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Markov Processes q
Introduction

Associated Semigroups and Generators

Markov Processes

Let X be a E-valued process.
@ X satisfies the Markov property if
P(Xeyr €T0(Xs : 0<s<t)) =P (Xeyr € T Xt)
e A function P(t,x,I) is called a transition function
o if P(t,x,-) is a probability measure for all (t,x) € [0,00) x E

o P(0,x,:) =0y forall x € E
e P(-,-,I) is measurable for all T € £

(Interpretation) P (X; € T'|Xo = x) = P(t,x,T)
@ X is a Markov process if it admits a transition function so that

i (xt+s € F|]~'tx) = P(s,X:,T) V¥t,s>0, €&
Equivalently

B (e l7X] = [ F0)P(s.Xedy) ¥F € Go(E)



Markov Processes : .
Introduction

Associated Semigroups and Generators

Associated Semigroups

Define

Tof(x) = / F)P(tx.dy) = E[F(X0)|Xo = x]

T:Ts = Ttys semigroup property
T:f > 0 whenever f >0 positivity
| Tef|| < ||If|| contraction

E [f(Xers)l 7| = Tof (X)
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Markov Processes Introduction

Associated Semigroups and Generators

Generator

@ A contraction semigroup {T;} satisfying

lim Tef = Tof = f
t]0

is called a Strongly continuous contraction semigroup

@ The Generator L of a strongly continuous contraction
semigroup is defined as follows.

Tif — f
D(L) = {f lim ——— exists }
t|0 t

Lf = lim M.
t|0 t
t
T.f—f= / TsLfds Yf e D(L) (1)
0
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Markov Processes Introduction

Associated Semigroups and Generators

Martingale Problem

Proposition 1

Let X, P, (T¢) and L be as above. Then X is a solution of the
martingale problem for L.

Proof. Fix f € D(L) and let My = f(X;) — fo Lf(Xs)ds.
t+s
E [ Moo FY] = B [F(Xer)|FY] —/ E [LF(X,)| 7] du
0
t+s t
- Tsf(Xt)—/ Tu_th(Xt)du—/ LF(X.)du
0
tS t
- Tsf(Xt)—/ TuLf(Xt)du—/ LF(X,)du
0 0

=00~ [ LEX)du= M, (using (1)
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Preliminary results & Definitions
Martingale Problem Markovian Solutions
Path Properties

Finite Dimensional Distributions

Lemma 1

A process X is a solution to the martingale problem for A if and
only if

E (f(xtm)—f(th)— / t"”Af(xs)ds)f[Mxtk) ~0 (2)
th k=1

forall f € D(A),0<t; <th<...<tpt1,h1,ho,...,hy € B(E),
and n> 1.

Thus, (being a) solution of the martingale problem is a finite
dimensional property.

Thus if X is a solution and Y is a modification of X, then Y is
also a solution.
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Preliminary results & Definitions
Martingale Problem Markovian Solutions
Path Properties

The space D([0, 00), E)

e D([0,00), E) - the space of all E valued functions on [0, co)
which are right continuous and have left limits

Skorokhod topology on D([0, c0), E)
D([0, ), E) - complete, separable, metric space
Sk, the Borel o-field on D([0, o), E).

0+(w) = w¢ - co-ordinate process

r.c.l.l. process - process taking values in D([0, o), E)

Abhay G. Bhatt Chapter 2
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r.c.l.l. Solutions

Definition 2.1

A probability measure P € P(D([0,c0), E)) is solution of the
martingale problem for (A, ) if there exists a D([0, o), E)- valued
process X with £L(X) = P and such that X is a solution to the
martingale problem for (A, )

Equivalently,

P € P(D([0,00), E)) is a solution if 6§ defined on

(D([0,0), E),SE, P) is a solution

@ For a r.c.l.l. process X defined on some (Q, F,P), we will use
the dual terminology

e X is a solution
e Po X~ 1is a solution
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Preliminary results & Definitions
Martingale Problem Markovian Solutions
Path Properties

Well-posedness - Definitions

Definition 2.2

The martingale problem for (A, 1) is well - posed in a class C of
processes if there exists a solution X € C of the martingale
problem for (A, 1) and if Y € C is also a solution to the martingale
problem for (A, ), then X and Y have the same finite dimensional
distributions. i.e. uniqueness holds

@ When C is the class of all measurable processes then we just
say that the martingale problem is well - posed.

