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Lecture 1

These lecture notes will be uploaded in https://sites.google.

com/site/parthanilroy/lps_notes and updated regularly during De-
cember 6-10, 2013. It will be greatly appreciated if you point out typos,
mistakes, etc. In order to avoid unnecessary wastage of papers, a log
of the updates will be maintained. It is suggested that the references
are printed after LPS VIII.

Question 0.1 (Ice-breaker). How do we prove central limit theorem?

Theorem 0.2. X1,X2, . . . are iid with E(X1) = 0, V (X1) = σ2 < ∞
⇒ Zn ∶= X1+X2+⋯+Xn√

n

LÐ→ N(0, σ2).

An Extremely Sloppy Proof. Note that E(X1) = 0, V (X1) = σ2 < ∞
⇒ E(etX1) = E(1+ itX + (itX)

2

2 +⋯) ≈ 1− t2σ2

2 for “small” t. Therefore,

E(eiθZn) = E (ei
θ
√
n
(X1+X2+⋯+Xn)) = (E(ei

θ
√
n
X1))

n

≈ (1 − θ
2σ2

2n
)
n

→ e−
σ2θ2

2 ,

which proves the result. �

Question 0.3. What happens when V (X1) = ∞?

Here is a partial answer (see Feller (1971), pg 581).

Theorem 0.4. X1,X2, . . . are iid symmetric rvs with P (∣X1∣ > λ) ∼
κλ−α as λ→∞ for some κ > 0 and α ∈ (0,2) ⇒ Yn ∶= X1+X2+⋯+Xn

n1/α

LÐ→ Y
with characteristic function E(eiθY ) = exp(−C−1

α κ∣θ∣α), θ ∈ R, where Cα
is the stable tail constant given by

(0.1) Cα = (∫
∞

0
x−α sinxdx)

−1

= {
1−α

Γ(2−α) cos (πα/2) if α ≠ 1,
2
π if α = 1.
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Yet Another Sloppy Proof. It is possible to show that P (∣X1∣ > λ) ∼
κλ−α as λ→∞⇒ E(eitX1) ≈ 1 −C−1

α κ∣t∣α for “small” t

⇒ E(eiθYn) = E (ei
θ

n1/α
(X1+X2+⋯+Xn))

= (E(ei
θ

n1/α
X1))

n

≈ (1 − C
−1
α κ∣θ∣α
n

)
n

→ exp(−C−1
α κ∣θ∣α).�

1. Symmetric α-stable Distribution

Definition 1.1. A rv X is said to follow symmetric α-stable (SαS) dis-

tribution (α ∈ (0,2] is called the index of stability) with scale parameter
σ > 0 if its characteristic function is of the form

E(eiθX) = e−σα∣θ∣α , θ ∈ R.
Note that because of Theorem 0.4 above and Levy’s continuity the-

orem, it follows that this is indeed a valid characteristic function. SαS
distribution is a subclass of a more general class of distributions called
stable distribution.

Notation. X ∼ SαS(σ).

Property 1.2 (Known Distributions). (a) α = 1 ⇒ X ∼ Cauchy dis-
tribution with density function fX(x) = σ

π(x2+σ2)
, −∞ < x < ∞.

(b) α = 2⇒X ∼ N(0,2σ2).

These are the only two cases in which the density functions are known
in closed form. For the other values of α, X is supported on R with
continuous density function that can be written in a series. See, for
example, Ibragimov and Linnik (1971), Feller (1971) and Zolotarev
(1986). We shall assume from now on that 0 < α < 2.

Property 1.3. Xi ∼ SαS(σi), i = 1,2, X1 áX2

⇒ a1X1 + a2X2 ∼ SαS((∣a1∣ασα1 + ∣a2∣ασ2)1/α). In particular, X
L= −X.

Property 1.4. X1,X2, . . . ,Xn
iid∼ SαS(σ) ⇒ ∑n

i=1Xi
L= n1/αX1.

Property 1.5. X ∼ SαS(σ), α ∈ (0,2) ⇒ P (∣X ∣ > λ) ∼ σαCαλ−α as
λ→∞, where Cα is as in (0.1).

Sketch of Proof for 0 < α < 1. Step 1. The Laplace transform of ∣X ∣
is E(e−γ∣X ∣) = exp (− σα

cos (πα/2)γ
α), γ ≥ 0. (Use Proposition 1.2.12 and

Property 1.2.13 of Samorodnitsky and Taqqu (1994).)

Step 2. Using integration by parts,

∫
∞

0
e−γλP (∣X ∣ > λ)dλ = 1 −E(e−γ∣X ∣)

γ
∼ σα

cos (πα/2)
γα−1
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as γ → 0.

Step 3. Step 2 + Theorem XIII.5.4 of Feller (1971) ⇒ P (∣X ∣ > λ) ∼
σα

cos (πα/2)Γ(1−α)λ
−α = σαCαλ−α since 0 < α < 1. �

See Feller (1971) and Samorodnitsky and Taqqu (1994) for the details
in the 0 < α < 1 case and the proof in the 1 < α < 2 case.

Exercise 1. Prove Property 1.5 for α = 1.

Corollary 1.6. For 0 < α < 2, E∣X ∣p < ∞ if 0 < p < α and E∣X ∣p = ∞
if p ≥ α.

The following series representation of an Sα S random variable will
be extremely useful for us later in this mini course.

Theorem 1.7. Let {εi}i≥1, {Γi}i≥1, {Wi}i≥1 be three independent se-

quences of rvs, where ε1, ε2, . . .
iid∼ ±1 with probability 1/2 each, Γ1 <

Γ2 < ⋯ are the arrival times of a homogeneous Poisson process with
unit arrival rate, and W1,W2, . . . are iid satisfying E∣W1∣α < ∞. Then
the series

(1.1)
∞

∑
i=1

εiΓ
−1/α
i Wi

converges almost surely to a rv X ∼ SαS ((C−1
α E∣W1∣α)1/α).

Remark 1.8. It can be shown that P (∣ε1Γ
−1/α
1 W1∣ > λ) ∼ E∣W1∣αλ−α

as λ → ∞ whereas P (∑∞
i=2 εiΓ

−1/α
i Wi > λ) = o(λ−α) as λ → ∞; see pg

26-28 of Samorodnitsky and Taqqu (1994). This means that the first

term ε1Γ
−1/α
1 W1 is the dominating term of the series (1.1) that provides

“correct asymptotics to its tail” and the rest of the terms provide the
“necessary corrections” for the sum to have an SαS distribution. This
is regarded as the “one large jump” heuristics for an SαS rv.

Sketch of Proof of Theorem 1.7. Step 1. Three series theorem (Feller
(1971), Theorem IX.9.3) can be used to show that the series (1.1)
converges almost surely as n → ∞. This is not completely straightfor-
ward but somewhat routine; see pg 24-25 of Samorodnitsky and Taqqu
(1994).

Step 2. Use a “cool trick” from elementary probability theory to
identify the distribution of the (almost surely) convergent series (1.1).

