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Markov Processes

Let X be a E -valued process.

X satisfies the Markov property if

P (Xt+r ∈ Γ|σ(Xs : 0 ≤ s ≤ t)) = P (Xt+r ∈ Γ|Xt)

A function P(t, x , Γ) is called a transition function

if P(t, x , ·) is a probability measure for all (t, x) ∈ [0,∞)× E
P(0, x , ·) = δx for all x ∈ E
P(·, ·, Γ) is measurable for all Γ ∈ E

(Interpretation) P (Xt ∈ Γ|X0 = x) = P(t, x , Γ)
X is a Markov process if it admits a transition function so that

P
(
Xt+s ∈ Γ|FX

t

)
= P(s,Xt , Γ) ∀t, s ≥ 0, Γ ∈ E

Equivalently

E
[
f (Xt+s)|FX

t

]
=

∫
f (y)P(s,Xt , dy) ∀f ∈ Cb(E )
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Associated Semigroups

Define

Tt f (x) =

∫
f (y)P(t, x , dy) = E [f (Xt)|X0 = x ]

TtTs = Tt+s semigroup property

Tt f ≥ 0 whenever f ≥ 0 positivity

‖Tt f ‖ ≤ ‖f ‖ contraction

E
[
f (Xt+s)|FX

t

]
= Ts f (Xt)
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Generator

A contraction semigroup {Tt} satisfying

lim
t↓0

Tt f = T0f = f

is called a Strongly continuous contraction semigroup

The Generator L of a strongly continuous contraction
semigroup is defined as follows.

D(L) =

{
f : lim

t↓0

Tt f − f

t
exists

}
.

Lf = lim
t↓0

Tt f − f

t
.

Tt f − f =

∫ t

0
TsLfds ∀f ∈ D(L) (1)
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Martingale Problem

Proposition 1

Let X , P, (Tt) and L be as above. Then X is a solution of the
martingale problem for L.

Proof. Fix f ∈ D(L) and let Mt = f (Xt)−
∫ t
0 Lf (Xs)ds.

E
[
Mt+s |FX

t

]
= E

[
f (Xt+s)|FX

t

]
−

∫ t+s

0
E

[
Lf (Xu)|FX

t

]
du

= Ts f (Xt)−
∫ t+s

t
Tu−tLf (Xt)du −

∫ t

0
Lf (Xu)du

= Ts f (Xt)−
∫ s

0
TuLf (Xt)du −

∫ t

0
Lf (Xu)du

= f (Xt)−
∫ t

0
Lf (Xu)du= Mt (using (1))
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Finite Dimensional Distributions

Lemma 1

A process X is a solution to the martingale problem for A if and
only if

E

[(
f (Xtn+1)− f (Xtn)−

∫ tn+1

tn

Af (Xs)ds

) n∏
k=1

hk(Xtk )

]
= 0 (2)

for all f ∈ D(A), 0 ≤ t1 < t2 < . . . < tn+1, h1, h2, . . . , hn ∈ B(E ),
and n ≥ 1.

Thus, (being a) solution of the martingale problem is a finite
dimensional property.
Thus if X is a solution and Y is a modification of X , then Y is
also a solution.
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The space D([0,∞), E )

D([0,∞),E ) - the space of all E valued functions on [0,∞)
which are right continuous and have left limits

Skorokhod topology on D([0,∞),E )

D([0,∞),E ) - complete, separable, metric space

SE , the Borel σ-field on D([0,∞),E ).

θt(ω) = ωt - co-ordinate process

r.c.l.l. process - process taking values in D([0,∞),E )
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r.c.l.l. Solutions

Definition 2.1

A probability measure P ∈ P(D([0,∞),E )) is solution of the
martingale problem for (A, µ) if there exists a D([0,∞),E )- valued
process X with L(X ) = P and such that X is a solution to the
martingale problem for (A, µ)
Equivalently,
P ∈ P(D([0,∞),E )) is a solution if θ defined on
(D([0,∞),E ),SE ,P) is a solution

For a r.c.l.l. process X defined on some (Ω,F , P), we will use
the dual terminology

X is a solution
P ◦ X−1 is a solution
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Well-posedness - Definitions

Definition 2.2

The martingale problem for (A, µ) is well - posed in a class C of
processes if there exists a solution X ∈ C of the martingale
problem for (A, µ) and if Y ∈ C is also a solution to the martingale
problem for (A, µ), then X and Y have the same finite dimensional
distributions. i.e. uniqueness holds

When C is the class of all measurable processes then we just
say that the martingale problem is well - posed.