Definition 2.3

The martingale problem for A is well - posed in C if the martingale
problem for (A, i) is well-posed for all 1 € P(E).
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Preliminary results & Definitions
Martingale Problem Markovian Solutions
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Well-posedness in D([0, c0), E)

@ finite dimensional distributions characterize the probability
measures on D([0, o), E)

Definition 2.4

The D([0, 00), E) - martingale problem for (A, 11) is well - posed if
there exists a solution P € P(D([0, 00), E)) of the D([0,00), E) -
martingale problem for (A, ) and if Q is any solution to the

D([0, c0), E) - martingale problem for (A, 1) then P = Q.
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Martingale Problem Markovian Solutions
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Bounded-pointwise convergence

Definition 2.5

o Let fy,f € B(E). fx converge bounded-ly and pointwise to f
fe 22 if ||fill < M and fi(x) — f(x) for all x € E.

@ A class of functions U C B(E) bp-closed if f, € U, fy be
implies f € U.

@ bp-closure(Ud) - the smallest class of functions in B(E) which
contains U and is bp-closed.

i.e. 50 -a field; (7(80) =&

‘H - class of all &-simple functions

Then bp-closure(H) = class of all bounded, £ - measurable
functions.
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Separability condition

Definition 2.6
The operator A satisfies the separability condition if
@ There exists a countable subset {f,} C D(A) such that

bp — closure({(f,, Afy) : n > 1}) D {(f, Af) : f € D(A)}.

o Let Ag = Alyf,}, the restriction of A to {f,}

@ Solution of martingale problem for A
— solution of martingale problem for Ag
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Separability condition

Definition 2.6
The operator A satisfies the separability condition if
@ There exists a countable subset {f,} C D(A) such that

bp — closure({(f,, Afy) : n > 1}) D {(f, Af) : f € D(A)}.

o Let Ag = Alyf,}, the restriction of A to {f,}

@ Solution of martingale problem for A
<= solution of martingale problem for Ay from Lemma 1
Use Dominated convergence Theorem to show that the set of
all {(g,Ag)} satisfying (2) is bp-closed
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Martingale Problem Markovian Solutions
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Markov Family of Solutions

Let A be an operator on Cp(E) satisfying the separability
condition. Suppose the D([0,00), E) - martingale problem for
(A, dx) is well-posed for each x € E. Then

QO x — P,(C) is measurable for all C € Sg.

@ For all p € P(E), the D([0, ), E) - martingale problem for
(A, i) is well - posed, with the solution P, given by

PAC) = [ PO,
© Under P, 0; is a Markov process with transition function

P(s,x, F) = Py(0s € F). (3)




Preliminary results & Definitions
Martingale Problem Markovian Solutions
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@ Choose M C Cp(E) - countable such that
B(E) C bp-closure(M).

oLetH:{n:

1(0) = (o(Beps) — FBer) — / " At (05)ds) TT he(0r,)

k=1
where hl,hg,...,hmeM,O§t1<t2...<tm+1c(@}

@ H is countable

o Lemmal = Mj = Myen{P: [ndP =0} is the set of
solutions of the martingale problem for A.

e P+ [ndP is continuous. Hence M is Borel set
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Martingale Problem Markovian Solutions
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Proof of (1) (Contd.)

e G:P(D([0,),E)) — P(E)

G(P)=Po6(0)L.
G is continuous
M=M;NG({ds:x€E})={Px:x¢€ E} is Borel

Well-posedness = G restricted to M is one-to-one
mapping onto {0y : x € E}.

o G 1: {6 :x€E}— Mis Borel
o G(Py) = dx. Hence 0y — P is measurable
@ x — P, = x— 0, — P, is measurable O
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Preliminary results & Definitions
Martingale Problem Markovian Solutions

Path Properties

@ For Fe €&
Pol (F) = /E Py oy L(F)u(dx) = /E 5u(F)u(dx) = pu(F).

@ ForneH,

/ ndP, = / / ndPyp(dx) = 0.
D([0,00),E) E JD([0,00),E)

Hence P, is a solution to the martingale problem for (A, ).

