
A non-cooperative theory of quantity-rationing

international transfrontier pollution

Sudhir A. Shah∗

September 13, 2007

Abstract

We study a remedy for the problem caused by international trans-
frontier pollution. Our results are derived from the analysis of a
non-cooperative game model of the determination of emissions in a
quantity-rationing setting. We model the emission capping negotia-
tions using the best response dynamic process and provide natural
conditions under which the process has a unique and globally asymp-
totically stable stationary point. We then analyze the link between
type profiles and the stationary points of the negotiation process to
derive various comparative statics results and the type-contingent or-
dering of emission allocations. These results are used to study the
investment strategies that nations can use prior to the negotiations in
order to manipulate the equilibrium emission caps. A policy implica-
tion of our model is that a cap-and-trade arrangement is inferior to
a cap-and-hold arrangement if the policy aim is to reduce equilibrium
total emission. We also point out some implications of our results
regarding the political economy of emission capping.

JEL classification: D74, H41, Q21, Q25, R11
Key phrases: Emission capping, non-cooperative game, negotia-

tions, incomplete information, manipulation

1 Introduction

Consider n nations whose firms emit some pollutant into a shared medium.
The aggregate emission hurts consumers in all these nations. The pre-
protocol situation is that each firm chooses its production plan, and therefore
emission, to maximize its own profit subject to pre-protocol domestic regu-
lations.1 The resulting outcome is inefficient for standard specifications of

∗All correspondence should be addressed to: Department of Economics, Delhi School
of Economics, University of Delhi, Delhi 110007, India. Telephone: (+91)(11) 2766-7005.
Fax: (+91)(11) 2766-7159. E-mail: sudhir@econdse.org

1The resulting outcome is also called “the status quo” or “business-as-usual” in the
literature. However, the modeling of this choice does vary in substance and interpretation.
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national welfare that take consumer welfare into account. Suppose these
nations attempt to improve upon this situation by means of a protocol that
caps each nation’s emission to some country-specific level.2

The contributions of this paper are threefold. First, we present a tractable
general model of protocol formation that generates a self-enforcing emis-
sion capping protocol with various attractive features. Secondly, we use the
model to study two issues of political-economic significance. One application
is to understand the effect of historically given asymmetries among nations
on protocol outcomes. The other application is to use the model to predict
the nature of pre-protocol strategic manoeuvering that can be expected from
various parties, specifically the use of investment as a commitment device
to manipulate protocol outcomes. Thirdly, we derive the following policy
implication of our analysis: if the negotiating nations are sufficiently con-
cerned about the total world emission and the damages caused by it, then
they should opt for a cap-and-hold arrangement rather than a cap-and-trade
arrangement because the equilibrium total emission under the autarkic ar-
rangement is lower than the equilibrium total emission under the trading
arrangement.

Model

Each nation consists of two classes of entities: (a) pollution emitters (hence-
forth, labeled as “firms”), and (b) non-emitters who are hurt by the aggre-
gate international emission (henceforth, labeled as “consumers”).3 While
the production and emission decisions are made by the firms to maximize
their profits, the emission caps under the protocol are negotiated by the
national governments, who are concerned not only about the profits of do-
mestic firms but also about the damage suffered by domestic consumers.

A nation’s emission cap is its endowment of emission rights, which is an
upper bound on the pollution that can be emitted by that nation. We assume
that each nation has a mechanism for distributing its endowment of emission
rights among domestic firms and ensuring their compliance with the implied
firm-level caps.4 As the equilibrium national caps generated by our protocol
are self-enforcing, each nation has the incentive to ensure that domestic

2Our aim is to work out the consequences of the regime modeled in this paper, not to
rationalize any actual protocol. In any case, most actual protocols cannot be so rational-
ized as they are merely exhortative. Improving on this situation requires us to understand
the consequences of different ways of constructing international institutions and protocols.
In this paper, we analyze the non-cooperative quantity-rationing strategy.