Take a sequence of U1, U2, . . .
iid∼ Unif(0,1) independent of {εi}i≥1 and

{Wi}i≥1. Recall that for each n,

( Γ1

Γn+1

,
Γ2

Γn+1

, . . . ,
Γn

Γn+1

) L= (U(1), U(2), . . . , U(n)),
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where U(1) < U(2) < ⋯ < U(n) are the order-statistics obtained from the
random sample (U1, U2, . . . , Un). Using this equality of distribution and
an exchangeability argument,

(Γn+1

n
)

1/α n

∑
i=1

εiΓ
−1/α
i Wi

L= 1

n1/α

n

∑
i=1

εiU
−1/α

(i)
Wi

L= 1

n1/α

n

∑
i=1

εiU
−1/α
i Wi

LÐ→X

(here X ∼ SαS ((C−1
α E∣W1∣α)1/α)) by Theorem 0.4 and the following

exercise.

Exercise 2. {εiU−1/α
i Wi}i≥1 is a sequence of iid symmetric rvs such

that P (∣ε1U−1/α
1 W1∣ > λ) ∼ E∣W1∣αλ−α as λ→∞.

From the above convergence in distribution, Theorem 1.7 follows be-

cause Γn+1/n
a.s.Ð→ 1 as n→∞ by the strong law of large numbers. �

2. SαS Random Fields and Long Range Dependence

Definition 2.1. A random vector X ∶= (X1,X2, . . . ,Xk) is said to fol-
low multivariate SαS distribution if each nondegenerate linear combi-
nation ∑k

i=1 ciXi (c1, c2, . . . , ck ∈ R) follows SαS distribution. In this
case, X is called an SαS random vector.

The following result gives a very nice and useful characterization of
an SαS random vector.

Theorem 2.2. X ∈ Rk is an SαS random vector with 0 < α < 2 if and
only if there exists a unique finite symmetric measure Γ on the unit
sphere Sk ∶= {x ∶ ∥x∥2 = 1} such that

(2.1) E(eiθTx) = exp{−∫
Sk

∣θTx∣α Γ(dx)} .

Proof. See Kuelbs (1973). �

Γ is called the spectral measure of the SαS random vector X.

Definition 2.3. A stochastic process {Xt}t∈T is called an SαS process
(indexed by T ) if all of its finite-dimensional distributions are multi-
variate SαS distributions. When T = Zd or Rd for some d ∈ N, {Xt}t∈T
is called an SαS random field.

We shall give examples of SαS random fields later. We first present
the big picture of this mini course.
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2.1. The Big Picture. The main goal of this mini course is to for-
malize the phrase “long range dependence” for SαS random fields. We
start with a brief discussion on this terminology.

Long range dependence (also known as long memory), a property
observed in many real life processes, refers to dependence between ob-
servations Xt far separated in t. Historically, it was first observed by a
famous British hydrologist Harold Edwin Hurst, who noticed an empir-
ical phenomenon (now known as Hurst phenomenon; see Hurst (1951)
and Hurst (1955)) while looking at measurements of the water flow in
the Nile River. In the 1960s a series of papers of Benoit Mandelbrot
and his co-workers tried to explain Hurst phenomenon using long range
dependence. See Mandelbrot and Wallis (1968) and Mandelbrot and
Wallis (1969). From then on processes having long memory have been
used in many different areas including economics, internet modelling,
climate studies, linguistics, DNA sequencing etc. For a detailed dis-
cussion on long range dependence, see Samorodnitsky (2006) and the
references therein.

Most of the classical definitions of long range dependence appearing
in literature are based on the second order properties (e.g.- covari-
ances, spectral density, and variances of partial sums etc) of stochastic
processes mainly because of their simplicity and statistical tractabil-
ity. For example, one of the most widely accepted definitions of long
range dependence for a stationary Gaussian process is that a stationary
Gaussian process has long range dependence if its correlation function
decays slowly enough to make it not summable. In the heavy tails con-
text, however, this definition becomes ambiguous because correlation
function may not even exist in heavy tails case and even if it exists it
may not have enough information about the dependence structure of
the process.

Lecture 2

In the context of stationary SαS processes (0 < α < 2) indexed by Z,
instead of looking for a substitute for correlation function, Samorodnit-
sky (2004a) suggested a new approach through phase transition phe-
nomena as follows. Suppose that (Pθ, θ ∈ Θ) is a family of laws of a
stationary stochastic process, where θ is a parameter of the process
lying in a parameter space Θ. If Θ can be partitioned into Θ0 and Θ1

in such a way that a significant number of functionals of this stochastic
process change dramatically as we pass from Θ0 to Θ1, then this phase
transition can be thought of as a change from short memory to long
memory. The aforementioned paper investigates the rate of growth of
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the partial maxima of the stationary SαS process indexex by Z. A
transition boundary is observed based on the ergodic theoretical prop-
erties of the underlying nonsingular group action obtained from the
seminal work of Rosiński (1995). In this minicourse, we shall discuss
this work and its extension to the SαS random fields.

3. SαS Random Measures and Integrals

We shall now introduce SαS random measures and integral wrt such
measures. In fact, we shall first introduce the integral and then define
the random measure. Let (E,E ,m) be a σ-finite measure space, 0 <
α < 2 and

F ∶= Lα(E,E ,m) = {f ∶ E → R ∶ ∥f∥α ∶= (∫
E
∣f ∣αdm)

1/α

< ∞} .

Note that F is a Banach space when 1 ≤ α < 2 (but not a Hilbert space)
with the norm ∥ ⋅ ∥α. However for 0 < α < 1, ∥ ⋅ ∥α is not even a norm
and hence F has very little structure. It is a metric space with the
distance function dα(f, g) ∶= ∥f − g∥αα. In particular, F is a very rigid
space for all α ∈ (0,2) in the sense that it has very few isometries. We
shall exploit this rigidity in the second half of this mini course.

Goal. Define an SαS process {I(f) ∶ f ∈ F} indexed by F so that
M(A) ∶= I(1A), A ∈ E0 ∶= {A ∈ E ∶ m(A) < ∞} becomes an “SαS
random measure” and I(f) becomes the “integral wrt M”.

We attain this goal as follows. Given f1, f2, . . . , fk ∈ F , we define a
probability measure Pf1,f2,...,fk on Rk by its characteristic function as
follows

(3.1) ψf1,f2,...,fk = exp{−∥
k

∑
j=1

θjfj∥
α

α
}.

Proposition 3.1. For any f1, f2, . . . , fk ∈ F , ψf1,f2,...,fk is the charac-
teristic function of an SαS random vector. In particular, Pf1,f2,...,fk is
well-defined.

Proof. The proof follows from Theorem 2.2 and the following exercise.