Definition 2.3

The martingale problem for A is well - posed in C if the martingale
problem for (A, µ) is well-posed for all µ ∈ P(E ).
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Well-posedness in D([0,∞), E )

finite dimensional distributions characterize the probability
measures on D([0,∞),E )

Definition 2.4

The D([0,∞),E ) - martingale problem for (A, µ) is well - posed if
there exists a solution P ∈ P(D([0,∞),E )) of the D([0,∞),E ) -
martingale problem for (A, µ) and if Q is any solution to the
D([0,∞),E ) - martingale problem for (A, µ) then P = Q.
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Bounded-pointwise convergence

Definition 2.5

Let fk , f ∈ B(E ). fk converge bounded-ly and pointwise to f

fk
bp→ f if ‖fk‖ ≤ M and fk(x) → f (x) for all x ∈ E.

A class of functions U ⊂ B(E ) bp-closed if fk ∈ U , fk
bp→ f

implies f ∈ U .

bp-closure(U) - the smallest class of functions in B(E ) which
contains U and is bp-closed.

i.e. E0 - a field; σ(E0) = E
H - class of all E0-simple functions
Then bp-closure(H) = class of all bounded, E - measurable
functions.
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Separability condition

Definition 2.6

The operator A satisfies the separability condition if

There exists a countable subset {fn} ⊂ D(A) such that

bp − closure({(fn,Afn) : n ≥ 1}) ⊃ {(f ,Af ) : f ∈ D(A)}.

Let A0 = A|{fn}, the restriction of A to {fn}
Solution of martingale problem for A
=⇒ solution of martingale problem for A0
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Separability condition

Definition 2.6

The operator A satisfies the separability condition if

There exists a countable subset {fn} ⊂ D(A) such that

bp − closure({(fn,Afn) : n ≥ 1}) ⊃ {(f ,Af ) : f ∈ D(A)}.

Let A0 = A|{fn}, the restriction of A to {fn}
Solution of martingale problem for A
⇐⇒ solution of martingale problem for A0 from Lemma 1
Use Dominated convergence Theorem to show that the set of
all {(g ,Ag)} satisfying (2) is bp-closed
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Markov Family of Solutions

Theorem 1

Let A be an operator on Cb(E ) satisfying the separability
condition. Suppose the D([0,∞),E ) - martingale problem for
(A, δx) is well-posed for each x ∈ E. Then

1 x 7→ Px(C ) is measurable for all C ∈ SE .

2 For all µ ∈ P(E ), the D([0,∞),E ) - martingale problem for
(A, µ) is well - posed, with the solution Pµ given by

Pµ(C ) =

∫
E

Px(C )µ(dx).

3 Under Pµ, θt is a Markov process with transition function

P(s, x ,F ) = Px(θs ∈ F ). (3)
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Proof of (1)

Choose M ⊂ Cb(E ) - countable such that
B(E ) ⊂ bp-closure(M).

Let H =
{

η :

η(θ) = (fn(θtm+1)− fn(θtm)−
∫ tm+1

tm

Afn(θs)ds)
m∏

k=1

hk(θtk )

where h1, h2, . . . , hm ∈ M, 0 ≤ t1 < t2 . . . < tm+1 ⊂ Q
}

H is countable

Lemma 1 =⇒ M1 = ∩η∈H{P :
∫

ηdP = 0} is the set of
solutions of the martingale problem for A.

P 7→
∫

ηdP is continuous. Hence M1 is Borel set
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Proof of (1) (Contd.)

G : P(D([0,∞),E )) → P(E )

G (P) = P ◦ θ(0)−1.