3Clearly, these classes are not necessarily congruent with the usual economic classes of
firms and consumers. For instance, if the pollutant is a greenhouse gas, then there may
be firms in the usual economic sense who are non-emitters (e.g., farms) and are hurt by
the effects of greenhouse gas emissions, and therefore categorized as “consumers” by us.

4The domestic regulator must monitor emissions in order to enforce compliance, but
this is essential for other regulatory schemes too, such as emission taxation.
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firms respect the caps imposed on them. We do not model the domestic
capping mechanism because, given its assumed effectiveness, its exact nature
is irrelevant in the context of international capping negotiations: foreign
nations care only about the total emission from a country, not its domestic
distribution.

The domestic mechanism maps the national cap into a profile of caps for
domestic firms and cap-constrained profit maximization by these firms maps
each domestic cap profile into a profile of profits and emissions. We assume
that each government cares about total domestic profit and total emission
but not their distribution. Therefore, we model the domestic implementa-
tion of a cap by postulating an aggregate national firm that maximizes profit
subject to the national emission cap.5 For the sake of convenience, we also
aggregate each nation’s consumers into a single national consumer.

A nation is described by its type, which consists of two parameters. The
first is private capital, which consists of the fixed inputs that determine
the nation’s (equivalently, the national firm’s) production technology. The
second is adaptation capital, which determines the relationship between ag-
gregate emission and the damage suffered by that nation (equivalently, by
the national consumer). Adaptation capital consists of assets that are used
to mitigate the damage caused by emissions, e.g., water and forest manage-
ment systems, meteorological facilities, knowledge of the ways to cope with
the effects of pollution, research facilities that generate such technologies,
etc. We assume that types are common knowledge.6 National types are a
device for modeling the heterogeneity of nations and studying the conse-
quences of historical asymmetries among nations. In addition, our second
application allows the study of another asymmetry among nations. As this
application involves nations investing prior to protocol formation, a forward-
looking asymmetry among nations is their differing ability to invest.

Given this data about the players, their preferences and their types, our
model of protocol formation and implementation has two stages. In Stage 1,
the national governments use the best response dynamic (henceforth, BRD)
procedure to negotiate emission caps: given a proposed profile of caps, the
new profile of proposed caps is the profile of best responses to the given
profile. As a cap cannot be imposed on a sovereign nation, the negotiations
continue until a stationary profile is reached; we identify “reached” with
asymptotic convergence. The stationary caps are self-enforcing as, by def-
inition, no country can unilaterally improve upon a stationary profile. In

5Given the assumed nature of government preferences, it is possible to show formally,
using the usual apparatus of production sets, that our postulate involves no loss of gen-
erality. We omit this demonstration and simply black-box the domestic implementation
issue as it is tangential to our main objectives.

6The results extend, with appropriate qualification, to the incomplete information case
(Shah [20]). However, as this complicates the notation and does not generate new phe-
nomena of substantive interest, we restrict attention to the complete information model.
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Stage 2, each national firm chooses a production and emission plan subject
to that nation’s emission cap determined in Stage 1. Naturally, nations will
take into account the Stage 2 choices of firms when negotiating in Stage 1.

While governments negotiate the caps in Stage 1, they do not themselves
use the emission rights in Stage 2. Therefore, the endowments of emission
rights negotiated in Stage 1 necessarily devolve to the national firms. How-
ever, as nations and their national firms have different preferences, it is
possible that a stationary profile of caps from the perspective of the na-
tions may still imply gains-from-trade from the firms’ perspective if they
can trade rights among themselves. Our model does not permit such trade.
The cap-and-trade variant of our model is analyzed and compared with our
cap-and-hold model in Section 8.

