y∈[0,1]

|D0(y)| = δ,

since
∫ 1

0
pt(x , y) dy = Px{τ > t} 6 1. Therefore, by the Minkowski inequality,

‖D(t , x)‖L2(Ω) 6 δ +

√
L

∫ t

0

ds

∫ 1

0

dy |pt−s(x , y)|2‖D(s , y)‖2
L2(Ω)

6 δ +

√
L

∫ t

0

ds

∫ 1

0

dy |Γ(t− s , x− y)|2M(s),

where M(t) := supx∈[0,1] E(|D(t , x)|2) and Γ is the free-space heat kernel, defined earlier in
(4.6). By the latter’s semigroup properties,∫ 1

0

|Γ(t− s , x− y)|2 dy 6 [Γ(t− s) ∗ Γ(t− s)] (0) = Γ(2[t− s] , 0) =
1√

8π(t− s)
.

Thus, we find that √
M(t) 6 δ +

√
L√
8π

∫ t

0

M(s)√
t− s

ds.

Since (p+ q)2 6 2p2 + 2q2, this yields

M(t) 6 2δ2 +
L√
2π

∫ t

0

M(s)√
t− s

ds 6 2δ2 +
L√
π

∫ t

0

M(s)√
t− s

ds ∀t > 0.

Apply Lemma 11.4 to see that

M(t) 6 4δ2eLβ(1/2)t/
√
π ∀t > 0,

where

β(1/2) := inf

{
α > 0 :

∫ ∞
0

e−αs√
s

ds 6 1
2

}
= 4
√
π.

This completes the proof. �
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