G is continuous

M = M1 ∩ G−1({δx : x ∈ E}) = {Px : x ∈ E} is Borel

Well-posedness =⇒ G restricted to M is one-to-one
mapping onto {δx : x ∈ E}.
G−1 : {δx : x ∈ E} 7→ M is Borel

G (Px) = δx . Hence δx 7→ Px is measurable

x 7→ Px = x 7→ δx 7→ Px is measurable

Abhay G. Bhatt Chapter 2
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Proof of (2)

For F ∈ E

Pµ ◦θ−1
0 (F ) =

∫
E

Px ◦θ−1
0 (F )µ(dx) =

∫
E

δx(F )µ(dx) = µ(F ).

For η ∈ H,∫
D([0,∞),E)

ηdPµ =

∫
E

∫
D([0,∞),E)

ηdPxµ(dx) = 0.

Hence Pµ is a solution to the martingale problem for (A, µ).

Let Q be another solution of the D([0,∞),E )– martingale
problem for (A, µ)

Let Qω be the regular conditional probability of Q given θ0.
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Proof of (2) (Contd.)

Fix η ∈ H, h ∈ Cb(E ). Define η′(θ) = η(θ)h(θ0).
η′ ∈ H. Thus

EQ [η(θ)h(θ0)] = EQ [η′] = 0.

Since this holds for all h ∈ Cb(E ),

EQω [η] = EQ [η|θ0] = 0 a.s. - Q.

Since H is countable, ∃ ONE Q-null set N0 satisfying

EQω [η] = 0 ∀ω 6∈ N0

Qω is a solution of the martingale problem for A
initial distribution δθ0(ω).
Well - posedness implies

Qω = Pθ0(ω) a.s.[Q]

Hence Q = Pµ.
Abhay G. Bhatt Chapter 2
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Proof of (3)

Fix s. Let θ′t = θt+s .

Let Q ′
ω be the regular conditional probability distribution of θ′

(under Px) given Fs .

Q ′
ω is a solution to the martingale problem for (A, δθs(ω)).

Well-posedness =⇒ Q ′
ω(θ′t ∈ F ) = P(t, θs(ω),F ) (See (3))

Hence for f ∈ B(E ),

EPx f (θt+s) = EPx

[
EPx [f (θt+s)|Fs ]

]
= EPx

[∫
E

f (y)P(t, θs(·), dy)

]
=

∫
E

∫
E

f (y2)P(t, y1, dy2)P(s, x , dy1).

P(s + t, x ,F ) = Px(θt+s ∈ F ) =
∫
E P(t, y ,F )P(s, x , dy)
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One-dimensional equality

Theorem 2

Suppose that for each µ ∈ P(E ), any two solutions X and Y
(defined respectively on (Ω1,F1, P1) and (Ω2,F2, P2)) of the
martingale problem for (A, µ) have the same one-dimensional
distributions. Then X and Y have the same finite dimensional
distributions, i.e. the martingale problem is well - posed.

Proof. To show

EP1

[
m∏

k=1

fk(Xtk )

]
= EP2

[
m∏

k=1

fk(Ytk )

]
(4)

for all 0 ≤ t1 < t2 < . . . tm, f1, f2, . . . , fm ∈ B(E ) and m ≥ 1.
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Induction argument

Case: m = 1 - true by hypothesis

Assume that the Induction hypothesis (4) is true for m = n

Fix 0 ≤ t1 < t2 < . . . tn, f1, f2, . . . , fn ∈ B(E ), fk > 0.

Define

Q1(F1) =
EP1 [IF1

∏n
k=1 fk(Xtk )]

EP1 [
∏n

k=1 fk(Xtk )]
∀ F1 ∈ F1

Q2(F2) =
EP2 [IF2

∏n
k=1 fk(Ytk )]

EP2 [
∏n

k=1 fk(Ytk )]
∀ F2 ∈ F2

Let X̃t = Xtn+t , Ỹt = Ytn+t .

Fix 0 ≤ s1 < s2 < . . . , sm+1 = t, h1, h2, . . . , hm ∈ B(E ) and
f ∈ D(A).
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Induction argument (Contd.)