Results

In Stage 1, for each profile of national types, the equilibrium profile of caps
is the stationary point of the BRD procedure. We characterize the set of
stationary points of the dynamic process as the set of Nash equilibria of an
artificial non-cooperative game (Proposition 4.5). Given this characteriza-
tion, the existence of stationary points follows from an application of Nash’s
existence theorem (Proposition 4.6). Assuming the Hahn condition implies
that the artificial game is dominance-solvable, which has very strong impli-
cations (Proposition 4.7). First, this guarantees the existence of a unique
Nash equilibrium of the artificial game, and therefore, a unique station-
ary point of the capping negotiations. Secondly, the steady-state solution
of the BRD system corresponding to the unique stationary point is glob-
ally asymptotically stable. Thirdly, the implied mapping from type profiles
to equilibrium cap profiles is simply characterized and sufficiently smooth
given standard regularity assumptions regarding the primitives of the model
(Proposition 5.2). As suggested by the correspondence principle, the as-
sumptions implying the asymptotic stability of the equilibrium also enable
us to derive the effects of parametric variations on the equilibrium cap pro-
file. These general n-player comparative statics results (Proposition 5.3) are
the key ingredients for both our applications.

The first application uses these results to show how historical asymme-
tries among nations affect equilibrium caps. We show that, ceteris paribus,
(a) nations with more adaptation capital get larger caps (Proposition 6.1),
and (b) among nations with clean technology, a nation with more private
capital gets a smaller cap, while among nations with dirty technology, a
nation with more private capital gets a larger cap (Proposition 6.2).

The second application analyzes the means and nature of strategic ma-
nipulation of the protocol. This is an innovation in the formal literature
on emission protocols, especially the analysis of the differing uses of the
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two natural instruments in this context.7 We show how pre-negotiation in-
vestment choices can be used to manipulate the equilibrium emission caps
(Propositions 7.2, 7.4, 7.6, 7.8). We show that nations will overinvest in
adaptation capital, underinvest in domestic private capital if domestic tech-
nology is clean, overinvest in domestic private capital if domestic technology
is dirty, not invest in foreign adaptation capital and invest in foreign private
capital only if the recipient nation has clean technology. While the direc-
tional aspects of these results are invariant with respect to the identity of the
investor, there are noteworthy differences between the nature of investment
choices made by a nation and the firm within it (Propositions 7.1, 7.4(B),
7.5, and Remarks 7.3 and 7.7).

In our model, we endogenize each nation’s participation decision with
respect to the protocol by identifying “non-participation” with an infinite
cap in equilibrium. While we allow this possibility, in equilibrium every
nation will accept a finite emission cap that is lower than its pre-protocol
emission level, i.e., every nation will choose to “participate”. As the caps are
incentive compatible (by definition) and domestically implementable by the
national governments (by assumption), the equilibrium aggregate emission
will be lower than the pre-protocol level. Indeed, from the perspective of the
nations, the equilibrium outcome will be Pareto superior to the pre-protocol
outcome without relying on international transfers (Proposition 4.9). For
conditions that generate maximal improvements, i.e., reaching the Pareto
frontier, see the cooperative approach discussed in Section 9.

A final result that has strong policy implications is our demonstration
(Proposition 8.1) that a cap-and-trade institutional arrangement, i.e., cap-
ping is followed by trade in emission rights before the re-allocated rights are
implemented, leads to higher total emission in equilibrium than the autarkic
cap-and-hold scheme we have studied in this paper.

Modeling choices

The problem of modeling environmental protocols has generated a varied lit-
erature that can be classified broadly in terms of three modeling choices: (a)
the modeling of the pre-protocol situation, (b) the method used to regulate
emissions, and (c) the degree of collusion among nations that is implicitly
assumed to be institutionally feasible.

The treatment of (a) depends on the identity of the entity choosing
the pre-protocol emission. Actual emission choices are typically made by
firms and not by governments. This distinction would be immaterial if pre-
protocol regulations succeed in identifying the interests of the firm and the
government. However, it seems unlikely that, in the absence of an interna-
tional capping protocol, governments unilaterally align the domestic firms’

7Of course, there are numerous models with similar results in the dynamic oligopoly
literature; for a survey, see Fudenberg and Tirole [11].
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incentives with those of the state so as to force firms to take into account
the damage suffered by domestic consumers on account of the international
emission externality. Certainly, regulatory practices do not suggest such a
global vision. The disaggregation of a nation into a firm and a consumer al-
lows us to model the pre-protocol emission choice as being made by the firm.
Other models (see Section 9) treat nations as unitary entities that choose
emissions and the emission caps, in effect conflating the two variables and
identifying the interests of the entities choosing these variables.

