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Abstract

While convexity of sets and functions on linear spaces is bread-and-butter to any
mathematician, the notion of convexity for measures– although deeply studied by Christer
Borell starting in the 1970’s– is far less well known. The goal of these lectures will be to
provide an exposition as well as motivation for the theory of convex measures, focusing
in particular on the important and ubiquitous subclass of log-concave measures. The
lectures will choose an eclectic path through some of the many aspects of the theory
that have been developed in the last 40 years, covering some classical topics (such as the
Prékopa-Leindler inequality), some developed around the turn of the millennium (such as
connections to the concentration of measure phenomenon), and some very recent topics
(such as Klartag’s central limit theorem and the concentration of information content).
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1 Lecture 1: What is a convex measure?

We begin with a discussion of convex sets in linear spaces, skipping over details and some
proofs, because a central idea of interest to us– that of Minkowski summation– is naturally
tied to basic consideration of convex sets.

1.1 Convex sets and functions

1.1.1 Convex sets

Let V be a linear space. A fundamental construction on linear spaces is that of the convex
hull of a subset A of V , defined as the set of all convex combinations of finitely many points
of A. Denoting by [x, y] the line segment {λx+ (1−λ)y : λ ∈ [0, 1]}, the set K ⊂ V is convex
if [x, y] ⊂ K whenever x, y ∈ K. It is a standard exercise to check that the convex hull of A
is the “smallest” convex set containing A, in the sense that it is the intersection of all convex
sets containing A.

Convex sets arise naturally in linear algebra and functional analysis because they allow
for separation theorems (Hahn-Banach being the prime example), which form a very powerful
tool in analysis as well as optimization. However, we want to emphasize that convex sets
also arise naturally just by iterating the basic operations of summation and scaling that
are available on a linear space– this fact is the Emerson-Greenleaf-Shapley-Folkmann-Starr
theorem, which we now describe.

Minkowski summation is a basic and ubiquitous operation on sets. Indeed, the Minkowski
sum A + B = {a + b : a ∈ A, b ∈ B} of sets A and B makes sense as long as A and B are
subsets of an ambient set in which the operation + is defined. In particular, this notion
makes sense in any group, and there are multiple fields of mathematics that are preoccupied
with studying what exactly this operation does. For example, much of classical additive
combinatorics studies the cardinality of Minkowski sums (called sumsets in this context) of
finite subsets of a group and their interaction with additive structure of the concerned sets,
and the study of the Lebesgue measure of Minkowski sums in Rn is central to much of convex
geometry and geometric functional analysis. Here we only aim to expose the qualitative effect
of Minkowski summation in Rn– specifically, the “convexifying” effect that it has.

The fact that Minkowski summation produces sets that look “more convex” is easy to
visualize by drawing a non-convex set1 in the plane and its self-averages A(k) defined by

A(k) =

{
a1 + · · ·+ ak

k
: a1, . . . , ak ∈ A

}
=

1

k

(
A+ · · ·+A︸ ︷︷ ︸

k times

)
. (1)

This intuition was first made precise in the late 1960’s independently by Starr [63], who
credited Shapley and Folkmann for the main result, and by Emerson and Greenleaf [25].
Denote by conv(A) the convex hull of A, by Bn

2 the n-dimensional Euclidean ball, and by
d(A) = inf{r > 0 : conv(A) ⊂ A + rBn

2 } the Hausdorff distance between a set A and its
convex hull.

Theorem 1 (Emerson-Greenleaf-Shapley-Folkmann-Starr). If A is a compact subset of Rn,
A(k) converges in Hausdorff distance to conv(A) as k →∞, at rate O(1/k). More precisely,

d(A(k)) = O
(√n
k

)
.

1The simplest nontrivial example is three non-collinear points in the plane, so that A(k) is the original
set A of vertices of a triangle together with those convex combinations of the vertices formed by rational
coefficients with denominator k.
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For sets of nonempty interior, this convergence of Minkowski averages to the convex hull
can also be expressed in terms of the volume deficit ∆(A) of a compact set A in Rn, which is
defined as:

∆(A) := voln(conv(A) \A) = voln(conv(A))− voln(A),

where voln denotes Lebesgue measure in Rn.

Theorem 2 (Emerson-Greenleaf). If A ⊂ Rn is compact with nonempty interior, then the
volume deficit of A(k) also converges to 0. More precisely, when n is fixed2, ∆(A(k)) =
O(1/k).

Our geometric intuition would suggest that in some sense, as k increases, the set A(k)
is getting progressively more convex, or in other words, that the convergence of A(k) to
conv(A) is, in some sense, monotone. It was conjectured3 in [11] that if A is a compact set
in Rn, then the sequence ∆(A(k)) is non-increasing in k, or equivalently, {voln(A(k))}k≥1
is non-decreasing. Note that the trivial inclusion4 A ⊂ A+A

2 immediately implies that the
subsequence {voln(A(2k))}k∈N is non-decreasing; however, the challenge appears at the very
next step since A(2) is generally not a subset of A(3). Remarkably, the conjecture is false
[29].

Theorem 3 (Fradelizi-Madiman-Marsiglietti-Zvavitch). If A ⊂ R1 is compact, ∆(A(k)) is
non-increasing in k. If n ≥ 12, there exist sets A ⊂ Rn such that ∆(A(k)) is not monotone
in k.

It is natural to wonder if monotonicity holds for Hausdorff distance. It was proved in [29]
that if A is a compact set in Rn and k ≥ n, then d (A(k + 1)) ≤ k

k+1d (A(k)). Note this also
yields the O(1/k) convergence rate as a corollary. To prove this fact, we need a barometer
of non-convexity that was introduced by Schneider.

The “non-convexity index” of Schneider [61] is defined as

c(A) = inf{λ ≥ 0 : A+ λ conv(A) is convex}.

Clearly c(A) = 0 if A is convex (just select λ = 0). On the other hand, if c(A) = 0 and A
is compact, then {A + 1

mconv(A)}∞m=1 is a sequence of compact convex sets, converging in
Hausdorff metric to A, thus A must be convex. In other words, for compact sets A, c(A) = 0
if and only if A is convex, which makes it a legitimate barometer of non-convexity.

Lemma 1 (Schneider5). For any subset A of Rn,

c(A) ≤ n.

Proof. We want to prove that A + nconv(A) is convex. We only need to prove that (n +
1)conv(A) ⊂ nconv(A) + A. Let x ∈ (n + 1)conv(A). From Carathéodory’s theorem, there
exists a1, . . . , an+1 ∈ A and λ1, . . . , λn+1 ≥ 0 such that x = (n+1)

∑n+1
i=1 λiai with

∑n+1
i=1 λi =

2The dependence on n is a much more complicated matter for the volume deficit.
3In fact, they conjectured a more general monotonicity property in a probabilistic limit theorem, namely

the law of large numbers for random sets due to Artstein and Vitale [3].
4It is an easy exercise to check thatA = A+A

2
characterizes convexity (indeed, A ⊃ A+A

2
is just a restatement

of the fact that midpoint-convexity is equivalent to convexity).
5Schneider [61] showed, moreover, that c(A) = n if and only if A consists of n + 1 affinely independent

points.
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1. Since 1 =
∑n+1

i=1 λi ≤ (n + 1) maxi λi, there exists i0 such that λi0 ≥ 1
n+1 . Define

µi0 =
(n+1)λi0−1

n and µi = n+1
n λi for i 6= i0. Then µi ≥ 0 for all i,

∑
i µi = 1 and

x = ai0 + ((n+ 1)λi0 − 1)ai0 + (n+ 1)
∑
i 6=i0

λiai = ai0 + n
∑
i

µiai,

which shows that x ∈ A+ nconv(A). �

Let us note an alternative representation of Schneider’s non-convexity index. For any set
A ⊂ Rn, define

Aλ =
1

1 + λ
[A+ λ conv(A)],

and observe that Aλ ⊂ conv(A), so that in particular conv(Aλ) ⊂ conv(A). Moreover,
A ⊂ Aλ implies that conv(A) ⊂ conv(Aλ). From the preceding two conclusions, we have that
conv(A) = conv(Aλ) for any λ ≥ 0. Since Aλ is convex if and only if A+λ conv(A) is convex,
we can express

c(A) = inf{λ ≥ 0 : Aλ is convex} = inf{λ ≥ 0 : Aλ = conv(A)}. (2)

Theorem 4 (Fradelizi-Madiman-Marsiglietti-Zvavitch). Let A be a compact set in Rn and
k ≥ c(A) be an integer. Then

d (A(k + 1)) ≤ k

k + 1
d (A(k)) .

Proof. Let k ≥ c(A), then, from the definitions of c(A) and d(A(k)), one has

conv(A) =
A

k + 1
+

k

k + 1
conv(A) ⊂ A

k + 1
+

k

k + 1
(A(k) + d(A(k))Bn

2 )

= A(k + 1) +
k

k + 1
d(A(k))Bn

2 .

This immediately implies the desired statement. �

There remain surprisingly simple-to-state open questions. For 2 ≤ n ≤ 12, it is unknown if
∆(A(k)) is non-increasing in k for compact A ⊂ Rn. Also it is unknown if for fixed dimension
n, ∆(A(k)) is non-increasing once k exceeds some number depending on n.

1.1.2 Convex and s-concave functions

If V is a linear space, f : V → R ∪ {∞} is a convex function if f(λx + (1 − λ)y) ≤ λf(x) +
(1 − λ)f(y) for all x, y ∈ V and all λ ∈ [0, 1]. A function f is concave if −f is convex. It is
convenient to consider a 1-parameter generalization of this standard definition.