Exercise 3. Let E+ ∶= {x ∈ E ∶ ∑k
j=1 (fj(x))

2 > 0}. Define a measure Γ

on the unit sphere Sk as

Γ(A) ∶= 1

2 ∫π(A)
(

k

∑
j=1

f 2
j )

α/2

dm + 1

2 ∫π(−A)
(

k

∑
j=1

f 2
j )

α/2

dm, A ⊆ Sk,
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where

π(A) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
x ∈ E+ ∶

⎛
⎜
⎝

f1(x)√
∑k
j=1 (fj(x))

2
, . . . ,

fk(x)√
∑k
j=1 (fj(x))

2

⎞
⎟
⎠
∈ A

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Then show that Γ is a symmetric finite measure on Sk such that ψf1,f2,...,fk
is of the form (2.1). �

From Proposition 3.1 and Kolmogorov extention theorem, it follows
that there exists an SαS process {I(f) ∶ f ∈ F} with finite-dimensional
distributions of the form (3.1). In particular, each I(f) ∼ SαS(∥f∥α).

Exercise 4 (I is linear and independently scattered). For all functions
f1, f2, . . . , fk ∈ F and for all a1, a2, . . . ak ∈ R,

I(a1f1 + a2f2 +⋯ + akfk) = a1I(f1) + a2I(f2) +⋯ + akI(fk)
almost surely. If further f1, f2, . . . , fk have pairwise disjoint support,
then I(f1), I(f2), . . . , I(fk) are independent.

Definition 3.2. Let (E,E ,m) be a σ-finite measure space. A set func-
tion M defined on E0 is called an SαS random measure on E with
control measure m if

(1) {M(A) ∶ A ∈ E0} is a collection of rvs defined on the same
probability space,

(2) each M(A) ∼ SαS((m(A))1/α),
(3) if A1,A2, . . . ,Ak are pairwise disjoint, then M(A1),M(A2), . . .M(Ak)

are independent (M is independently scattered),
(4) if A1,A2, . . . are pairwise disjoint such that ⋃∞

i=1Ai ∈ E0, then
M(⋃∞

i=1Ai) = ∑∞
i=1M(Ai) almost surely (M is σ-additive).

Proposition 3.3. For every σ-finite measure space (E,E ,m) there
exists an SαS random measure on E with control measure m.

Proof. Define M(A) ∶= I(1A), A ∈ E0. All the properties of an SαS
random measure follows from the properties of I mentioned above ex-
cept the σ-additivity, which can be established as follows. Note that
finite additivity follows from Exercise 4 and therefore,

M(
∞

⋃
i=1

Ai) −
n

∑
i=1

M(Ai)
a.s.= M(

∞

⋃
i=n+1

Ai) ∼ SαS ((
∞

∑
i=n+1

m(Ai))
1/α

) .

The above observation yields ∑n
i=1M(Ai)

pÐ→ M(⋃∞
i=1Ai), which im-

plies ∑n
i=1M(Ai)

a.s.Ð→M(⋃∞
i=1Ai) since M(A1),M(A2), . . . are indepen-

dent. �
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Lecture 3

Here is a result that gives the motivation behind thinking I(f) as
an “integral of f wrt M”.

Theorem 3.4. {I(f) ∶ f ∈ F} defined above satisfies the following
properties.

(1) If f ∈ F is a simple function of the form f = ∑k
j=1 cj1Aj with

pairwise disjoint A1,A2, . . . ,Ak ∈ E0, then by linearity of I,

I(f) a.s.=
k

∑
j=1

cjM(1Aj) =
k

∑
j=1

cjM(Aj) .

(2) Let f ∈ F be any function (not necessarily simple). Take a

sequence of simple functions {fn}n≥1 such that fn
a.s.Ð→ f and

∣fn∣ ≤ g for some g ∈ F (such a sequence always exits for any

f ∈ F ), then I(fn)
pÐ→ I(f).

Proof. The first part follows trivially from linearity of I. For the sec-
ond part (including existence of such a sequence), see pg 122 - 124 of
Samorodnitsky and Taqqu (1994). �

In view of the above result, we shall denote I(f) by ∫E fdM for
f ∈ F . This motivates the following definition.

Definition 3.5. The SαS process {I(f)}f∈F is called the integral (pro-
cess) wrt the random measure M and this is denoted by

(3.2) {I(f)}f∈F
L= {∫

E
f(x)M(dx)}

f∈F

.

Note that the notation (3.2) is a fancy way of writing that {I(f)}f∈F is
a stochastic process indexed by F such that for any f1, f2, . . . , fk ∈ F ,
the joint characteristic function of (I(f1), I(f2), . . . , I(fk)) is given by
(3.1).

Remark 3.6. For any F0 ⊆ F , we can use the notation {∫E fdM}
f∈F0

to

denote the SαS process {I(f)}f∈F0 . This remark will be useful later in
this mini course because we shall always work with a “suitably chosen”
proper subset of F .

Example 3.7 (SαS Levy Random Measure). Take E = [0,∞), m =
Leb (the Lebesgue measure on [0,∞)) and let M be an SαS random
measure on [0,∞) with control measure Leb. This M is called SαS
Levy Random Measure. Define Xt ∶=M([0, t]), t ≥ 0.

Exercise 5. Show that {Xt}t≥0 defined above an SαS process satisfying
the following properties:
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(1) X0
a.s.= 0.

(2) {Xt}t≥0 has independent increments, i.e., for all 0 ≤ t1 < t2 <
⋯ tk < ∞, Xt1 ,Xt2 −Xt1 ,Xt3 −Xt2 , . . . ,Xtk −Xtk−1 are indepen-
dent. (Follows from the fact that M is independently scattered.)

(3) For all 0 ≤ s < t < ∞, Xt −Xs ∼ SαS((t − s)1/α).
(4) In particular, {Xt}t≥0 has stationary increments, i.e., for all

0 ≤ t1 < t2 < ⋯ tk < ∞ and for all τ ≥ 0,

{Xt −X0}t≥0
L= {Xt+τ −Xτ}t≥0.

(Equality of finite-dimensional distributions.)
(5) {Xt}t≥0 is self-similar with index 1/α, i.e., for all c > 0,

{Xct}t≥0
L= {c1/αXt}t≥0

{Xt}t≥0 defined above is called SαS Levy motion. It is the extension of
Brownian motion in the SαS world.

4. Integral Representation of an SαS Random Field

From now on, we shall only deal with SαS random fields. In order
to keep life simple, we shall discuss the case T = Zd for some d ≥ 1.

Definition 4.1. A family of functions {ft}t∈Zd ⊆ Lα(S,S, µ) (here
(S,S, µ) is a σ-finite standard Borel space) is called an integral rep-
resentation of an SαS random field {Xt}t∈Zd if

(4.1) {Xt}t∈Zd
L= {∫

S
ft(s)M(ds)}

t∈Zd
,

where M is an SαS random measure on S with control measure µ.

Note that (4.1) simply means that for all t1, t2, . . . , tk ∈ Zd,

E(ei∑
k
j=1 θjXtj ) = exp{−∥

k

∑
j=1

θjftj∥
α

α
}, θ1, θ2, . . . , θk ∈ R.

Lecture 4

Theorem 4.2. Every SαS random field {Xt}t∈Zd has an integral rep-
resentation.