With respect to (b), our model features pure quantity-rationing instead
of the standard fiscal remedies for dealing with externalities, or quantity-
rationing supplemented by fiscal transfers. With respect to (c), our purely
non-cooperative model embodies pessimism regarding the existence of insti-
tutions that can exercise supranational fiscal authority over sovereign na-
tions or sustain collusive agreements among coalitions of nations. Whether
this pessimism is justified is, of course, an empirical matter.

A final remark is in order before we proceed to the formalism. Typically,
the pollutants (e.g., greenhouse gases and CFCs) that cause the global ex-
ternalities that we seek to address are stock pollutants. For such pollutants,
the problem of accounting for past emissions at a point of time is concep-
tually distinct from that of regulating future flows. While the former is the
problem of apportioning responsibility for a noxious stock of exogenously
given size, the latter is the problem of regulating the marginal externalities
generated by future emissions. As these problems require different theoret-
ical approaches, it is desirable to treat the two problems separately. Our
model addresses the latter problem, taking history as given.

Outline of paper

In Section 2, we formally state our model. As is standard, the model is
solved backwards, with Stages 2 and 1 of the model studied in Sections 3
and 4 respectively. In Section 5, we derive the comparative statics results
that link the equilibrium points of the model to the underlying data. We use
these results to study our two applications in Sections 6 and 7. Section 8 is
devoted to the comparison of the total equilibrium emissions resulting from
the cap-and-trade and the cap-and-hold institutional arrangements. Section
9 contains a brief overview of the literature. We conclude in Section 10
by interpreting our results and suggesting extensions. The technical proofs
are collected in the Appendix. The assumptions underlying our results are
stated in the nested sequence of Assumptions 3.1, 4.1 and 5.1, with Assump-
tion 3.1 being the weakest set of assumptions and Assumption 5.1 being the
strongest set of assumptions. This is done to clarify the precise assumptions
underlying the results.
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2 The model in extensive form

N = {1, . . . , n} is the set of nations. Nation i’s type space is Θ = <2
++ and

the space of type profiles is Θn. Nation i consists of Firm i and Consumer
i. Nation i’s type is (ti, ki) = θi ∈ Θ, where ti is Firm i’s private capital and
ki is Consumer i’s adaptation capital.

The model has two stages: (1) protocol formation, and (2) implemen-
tation. Suppose θ ∈ Θn is the type profile with θi = (ti, ki). In Stage 1,
the nations negotiate using the BRD procedure and arrive at the stationary
profile of caps e = (e1, . . . , en) ∈ <̄n. In Stage 2, Firm i chooses variable
input vi, which determines Firm (and Nation) i’s profit g(ti, vi) and emission
h(ti, vi). The choice of vi is subject to the emission constraint h(ti, vi) ≤ ei.
The total world emission

∑
j∈N h(tj , vj) is consumed by the consumer of ev-

ery nation and this causes damage δ(ki,
∑

j∈N h(tj , vj)) to Consumer (and
Nation) i.

We interpret g and h as incorporating the effects of non-quantitative
domestic emission regulations, e.g., emission taxes and subsidies for adoption
of clean technologies. Thus, our welfare results should be interpreted as
reflecting improvements compared to the pre-protocol situation with its full
complement of domestic emission regulations.

3 Analysis of the second stage

Suppose the profile of types is θ and the profile of emission caps is e. Given
this data, we analyze Firm i’s decision-making assuming that it maximizes
its profit.