As a prerequisite, we define the κ-mean of two numbers, for a, b ∈ (0,∞), t ∈ (0, 1) and
κ ∈ (−∞, 0) ∪ (0,∞) define

M t
κ(a, b) = ((1− t)aκ + tbκ)

1
κ . (3)

For κ ∈ {−∞, 0,∞} define M t
κ(a, b) = limκ′→κM

t
κ′(a, b) corresponding to

{min(a, b), a1−tbt,max(a, b)}

respectively. Mκ can be extended to a, b ∈ [0,∞) via direct evaluation when κ ≥ 0 and again
by limits when κ < 0 so that Mκ(a, b) = 0 whenever ab = 0.
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Definition 1. Fix s ∈ [−∞,∞]. A function f : Rn → [0,∞) is a s-concave function if

f((1− t)x+ ty) ≥M t
s(f(x), f(y)),

whenever f(x)f(y) > 0 and t ∈ (0, 1).

The function s → M
(t)
s (a, b) is non-decreasing, so the defining inequality is getting

stronger as s grows. In particular:

1. The strongest in the hierarchy– a ∞-concave function– is just a constant function on
Rn.

2. The weakest– a−∞-concave function– is one satisfying f((1−t)x+ty) ≥ min{f(x), f(y)}.
Such functions are said to be quasi-concave, and are precisely the functions such that
the superlevel set {x ∈ Rn : f(x) ≥ α} is convex for each α ∈ R.

In dimension 1, it is easy to check (exercise!) that quasi-concavity coincides with uni-
modality (i.e., the function is non-decreasing up to its global maximum and then non-
increasing afterwards). In general dimension, quasi-concavity implies unimodality (under-
stood via rays through the global maximum) but the reverse may not be true. Also one can
check that in any dimension, a monotonically increasing function of a concave function is
quasi-concave (e.g., (x, y) 7→ xy + x2y2 + x3y3).

A strictly quasi-concave function (i.e., where the inequality in the definition is strict) has
a unique maximizer. More generally, the set of maximizers of a quasi-concave function must
be a convex set.

Convex functions are, of course, ubiquitous in analysis and probability (where Jensen’s
inequality is one of the most powerful tools at our disposal). Because of the simplicity af-
forded by the fact that local minima are necessarily global minima, they are also central
to optimization– both its theoretical aspects in the sense that it forms the threshold for
polynomial-time optimization algorithms, and to applications, where casting a given opti-
mization problem as a convex program allows one to bring to bear several algorithms that
are remarkably efficient in practice and not just theoretically.

Grötschel, Lovász and Schrijver [34] (cf., [64]) showed that the ellipsoid method6 solves the
problem of minimizing a convex function over a convex set in Rn specified by a separation
oracle, i.e., a procedure that reports, given a point x, either that the set contains x or a
halfspace that separates the set from x. Bertsimas and Vempala [6] gave another polynomial-
time algorithm based on sampling, which applies more generally to the maximization of
quasi-concave functions. There are also variants (such as subgradient projection algorithms)
of classical subgradient methods that work well on these functions even in higher dimensions.

1.2 Convex measures

1.2.1 The definitions

How would one capture convexity of a measure? Since measures act on sets, comparing with
the definition of s-concave functions suggests that a natural definition might involve replacing
a convex combination of points by a Minkowski convex combination of sets.

6 The ellipsoid method was invented by Yudin-Nemirovski [67] for linear programming, and was shown by
Khachiyan [37] to be polynomial-time. If one wants to optimize a linear function over a convex set, one now
has a wider selection of algorithms to choose from, such as interior point methods introduced by Karmarkar
[40] and studied deeply by Nesterov and Nemirovski [52] (see [18] for recent developments utilizing ideas
related to the study of convex measures).
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Definition 2. Fix −∞ ≤ κ ≤ +∞. A finite measure µ on Rn is called κ-concave if it
satisfies a geometric inequality

µ(tA+ (1− t)B) ≥ [tµ(A)κ + (1− t)µ(B)κ]1/κ, (4)

in the class of all non-empty Borel subsets A,B ⊂ Rn of positive µ-measure, with arbitrary
t ∈ (0, 1).

If a finite measure is κ-concave for some −∞ ≤ κ ≤ +∞, and hence for κ = −∞, then
it is called a convex measure.

When the law of a random vector X is a κ-concave measure, we will refer to X as a
κ-concave random vector.

As we saw, the function κ→M
(t)
κ (a, b) is non-decreasing, so the inequality (4) is getting

stronger, when κ grows. Thus, the case κ = −∞ describes the largest class, defined by

µ
(
tA+ (1− t)B

)
≥ min{µ(A), µ(B)},

and its members are the convex measures (also sometimes called “hyperbolic measures”).
Remarks:

1. Thus, the κ-concave measures are those that distribute volume in such a way that the
vector space average of two sets is larger than the κ-mean of their respective volumes.

2. By Jensen’s inequality µ being κ-concave implies µ is κ′-concave for κ′ ≤ κ.

A theory is entirely useless without examples. Later we will see that many of the most
useful and ubiquitous measures on Rn– including Lebesgue measure, all Gaussian measures,
and uniform measures on convex bodies– are convex.

1.2.2 Measurability issues

There are interesting subtleties that require a measurability assumption on A+B, although
one no longer needs this assumption if A and B are Borel sets. If one is interested only in
convex sets, measurability questions are unimportant because all convex sets are measurable
(see, e.g., [44]), and convex sets are trivially closed under Minkowski addition.

It is useful in this context to consider several distinguished classes of subsets of Rn, their
relationships, and the properties of each class– the usefulness arises from the fact that no
one class has all the good properties one would hope for. The classes of interest are the
σ-algebra L of Lebesgue-measurable subsets (or simply measurable sets), the σ-algebra B of
Borel-measurable subsets (or simply Borel sets), the class A of analytic sets, and the class
U of universally measurable sets, all of whose definitions and properties we will remind the
reader of shortly without proof. One has the (proper) inclusions

B ⊂ A ⊂ U ⊂ L ⊂ 2R.

The Borel σ-algebra B is the smallest σ-algebra that contains the open sets of Rn. While
any measure defined on B is called a Borel measure, we usually label the choice of Borel
measure which assigns µ([a1, b1]× . . .× [an, bn]) =

∏n
i=1(bi − ai) for every box as “the Borel

measure” on Rn. However, one undesirable fact about the Borel σ-algebra B is that it is
not complete. [Recall that a complete measure space is a measure space in which every
subset of every measure-zero set is measurable (having measure zero).] Since one cannot
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avoid completeness questions when considering, for example, the construction of product
measures, it is usual to define a completion procedure by looking at the σ-algebra generated
by the sets in B and the class N of all subsets of measure-zero sets in B; then every member
of the expanded σ-algebra is of the form A ∪ B for some A ∈ B and some B ∈ N , and
µ0(A ∪ B) = µ(A). The completion of the Borel measure is precisely the Lebesgue measure
(which implies B ⊂ L). Recall that Lebesgue measure is independently defined by a two-
step procedure based on C. Carathéodory’s extension theorem: first, one defines the outer
measure (for all sets) as the smallest sum of box volumes corresponding to covering the set
using boxes, and then, one defines a set A to be measurable if for every other set K, the
outer measure of K is the sum of outer measures of K \A and K ∩A.

A set A ⊂ Rn is an analytic set if it is the continuous image of a Borel set in a Polish
space. Analytic subsets of Polish spaces are closed under countable unions and intersections,
continuous images, and inverse images (but not under complementation). Any Borel set is
analytic (i.e., B ⊂ A).

A subset A of Rn is universally measurable if it is measurable with respect to every
complete probability measure on Rn that measures all Borel sets in Rn. In particular, a
universally measurable set of reals is necessarily Lebesgue measurable (i.e., U ⊂ L). Every
analytic set is universally measurable (i.e., A ⊂ U), and hence Lebesgue measurable.

We can now explain why it is sufficient in the definition of convex measures to only require
that the sets A and B are Borel-measurable. Indeed, if A and B are Borel, they are analytic;
hence A × B is an analytic set in Rn × Rn. Now, by projecting from (x, y) ∈ Rn × Rn to
x + y ∈ Rn (which is a continuous map), the resultant set A + B is analytic. In particular,
since A ⊂ L, A+B is measurable, and no additional assumption is needed.

1.3 Exogenous motivations for studying convex measures

1.3.1 Geometric functional analysis

A key category in functional analysis is that of Banach spaces. Recall that a (real) Banach
space V is a complete normed vector space, where complete means that any Cauchy sequence
converges, and a norm ‖ · ‖ is defined by the three conditions: ‖x‖ ≥ 0, ‖λx‖ = |λ|‖x‖ for
any λ ∈ R, and ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V .

Key examples include

C(Rn) = {f : Rn → R : f continuous, ‖f‖∞ := sup
x
|f(x)| <∞},

Lp(Rn) = {f : Rn → R : ‖f‖p :=

(∫
Rn
|f(x)|pdx

)1/p

<∞}.

An idea pioneered by V. Milman and his contemporaries was to focus on the “local”, or
“asymptotic” theory of Banach spaces. The approach here is to understand the geometry of
infinite-dimensional spaces by studying large but finite-dimensional Banach spaces (i.e., Rn
with some norm, for large n). An immediate connection between Banach space theory and
geometry comes from considering unit balls. Let us recall some basic definitions. The unit
ball of a normed space (say Rn with some norm) is defined by {x ∈ Rn : ‖x‖ ≤ 1}. We say
that a set A ⊂ Rn is symmetric if x ∈ A implies that −x ∈ A. A compact convex set with
non-empty interior is called a convex body.

Theorem 5. For any Banach space, the unit ball is a symmetric, convex body. Moreover,
every symmetric, convex body in Rn is the unit ball for some norm on Rn; indeed, one can
define the Minkowski or gauge functional ‖x‖K = inf{t > 0 : xt ∈ K}.
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Observe that by definition, ‖x‖K ≤ r iff x/r ∈ K or x ∈ rK.

Let lnp denotes the Rn equipped with lp norm, ‖x‖p = (
∑n

i=1 |xi|p)
1/p. Observe the shapes

of the unit balls.

As an illustration, a major theorem7 in this local theory of Banach spaces is Dvoretzky’s
theorem [20, 21]. For background, note that although all norms on Rn are equivalent, the
constants that appear would typically depend on n; for example, the vector (1, . . . , 1) has l∞

norm 1 but l2 norm
√
n.