Proof. See Bretagnolle et al. (1966), Schreiber (1972),Schilder (1970).
See also Kuelbs (1973) and Hardin Jr. (1982) for a discussion of history
of (4.1). �
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For any integral representation {ft}t∈Zd ⊆ Lα(S,S, µ) , one can as-
sume without loss of generality that

⋃
t∈Zd

Support(ft)
a.s.= S.

From now on, we shall assume that this full support condition holds
for all of our integral representations.

The converse of Theorem 4.2 holds, i.e., given any σ-finite measure
space (S,S, µ), a family of functions {ft}t∈Zd ⊆ Lα(S,S, µ) and an SαS
random measure M on S with control measure µ, we can construct
an SαS random field {Xt}t∈Zd using (4.1). This follows trivially from
Remark 3.6 with F0 = {ft ∶ t ∈ Zd} ⊆ Lα(S,S, µ). Using this, one can
construct many SαS random fields, one of which is discussed below.

Example 4.3 (Stationary SαS Moving Average Random Field). This
example was introduced (in the d = 1 case) by Surgailis et al. (1993).
Let (W,W, ν) be a σ-finite measure space. Define S =W ×Zd, µ = ν⊗η,
where η is the counting measure on Zd. Let M be an SαS random
measure on W ×Zd with control measure ν ⊗ η. Take a single function
f ∈ Lα(W ×Zd, ν ⊗ η) and define a family {ft}t∈Zd of functions as

ft(w, s) = f(w, s + t), (w, s) ∈W ×Zd.
It is easy to check that each ft ∈ Lα(W × Zd, ν ⊗ η). The SαS random
field

{Xt}t∈Zd ∶L= {∫
W×Zd

ft(w, s)dM(w, s)}
t∈Zd

L= {∫
W×Zd

f(w, s + t)dM(w, s)}
t∈Zd

(4.2)

is called a stationary SαS moving average random field.

Definition 4.4. A random field {Xt}t∈Zd is called stationary if {Xt}t∈Zd
L= {Xt+τ}t∈Zd for all τ ∈ Zd.

Exercise 6. Show that {Xt}t∈Zd defined by (4.2) is stationary. If W is
a singleton, then show that {Xt}t∈Zd is a moving average random field
with iid SαS innovations.

In view of the above exercise, one can think of {Xt}t∈Zd defined by
(4.2) as a mixture of moving averages and hence it is called a mixed
moving average. This example will play a very important role in this
mini course.

The following notion (introduced by Hardin Jr. (1982)) is extremely
technical and yet useful. We shall first give the definition and then
state a theorem that will help us understand its meaning.
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Definition 4.5. An integral representation {ft}t∈Zd ⊆ Lα(S,S, µ) of an
SαS random field is called a minimal representation if for all B ∈ S,
there exists A ∈ σ{ft/ft′ ∶ t, t′ ∈ Zd} such that µ(A∆B) = 0.

The ratio ft(s)/ft′(s) is defined to be ∞ when ft(s) > 0, ft′(s) =
0 and −∞ when ft(s) < 0, ft′(s) = 0. In particular, the σ-algebra
σ{ft/ft′ ∶ t, t′ ∈ Zd} is generated by a bunch of extended real-valued
functions.

Theorem 4.6. Every SαS random field has a minimal representation.

The following result provides better insight into the notion of mini-
mality of integral representations.

Theorem 4.7. Let {f∗t }t∈Zd ⊆ Lα(S∗,S∗, µ∗) be a minimal represen-
tation of an SαS random field {Xt}t∈Zd and {ft}t∈Zd ⊆ Lα(S,S, µ) be
any integral representation of {Xt}t∈Zd. Then there exist measurable
functions Φ ∶ S → S∗ and h ∶ S → R ∖ {0} such that

(4.3) µ∗(A) = ∫
Φ−1(A)

∣h∣αdµ

and for each t ∈ Zd,
(4.4) ft(s) = h(s)f∗t (Φ(s)) for µ-almost all s ∈ S.
If further {ft}t∈Zd is also a minimal representation, then Φ and h are
unique modulo µ, Φ is one-to-one and onto, µ∗ ○Φ ∼ µ and

(4.5) ∣h∣α = d(µ
∗ ○Φ)
dµ

µ-almost surely.

Proofs of Theorems 4.6 and 4.7. These proofs use deep analysis of Lα

spaces; see Hardin Jr. (1981, 1982). Theorem 4.7 follows from the
rigidity (dearth of isometry) of Lα spaces, 0 < α < 2. �

Theorem 4.7 provides some sort of uniqueness to integral represen-
tations of SαS random fields and we shall capitalize on it heavily in
this mini course. Since any integral representation can be expressed
in terms of a minimal representation using (4.4), {f∗t }t∈Zd should be
regarded as a minimal element in the set of all integral representations.
However it should be noted that in general, it is extremely difficult
to check that a given integral representation is minimal. See Rosiński
(1994), Rosiński (1995) and Rosiński (2006) for various useful results
on minimal representations.
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Lecture 5

5. The Stationary Case

From now on, we shall assume that our SαS random field {Xt}t∈Zd is
stationary (see Definition 4.4 above). Note that this means that for all
t1, t2, . . . , tk, τ ∈ Zd and for all c1, c2, . . . , ck ∈ R, either ∑k

i=1 ciXti+τ
a.s.= 0

or ∑k
i=1 ciXti+τ follows an SαS distribution whose scale parameter does

not depend on τ . The mixed moving average random field defined by
(4.2) serves as an important class of examples of such fields.

The ultimate goal of this mini course is to study the asymptotic
behaviour of a maxima sequence of {Xt}t∈Zd as t varies in hypercubes
of increasing size. More precisely, define for all n ≥ 1,

Bn = {t = (t1, t2, . . . , td) ∈ Zd ∶ each ti ∈ {0,1,2, . . . , n − 1}},
and

(5.1) Mn ∶= max
t∈Bn

∣Xt∣, n ≥ 1.

We shall eventually answer the following questions for most of the
important cases.

Question 5.1. What is the rate of growth of Mn (as n→∞)?

Question 5.2. If we know the rate of growth of Mn, can we find its
scaling limit?

If {Xt}t∈Zd
iid∼ SαS(σ), then by Proposition 1.11 of Resnick (1987)

and Property 1.5 above, it follows that Mn grows like nd/α as n → ∞
and Mn/nd/α

LÐ→ aZα, where a > 0 is a deterministic constant and Zα
is a Frechet type extreme value rv with distribution function

(5.2) P (Zα ≤ z) = { e−z
−α
, z > 0,

0 , z ≤ 0.

As long as, the random field {Xt}t∈Zd has short memory, it is expected
to exhibit the same rate of growth of Mn. On the other hand, if {Xt}t∈Zd
has long memory, then Mn is expected to grow slowly because this
strong dependence will prevent erratic changes in the value of Xt even
when ∥t∥∞ ∶= max1≤i≤n ∣ti∣ becomes large. We shall indeed observe a
phase transition in the rate of growth of Mn as n → ∞. Because
of the intuitions given above, this phase transition can be regarded
as a passage from short memory to long memory; see Samorodnitsky
(2004a) and Roy and Samorodnitsky (2008).