Assumption 3.1 g : <2
+ → <+ and h : <2

+ → <+ are continuous. For
every t ∈ <+,

(a) g(t, .) has a unique maximum at V (t) where V : <+ → <++ is
continuous; moreover, g(t, .) is strictly increasing on [0, V (t)] and strictly
concave on <+, and

(b) h(t, 0) = 0 and h(t, .) is strictly increasing and strictly convex.

(a) implies that profit increases with variable input until the uncon-
strained maximum is attained and use of the variable input faces diminishing
returns in value terms. (b) implies that emission increases at an increasing
rate with the variable input.

Consider a firm with private capital t ∈ <+ and emission cap e ∈ <̄+.
The firm’s problem is to choose variable input v to maximize profit g(t, v)
subject to the constraint h(t, v) ≤ e. Since V (t) is an unconstrained optimal
choice for the firm and h(t, .) is increasing, the firm’s constraint can be
written as v ∈ Γ(t, e) ≡ {v ∈ <+ | h(t, v) ≤ e} ∩ [0, V (t)].
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Let v : <+ × <̄+ → <+ be such that, for every (t, e) ∈ <+ × <̄+,
v(t, e) solves the firm’s problem; consequently, for every (t, e) ∈ <+ × <̄+,
we have h(t, v(t, e)) ≤ e. Define f : <+ × <̄+ → < by f(t, e) = g(t, v(t, e)).
Consequently, Firm i’s choice of variable input is v(ti, ei), its profit is f(ti, ei)
and its emission is h(ti, v(ti, ei)).

Proposition 3.2 Given Assumption 3.1,
(A) for every (t, e) ∈ <+×<̄+ there exists a unique v(t, e) ∈ Γ(t, e) such

that g(t, v(t, e)) ≥ g(t, v) for every v ∈ Γ(t, e), and
(B) v : <+×<̄+ → <+ and f : <+×<̄+ → < are continuous functions.

Moreover, for every (t, e) ∈ <+ × <̄+,
(C) e ≥ h(t, V (t)) if and only if v(t, e) = V (t), and
(D) e ≤ h(t, V (t)) if and only if h(t, v(t, e)) = e.

Furthermore, for every t ∈ <+,
(E) f(t, .) is strictly increasing on [0, h(t, V (t))],
(F) f(t, .) is strictly concave on [0, h(t, V (t))], and
(G) f(t, e) = g(t, V (t)) for e ≥ h(t, V (t)).

V (t) is to be interpreted as the pre-protocol level of variable input use.
Therefore, g(t, V (t)) and h(t, V (t)) are the pre-protocol profit and emission.
Thus, a cap e is a binding constraint on the firm if and only if e ≤ h(t, V (t)).
Given these interpretations, Proposition 3.2 is easy to interpret.

4 Analysis of the first stage

Suppose the profile of types is θ ∈ Θn with θj = (tj , kj). Suppose the profile
of emission caps e = (ej)j∈N ∈ <̄n

+ is proposed by a mediator; ej = ∞ is
interpreted as “non-participation”. The nations inform the mediator about
their best responses, which are used as the proposals for the next round.
A stationary point of this iterative procedure is the implemented profile of
caps in Stage 2.

To ease analysis, we enrich Assumption 3.1 as follows. Henceforth, a
function being Cp means it is p times continuously differentiable on the spec-
ified set.

Assumption 4.1 In addition to the requirements of Assumption 3.1, sup-
pose that, for every t ∈ <+ and every k ∈ <+,

(a) g(t, .) and h(t, .) are C2 on <++,
(b) δ(k, .) is continuous, C2 on <++, strictly increasing and strictly con-

vex.
Moreover, for every θ = (tj , kj)j∈N ∈ Θn and i ∈ N ,

(c) g(ti, V (ti))− δ(ki,
∑

j∈N h(tj , V (tj))) > 0.