Theorem 6. For any n-dimensional Banach space V with n large enough, there exists
m(n) → ∞ as n → ∞, and an m(n) dimensional subspace E of V such that E looks like

l
m(n)
2 . More precisely, for every ε > 0, there exists an m(n, ε) dimensional subspace E and a

positive quadratic form Q on E such that the corresponding Euclidean norm | · |2 satisfies

|x|2 ≤ ‖x‖ ≤ (1 + ε)|x|2

for every x ∈ E.

In fact one can always choose m(n) growing like ε2 log n; the sharp dependence on ε here
was proved by Gordon [33] (cf. [60]).

An alternative formulation using convex bodies is: For any convex body in Rn with n
large enough, there exist universal constants c, C, and m(n) → ∞ as n → ∞, and an m(n)
dimensional subspace E of Rn such that

c

M(K)
(Bn

2 ∩ E) ⊂ K ∩ E ⊂ C

M(K)
(Bn

2 ∩ E),

where M(K) =
∫
Sn−1 ‖x‖σ(dx).

Another major theorem about high-dimensional convex bodies was obtained much more
recently by Klartag [41, 42]. It says that measure projections (and not just geometric pro-
jections) are “nice”.

Theorem 7. Let `(n) = cnτ ∈ [n], where c, τ are universal (but unspecified) constants. If X
is a random vector in Rn that is distributed uniformly in a convex body K, then there exists
a `(n)-dimensional subspace E ⊂ Rn and r > 0 such that

dTV (L(πEX), N(0, r)) ≤ n−τ ,

where πEX denotes the orthogonal projection of X onto E.

Observe that there is a somewhat surprising distinction between the measure projection
and the geometric projection of high-dimensional convex bodies; geometric projections are
only nice up to dimension logarithmic in n, while measure projections remain nice up to a
fractional power of n.

7 Here is a nice extract from K. Ball’s review of Milman’s survey article [51] on Dvoretzky’s theorem:
“Dvoretzky’s theorem initiated an avalanche of work on finite-dimensional normed spaces, guided by the
heuristic principle: “All convex bodies behave like ellipsoids, and ever more so as the dimension increases.”
This principle runs completely counter to one’s initial experience. As the dimension n increases, cubes seem less
and less like spheres. The ellipsoid of largest volume inside an n-dimensional cube is the obvious solid sphere,
and occupies only a tiny fraction, about (πe/2n)n/2, of the cube’s volume. Nevertheless there are remarkable
theorems embodying the heuristic principle and providing powerful tools for the study of high-dimensional
geometry.”
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As we will see, convex bodies can be identified with the class of 1/n-concave probability
measures on Rn (the latter are precisely the uniform measures on the former). Thus one may
wonder if the “natural” setting for results in geometric functional analysis (such as Klartag’s
theorem) is really that of convex measures. That this does indeed seem to be the case has
been realized, and there is much active research on completing this bigger picture.

We will develop enough machinery in these lectures to at least understand some of the
ingredients that go into proving Theorem 7 and its generalizations to convex measures, which
can be seen as a powerful variant of the central limit theorem that imposes the global depen-
dence structure of convexity rather than a coordinate-dependent dependence structure (such
as a Markov or martingale structure).

1.3.2 Stochastic optimization

One motivation for the study of convex measures comes from the fact that just as convex
(or more generally, quasi-concave) functions are the threshold between easy and difficult op-
timization problems, convex measures are the threshold between easy and difficult stochastic
optimization problems. There are several kinds of stochastic optimization problems that can
be considered– one example, which was the original motivation for Prékopa’s study [58] of
log-concave functions, is when the goal is to minimize a convex function f(x) defined on Rn
subject to the constraints

P{g1(x) ≥ A1, . . . , gm(x) ≥ Am} ≥ p, h1(x) ≥ 0, . . . , hk(x) ≥ 0,

where p ∈ (0, 1) is a prescribed probability, the functions gi, hj : Rn → R are concave, and
the parameters A1, . . . , Am are random variables. In this case, the problem reduces to a
deterministic optimization problem whose nature depends on that of the function

h(x) = P{g1(x) ≥ A1, . . . , gm(x) ≥ Am},

which in turn depends on the joint distribution of (A1, . . . , Am) ∈ Rm. As we will see, if
(A1, . . . , Am) has a log-concave distribution, then the function h(x) will turn out to be a
log-concave function on Rn, which makes the stochastic optimization problem amenable to
standard convex programming algorithms.

1.3.3 Statistical inference

Statistical decision theory explores fundamental limits on the performance of statistical esti-
mators, and there is an enormous theory that explores this, both in parametric and nonpara-
metric settings. Non-parametric statistical inference under shape constraints has attracted a
huge amount of interest lately [4, 19]. A prototypical example of such an inference problem is
to estimate a log-concave (or more generally, s-concave with s < 0) density from data drawn
from it; it turns out that a maximum likelihood approach can be used despite the infinite
dimensionality.
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2 Lecture 2: Borell’s characterization of convex measures

2.1 Convexity properties of Lebesgue measure

2.1.1 The Brunn-Minkowski inequality

The most basic measure on Rn is the Lebesgue measure `. Does it have convexity properties?
Enter the Brunn-Minkowski inequality8 (BMI).

Theorem 8. If A,B are Borel subsets of Rd,

|A+B|
1
d ≥ |A|

1
d + |B|

1
d .

It is useful to record several equivalent forms of the BMI.

Lemma 2. The following are equivalent:

1. For the class of Borel-measurable subsets of Rd,

|A+B|
1
d ≥ |A|

1
d + |B|

1
d

2. ` is 1/d-concave, i.e.,

|λA+ (1− λ)B| ≥
(
λ|A|

1
d + (1− λ)|B|

1
d

)d
3. ` is 0-concave, i.e.,

|λA+ (1− λ)B| ≥ |A|λ|B|1−λ

4. ` is (−∞)-concave, i.e.,

|λA+ (1− λ)B| ≥ min{|A|, |B|}.

Proof. Let us indicate why the inequalities (5)–(5) are equivalent. Making use of the arith-
metic mean-geometric mean inequality, we immediately have (5) ⇒ (5) ⇒ (5). Applying (5)
to Ã = λA, B̃ = (1− λ)B we have

|λA+ (1− λ)B| = |Ã+ B̃|

≥ (|Ã|
1
d + |B̃|

1
d )d

=
(
|λA|

1
d + |(1− λ)B|

1
d

)d
=
(
λ|A|

1
d + (1− λ)|B|

1
d

)d
,

where the last equality is by homogeneity of the Lebesgue measure. Thus (5) ⇒ (5). It
remains to prove that (5) ⇒ (5). First notice that (5) is equivalent to

|A+B| ≥ min{|A/λ|, |B/(1− λ)|}
= min{|A|/λd, |B|/(1− λ)d}.

8While Brunn and Minkowski proved the inequality (??) for convex sets in the late 19th century, Lusternik
[48] extended it to the general case. Therefore, strictly speaking, one should refer to the Brunn-Minkowski
inequality only when the objects of interest are convex sets, but in practice, this appellation is commonly used
for the general inequality as well.

11



It is easy to see that the right hand side is maximized when |A|/λd = |B|/(1− λ)d, or

λ =
|A|

1
d

|A|
1
d + |B|

1
d

.

Inserting λ into the above yields (5). �

There are now numerous proofs of the BMI. A particularly nice one is that of Hadwiger
and Ohmann [38] (recounted as part of a beautiful survey of the BMI by Gardner [32]). There
are also nice proofs using Steiner symmetrization, rearrangements, optimal transport, etc.
(which all need some machinery to explain that we do not want to bother with).

Later we will give an elegant proof of the BMI that goes through its functional version,
the Prékopa-Leindler inequality. For now, we merely observe that the BMI in one dimension
is trivial.

Lemma 3. If A,B ⊂ R are compact, then |A+B| ≥ |A|+ |B|.

Proof. By translation-invariance of Lebesgue measure, we can move A and B so that the
minimum element of A and the maximum element of B (both of which exist by compactness)
are 0. Then A+B ⊃ A ∪B, and so

|A+B| ≥ |A ∪B| = |A|+ |B| − |A ∩B| = |A|+ |B| − |{0}| = |A|+ |B|.

�

2.1.2 Isoperimetric Inequality for Lebesgue measure

Define the surface area of a set A (if it exists) as

S(A) = lim
ε→0

Vol(A+ εBn
2 )−Vol(A)

ε
.

Here Bn
2 is the unit ball in Rn using the Euclidean metric. Observe that another way to write

the enlargement Aε = A+ εBn
2 is as {x ∈ Rn : d(x,A) ≤ ε}, where d(x,A) = inf{d(x, y) : y ∈

A} is the distance from x to the set A.
The classical isoperimetric principle has a very long history, and underlies for example the

fact that water bubbles are spherical (since surface tension causes them to minimize surface
area for the fixed volume of trapped air). Two ways to state the isoperimetric principle for
Lebesgue measure on Rn:

1. For fixed Vol(A), the surface area of A, given by S(A) is minimized when A is a
Euclidean ball; this can be restated as S(A) ≥ S(A∗), where A∗ is the spherical sym-
metrization of A.

2. For fixed surface area S(A), the volume is maximized when A is a Euclidean ball.

More precisely, we capture this by proving that the functional Vol(A)/S(A)
n
n−1 is maxi-

mized by the ball.

Theorem 9. For sets A ⊂ Rn whose volume and surface area exist,[
Vol(A)

Vol(B2)

]1/n
≤
[

S(A)

S(B2)

]1/n−1
.
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Proof. We show that the Brunn-Minkowski inequality implies the Isoperimetric inequality
for the Lebesgue measure. Recall that the Brunn-Minkowski inequality states that, if A and
B are two non-empty compact subsets of Rn, then,

Vol1/n(A+B) ≥ Vol1/n(A) + Vol1/n(B).

From the above we get that for any s, t > 0

Vol1/n(sA+ tB) ≥ sVol1/n(A) + tVol1/n(B).