In order to study the rate of growth of Mn, we need to know more
about the integral representation of stationary SαS random fields. It

12



so happens that in the stationary case, any minimal representation
of {Xt}t∈Zd has a very nice form in terms of a nonsingular Zd-action
and an associated cocycle. We introduce these terminologies below.
See Varadarajan (1970), Zimmer (1984), Krengel (1985) and Aaronson
(1997) for detailed discussions of these ergodic theoretic notions.

Definition 5.3. Let (S,S, µ) be a σ-finite standard Borel space. Then
a family of measurable maps {φt ∶ S → S}t∈Zd is called a nonsingular

(also known as quasi-invariant) Zd-action if

(1) φ0(s) = s for µ-almost all s ∈ S,
(2) φt1+t2 = φt1 ○ φt2 µ-almost surely,
(3) µ ○ φ−1

t ∼ µ for all t ∈ Zd.

In particular, if µ ○ φ−1
t = µ, then {φt ∶ S → S}t∈Zd is called a measure-

preserving Zd-action. Clearly measure-preserving ⇒ nonsingular but
the converse is not true. See, for example, Aaronson (1997) for an
example of a nonsingular Z-action that is not measure-preserving.

Example 5.4. Let (W,W , ν) be a σ-finite measure space, S ∶=W ×Zd,
µ ∶= ν ⊗ η, where η is the counting measure on Zd. Define a Zd-action
{ψt}t∈Zd on W ×Zd as follows. For all t ∈ Zd,
(5.3) ψt(w, s) = (w, s + t), (w, s) ∈W ×Zd.
Clearly {ψt}t∈Zd is a measure-preserving (and hence nonsingular) Zd-
action on W × Zd. Note that using this action, we can rewrite (4.2)
as

(5.4) {Xt}t∈Zd
L= {∫

W×Zd
f(ψt(w, s))dM(w, s)}

t∈Zd
,

where M is an SαS random measure on W × Zd with control measure
ν ⊗ η.

We need another notion that arises from cohomology theory and is
widely used in ergodic theory.

Definition 5.5. A collection of measurable maps {ct ∶ S → {−1,+1}}
t∈Zd

is called a (±1-valued) cocycle for a nonsingular Zd-action {φt}t∈Zd on
(S,S, µ) if for all t1, t2 ∈ Zd,
(5.5) ct1+t2(s) = ct2(s)ct1(φt2(s))
for µ-almost all s ∈ S.

Remark 5.6. Instead of a ±1-valued cocyle, we can also define pos-
itive real-valued cocycle as a collection of maps {ct ∶ S → (0,∞)}t∈Zd
satisfying (5.5). The most important example of such a cocycle is given
by the following exercise.

13



Exercise 7. Let {φt}t∈Zd be a nonsingular Zd-action on (S,S, µ). Show
that ct ∶= d(µ ○ φt)/dµ, t ∈ Zd is a positive real-valued cocycle.

Hardin Jr. (1982) expressed a minimal representation of a stationary
SαS process using a group of linear isometries of Lα(S,S, µ) to itself.
Extending this result, Rosiński (1994), Rosiński (1995) and Rosiński
(2000) showed that any minimal representation of an SαS random field
can be written in terms of a nonsingular Zd-action and an associated
cocycle. This result is given below and should be considered as the key
theorem of this mini course.

Theorem 5.7. Let {ft}t∈Zd ⊆ Lα(S,S, µ) be a minimal representation
of a stationary SαS random field {Xt}t∈Zd. Then there exist unique
(modulo µ) nonsingular Zd-action {φt}t∈Zd on (S,S, µ) and a ±1-valued
cocycle {ct}t∈Zd for {φt}t∈Zd such that for all t ∈ Zd,

(5.6) ft(s) = ct(s)(f0 ○ φt(s)) (
d(µ ○ φt)

dµ
(s))

1/α

µ-almost surely.

The next theorem is the converse of Theorem 5.7 and can be used
to produce many examples of stationary SαS random fields.

Theorem 5.8. Take any measurable space (S,S, µ), any f ∈ Lα(S,S, µ)
any nonsingular Zd-action {φt}t∈Zd on (S,S, µ), and any ±1-valued
cocycle {ct}t∈Zd for {φt}t∈Zd. Then {ft}t∈Zd defined by (5.6) satisfies
{ft}t∈Zd ⊆ Lα(S,S, µ) and {Xt}t∈Zd defined by (4.1) (here M is an SαS
random measure on S with control measure µ) is a stationary SαS
random field.

Lecture 6

Exercise 8. Prove Theorem 5.8.

Definition 5.9. Any integral representation (not necessarily minimal)
of the form (5.6) of an SαS random field {Xt}t∈Zd is called a Rosin-
ski representation of {Xt}t∈Zd. In this case, we say that {Xt}t∈Zd is
generated by the triplet (f0,{φt}t∈Zd ,{ct}t∈Zd) on (S,S, µ).

Note that the stationary mixed moving average SαS random field
defined by (4.2) is generated by the triplet (f,{ψt}t∈Zd ,{ct ≡ 1}t∈Zd) on
(W ×Zd, ν⊗η) (here the notations are as in Example 5.4). This means
that (5.4) is a Rosinski representation with unit cocycle ct ≡ 1 and unit
Radon-Nikodym derivative d((ν ⊗ η) ○ ψt)/d(ν ⊗ η) ≡ 1 for all t ∈ Zd.
The unit Radon-Nikodym derivative is obtained because {ψt}t∈Zd is a
measure-preserving Zd-action.
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Any minimal representation is a Rosinski representation but not the
converse. Also given a particular minimal representation, the underly-
ing nonsingular Zd-action and the associated cocycle are unique almost
surely. However since minimal representation is not unique, Rosinski
representation is not unique either. Because of the rigidity result The-
orem 4.7, the underlying Zd-actions (of different Rosinski representa-
tions) preserve many important ergodic theoretic properties. We shall
introduce one such property in this mini course and discuss its impli-
cations for the length of memory (and rate of growth of the maxima
sequence Mn) of a stationary SαS random field.

5.1. Proof of Theorem 5.7. The idea of this proof is as follows.
Stationarity means the the law of {Xt}t∈Zd is invariant under the shift
action of Zd on RZd . This measure-preserving Zd-action, when viewed
at the integral representation level, naturally induces a nonsingular
action on S and an associated cocycle yielding (5.6). The main steps
of this proof is sketched below.

Fix t ∈ Zd. Note that because of stationarity of {Xτ}τ∈Zd and min-
imality of {fτ}τ∈Zd , it follows that {fτ+t}τ∈Zd is also a minimal repre-
sentation of {Xτ}τ∈Zd . Therefore by Theorem 4.7, there exist unique
(modulo µ) maps φt ∶ S → S (one-to-one and onto) and ht ∶ S → R∖{0}
such that for all τ ∈ Zd,

fτ+t = ht fτ ○ φt µ-almost surely, and(5.7)

0 < ∣ht∣ = (d(µ ○ φt)
dµ

)
1/α

µ-almost surely, and(5.8)

Define ct ∶= ht/∣ht∣, t ∈ Zd. Putting τ = 0 in (5.7) and using (5.8), we
get that µ-almost surely

ft = ct f0 ○ φt (
d(µ ○ φt)

dµ
)

1/α

, t ∈ Zd,

from which Theorem 5.7 follows because of the following exercise.