η(θ) =

(
f (θsm+1)− f (θsm)−

∫ sm+1

sm

Af (θs)ds

) m∏
k=1

hk(θtk )

EP1

[
η(Xtn+·)

n∏
k=1

fk(Xtk )

]
=

EP1

[(
f (Xsm+1+tn)− f (Xsm+tn)−

∫ tn+sm+1

tn+sm

Af (Xu)du

)
m∏

j=1

hj(Xtn+sj )
n∏

k=1

fk(Xtk )

]
= 0.
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Induction argument (Contd.)

Hence

EQ1 [η(X̃ )] =
EP1 [η(Xtn+·)

∏n
k=1 fk(Xtk )]

EP1 [
∏n

k=1 fk(Xtk )]
= 0.

Similarly EQ2 [η(Ỹ )] = 0.

X̃ and Ỹ are solutions of the martingale problems for
(A,L(X̃0)) and (A,L(Ỹ0)) respectively.

EQ1 [f (X̃0)] =
EP1 [f (Xtn)

∏n
k=1 fk(Xtk )]

EP1 [
∏n

k=1 fk(Xtk )]

=
EP2 [f (Ytn)

∏n
k=1 fk(Ytk )]

EP2 [
∏n

k=1 fk(Ytk )]
= EQ2 [f (Ỹ0)] ∀f ∈ B(E ).

This equality follows from induction hypothesis for m = n
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Induction argument (Contd.)

Hence X̃ and Ỹ have the same initial distribution.

One-dimensional uniqueness implies

EQ1 [f (X̃t)] = EQ2 [f (Ỹt)] ∀ t ≥ 0, f ∈ B(E ).

EP1 [f (Xtn+t)
n∏

k=1

fk(Xtk )] = EP2 [f (Xtn+t)
n∏

k=1

fk(Xtk )]

Induction Hypothesis (4) is true for m = n + 1
set tn+1 = tn + t

Abhay G. Bhatt Chapter 2



Markov Processes
Martingale Problem

Independence

Preliminary results & Definitions
Markovian Solutions
Path Properties

Semigroup associated with the Martingale Problem

Suppose A satisfies the conditions of Theorem 1.

Associate the Markov semigroup (Tt)t≥0 with A -

Tt f (x) =

∫
E

f (y)P(t, x , dy)

The following theorem can be proved exactly as the previous one.
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Strong Markov Property

Theorem 3

Suppose that the D([0,∞),E )- martingale problem for A is well -
posed with associated semigroup Tt

Let X , defined on (Ω,F , P), be a solution of the martingale
problem for A (with respect to (Gt)t≥0). Let τ be a finite stop
time. Then for f ∈ B(E ), t ≥ 0,

E[f (Xτ+t)|Gτ ] = Tt f (Xτ )

In particular

P((Xτ+t ∈ Γ)|Gτ ) = P(t,X τ, Γ)∀ Γ ∈ E

Abhay G. Bhatt Chapter 2
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r.c.l.l. modification

Definition 2.7

Let D be a class of functions on E

1 D is measure determining if
∫

fdP =
∫

fdQ forall f ∈ D
implies P = Q.

2 D separates points in E if ∀ x 6= y ∃g ∈ D such that
g(x) 6= g(y).

Theorem 4

Let E be a compact metric space. Let A be an operator on C (E )
such that D(A) is measure determining and contains a countable
subset that separates points in E . Let X , defined on (Ω,F , P), be
a solution to the martingale problem for A. Then X has a
modification with sample paths in D([0,∞),E ).
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Proof

Proof.

Let {gk : k ≥ 1} ⊂ D(A) separate points in E .

Define

Mk(t) = gk(Xt)−
∫ t

0
Agk(Xs)ds

Mk is a martingale for all k.

Then for all t

lim
s↑t

s∈Q

Mk(s) , lim
s↓t

s∈Q

Mk(s) exist a.s.