The above immediately seen by noting that Vol1/n(sA) = sVol1/n(A). From this we get that

S(A) = lim
ε→0

Vol(A+ εB2)−Vol(A)

ε

≥ lim
ε→0

[
Vol1/n(A) + εVol1/n(B2)

]n
−Vol(A)

ε
(5)

= nVol(n−1)/n(A)Vol1/n(B2) (6)

Here (5) follows from the form of Brunn-Minskowski given above. Further (6) follows by
noting that the limit is Vol1/n(B2) times the derivative of the function xn evaluated at
Vol1/n(A). Accordingly, using that S(B2) = nVol(B2) one gets that the right side of (6) is

Vol
n−1
n (A)S(B2)/Vol(n−1)/n(B2). Rearranging terms leads to us to the Isoperimetric inequal-

ity. �

A particularly powerful proof approach, however, which also has many other applications
is to start with the more general Brunn-Minkowski inequality.

2.2 The characterization (without proofs)

It is a nontrivial fact, due to Borell [14], that concavity properties of a measure can equiva-
lently be described pointwise in terms of its density (for κ = 0, this was understood slightly
earlier by Prékopa). First, one has to show that convex measures have densities in the first
place, with respect to Lebesgue measure on some affine subspace/linear variety.

Any hyperbolic measure µ on a locally convex space E has a convex support supp(µ). Let
Hµ denote the smallest affine subspace in E containing supp(µ). The dimension k = dim(Hµ)
is called the dimension of µ and is denoted dim(µ).

Theorem 10 (Borell). If a locally finite hyperbolic measure µ on E has a finite dimension,
it is absolutely continuous with respect to Lebesgue measure on Hµ.

The proof of Theorem 10 involves some careful analysis and we will not reproduce it here.
The main point of it is that, without loss of generality, we can restrict our attention to the
relevant affine subspace, and assume our convex measure has a density.

Theorem 11 (Borell). A measure µ on Rd is κ-concave and absolutely continuous with
respect to the Lebesgue measure if and only if it has a density that is a sκ,d-concave function,
in the sense that

f((1− t)x+ ty) ≥M t
sκ,d

(f(x), f(y))

whenever f(x)f(y) > 0 and t ∈ (0, 1), and where

sκ,d :=
κ

1− κd
.
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Examples:

1. If X is the uniform distribution on a convex body K, it has an ∞-concave density
function f = |K|−11K and thus the probability measure is 1/d-concave. Let us note
that by our requirement that µ is “full-dimensional” (i.e., has support with nonempty
interior), the only 1/d-concave probability measures on Rd are of this type.

2. A measure that is 0-concave is also called a log-concave measure. Since s0,d = 0 for any
positive integer d, Theorem 11 implies that an absolutely continuous measure µ is log-
concave if and only if its density is a log-concave function (as defined in Definition ??).
In other words, X has a log-concave distribution if and only if its density function can
be expressed on its support as e−V (x) for V convex. When V (x) = 1

2 |x|
2 − d

2 log(2π),
one has the standard Gaussian distribution; when V (x) = x for x ≥ 0 and V (x) = ∞
for x < 0, one has the standard exponential distribution; and so on.

3. If X is log-normal distribution with density function

f(x) :=
1

xσ
√

2π
e−

(ln x−µ)2

2σ2

Then for σ < 4, the density function of X is −σ/4-concave, and the probability measure
is −σ4−σ -concave.

4. If X is a Beta distribution with density function

xα(1− x)β

B(α, β)

with shape parameters α ≥ 1 and β ≥ 1, then the density function ofX is min( 1
α−1 ,

1
β−1)-

concave, and the probability measure is 1
max(α,β) -concave.

5. If X is a d-dimensional Student’s t-distribution with density function

f(x) :=
Γ(ν+d2 )

ν
d
2π

d
2 Γ(ν2 )

(
1 +
|x|2

ν

)− ν+d
2

with ν > 0, then the density function ofX is− 1
ν+d -concave, and the probability measure

is − 1
ν -concave.

6. If X is a d-dimensional Pareto distribution of the first kind with density function

f(x) := a(a+ 1) · · · (a+ d− 1)

(
d∏
i=1

θi

)−1( d∑
i=1

xi
θi
− d+ 1

)−(a+d)
for xi > θi > 0 with a > 0, then the density function of X is − 1

a+d -concave, and the
probability measure is 1/a-concave.

The optimal κ for the distributions above can be found through direct computation on
densities.

Observe that if κ > 1
n , a κ-concave measure cannot be absolutely continuous with respect

to Lebesgue measure.
Observe that κ = −∞ corresponds to s = − 1

n , which means that s-concave densities with
s < − 1

n may not induce convex measures. In particular, the theory of convex measures does
not currently cover quasiconcave densities (except in dimension 1, where we will see that a
stronger form of the characterization theorem holds).
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2.3 Consequences of Borell’s characterization theorem

Borell’s characterization theorem is a rather powerful tool, especially in conjunction with the
following elementary observation.

Lemma 4. For a measure on Rn, κ-concavity is an affine invariant. For probability measures,
this can be stated as follows: If X is κ-concave and T is affine, then TX is κ-concave as well.

Proof. Obvious once we notice that T−1(λA+ (1− λ)B) = λT−1A+ (1− λ)T−1B. �

We now list some corollaries.

Corollary 1 (Brunn’s section theorem). Let K be a convex body in Rn, and H be a hyperplane
passing through 0. If g(t) represents the volume of the cross-section of K by the hyperplane
t+H, then

g(s+ t)
1

n−1 ≥ g(s)
1

n−1 + g(t)
1

n−1 .

In particular, if K is also symmetric, the central section is the largest.

Proof. Since X is 1/n-concave, so is the real-valued random variable 〈θ,X〉, which means
its density is s1/n,1 = 1

n−1 -concave. But the value of the density of 〈θ,X〉 at t is just
voln−1(K ∩ (t+H)). �

More generally, we have:

Corollary 2 (Convexity of marginals). Let f : Rn → [0,∞) be an integrable s-concave
function on Rn. Let E be a subspace of Rn of dimension k, and define, for t ∈ E,

fE(t) =

∫
E⊥

f(t+ y)dy.

Then fE is a s
1+s(n−k) -concave function.

In particular, marginals of a log-concave density are log-concave.

Proof. Note that f induces a s
1+ns -concave measure µ, and fE is the density of the projection

of X ∼ µ onto E. Hence fE is s s
1+ns

,k = s
1+s(n−k) -concave. �

Corollary 3. If f is a log-concave density on R, then its cumulative distribution function is
also log-concave.

Proof. Since f is log-concave, so is the induced measure µ. The CDF is defined by F (x) =
µ(−∞, x] = µ(Ax) where Ax = (−∞, x]. By log-concavity of the measure,

F (λx+ (1− λ)y) = µ(Aλx+(1−λ)y) = µ(λAx + (1− λ)Ay) ≥ µ(Ax)λµ(Ay)
1−λ = F (x)λF (y)1−λ.

�

Lemma 5. Under the condition

s1 + s2 > 0,
1

s
=

1

s1
+

1

s2
, (7)

for all real positive numbers a′, a′′, b, b′′ and any λ ∈ (0, 1),

Mλ
s1(a′, b′)Mλ

s2(a′′, b′′) ≥ Mλ
s (a′a′′, b′b′′).

Proof. Hölder. �
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Lemma 6. If a finite measure µ is κ′-concave on Rn′ and a finite measure ν is κ′′-concave on
Rn′′, and if κ′, κ′′ ∈ (−∞,+∞] satisfy (7), then the product measure λ = µ⊗ ν is κ-concave
on Rn′+n′′.

Proof. By Lemma 5, if A = A′ ⊗ A′′ and B = B′ ⊗ B′′ with standard parallelepipeds A′, B′

in Rn′ of positive µ-measure, and with standard parallelepipeds A′′, B′′ in Rn′′ of positive
ν-measure, then tA+ sB = (tA′ + sB′)× (tA′′ + sB′′) and

λ(tA+ sB) = µ(tA′ + sB′) ν(tA′′ + sB′′)

≥ M
(t)
κ′ (µ(A′), µ(B′))M

(t)
κ′′ (ν(A′′), ν(B′′))

= M (t)
κ (µ(A′)ν(A′′), µ(B′)ν(B′′)) = M (t)

κ (λ(A), λ(B)).

That is, the Brunn-Minkowski-type inequality (4) is fulfilled for the measure λ on Rn in the
class of all standard parallelepipeds (of positive measure), which implies the κ-concavity of
λ. �

Since all (affine) projections of κ-concave measures are κ-concave, we obtain from Lemma 6
the following corollary (cf. [14, Theorem 4.5], where it is however assumed additionally that
0 < κ′ < 1/n and 0 < κ′′ < 1/n).

Corollary 4. Under the condition (7), if a finite measure µ is κ′-concave on Rn and a finite
measure ν is κ′′-concave on Rn, then their convolution µ ∗ ν is κ-concave.

Indeed, µ ∗ ν represents the image of the product measure λ = µ ⊗ ν on Rn × Rn under
the linear map (x, y)→ x+ y.

Finally, let us deduce an Anderson-type inequality for convex measures. Whenever we
talk about a symmetric set or measure, we always mean centrally symmetric.

Theorem 12. If C is a symmetric convex set in Rn and µ is a symmetric convex measure,
then

µ(C) ≥ µ(C + x),

for any x ∈ Rn. In fact, for any fixed x ∈ Rn, the function t 7→ µ(C + tx) is non-increasing
for t ∈ [0,∞).

Proof. Just take average of C + x and C − x for symmetric convex C, and apply definition
of convex measure. �

2.4 The Prékopa-Leindler inequality

The Prékopa-Leindler inequality (PLI) [58, 45, 59] states:

Theorem 13. If f, g, h : Rd → [0,∞) are integrable functions satisfying, for a given λ ∈
(0, 1),

h(λx+ (1− λ)y) ≥ fλ(x)g1−λ(y)

for every x, y ∈ Rd, then ∫
h ≥

(∫
f

)λ(∫
g

)1−λ
. (8)
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Remarks:

1. To see the connection with the BMI, one simply has to observe that f = 1A, g = 1B
and h = 1λA+(1−λ)B satisfy the hypothesis, and in this case, the conclusion is precisely

the BMI in its “geometric mean” form |λA+ (1− λ)B| ≥ |A|λ|B|1−λ.