Exercise 9. Fix t1, t2 ∈ Zd. Evaluate fτ+t1+t2 in two different ways
and use Theorem 4.7 (more precisely, the uniqueness of the maps) to
conclude that {φt}t∈Zd is a nonsingular Zd-action on (S,S, µ), {ct}t∈Zd
is a ±1-valued cocycle for {φt}t∈Zd, and they are both unique modulo µ.

6. Conservative and Dissipative Parts

When a stationary SαS random field {Xt}t∈Zd is generated by the
triplet (f0,{φt}t∈Zd ,{ct}t∈Zd) on (S,S, µ), (f0,{φt}t∈Zd ,{ct}t∈Zd) can be
thought of as a highly infinite-dimensional parameter that determines
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the dependence structure of {Xt}t∈Zd and hence has information about
its length of memory. It so happens that f0 and {ct}t∈Zd do not have
too much information about the memory (this is somewhat expected
because f0 is just one function and cts are just ±1-valued functions).
The nonsingular Zd-action {φt}t∈Zd , on the other hand, has a lot of
information on the length of memory. The next few definitions and
results are motivated by this.

Definition 6.1. Suppose {φt}t∈Zd is a nonsingular Zd-action on (S,S, µ).
A set W∗ ∈ S is called a wandering set (for {φt}t∈Zd) if {φt(W∗) ∶ t ∈ Zd}
is a pairwise disjoint collection of subsets of S.

Roughly speaking, wandering sets never come back to itself under
the action. In Example 5.4, take any W0 ⊆ W and any t0 ∈ Zd. Then
W∗ ∶=W0 × {t0} is a wandering set.

Lecture 7

The following result (see Proposition 1.6.1 in Aaronson (1997)) gives
a decomposition of S into two disjoint and invariant parts.

Theorem 6.2 (Hopf Decomposition). Suppose {φt}t∈Zd is a nonsingu-
lar Zd-action on (S,S, µ). Then there exist unique (modulo µ) subsets
C,D ∈ S such that

(1) C ∩ D = ∅ modulo µ,
(2) C ∪ D = S modulo µ,
(3) C and D are invariant under the action {φt}t∈Zd, i.e., for all

t ∈ Zd, φt(C) = C and φt(D) = D modulo µ,
(4) C has no wandering subset of positive measure, and
(5) D = ⋃t∈Zd φt(W∗) modulo µ for some wandering set W∗.

Definition 6.3. C and D are called the conservative and dissipative
parts (of {φt}t∈Zd), respectively. {φt}t∈Zd is called conservative if S = C
modulo µ and dissipative if S = D modulo µ.

Roughly speaking, conservative actions keep coming back to its start-
ing point whereas the dissipative actions keep moving away. An exam-
ple of dissipative action is given by Example 5.4 with W∗ =W ×{0} be-
ing a wandering set whose translates cover S (see Theorem 6.2 above).
On the other hand, the following exercise yields many examples of
conservative actions.

Exercise 10. Show that any measure-preserving Zd-action on a fi-
nite measure space is necessarily conservative. In particular, if µ is a
probability measure on S = RZd such that under µ, the coordinate field
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{πt}t∈Zd (defined by πt(x) = x(t), x ∈ RZd) is stationary, then show that
the shift action {ζt}t∈Zd of Zd on RZd, defined by

(6.1) (ζtx)(s) = x(s + t), x ∈ RZd, s ∈ Zd,
is conservative.

The following result confirms that even though Rosinski represen-
tation is not unique, the rigidity result Theorem 4.7 is kind towards
the dissipativity and conservativity of the underlying nonsingular Zd-
actions.

Proposition 6.4. If a stationary SαS random field is generated by
a conservative (dissipative, resp.) Zd-action in one Rosinski repre-
sentation, then in any other Rosinski representation of the field, the
underlying action must be conservative (dissipative, resp.).

Proof. See Rosiński (1995) (for d = 1) and Roy and Samorodnitsky
(2008) (for d > 1). �

Remark 6.5. The stationary SαS random fields generated by conser-
vative Zd-actions tend to have longer memory compared to the ones
generated by dissipative (or more generally non-conservative) actions
because conservative actions keep coming back and hence introduce
stronger dependence among the Xt s. This heuristic reasoning can be
validated by the growth of Mn as n→∞.

The following result gives structure to a stationary SαS random field
generated by a dissipative Zd-action.

Theorem 6.6. A stationary SαS random field is generated by a dissi-
pative Zd-action if and only if it is a mixed moving average defined by
(4.2).

Main Idea of the Proof. The if part follows from Proposition 6.4 and
the fact that the Zd-action (5.3) is dissipative. The only if part uses a
very deep result (known as Krengel’s Structure Theorem; see Krengel
(1969) for d = 1, and Rosiński (2000), Roy and Samorodnitsky (2008)
for d > 1) that states that any dissipative nonsingular Zd action is
“isomorphic” (in an appropriate sense) to the Zd-action (5.3). Exploit-
ing this isomorphism, one can change the underlying action to (5.3).
However to replace the cocycle by the unit cocycle, one has to work
harder. This part of the proof is slightly technical. See pg 1176 - 1177
of Rosiński (1995) for the detailed proof. �

The Hopf decomposition of the underlying nonsingular actions in-
duces a decomposition of the stationary SαS random field into two
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independent stationary components as follows. Let {ft}t∈Zd ⊆ Lα(S,µ)
be a Rosinski representation of a stationary SαS random field {Xt}t∈Zd
with underlying nonsingular Zd-action {φt}t∈Zd . Let S = C ∪ D be the
Hopf decomposition for {φt}t∈Zd . Then

(6.2) Xt = ∫
S
ftdM = ∫

C
ftdM + ∫

D
ftdM =∶XCt +XDt , t ∈ Zd,

where {XCt }t∈Zd á {XDt }t∈Zd are two stationary SαS random fields,
{XDt }t∈Zd is a mixed moving average, and {XCt }t∈Zd has no nontrivial
mixed moving average component (since it is generated by a conserva-
tive Zd-action).

Theorem 6.7. The decomposition (6.2) is unique is law, i.e., the
(finite-dimensional) distributions of {XCt }t∈Zd and {XDt }t∈Zd do not de-
pend on the choice of Rosinski representation.

Proof. See the proof of Theorem 4.3 in Rosiński (1995). �

Thanks to the above result, we define {XCt }t∈Zd and {XDt }t∈Zd to be
the conservative and dissipative parts of {Xt}t∈Zd , respectively.

7. Maxima of Stationary SαS Random Fields

In view of the discussions in the beginning of Section 5 and Re-
mark 6.5 above, we can expect that the maxima sequence Mn grows
slowly when the underlying Zd-action is conservative. This is confirmed
by the following result.