@ Let Q be another solution of the D([0, c0), E)— martingale
problem for (A, 1)

o Let @, be the regular conditional probability of @ given 6.
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Preliminary results & Definitions
Martingale Problem Markovian Solutions
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Proof of (2) (Contd.)

o Fix 7 € H, h € Co(E). Define 1/(0) = 1(6)h(6p).
e 1/ € H. Thus

E?[n(6)h(d0)] = E°[n] = 0.
@ Since this holds for all h € Cp(E),
E®[n] = E€[5|6o] =0 ass. - Q.
@ Since H is countable, 3 ONE Q-null set Ny satisfying
E®[ =0  Vwé No

@ @, is a solution of the martingale problem for A

initial distribution dg, (.-
@ Well - posedness implies

Qw = Pﬁo(w) a.s.[Q]
Hence Q = P,. OJ
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Martingale Problem Markovian Solutions
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Proof of (3)

o Fixs. Let 0} = O;4s.

o Let Q/, be the regular conditional probability distribution of 6’
(under Py) given Fs.

o @, is a solution to the martingale problem for (A, g, (.)-
o Well-posedness —> Q/,(0; € F) = P(t,0s(w), F) (See (3))
@ Hence for f € B(E),

EPF(O1rs) = E™ [EP [F(6e1s) 7]
= e[ [ f)P(e0.0.9)]
://f(yz)P(t,yl,dyz)P(S,X7dY1)-
EJE

o P(s+t,x,F) = P(0tys € F) = [ P(t,y,F)P(s,x,dy) [
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Martingale Problem Markovian Solutions
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One-dimensional equality

Suppose that for each € P(E), any two solutions X and Y
(defined respectively on (Q1,F1,P1) and (Q2, F2,P2)) of the
martingale problem for (A, i) have the same one-dimensional
distributions. Then X and Y have the same finite dimensional
distributions, i.e. the martingale problem is well - posed.

Proof. To show

EM H fil(Xe,) | = EP2 !H fi(Ye,) (4)
k=1 k=1
forall0<tj <tp<...tmhf,f,...,fn € B(E) and m > 1.
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Preliminary results & Definitions
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Induction argument

@ Case: m =1 - true by hypothesis
@ Assume that the Induction hypothesis (4) is true for m = n
o Fix0<ty <trp<...thf,f,...,f, € B(E), f > 0.

@ Define
EP [IE, [Teey fi(Xe)]
@1("_1) = L — k=1 k Y FeF
EFt[[Th—1 fi(Xe )]
EP2[lg, [Ta—y fi(Ye,)]
Qa(F2) = 2 2 Lk=1 OV R e R
EF2[TTh—; fi(Ye )]
o Let )~<t = th+tr S“/t = Yt,,—l—t-
o Fix0<s1<sx<....Smp1="t,h1,ho,... hy € B(E) and

f € D(A).
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Induction argument (Contd.)

E™ I n(Xer) [T fe(Xe) | =
k=1
th+Sm+1
EP: (f(xsm+1+tn> ~ Kern) — [ Af(xu)du)
th+5Sm
hj(th+5j)ka(th) =0.
j=1 k=1
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Induction argument (Contd.)

Hence

oo B (Xe, ) Ty fe(Xe )]
B = R ]

Similarly E@2[5(Y)] = 0.
o X andj/ are squtionsNof the martingale problems for
(A, L(Xp)) and (A, L(Yp)) respectively.

E™ [f(Xe,) [Tay fi(Xe)]
B [ Ti=q fi(Xe )]
EP2[F(Ye) Ty el Ye,)]
B2 [[Txmy f(Ye )]

This equality follows from induction hypothesis for m = n

E%[f(X0)] =

= E®[f(Y,)] Vf e B(E).
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Induction argument (Contd.)

@ Hence X and Y have the same initial distribution.

@ One-dimensional uniqueness implies

EQ[f(X,)] = E®[f(Y;)] Vt>0,f e B(E).

B (Xeyre) [ ] (X6 )] = BP2[F (Ko i) T Aic(Xe )]
k=1 k=1

@ Induction Hypothesis (4) is true for m=n+1
set tpy1 = th+t
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Semigroup associated with the Martingale Problem

@ Suppose A satisfies the conditions of Theorem 1.