2. It is natural to try to formulate a “best possible” version of the PLI, in the sense of using
the h that gives the tightest bound. However, if we define h(z) = sup{fλ(x)g1−λ(y) :
λx + (1 − λ)y = z}, we end up with a serious measurability problem. One way to get
around this is to define

h∗(z) = ess sup{fλ(x)g1−λ(y) : λx+ (1− λ)y = z},

which is always measurable. (Another way is to use the upper integral to write the
conclusion.)

3. It can be seen as a reversal of Hölder’s inequality, which can be written as

(∫
f

)λ(∫
g

)1−λ
≥
∫
fλg1−λ.

4. If one prefers, the PLI can also be written more explicitly as a kind of convolution
inequality, as implictly observed in [16] and explicitly in [43]. Indeed, if one defines the
Asplund product of two nonnegative functions by

(f ? g)(x) = sup
x1+x2=x

f(x1)g(x2),

and the scaling (λ · f)(x) = fλ(x/λ), then the left side of (26) can be replaced by the
integral of [λ · f ] ? [(1− λ) · g].

In dimension 1, we can prove a stronger inequality under an additional condition.

Lemma 7. If f, g, h : R→ [0,∞) satisfy

h(λx+ (1− λ)y) ≥ min{f(x), g(y)}

for each x, y ∈ R, and sup f = sup g, then∫
h ≥ λ

∫
f + (1− λ)

∫
g.

Proof. Use 1-d BMI and super level sets. �

Let us observe that the PLI in dimension 1 follows from this, since the PLI is homogenous,
which means the assumption sup f = sup g can be made without loss of generality.

17



2.5 Proof of the characterization

More generally, one has the Borell-Brascamp-Lieb inequality (BBLI).

Theorem 14. Let γ ≥ − 1
n , λ ∈ [0, 1] and f, g, h : Rn → [0,+∞) be measurable functions. If

the inequality
h((1− λ)x+ λy) ≥Mλ

γ (f(x), g(y))

holds for every x ∈ supp (f), y ∈ supp (g), then∫
Rn
h ≥Mλ

γ
1+γn

(∫
Rn
f,

∫
Rn
g

)
.

Proof. We already have a result of this type when n = 1.
The induction step follows from what is called the “tensorization property” of the BBLI.

Indeed, suppose f, g, h are functions on Rn+1 with F,G,H. TO BE ADDED... �

Remark: Tensorization works for PLI but not BMI. This is related to the fact that
marginals of indicators are not indicators; it is key to move to a larger more flexible class
of objects. On the other hand, we cannot have an AM form of PLI in general dimension.
This is because going from indicators to nonnegative measurable functions (via indicators, in
principle) allows only GM form to persist.
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3 Lecture 3: Reverse Hölder inequalities and information con-
centration

3.1 Motivations

3.1.1 The Gaussian thin shell property and its possible generalizations

Consider a random vector Z taking values in Rn, drawn from the standard Gaussian distri-
bution γ, whose density is given by

φ(x) =
1

(2π)
n
2

e−
|x|2
2

for each x ∈ Rn, where | · | denotes the Euclidean norm. It is well known that when
the dimension n is large, the distribution of Z is highly concentrated around the sphere
of radius

√
n; that

√
n is the appropriate radius follows by the trivial observation that

E|Z|2 =
∑n

i=1 EZ2
i = n. One way to express this concentration property is by comput-

ing the variance of |Z|2, which is easy to do using the independence of the coordinates of
Z:

Var(|Z|2) = Var

( n∑
i=1

Z2
i

)
=

n∑
i=1

Var(Z2
i ) = 2n.

In particular, the standard deviation of |Z|2 is
√

2n, which is much smaller than the mean
n of |Z|2 when n is large. Another way to express this concentration property is through a
deviation inequality:

P

{
|Z|2

n
− 1 > t

}
≤ exp

{
− n

2
[t− log(1 + t)]

}
(9)

for the upper tail, and a corresponding upper bound on the lower tail. These inequalities
immediately follow from Chernoff’s bound, since |Z|2/n is just the empirical mean of i.i.d.
random variables.

It is natural to wonder if, like so many other facts about Gaussian measures, the above
concentration property also has an extension to log-concave measures (or to some subclass of
them). There are two ways one may think about extending the above concentration property.
One is to ask if there is a universal constant C such that

Var(|X|2) ≤ Cn,

for every random vector X that has an isotropic, log-concave distribution on Rn. Here, we
say that a distribution on Rn is isotropic if its covariance matrix is the identity matrix; this
assumption ensures that E|X|2 = n, and provides the normalization needed to make the
question meaningful. This question has been well studied in the literature, and is known
as the “thin shell conjecture” in convex geometry. It is closely related to other famous
conjectures: it implies the hyperplane conjecture of Bourgain [23, 24], is trivially implied by
the Kannan-Lovasz-Simonovits conjecture, and also implies the Kannan-Lovasz-Simonovits
conjecture up to logarithmic terms [22]. The best bounds known to date are those of Guédon
and E. Milman [35], and assert that

Var(|X|2) ≤ Cn4/3.
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The second way that one may try to extend the above concentration property from Gaus-
sians to log-concave measures is to first observe that the quantity that concentrates, namely
|Z|2, is essentially the logarithm of the Gaussian density function. More precisely, since

− log φ(x) =
n

2
log(2π) +

|x|2

2
,

the concentration of |Z|2 about its mean is equivalent to the concentration of − log φ(Z)
about its mean. Thus one can ask if, for every random vector X that has a log-concave
density f on Rn,

Var(− log f(X)) ≤ Cn (10)

for some absolute constant C. An affirmative answer to this question was provided by Bobkov
and Madiman [8]. The approach of [8] can be used to obtain bounds on C, but the bounds
so obtained are quite suboptimal (around 1000). Recently V. H. Nguyen [53] (see also [54])
and L. Wang [65] independently determined, in their respective Ph.D. theses, that the sharp
constant C in the bound (10) is 1. Soon after this work, simpler proofs of the sharp variance
bound were obtained independently by us (presented in the proof of Theorem 16 in this paper)
and by Bolley, Gentil and Guillin [12] (see Remark 4.2 in their paper). An advantage of our
proof over the others mentioned is that it is very short and straightforward, and emerges as
a consequence of a more basic log-concavity property (namely Theorem 15) of Lp-norms of
log-concave functions, which may be thought of as an analogue for log-concave functions of
a classical inequality of Borell [13] for concave functions.

If we are interested in finer control of the integrability of − log f(X), we may wish to
consider analogues for general log-concave distributions of the inequality (9). Our second
objective in this note is to provide such an analogue (in Theorem 18). A weak version of such
a statement was announced in [9] and proved in [8], but the bounds we provide in this note
are much stronger. Our approach has two key advantages: first, the proof is transparent and
completely avoids the use of the sophisticated Lovasz-Simonovits localization lemma, which
is a key ingredient of the approach in [8]; and second, our bounds on the moment generating
function are sharp, and are attained for example when the distribution under consideration
has i.i.d. exponentially distributed marginals.

While in general exponential deviation inequalities imply variance bounds, the reverse
is not true. Nonetheless, our approach in this note is to first prove the variance bound
(10), and then use a general bootstrapping result (Theorem 17) to deduce the exponential
deviation inequalities from it. The bootstrapping result is of independent interest; it relies
on a technical condition that turns out to be automatically satisfied when the distribution in
question is log-concave.

3.1.2 The Shannon-McMillan-Breiman theorem and its implications

Let X = (X1, X2, . . .) be a stochastic process with each Xi taking values on the real line R.
Suppose that the joint distribution of Xn = (X1, . . . , Xn) has a density f with respect to
either Lebesgue measure on Rn. We are interested in the random variable

h̃(Xn) = − log f(Xn).

In the discrete case, the quantity h̃(Xn) (using f for the probability mass function in this
case, thought of as the density with respect to counting measure on some discrete subset
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of Rn) is essentially the number of bits needed to represent X by a coding scheme that
minimizes average code length (cf. [62]), and therefore may be thought of as the (random)
information content of Xn. Such an interpretation is not justified in the continuous case, but
the quantity h̃(Xn) remains of central interest in information theory, statistical physics, and
statistics, and so we will with some abuse of terminology continue to call it the information
content. Its importance in information theory comes from the fact that it is the building
block for Pinsker’s information density; its importance in statistical physics comes from the
fact that it represents (up to an additive constant involving the logarithm of the partition
function) the Hamiltonian or energy of a physical system under a Gibbs measure; and its
importance in statistics comes from the fact that it represents the log-likelihood function in
the nonparametric inference problem of density estimation.

The average value of the information content of X is the differential entropy. Indeed, the
entropy of Xn is defined by

h(Xn) = −
∫
f(x) log f(x) dx = −E log f(Xn),

when it exists. If the limit

h(X) := lim
n→∞

h(Xn)

n
exists, it is called the entropy rate of the process X.

The Shannon-McMillan-Breiman theorem [62, 49, 17] is a central result of information
theory; indeed, an early form of this result was called by McMillan the “fundamental theorem
of information theory” [49]. (McMillan also gave it the pithy and expressive title of the
“Asymptotic Equipartition Property”.) It asserts that for any stationary, ergodic process
whose entropy rate exists, the information content per coordinate converges almost surely
to the entropy rate. This version, and a generalization involving log likelihood ratios with
respect to a Markov process, is due independently to Barron [5] and Orey [57]; the definitive
version for asymptotically mean stationary processes is due to [5], and Algoet and Cover
[1] give an elementary approach to it. The theorem implies in particular that for purposes
of coding discrete data from ergodic sources, it is sufficient to consider “typical sequences”,
and that the entropy rate of the process plays an essential role in characterizing fundamental
limits of compressing data from such sources.