Theorem 7.1. Let {Xt}t∈Zd be a stationary SαS random field generated
by a nonsingular Zd-action {φt}t∈Zd on (S,S, µ) with the corresponding
Rosinski representation {ft}t∈Zd of the form(5.6). Then the following
results hold.

(1) {φt}t∈Zd is conservative ⇒ Mn/nd/α
pÐ→ 0, and

(2) {φt}t∈Zd is not conservative ⇒ Mn/nd/α
LÐ→ aXZα,

where aX > 0 is a constant determined by {Xt}t∈Zd and Zα is a Frechet
type extreme value random variable with distribution function (5.2).

The Main Idea of the Proof. The main tool behind this proof is
the deterministic sequence

(7.1) bn = (∫
S

max
t∈Bn

∣ft(s)∣αµ(ds))
1/α

,

where Bn is as defined in Section 5. The first step of the proof is the
computation of asymptotics of bn as n → ∞ and the second step is
to show that the asymptotic behaviour of the maxima sequence Mn is
more or less determined by that of bn.
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Remark 7.2. By Corollary 4.4.6 of Samorodnitsky and Taqqu (1994),

lim
λ→∞

λαP (Mn > λ) = Cαbαn,

where Cα is the stable tail constant (0.1). In particular, this means that
the sequence bn is solely determined by the SαS random field {Xt}t∈Zd
and does not depend on the choice of integral representation {ft}t∈Zd .

The first step of the proof of Theorem 7.1 is given by the following
lemma.

Lemma 7.3. Let {φt}t∈Zd be as in Theorem 7.1 and bn be as in (7.1).
Then the following asymptotics hold.

(1) {φt}t∈Zd is conservative ⇒ bn/nd/α → 0, and
(2) {φt}t∈Zd is not conservative ⇒ bn/nd/α →KX,

where KX > 0 is a constant determined by {Xt}t∈Zd.

Proof. For the first part, see the proof of Proposition 4.1 in Roy and
Samorodnitsky (2008). For the second part, see the proof in the one-
dimensional case, i.e., Theorem 3.1 of Samorodnitsky (2004a) (the same
proof goes through in the higher dimensional case due to Theorem 6.6
above). �

The second step of the proof of Theorem 7.1 relies on the following
lemma.

Lemma 7.4. Fix a positive integer n. The random vector (Xt, t ∈ Bn)
has a series representation (in law) of the form

⎛
⎝
bnC

1/α
α

∞

∑
j=1

εjΓ
−1/α
j

ft(U (n)j )

maxv∈Bn fv(U
(n)
j )

⎞
⎠
t∈Bn

,

where bn is as in (7.1), Cα is as in (0.1), {εi}i≥1 and {Γi}i≥1 be as in

Theorem 1.7 above, and {U (n)j }j≥1 is a sequence of iid S-valued random
variables with common law

P (U (n)1 ∈ A) = b−αn ∫
A

max
t∈Bn

∣ft(s)∣αµ(ds), A ∈ S.

Exercise 11. Use Theorem 1.7 above to prove Lemma 7.4.

Sketch of Proof of Theorem 7.1. When {φt}t∈Zd is conservative, using
Lemma 7.3 and Lemma 7.4 and a nice coupling argument, it is possible

to show that Mn/nd/α
pÐ→ 0. See pg 1450 - 1452 of Samorodnitsky

(2004a) for the details.
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On the other hand, when {φt}t∈Zd is not conservative, using Lemma 7.4
above, we have that for any λ > 0,

P (Mn

bn
> λ) = P

⎛
⎝

max
t∈Bn

RRRRRRRRRRRR
C

1/α
α

∞

∑
j=1

εjΓ
−1/α
j

ft(U (n)j )

maxv∈Bn fv(U
(n)
j )

RRRRRRRRRRRR
> λ

⎞
⎠
,

from which by using “one large jump” principle (see Remark 1.8 above),
we get

≈ P
⎛
⎝

max
t∈Bn

RRRRRRRRRRR
C

1/α
α ε1Γ

−1/α
1

ft(U (n)1 )
maxv∈Bn fv(U

(n)
1 )

RRRRRRRRRRR
> λ

⎞
⎠

= P (C1/α
α Γ

−1/α
1 > λ) = 1 − e−Cαλ−α .

The above heuristic calculations show that Mn/bn
LÐ→ C

1/α
α Zα and the

second part of Theorem 7.1 follows using Lemma 7.3. See pg 1454 -
1455 of Samorodnitsky (2004a) to find out how to make the above “≈”
precise when {φt}t∈Zd is not conservative. �

Lecture 8

8. Examples and Extensions

As long as the underlying nonsingular action is not conservative, the
exact asymptotic behaviour of Mn is given in Theorem 7.1. Therefore,
more interesting examples of SαS random fields are the ones generated
by conservative actions. We look at a few of those in this section.

Example 8.1. Consider the conservative action in Exercise 10. Choose
µ such that under µ, the coordinate field {πt}t∈Zd forms a collection of
iid random variables. In this case, define an SαS random field {Xt}t∈Zd
by

{Xt}t∈Zd
L= {∫

RZd
π0 ○ ζt(x)dM(x)}

t∈Zd
,

where M is an SαS random measure on RZd with control measure µ
and other notations are as in Exercise 10.

If further, we assume that π0 follows standard normal distribution
under µ, then it would follow that {Xt}t∈Zd is a sub-Gaussian random
field, i.e., there is a collection of iid standard normal random variables
{ξt}t∈Zd and another independent positive random variable A (not fol-
lowing an extreme value distribution) defined on the same probability
space such that

{Xt}t∈Zd
L= {Aξt}t∈Zd .
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See Proposition 3.7.1 in Samorodnitsky and Taqqu (1994). Using this
sub-Gaussian representation and standard extreme value theory esti-
mates (see, for example, Resnick (1987)), it follows that

Mn√
2d logn

LÐ→ A,

a non-extreme value limit.
On the other hand, if π0 follows Pareto distribution with parameter

θ > α (i.e., µ(π0 > x) = x−θ, x ≥ 1), then it can be shown that

Mn

nd/θ
LÐ→ cα,θZα,

for some finite positive constant cα,θ; see Section 5 in Samorodnitsky
(2004a) for the details.

The above example shows that in the conservative case, the rate of
growth of the partial maxima sequence can be either polynomial or
slowly varying. Heuristically, one can say that stronger conservativity
of the underlying group action should imply longer memory, which in
turn should give rise to slower rate of growth of Mn. Therefore, the
following question becomes pertinent in the setup of Rosinski represen-
tations of stationary SαS random fields.

Question 8.2. How to quantify the “strength of conservativity” of the
underlying nonsingular Zd-action?

In general the answer to the above question is not known. How-
ever, Roy and Samorodnitsky (2008) made further investigations on
the actual rate of growth of the partial maxima sequence Mn using
the theory of finitely generated abelian groups (see, for example, Lang
(2002)) together with counting of the number of lattice points in di-
lates of rational polytopes (see De Loera (2005)). Viewing the action
as a group of nonsingular transformations and studying the algebraic
structure of this group, one can get better ideas about the strength of
conservativity of the underlying action and hence the rate of growth
of the partial maxima as well as the length of memory of the random
field. We start with the following motivating example.