Hence ∃Ω′ ⊂ Ω with P(Ω′) = 1 and

lim
s↑t

s∈Q

gk(Xs(ω)) , lim
s↓t

s∈Q

gk(Xs(ω)) exist ∀ω ∈ Ω′, t ≥ 0, k ≥ 1

Abhay G. Bhatt Chapter 2
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Proof (contd.)

Fix t ≥ 0, {sn} ⊆ Q with sn > t, limn→∞ sn = t and ω ∈ Ω′.

Since E is compact, ∃ a subsequence {sni} such that
limi→∞ Xsni

(ω) exists.

Clearly

gk

(
lim

i→∞
Xsni

(ω)

)
= lim

s↓t
s∈Q

gk(Xs(ω)) ∀ k.

Since {gk : k ≥ 1} separate points in E , lim s↓t
s∈Q

Xs(ω) exists.

Similarly lim s↑t
s∈Q

Xs(ω) exists

Define
Yt(ω) = lim

s↓t
s∈Q

Xs(ω).

Abhay G. Bhatt Chapter 2
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Proof (contd.)

For ω ∈ Ω′, Yt(ω) is r.c.l.l. &

Y−
t (ω) = lim

s↑t
s∈Q

Xs(ω)

Define Y suitably for ω 6∈ Ω′

Then Y has sample paths in D([0,∞),E ).

Since X is a solution to the martingale problem for A, for
f ∈ D(A), a measure determining set

E[f (Yt)|FX
t ] = lim

s↓t
s∈Q

E[f (Xs)|FX
t ] = f (Xt).

=⇒ X = Y a.s.

Abhay G. Bhatt Chapter 2
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Definitions

For t ≥ 0 , let (At)t≥0 be linear operators on M(E ) with a
common domain D ⊂ M(E ).

Definition 3.1

A measurable process X defined on some probability space
(Ω,F , P) is a solution to the martingale problem for (At)t≥0 with
respect to a filtration (Gt)t≥0 if for any f ∈ D

f (Xt)−
∫ t

0
As f (Xs)ds

is a (Gt) - martingale.
Let µ ∈ P(E ). The martingale problem for ((At)t≥0, µ) is
well-posed if there exists an unique solution for the martingale
problem
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Space-Time Process

Let E 0 = [0,∞)× E .

Let X 0
t = (t,Xt)

Define

D(A0) =

{
g(t, x) =

k∑
i=1

hi (t)fi (x) hi ∈ C 1
c ([0,∞)), fi ∈ D

}

A0g(t, x) =
k∑

i=1

[fi (x)∂thi (t) + hi (t)At fi (x)]

Theorem 5

X is a solution to the martingale problem for (At)t≥0 if and only if
X 0 is a solution to the martingale problem for A0 .
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Proof.

Let X be a solution (with respect to a filtration (Gt)t≥0) to
the martingale problem for (At)t≥0.

Let fh ∈ D(A0)

For 0 < s < t, let g(t) = E[f (Xt)|Gs ].

g(t)− g(s) =

∫ t

s
E[Auf (Xu)|Gs ]du

Then

g(t)h(t)− g(s)h(s) =

∫ t

s
∂u [g(u)h(u)] du

=

∫ t

s
{h(u)E[Auf (Xu)|Gs ] + g(u)∂uh(u)} du

=

∫ t

s
E

[
A0(fh)(X 0

u )|Gs

]
du.
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Proof (Contd.)

fh(X 0(t))−
∫ t
0 A0fh(X 0(s))ds is a martingale

X 0 is a solution to the martingale problem for A0.

The converse follows by taking h = 1 on [0,T ],T > 0.
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A more General Result

State spaces E1 and E2

Operators A1 on M(E1) and A2 on M(E2)

Solutions X1 and X2

Define
D(A) = {f1f2 : f1 ∈ D(A1), f2 ∈ D(A2)}

A(f1f2) = (A1f1)f2 + f1(A2f2)

(X1,X2) is a solution of the martingale problem for A

Theorem 6

Suppose uniqueness holds for the martingale problem for A1,A2.
Then uniqueness holds for the martingale problem for A.
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A perturbed operator

Let A be an operator with D(A) ⊂ Cb(E ).