3.2 A basic reverse Hölder inequality

Hölder’s inequality implies the following basic fact about Lp-norms (on any measure space),
which is sometimes attributed to Lyapunov: For a nonnegative function f , the function
p 7→

∫
fp is log-convex for p ∈ [0,∞]. Indeed, Hölder’s inequality states that if f and g are

measurable functions from S to R, then

‖fg‖L1(S,µ) ≤ ‖f‖Lr(S,µ)‖g‖Lr′ (S,µ),

for any 1 ≤ r ≤ ∞ with the conjugate number r′ to r being defined by 1
r + 1

r′ = 1. Therefore,
writing

∫
fp for

∫
S |f(x)|p µ(dx), we have∫

fλp+(1−λ)q =

∫
fλpf (1−λ)q ≤

[ ∫
fλpr

] 1
r
[ ∫

f (1−λ)qr
′
] 1
r′

=

[ ∫
fp
]λ[ ∫

f q
]1−λ

,

by choosing r = 1/λ, which is precisely the claimed convexity of log
∫
fp with respect to

p ∈ (0,∞).
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The key fact in this section is the following theorem, which clearly can be seen as a
describing behavior that is in the opposite direction to Lyapunov’s observation.

Theorem 15. If f is log-concave on Rn, then the function

G(α) := αn
∫
f(x)αdx

is log-concave on (0,+∞).

Proof. Write f = e−U , with U convex. Make the change of variable x = z/α to get

G(α) =

∫
e−αU(z/α)dz.

The function w(z, α) := αU(z/α) is convex on Rn × (0,+∞) by Lemma 8, which means
that the integrand above is log-concave. The log-concavity of G then follows from Prékopa’s
theorem [59], which implies that marginals of log-concave functions are log-concave. �

We used the following lemma, which is a standard fact about the so-called perspective
function in convex analysis. We give the short proof for completeness.

Lemma 8. If U : Rn → R ∪ {+∞} is a convex function, then

w(z, α) := αU(z/α)

is a convex function on Rn × (0,+∞).

Proof. First note that by definition, w(az, aα) = aw(z, α) for any a > 0 and any (z, α) ∈
Rn × (0,+∞), which implies in particular that

1

α
w(z, α) = w

(
z

α
, 1

)
.

Hence

w(λz1 + (1− λ)z2, λα1 + (1− λ)α2)

= [λα1 + (1− λ)α2]U

(
λα1

z1
α1

+ (1− λ)α2
z2
α2

λα1 + (1− λ)α2

)
≤ λα1U

(
z1
α1

)
+ (1− λ)α2U

(
z2
α2

)
= λw(z1, α1) + (1− λ)w(z2, α2),

for any λ ∈ [0, 1], z1, z2 ∈ Rn, and α1, α2 ∈ (0,∞). �

3.3 Sharp varentropy bound

Before we proceed, we need to fix some definitions and notation.

Definition 3. Let a random vector X taking values in Rn have probability density function
f . The information content of X is the random variable h̃(X) = − log f(X). The entropy
of X is defined as h(X) = E(h̃(X)). The varentropy of a random vector X is defined as
V (X) = Var(h̃(X)).
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Note that the entropy and varentropy depend not on the realization of X but only on its
density f , whereas the information content does indeed depend on the realization of X. For
instance, one can write h(X) = −

∫
Rn f log f and

V (X) = Var(log f(X)) =

∫
Rn
f(log f)2 −

(∫
Rn
f log f

)2

.

Nonetheless, for reasons of convenience and in keeping with historical convention, we slightly
abuse notation as above.

As observed in [8], the distribution of the difference h̃(X)− h(X) is invariant under any
affine transformation of Rn (i.e., h̃(TX)−h(TX) = h̃(X)−h(X) for all invertible affine maps
T : Rn → Rn); hence the varentropy V (X) is affine-invariant while the entropy h(X) is not.

Another invariance for both h(X) and V (X) follows from the fact that they only depend
on the distribution of log(f(X)), so that they are unchanged if f is modified in such a way
that its sublevel sets keep the same volume. This implies (see, e.g., [47, Theorem 1.13]) that if
f̃ is the spherically symmetric, decreasing rearrangement of f , and X̃ is distributed according
to the density f̃ , then h(X) = h(X̃) and V (X) = V (X̃). The rearrangement-invariance of
entropy was a key element in the development of refined entropy power inequalities in [66].

We can now state the optimal form of the inequality (10), first obtained by Nguyen [53]
and Wang [65] as discussed in Section ??.

Theorem 16. [53, 65] Given a random vector X in Rn with log-concave density f ,

V (X) ≤ n

Remarks:

1. The probability bound does not depend on f– it is universal over the class of log-concave
densities.

2. The bound is sharp. Indeed, let X have density f = e−ϕ, with ϕ : Rn → [0,∞]
being positively homogeneous of degree 1, i.e., such that ϕ(tx) = tϕ(x) for all t > 0
and all x ∈ Rn. Then one can check that the random variable Y = ϕ(X) has a
gamma distribution with shape parameter n and scale parameter 1, i.e., it is distributed
according to the density given by

fY (t) =
tn−1e−t

(n− 1)!
.

To see this, note that

P (Y ≥ t) = P (ϕ(X) ≥ t) =

∫
{x;ϕ(x)≥t}

e−ϕ(x)dx

=

∫
{x;ϕ(x)≥t}

∫ +∞

ϕ(x)
e−sds

=

∫ +∞

t
e−svol({x; t ≤ ϕ(x) ≤ s})ds.

Using homogeneity of ϕ, we deduce that

P (Y ≥ t) =

∫ +∞

t
e−s(sn − tn)vol({x;ϕ(x) ≤ 1})ds.
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Integrating by parts, we get

P (Y ≥ t) =

∫ +∞

t
e−snsn−1dsvol({x;ϕ(x) ≤ 1}).

Since Y ≥ 0, taking t = 0, we get that

1 = P (Y ≥ 0) =

∫ +∞

0
e−snsn−1dsvol({x;ϕ(x) ≤ 1}) = n!vol({x;ϕ(x) ≤ 1}).

Thus

P (Y ≥ t) =

∫ +∞

t
e−ssn−1ds/(n− 1)!.

Consequently E(Y ) = n and E(Y 2) = n(n + 1), and therefore V (X) = Var(Y ) = n.
Particular examples of equality include:

(a) The case where ϕ(x) =
∑n

i=1 xi on the cone of points with non-negative coordi-
nates (which corresponds to X having i.i.d. coordinates with the standard expo-
nential distribution), and

(b) The case where ϕ(x) = inf{r > 0 : x ∈ rK} for some compact convex set K
containing the origin (which, by taking K to be a symmetric convex body, includes
all norms on Rn suitably normalized so that e−ϕ is a density).

3. Bolley, Gentil and Guillin [12] in fact prove a stronger inequality, namely,

1

V (X)
− 1

n
≥
[
E
{
∇U(X) ·Hess(U(X))−1∇U(X)

}]−1
.

This gives a strict improvement of Theorem 16 when the density f = e−U of X is
strictly log-concave, in the sense that Hess(U(X)) is, almost surely, strictly positive
definite. As noted by [12], one may give another alternative proof of Theorem 16 by
applying a result of Hargé [39, Theorem 2].

Proof. Since f is a log-concave density, it necessarily holds that f ∈ Lα(Rn) for every α > 0;
in particular, G(α) := αn

∫
fα is finite and infinitely differentiable on the domain (0,∞). By

definition,

logG(α) = n logα+ log

∫
fα = n logα+ F (α).

Consequently,

d2

dα2
[logG(α)] = − n

α2
+ F ′′(α).

By Theorem 15, logG(α) is concave, and hence we must have that

− n

α2
+ F ′′(α) ≤ 0

for each α > 0. However, Lemma 9 implies that F ′′(α) = V (Xα)/α2, so that we obtain the
inequality

V (Xα)− n
α2

≤ 0.

For α = 1, this implies that V (X) ≤ n. �
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Notice that if f = e−U , where U : Rn → [0,∞] is positively homogeneous of degree 1,
then the same change of variable as in the proof of Theorem 15 shows that

G(α) =

∫
e−αU(z/α)dz =

∫
e−U(z)dz =

∫
f(z)dz = 1.

Hence the function G is constant. Then the proof above shows that V (X) = n, which
establishes the equality case stated in Remark ??.

Our proof of Theorem 16 used the following lemma, which is a standard computation (it
is a special case of a well known fact about exponential families in statistics), but we write
out a proof for completeness.

Lemma 9. Let f be any probability density function on Rn such that f ∈ Lα(Rn) for each
α > 0, and define

F (α) = log

∫
Rn
fα.

Let Xα be a random variable with density fα on Rn, where

fα :=
fα∫

Rn f
α
.

Then F is infinitely differentiable on (0,∞), and moreover, for any α > 0,

F ′′(α) =
1

α2
V (Xα).

Proof. Note that the assumption that f ∈ Lα(Rn) (or equivalently that F (α) < ∞) for all
α > 0 guarantees that F (α) is infinitely differentiable for α > 0 and that we can freely change
the order of taking expectations and differentiation.

Now observe that

F ′(α) =

∫
fα log f∫
fα

=

∫
fα log f ;

if we wish, we may also massage this to write

F ′(α) =
1

α
[F (α)− h(Xα)]. (11)

Differentiating again, we get

F ′′(α) =

∫
fα(log f)2∫

fα
−
(∫

fα log f∫
fα

)2

=

∫
fα(log f)2 −

(∫
fα log f

)2

= Var[log f(Xα)] = Var

[
1

α
{log fα(Xα) + F (α)}

]
=

1

α2
Var[log fα(Xα)] =

V (Xα)

α2
,

as desired. �
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3.4 Sharp concentration of information

The first part of this section describes a strategy for obtaining exponential deviation inequali-
ties when one has uniform control on variances of a family of random variables (log-concavity
is not an assumption needed for this part).