@ Associate the Markov semigroup (T¢)¢>0 with A -

Tof(x) = /E F(y)P(t, x, dy)

The following theorem can be proved exactly as the previous one.
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Strong Markov Property

Theorem 3

Suppose that the D([0, 00), E)- martingale problem for A is well -
posed with associated semigroup T;

Let X, defined on (2, F,P), be a solution of the martingale
problem for A (with respect to (Gt)t>0). Let T be a finite stop
time. Then for f € B(E),t > 0,

E[f (Xr11)G7] = Tef (X)
In particular

P((Xr+: €1)|Gr) = P(t,XT, VI €&
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Martingale Problem Markovian Solutions
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r.c.l.l. modification

Definition 2.7

Let D be a class of functions on E
@ D is measure determining if [ fdP = [ fdQ forall f € D
implies P = Q.
@ D separates points in E ifVx # y dg € D such that
g(x) # &(y).

Theorem 4

Let E be a compact metric space. Let A be an operator on C(E)
such that D(A) is measure determining and contains a countable
subset that separates points in E. Let X, defined on (2, F,P), be
a solution to the martingale problem for A. Then X has a
modification with sample paths in D([0, c0), E).
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Martingale Problem Markovian Solutions
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Proof.
o Let {gk : k > 1} C D(A) separate points in E.
@ Define

M (t) = gu(Xt) — /Ot Agi(Xs)ds

My is a martingale for all k.
@ Then for all t

lim My (s) , lim M(s) exist a.s.
sTt s|t

seQ scQ
@ Hence 3Q' C Q with P(Q') =1 and

lim gk (Xs(w)) , lim ge(Xs(w)) exist Vw € Q',t >0,k > 1
s€0 s€Q
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Proof (contd.)

e Fix t >0,{s,} CQ with s, > t,lim, s, =t and w € Q.
e Since E is compact, 3 a subsequence {sp,} such that
lim; o0 Xs, (w) exists.

o Clearly
- (,Iim Xsni(w)> = lim gx(Xs(w)) Y ok.

e s€Q

@ Since {gx : k > 1} separate points in E, lim ;. Xs(w) exists.
seQ
e Similarly lim 4, Xs(w) exists
seQ
@ Define
Yi(w) = lim Xs(w).
seQ
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Proof (contd.)

o Forwe @, Yi(w)isrcll &

Yy (w) = Im‘n Xs(w)

seQ

Define Y suitably for w & Q'
Then Y has sample paths in D([0, c0), E).

Since X is a solution to the martingale problem for A, for
f € D(A), a measure determining set

E[f(Y)lFZ] = lim B[f(Xo)| 7] = £(X).
seQ
o — X =Yas
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@ Time-Inhomogeneous Martingale Problem
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Time-Inhomogeneous Martingale Problem
Jump Perturbations

Independence

Definitions

For t >0, let (A¢)t>0 be linear operators on M(E) with a
common domain D C M(E).

Definition 3.1

A measurable process X defined on some probability space
(Q, F,P) is a solution to the martingale problem for (A¢)¢>0 with
respect to a filtration (Gt)¢>o if for any f € D

F(X,) — /0 " ALF(X.)ds

is a (Gt) - martingale.

Let € P(E). The martingale problem for ((A¢)e>0, 1) is
well-posed if there exists an unique solution for the martingale
problem
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Time-Inhomogeneous Martingale Problem

Jump Perturbations
Independence

Space-Time Process

o Let EY = [0,00) x E.
o Let X? = (t,Xy)
@ Define

D(A%) = { (t,x) = Zh )fi(x) hi € CX([0,00)), f; € D}

k

A%(t,x) = Y [fi(x)d:hi(t) + hi(t)Acfi(x)]

i=1

X is a solution to the martingale problem for (At)¢>o if and only if
X% is a solution to the martingale problem for A° .
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Time-Inhomogeneous Martingale Problem

Jump Perturbations
Independence

Proof.
@ Let X be a solution (with respect to a filtration (G¢)t>0) to
the martingale problem for (A¢)¢>o0.
o Let fh € D(A?)
e For 0 <s <t let g(t) = E[f(X¢)|Gs].

8- 8(5) = | EIAAOG)G.ldo
@ Then
S(OH(0) — g(s)h(s) = [0 le(w)h(w)] oo
= [ (RIS 0) 16 + ()00} o
= [ BRG] d.
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Time-Inhomogeneous Martingale Problem

Jump Perturbations
Independence

Proof (Contd.)

o fh(XO(t)) — [y A°fh(X°(s))ds is a martingale
e X0 is a solution to the martingale problem for A°.