Let λ > 0 and let η(x , Γ) be a transition function on E × E .

Let

Bf (x) = λ

∫
E
(f (y)− f (x))η(x , dy) f ∈ B(E ).

Theorem 7

Suppose that for every µ ∈ P(E ), there exists a solution to the
D([0,∞),E ) martingale problem for (A, µ). Then for every
µ ∈ P(E ) there exists a solution to the martingale problem for
(A + B, µ).
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Proof

Proof.

For k ≥ 1, let Ωk = D([0,∞),E ),Ω0
k = [0,∞)

Let Ω =
∏∞

k=1 Ωk × Ω0
k

Let θk and ξk denote the co-ordinate random variables

Borel σ-fields - Fk ,F0
k

Let F be the product σ-field on Ω.

Let Gk the σ-algebra generated by cylinder sets
C1 ×

∏∞
i=k+1(Ωi × Ω0

i ),
where C1 ∈ F1 ⊗F0

1 ⊗ . . .⊗Fk ⊗F0
k .

Let Gk be the σ-algebra generated by
∏k

i=1(Ωi × Ω0
i )× C2,

where C2 ∈ Fk ⊗F0
k ⊗ . . ..
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Perturbed Solution X

X evolves in E as a solution to the martingale problem for A
till an exponentially distributed time with parameter λ which
is independent of the past.

At this time if the process is at x , it jumps to y with
probability η(x , dy) and then continues evolving as a solution
to the martingale problem for (A, δy ).

To put this in a mathematical framework, we consider that
between the kth and the (k + 1)th jump (dictated by B), the
process lies in Ωk .

The kth copy of the exponential time is a random variable in
Ω0

k .
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Proof (Contd.)

Let Px , Pµ be solutions of the martingale problems for
(A, δx), (A, µ) respectively.

Let γ be the exponential distribution with parameter λ.

Fix µ ∈ P(E ). Define, for Γ1 ∈ F1, . . . , Γk ∈ Fk ,
F1 ∈ F0

1 , . . . ,Fk ∈ F0
k ,

P1(Γ1) = Pµ(Γ1) ; P0
1 (θ1,F1) = γ(F1)

...
...

Pk(θ1, ξ1, . . . , θk−1, ξk−1, Γk) =

∫
E

Px(Γk)η(θk−1(ξk−1), dx)

P0
k (θ1, . . . , ξk−1, θk ,Fk) = γ(Fk)
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Proof(Contd.)

P1 ∈ P(Ω1) and P0
1 ,P2,P

0
2 , . . . are transition probability

functions.

∃ an unique P on (Ω,F) satisfying
For C ∈ Gk and C ′ ∈ Gk+1

P(C ∩ C ′) = E
[∫

C
P(C ′|θk+1(0) = x)η(θk(ξk), dx)

]
.

Define τ0 = 0, τk =
∑k

i=1 ξi

Nt = k for τk ≤ t < τk+1.
Note that N is a Poisson process with parameter λ.
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Proof(Contd.)

Define
Xt = θk+1(t − τk), τk ≤ t < τk+1

Ft = FX
t ∨ FN

t .
For f ∈ D(A)

f (θk+1((t ∨ τk) ∧ τk+1 − τk))− f (θk+1(0))

−
∫ (t∨τk )∧τk+1

τk

Af (θk+1(s − τk))ds

is an (Ft)t≥0 martingale.
Summing over k we get

f (Xt)−f (X0)−
∫ t

0
Af (X (s))ds−

N(t)∑
k=1

(f (θk+1(0))− f (θk(ξk)))

is an (Ft)t≥0 martingale.
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Proof(Contd.)

Also, the following are (Ft)t≥0 martingales.

Nt∑
k=1

(
f (θk+1(0))−

∫
E

f (y)(η(θk(ξk), dy))

)
∫ t

0

∫
E

(f (y)− f (Xs−)) η(Xs−, dy)d(Ns − λs)

Hence

f (Xt)− f (X0)−
∫ t

0
(Af (Xs) + Bf (Xs)) ds

is an (Ft)t≥0 martingale.
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