Theorem 17. Suppose X ∼ f , where f ∈ Lα(Rn) for each α > 0. Let Xα ∼ fα, where

fα(x) =
fα(x)∫
fα

.

If K = K(f) := supα>0 V (Xα), then

E
[
eβ{h̃(X)−h(X)}] ≤ eKr(−β), β ∈ R,

where

r(u) =

{
u− log(1 + u) for u > −1
+∞ for u ≤ −1 .

Proof. Suppose X is a random vector drawn from a density f on Rn, and define, for each
α > 0, F (α) = log

∫
fα. Set

K = sup
α>0

V (Xα) = sup
α>0

α2F ′′(α);

the second equality follows from Lemma 9. Since f ∈ Lα(Rn) for each α > 0, F (α) is
finite and moreover, infinitely differentiable for α > 0, and we can freely change the order of
integration and differentiation when differentiating F (α).

From Taylor-Lagrange formula, for every α > 0, one has

F (α) = F (1) + (α− 1)F ′(1) +

∫ α

1
(α− u)F ′′(u)du.

Using that F (1) = 0, F ′′(u) ≤ K/u2 for every u > 0 and the fact that for 0 < α < u < 1,
one has α− u < 0, we get

F (α) ≤ (α− 1)F ′(1) +K

∫ α

1

α− u
u2

du

= (α− 1)F ′(1) +K
[
−α
u
− log(u)

]α
1
.

Thus, for α > 0, we have proved that

F (α) ≤ (α− 1)F ′(1) +K(α− 1− logα).

Setting β = 1− α, we have for β < 1 that

eF (1−β) ≤ e−βF ′(1)eK(−β−log(1−β)). (12)

Observe that eF (1−β) =
∫
f1−β = E[f−β(X)] = E[e−β log f(X)] = E

[
eβh̃(X)

]
and e−βF

′(1) =

eβh(X); the latter fact follows from the fact that F ′(1) = −h(X) as is clear from the identity
(11). Hence the inequality (12) may be rewritten as

E
[
eβ{h̃(X)−h(X)}] ≤ eKr(−β), β ∈ R. (13)

�
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Note that the function r is convex on R and has a quadratic behavior in the neighborhood
of 0 (r(u) ∼0

u2

2 ) and a linear behavior at +∞ (r(u) ∼∞ u).

Corollary 5. With the assumptions and notation of Theorem 17, we have for any t > 0 that

P{h̃(X)− h(X) ≥ t} ≤ exp

{
−Kr

(
t

K

)}
P{h̃(X)− h(X) ≤ −t} ≤ exp

{
−Kr

(
− t

K

)}
The proof is classical and often called the Cramér-Chernoff method (see for example

section 2.2 in [15]). It uses the Legendre transform ϕ∗ of a convex function ϕ : R→ R∪{+∞}
defined for y ∈ R by

ϕ∗(y) = sup
x
xy − ϕ(x).

Notice that if minϕ = ϕ(0) then for every y > 0, the supremum is reached at a positive x,
that is ϕ∗(y) = supx>0 xy−ϕ(x). Similarly, for y < 0, the supremum is reached at a negative
x.

Proof. The idea is simply to use Markov’s inequality in conjunction with Theorem 17, and
optimize the resulting bound.

For the lower tail, we have for β > 0 and t > 0,

P[h̃(X)− h(X) ≤ −t] ≤ E

[
e−β
(
h̃(X)−h(X)

)]
e−βt

≤ exp

{
K

(
r(β)− βt

K

)}
.

Thus minimizing on β > 0, and using the remark before the proof, we get

P[h̃(X)− h(X) ≤ −t] ≤ exp

{
−K sup

β>0

(
βt

K
− r(β)

)}
= e−Kr

∗( t
K ). (14)

Let us compute the Legendre transform r∗ of r. For every t, one has

r∗(t) = sup
u
tu− r(u) = sup

u>−1
(tu− u+ log(1 + u)) .

One deduces that r∗(t) = +∞ for t ≥ 1. For t < 1, by differentiating, the supremum is
reached at u = t/(1− t) and replacing in the definition we get

r∗(t) = −t− log(1− t) = r(−t).

Thus r∗(t) = r(−t) for all t ∈ R. Replacing, in the inequality (14), we get the result for the
lower tail.

For the upper tail, we use the same argument: for β > 0 and t > 0,

P[h̃(X)− h(X) ≥ t] ≤ E

[
eβ
(
h̃(X)−h(X)

)]
e−βt

≤ exp

{
K

(
r(−β)− βt

K

)}
.
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Thus minimizing on β > 0, we get

P[h̃(X)− h(X) ≥ t] ≤ exp

{
−K sup

β>0

(
βt

K
− r(−β)

)}
. (15)

Using the remark before the proof, in the right hand side term appears the Legendre transform
of the function r̃ defined by r̃(u) = r(−u). Using that r∗(t) = r(−t) = r̃(t), we deduce that
(r̃)∗ = (r∗)∗ = r. Thus the inequality (15) gives the result for the upper tail. �

Theorem 18. Let X be a random vector in Rn with a log-concave density f . For β < 1,

E
[
eβ[h̃(X)−h(X)]

]
≤ E

[
eβ[h̃(X

∗)−h(X∗)]
]
,

where X∗ has density f∗ = e−
∑n
i=1 xi, restricted to the positive quadrant.

Proof. Taking K = n in Theorem 17 (which we can do in the log-concave setting because of
Theorem 16), we obtain:

E
[
eβ{h̃(X)−h(X)}] ≤ enr(−β), β ∈ R.

Some easy computations will show:

E
[
eβ{h̃(X

∗)−h(X∗)}] = enr(−β), β ∈ R.

This concludes the proof.
�

As for the case of equality of Theorem 16, discussed in Remark ??, notice that there is
a broader class of densities for which one has equality in Theorem 18, including all those of
the form e−‖x‖K , where K is a symmetric convex body.

Remarks:

1. The assumption β < 1 in Theorem 18 is strictly not required; however, for β ≥ 1, the
right side is equal to +∞. Indeed, already for β = 1, one sees that for any random
vector X with density f ,

E
[
eh̃(X)−h(X)

]
= e−h(X)E

[
1

f(X)

]
= e−h(X)

∫
supp(f)

dx

= e−h(X)Voln(supp(f)),

where supp(f) = {x ∈ Rn : f(x) > 0} is the support of the density f and Voln denotes
Lebesgue measure on Rn. In particular, this quantity for X∗, whose support has infinite
Lebesgue measure, is +∞.

2. Since

lim
α→0

2

α2
E

[
eα(log f(X)−E[log f(X)])

]
= V (X),

we can recover Theorem 16 from Theorem 18.
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Taking K = n in Corollary 5 (again because of Theorem 16), we obtain:

Corollary 6. Let X be a random vector in Rn with a log-concave density f . For t > 0,

P[h̃(X)− h(X) ≤ −nt] ≤ e−nr(−t),
P[h̃(X)− h(X) ≥ nt] ≤ e−nr(t),

where r(u) is defined in Theorem 17.

The following inequality9 is an immediate corollary of Corollary 6 since it merely expresses
a bound on the support of the distribution of the information content.

Corollary 7. Let X have a log-concave probability density function f on Rn. Then:

h(X) ≤ − log ‖f‖∞ + n.

Proof. By Corollary 6, almost surely,

log f(X) ≤ E[log f(X)] + n,

since when t ≥ 1, P[log f(X)−E[log f(X)] ≥ nt] = 0. Taking the supremum over all realizable
values of X yields

log ‖f‖∞ ≤ E[log f(X)] + n,

which is equivalent to the desired statement. �

An immediate consequence of Corollary 7, unmentioned in [10], is a result due to [27]:

Corollary 8. Let X be a random vector in Rn with a log-concave density f . Then

‖f‖∞ ≤ enf(E[X]).

Proof. By Jensen’s inequality,

log f(EX) ≥ E[log f(X)].

By Corollary 7,

E[log f(X)] ≥ log ‖f‖∞ − n.

Hence,

log f(EX) ≥ log ‖f‖∞ − n.

Exponentiating concludes the proof. �

9Corollary 7 was obtained by Ball around 2003, and is also implicitly contained in [31] (see the proof of
Theorem 7 there). However, it was first explicitly stated and proved in [10], who independently obtained it
and developed several applications.
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3.5 What happens for s-concave case

Recall that for x > 0, the gamma function Γ(x) is defined by

Γ(x) =

∫ ∞
0

tx−1e−tdt.

For x, y > 0, the beta function B(x, y) is defined by

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt.

The following result is proved by Borell [13] for s > 0, except that the function ϕ is
assumed to be decreasing. It was then noticed by some people and available for example
in Guédon, Nayar and Tkocz [36] that the result remains true without any monotonicity
hypothesis. For s < 0, it is proved by Fradelizi, Guédon and Pajor [28], and the case s = 0
follows by taking the limits (or reproducing the mechanics of the proof).

Proposition 1. Let s ∈ R and let ϕ : [0,+∞)→ [0,+∞) be an s-concave integrable function.
1) If s > 0, then p 7→ B(p, s−1 + 1)−1

∫ +∞
0 tp−1ϕ(t)dt is log-concave for p > 0.

2) If s = 0, then p 7→ Γ(p)−1
∫ +∞
0 tp−1ϕ(t)dt is log-concave for p > 0.

3) If s < 0, then p 7→ B(p,−s−1 − p)−1
∫ +∞
0 tp−1ϕ(t)dt is log-concave for 0 < p < −1/s.

Let us define the function ϕs(t) = (1 − st)1/s+ 1R+ for s 6= 0, and ϕ0(t) = e−t1R+ . Then
the preceding proposition may be expressed in the following way: if ϕ : [0,+∞) → [0,+∞)
is s-concave, then the function

p 7→
∫ +∞
0 tp−1ϕ(t)dt∫ +∞
0 tp−1ϕs(t)dt

is log-concave for p such that 1/p > max(0,−s). Using the preceding proposition, we can
prove the following theorem which unifies and partially extends previous results of Borell
[13], Bobkov and Madiman [10], and Fradelizi, Madiman and Wang [30].