@ The converse follows by taking h=1o0n [0, T], T > 0.
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Time-Inhomogeneous Martingale Problem

Jump Perturbations
Independence

A more General Result

@ State spaces £; and E;
e Operators A; on M(E;) and Ay on M(Ep)
@ Solutions X7 and X>

@ Define
D(A) = {fif, : f € D(A1), f, € D(A2)}

A(ff) = (ALf)f + f(Axh)

@ (X1, X2) is a solution of the martingale problem for A

Theorem 6

Suppose uniqueness holds for the martingale problem for A1, A;.
Then uniqueness holds for the martingale problem for A.
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Time-Inhomogeneous Martingale Problem

Independence Jump Perturbations

A perturbed operator

@ Let A be an operator with D(A) C Cu(E).
@ Let A > 0 and let n(x, ") be a transition function on E x &.
o Let

BF(x) = A /E (F(y) — F())n(x. dy) f € B(E).

Suppose that for every i € P(E), there exists a solution to the
D([0, 00), E) martingale problem for (A, ). Then for every

wu € P(E) there exists a solution to the martingale problem for
(A+ B, p).
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Time-Inhomogeneous Martingale Problem
Jump Perturbations

Independence

Proof.
e For k > 1, let Q4 = D([0,00), E), Q9 = [0, 00)

Let Q@ = []72; Qx % 92

Let 0x and &, denote the co-ordinate random variables

Borel o-fields - fk,f,?

Let F be the product o-field on Q.

Let Gy the o-algebra generated by cylinder sets

G x H?ikﬂ(ﬂi X Q?),

where (4 €f1®f{)®...®fk®f2.

o Let G¥ be the o-algebra generated by Hfle(Q; x Q%) x G,
where (, € .7:k®.7:,9®....
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Jump Perturbations
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Perturbed Solution X

@ X evolves in E as a solution to the martingale problem for A
till an exponentially distributed time with parameter A which
is independent of the past.

@ At this time if the process is at x, it jumps to y with
probability 7(x, dy) and then continues evolving as a solution
to the martingale problem for (A, ).

@ To put this in a mathematical framework, we consider that
between the k' and the (k 4+ 1)™ jump (dictated by B), the
process lies in €.

@ The k" copy of the exponential time is a random variable in
Qo
k
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Time-Inhomogeneous Martingale Problem

Jump Perturbations
Independence

Proof (Contd.)

e Let Py, P, be solutions of the martingale problems for
(A, dx), (A, i) respectively.
@ Let v be the exponential distribution with parameter \.

e Fix u € P(E). Define, for 'y € Fi,...,Tx € Fk,
FreFd ... ,FreF,

Pi(T1) = Pu(T1) ; P61, F1) = ~(F1)

Pk(91751,--.,9k—17§k—1,rk)Z/EPx(rk)n(9k—1(fk—1)7dX)

P/?(ela cee ’fk—l?aka Fk) = V(Fk)
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Jump Perturbations
Independence

Proof(Contd.)

e PL € P(Q1) and PY, Py, P, ... are transition probability
functions.

e I an unique P on (R, F) satisfying
For C € Gx and C’ € Gk*+1
P(CAC)=E [ /C P(C|01(0) = x)(8k (&), dx)
o Define 7o =0,7 = S, &

Ny = k for 7 <t < Tga1.
Note that N is a Poisson process with parameter A.
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Time-Inhomogeneous Martingale Problem

Jump Perturbations
Independence

Proof(Contd.)

@ Define
Xe = Ok1(t —7x), Tk <t < Thqt

o Fr=FXVvFL
e For f € D(A)

F(Ors1((tV 7i) A Thgr — k) — F(Ok41(0))

(tVT)ATI41
— / Af(9k+1(s — Tk))ds

is an (Ft)e>0 martingale. k
@ Summing over k we get
t N(t)
) ~F(X0) = [ AFX($))ds= 3 (F(Bhia(0) — F(OL(60)
k=1

is an (Ft)e>0 martingale.
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Time-Inhomogeneous Martingale Problem

Jump Perturbations
Independence

Proof(Contd.)

@ Also, the following are (F¢):>0 martingales.

5 (f(orato) - [

k=1 E

f(y)(n(ek(sk),dy)))

t
0

[ 6 = O e = 3

@ Hence
00 - %) - [ (AF(Xe) + BF(X.)) ds

is an (F¢)¢>0 martingale.
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