Example 8.3. Let S = R, µ = Leb, d = 2, and {φ(i,j)}(i,j)∈Z2 be the
measure-preserving Z2-action on R defined by φ(i,j)(s) = s+ i− j, s ∈ R.
Take any f ∈ Lα(R, Leb) and define a stationary SαS random field by

{X(i,j)}(i,j)∈Z2 = {∫
R
f(φ(i,j)(s))M(ds)}

(i,j)∈Z2

,
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where M is an SαS random measure on R with control measure µ = Leb.
Fix k ∈ Z. Note that for each (i, j) ∈ Z2 situated on the line j = i + k,
φ(i,j) = φ(0,k) and therefore X(i,j) =X(0,k) almost surely.

Therefore using the above picture (in each of the lines, the random
variables are equal almost surely) and stationarity of {Xt}t∈Zd , we have

Mn = max
0≤i,j≤n−1

∣X(i,j)∣
a.s.= max

1−n≤k≤n−1
∣X(0,k)∣

L= max
0≤k≤2(n−1)

∣X(0,k)∣

for all n ≥ 1. Since {X(0,k)}k∈Z is a stationary SαS process generated by
the dissipative Z-action {φ(0,k)}k∈Z, we get that there exists a constant
a > 0 such that

Mn

n1/α

LÐ→ aZα.

Question 8.4. What is going on in the above example?

Here we see a reduction of “effective dimension” of the random
field. Algebraically, this boils down to quotienting Z2 by the diago-
nal K = {(i, j) ∈ Z2 ∶ i = j}. Note that K is the kernel of the group
homomorphism (i, j) ↦ φ(i,j). Reduction of dimension occurs because
Z2/K ≃ Z.

In general, if a stationary SαS random field {Xt}t∈Zd is generated by
a nonsingular Zd-action {φt}t∈Zd , then we need to look at the kernel K
of the group homomorphism t↦ φt. Clearly

K = {t ∈ Zd ∶ φt(s) = s for µ-almost all s ∈ S}.
In general, it may not happen that Zd/K ≃ Zp for some p ≤ d. How-
ever by Structure Theorem for Finitely Generated Abelian Groups (see
Theorem 8.5 in Chap. I of Lang (2002)),

Zd/K = F̄ ⊕ N̄ ,
where F̄ ≃ Zp for some p ≤ d, N̄ is a finite group and ⊕ denotes the
direct sum of groups. Using the fact that F̄ is a free abelian group,
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it is possible to show that F̄ has an isomorphic copy F sitting inside
Zd; see Section 5 of Roy and Samorodnitsky (2008). In this setup, p
plays the role of “effective dimension” and F plays the role of “effective
index set” of the random field.

In Example 8.3, d = 2, K = {(i, j) ∈ Z2 ∶ i = j}, p = 1 and N̄ is
trivial. In this case, the “effective index set” can be chosen to be F =
{(0, k) ∶ k ∈ Z} and since the restricted action {φ(i,j)}(i,j)∈F = {φ(0,k)}k∈Z
is dissipative, we get Mn/n1/α LÐ→ aZα. The general result is as follows.

Theorem 8.5. In the above setup, assume that 1 ≤ p < d. Then the
following results hold.

(1) {φt}t∈F is conservative ⇒ Mn/np/α
pÐ→ 0, and

(2) {φt}t∈F is not conservative ⇒ Mn/np/α
LÐ→ cXZα,

where cX > 0 is a constant determined by {Xt}t∈Zd and Zα is a Frechet
type extreme value random variable with distribution function (5.2).

Proof. This proof is mostly algebraic with a slight touch of combina-
torics in it; see Section 5 of Roy and Samorodnitsky (2008). �

8.1. The Continuous Parameter Case. The discrete parameter re-
sults mentioned in this mini course have been extended to the con-
tinuous parameter stationary measurable locally bounded SαS random
fields {Xt}t∈Rd by Rosiński (1995, 2000), Samorodnitsky (2004b) and
Roy (2010b). The approach taken by these works is to approximate the
continuous parameter random field {Xt}t∈Rd by its discrete parameter
skeletons {Xt}t∈2−iZd , i = 0,1,2, . . .. In a recent work of Chakrabarty
and Roy (2013), the notion of effective dimension has been extended
to the continuous parameter case based on the following observation:
the effective dimensions of {Xt}t∈2−iZd , i = 0,1,2, . . . are all equal and
therefore can be defined as the effective dimension of {Xt}t∈Rd . With
this definition, Theorem 8.5 can also be extended to the continuous
parameter case.

8.2. Other Related Works. Two important examples of new classes
of stationary SαS processes were introduced in Rosiński and Samorod-
nitsky (1996) and Cohen and Samorodnitsky (2006).

Various probabilistic aspects of stationary SαS random fields and
processes have also been connected to the ergodic theoretic proper-
ties of the underlying nonsingular action. Mikosch and Samorodnitsky
(2000) investigated the ruin probabilities of a negatively drifted random
walk whose steps are coming from a stationary ergodic stable process
and observed that ruin becomes more likely when the underlying Z-
action is conservative.
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The point process induced by stationary SαS processes was consid-
ered in Resnick and Samorodnitsky (2004) and this work was extended
to the random fields by Roy (2010a). It was seen that when the under-
lying action is not conservative, the associated point process sequence
converges weakly to a Poisson cluster process. However in the conser-
vative case, the point process sequence does not remain tight due to
clustering. In many such examples, the point process sequence can be
shown to converge to a random measure after proper normalization.

Using the language of positive-null decomposition of nonsingular
flows (see Section 1.4 in Aaronson (1997) and Section 3.4 in Krengel
(1985)) another decomposition of measurable stationary SαS processes
was obtained in Samorodnitsky (2005) and this decomposition was used
to characterize the ergodicity of such a process. This work has recently
been extended to the stationary SαS random fields by Wang et al.
(2013) based on the work of Takahashi (1971). See also Roy (2012) for
another recent work connecting Maharam systems with various ergodic
properties of stationary stable processes.

A systematic and wholesome approach to decompositions of a sta-
tionary SαS process into independent stationary SαS components is
presented in Wang et al. (2012).

Decompositions based on the ergodic theory of nonsingular actions
were also obtained for self-similar SαS processes with stationary incre-
ments in Pipiras and Taqqu (2002a) and Pipiras and Taqqu (2002b).
See also Kolodyński and Rosiński (2003) for existence and rigidity re-
sults for integral representations of group self-similar stable processes.

Many of the results mentioned in this mini course have parallels in
the max-stable world. See, for example, Stoev and Taqqu (2005), Stoev
(2008), Kabluchko (2009), Wang and Stoev (2010a,b), Kabluchko and
Schlather (2010), Wang et al. (2012), Wang et al. (2013).

Roy (2007, 2009) used the language of Poisson suspensions to obtain
various decompositions (and structure results) of stationary infinitely
divisible processes with no Gaussian component.
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