Theorem 19. Let s ∈ R and let f : Rn → R+ be an integrable s-concave function. Then the
function

p 7→ (p+ s) · · · (p+ ns)

∫
Rn
f(x)pdx (16)

is log-concave for p > max(0,−ns).

Proof. The case s = 1 is due to Borell [13] and the case s > 0 deduces directly by applying
Borell’s result to fs. The case s = 0 was proved by Fradelizi, Madiman and Wang [30]. The
case s = −1 is due to Bobkov and Madiman [10]10, except that the range was p > n+ 1. In
the same way, the case s < 0 deduces from the case s = −1 by applying it to f |s|. So we only
need to prove the extension of the range for s = −1. Let us assume that s = −1. Thus f
is −1-concave, which means that g = f−1 is convex on its support. As done by Bobkov and
Madiman [10], we write∫

Rn
f(x)pdx =

∫
Rn
g(x)−pdx =

∫ +∞

0
ptp−1ψ(1/t)dt,

10The details of this proof were omitted from [10] because of space considerations, and are being presented
here. A complete presentation will appear in [7].
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where ψ(t) = |{x ∈ Rn : g(x) ≤ t}|n is the Lebesgue measure of the sub-level set {x ∈
Rn : g(x) ≤ t}. Using Brunn-Minkowski theorem, we can see that ψ is a 1/n-concave
function. Using the properties of the perspective function, we can deduce that the function
ϕ(t) = tnψ(1/t) is also a 1/n-concave function. Thus it follows that∫

Rn
f(x)pdx = p

∫ +∞

0
tp−n−1ϕ(t)dt.

Applying Proposition 1 to s = 1/n and p replaced by p− n we get that

B(p− n, n+ 1)−1
∫ +∞

0
tp−1−nϕ(t)dt

is log-concave on (n,+∞). Then we can conclude the proof using the following identity

B(p− n, n+ 1)−1 =
p(p− 1) · · · (p− n)

Γ(n+ 1)
.

�

The fact that Theorem 19 is optimal can be seen from the following example. Let U :
Rn → [0,∞] be a positively homogeneous convex function of degree 1, i.e. that U(tx) = tU(x)

for all x ∈ Rn and all t > 0. We define fs,U = (1− sU)
1/s
+ for s 6= 0 and f0,U = e−U for s = 0.

Then we have ∫
Rn
fs,U (x)pdx =

CUn!

(p+ s) · · · (p+ ns)
,

where CU is the Lebesgue measure of the sub-level set {x ∈ Rn : U(x) ≤ 1}. We only check
the identity for s > 0, and the other two cases can be proved similarly.∫

Rn
fs,U (x)pdx = p

∫ 1

0
tp−1|{x ∈ Rn : (1− sU(x))

1/s
+ > t}|dt

= p

∫ 1

0
tp−1|{x ∈ Rn : U(x) < (1− ts)/s}|dt

= CUp

∫ 1

0
tp−1((1− ts)/s)ndt

= CUs
−n−1pB(p/s, n+ 1)

In the third equation, we use the homogeneity of U and the property of Lebesgue measure.
Then we can prove the identity using the following fact

B(p/s, n+ 1) =
n!

(p/s+ n) · · · p/s
.

Thus the preceding theorem can be written in the following way: if f : Rn → R+ is an
integrable s-concave function, then

p 7→
∫
Rn f(x)pdx∫

Rn fs,U (x)pdx

is log-concave for p > max(0,−ns).
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We say that a Rn-valued random variable X is κ-concave if the probability measure
induced by X is κ-concave. In this section, we let X be a κ-concave random variable with
density f and κ < 0. Then Borell’s characterization implies that there is a convex function
V such that f = V −β. In the following, we will study the deviation of h̃(X) from its mean
h(X), that is corresponding to taking ϕ = − log f in Section 2. Then the moment generating
function is

Ef−α(X) =

∫
Rn
f(x)1−αdx.

The integral is finite as long as (1− α)β > n, i.e. that α < 1− n/β.

Proposition 2. Let β > n and let X be a random variable in Rn with density f being
−1/β-concave. Then the function

α 7→
n∏
i=1

((1− α)β − i)Ef−α(X) (17)

is log-concave for α < 1− n/β.

Proof. It easily follows from Theorem 19 with p replaced by 1− α and s replaced by −1/β.
�

Following Lemma ??, we can set

c(α) = −
n∑
i=1

log((1− α)β − i). (18)

Corollary 9. Under the conditions and notations of Proposition 2, we have

Var(h̃(X)) ≤ β2
n∑
i=1

(β − i)−2. (19)

Proof. By Lemma ??, we know that Var(h̃(X)) = L′′(α), where Xα is a random variable with
density proportional to f1−α and L(α) = logEf−α(X) is the logarithmic moment generating
function. By Proposition 2, we know that L′′(α) ≤ c′′(α), where c(α) is defined in (18). Then
the variance bound (19) follows by differentiating c(α) twice and setting α = 0. �

The variance bound is sharp. Suppose X has density f = (1 + U/β)−β+ with U being a
positively homogeneous convex function of degree 1. In this case, the function in Proposition
2 is log-affine, i.e. L′′(α) = c′′(α). Then we have equality in the above variance bound. In
particular, it includes the Pareto distribution with density

f(x) =
1

Zn(a, β)
(a+ x1 + · · ·+ xn)−β, xi > 0, (20)

where a > 0 and Zn(a, β) is a normalizing constant.

Theorem 20. Let β > n and let X be a random variable in Rn with density f being −1/β-
concave. Then we have

Eeα(h̃(X)−h(X)) ≤ eψc(α) (21)
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for α < 1− n/β, where

ψc(α) = −αβ
n∑
i=1

(β − i)−1 −
n∑
i=1

log
(1− α)β − i

β − i
. (22)

Particularly, we have equality for Pareto distributions.

Proof. The moment generating function bound (21) easily follows from Lemma ?? and Propo-
sition 2. Some easy calculations will show the equality case for Pareto distributions. Essen-
tially that is due to the identity L′′(α) = c′′(α), where c(α) is defined in (18).

�

Corollary 10. Under the conditions and notations of Theorem 20, we have for t > 0 that

P(h̃(X)− h(X) > t) ≤ e−ψ
∗
c,+(t), (23)

P(h̃(X)− h(X) < −t) ≤ e−ψ
∗
c,−(−t), (24)

where ψ∗c,+ and ψ∗c,− are Fenchel-Legendre dual functions of ψc,+ and ψc,−, respectively.

In general we do not have explicit expressions for ψ∗c,+ or ψ∗c,−. The following result was
obtained by Bobkov and Madiman [10] with the assumption β ≥ n+ 1, which can be relaxed
to β > n. It basically says that the entropy of an κ-concave distribution can not exceed that
of the Pareto distribution with the same maximal density value.

Corollary 11. Under the conditions and notations of Theorem 20, we have

h(X) ≤ − log ‖f‖∞ + β

n∑
i=1

(β − i)−1, (25)

where we denote by ‖f‖∞ the essential supremum. We have equality for Pareto distributions.

Proof. As a function of α, we have

(−αt− ψc(α))′ = −t+ β
n∑
i=1

(β − i)−1 − β
n∑
i=1

((1− α)β − i)−1.

For any t > β
∑n

i=1(β − i)−1, we can see that −αt − ψc(α) is a decreasing function of
α < 1− n/β. It is clear that limα→−∞(−αt−ψc(α)) =∞. Therefore we have ψ∗c,−(−t) =∞
for t > β

∑n
i=1(β− i)−1. Using the lower tail estimate in Corollary 10, almost surely we have

h̃(X)− h(X) ≥ −β
n∑
i=1

(β − i)−1.

Taking the supremum over all realizable values of X yields

− log ‖f‖∞ − h(X) ≥ −β
n∑
i=1

(β − i)−1.

That is equivalent to the desired statement. �
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4 Lecture 4: Convexity, curvature, and concentration

4.1 Weighted Prékopa-Leindler inequality

A uniform lower bound on the Hessian of V is a way to quantify a property stronger than
log-concavity of e−V . For such uniformly log-concave measures, one can obtain a local-global
inequality that strengthens PLI.

First we need an easy lemma.

Lemma 10. If V : Rn → R is C2 and satisfies Hess(V ) ≥ c ∈ R, then

λV (x) + (1− λ)V (y)− V (λx+ (1− λ)y) ≥ cλ(1− λ)
|x− y|2

2
.

Theorem 21. Let µ be a probability measure on Rn with a density of form e−V , where
Hess(V ) ≥ c ∈ R. Suppose f, g, h : Rn → [0,∞) are integrable functions satisfying, for a
given λ ∈ (0, 1),

h(λx+ (1− λ)y) ≥ exp

{
− cλ(1− λ)

|x− y|2

2

}
fλ(x)g1−λ(y)

for every x, y ∈ Rd, then ∫
hdµ ≥

(∫
fdµ

)λ(∫
gdµ

)1−λ
. (26)

Proof. Follows from usual PLI. �

This observation was made by Cordero, McCann and Schmuckenschlager [?], where they
in fact proved such an inequality on Riemannian manifolds. It is instructive to think in that
broader context...

Draw pictures.

4.2 Properties of uniformly log-concave measures

TO BE ADDED: The PLI is also useful to get many other things, including LSI and concen-
tration for a large subclass of LC measures.

Explain concentration using examples of sphere and Gaussian.
Compare with isoperimetry, and state Gaussian isoperimetric inequality.

4.3 Aside: Ways of capturing curvature

TO BE ADDED: a discussion about curvature-dimension conditions for metric measure
spaces, and how this is related to convex measures.
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5 Lecture 5: Klartag’s CLT

5.1 Marginals and Gaussian mixtures

TO BE ADDED...

5.2 The thin shell phenomenon

TO BE ADDED...

35



References

[1] P.H. Algoet and T.M. Cover. A sandwich proof of the Shannon-Mcmillan-Breiman
theorem. Ann. Probab., 16:876–898, 1988.
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