The smoothness assumptions enable simple characterizations of optima.
The substantive part of (b) assumes that damage increases at an increasing
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rate with respect to total emission. (c) is an innocuous assumption that
Nation i’s pre-protocol payoff is positive. Its only role is to ensure that no
nation will accept a zero emission cap in equilibrium. This fact is not crucial
for our results but does help to shorten some technical arguments. In any
case, such a condition can be ensured by changing the weights of Firm i and
Consumer i in Nation i’s welfare function.

Proposition 4.2 Given Assumption 4.1 and t ∈ <+,
(A) Dvg(t, V (t)) = 0,
(B) Dev(t, e) = 0 and Dvg(t, v(t, e)) = 0 for e > h(t, V (t)),
(C) v(t, .) is C1 on (0, h(t, V (t))), and
(D) g(t, v(t, .)) is C1 on (0, h(t, V (t))) ∪ (h(t, V (t)),∞).

Suppose a profile of caps e ∈ <̄n
+ is proposed. Nation i’s payoff is

ui(θ, e) = f(ti, ei)− δ


ki, h(ti, v(ti, ei)) +

∑

j∈N−{i}
h(tj , v(tj , ej))


 (1)

if e is implemented.8 If ei ∈ [0, h(ti, V (ti))], then Proposition 3.2(D) implies

ui(θ, e) = f(ti, ei)− δ


ki, ei +

∑

j∈N−{i}
h(tj , v(tj , ej))


 (2)

Thus, Proposition 3.2(F) and Assumption 4.1(b) imply that ui(θ, ., e−i) is
strictly concave on [0, h(ti, V (ti))]. If e ∈ ∏

j∈N [0, h(tj , V (tj))], then (1)
further simplifies to

ui(θ, e) = f(ti, ei)− δ(ki, e+) (3)

where e+ =
∑

j∈N ej . The set of Nation i’s best responses to a proposal e is

βi(e−i; θ) =
⋂

x∈<̄+

{b ∈ <̄+ | ui(θ, b, e−i) ≥ ui(θ, x, e−i)}

Note that we allow the response to be an infinite cap, which amounts to non-
participation. It seems possible that h(ti, v(ti, b)) < b for some b ∈ βi(e−i; θ),
i.e., Nation i’s emission given a best response cap may be less than the cap.
This can complicate the analysis of emission capping as the costs and benefits
of capping are generated by the actual emissions, rather than the caps per
se. The following result eliminates this potential problem.

8The equal weights given to the national firm and the national consumer in the national
welfare function are just a matter of convenience; specifying other weights will not affect
the nature of our results.
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Proposition 4.3 Let θ ∈ Θn, θi = (ti, ki) and e ∈ <̄n
+. Given Assump-

tion 4.1, if b ∈ βi(e−i; θ), then
(A) 0 ≤ h(ti, v(ti, b)) = b < h(ti, V (ti)), and
(B) {b} = βi(e−i; θ), i.e., i’s best response is unique.

Given this uniqueness property, proposals are generated using the BRD
procedure:

ei(τ + 1) = βi(e−i(τ); θ) (4)

for i ∈ N and τ ∈ N , where τ represents the τ -th round of negotiations. We
say that e ∈ <̄n

+ is a stationary point of (4), given θ ∈ Θn, if ei = βi(e−i; θ)
for every i ∈ N .

Proposition 4.4 Given θ ∈ Θn, if e is a stationary point of (4), then for
every Nation i, ei = βi(e−i; θ) ∈ (0, h(ti, V (ti))) and the payoff is given by
(3).

The above results reduce the number of variables involved in the analysis
of an equilibrium by identifying equilibrium caps with equilibrium emissions,
thereby simplifying (1) to (3). Secondly, Nation i’s payoff in the relevant
range [0, h(ti, V (ti))] is not monotonically increasing with respect to ei, for
a larger cap in this range induces greater emission by Firm i, thereby in-
creasing Firm i’s profit, but also increasing Consumer i’s damage. Thus, by
attaching an endogenously generated shadow value to emission rights in the
form of damages, our model forces nations to trade-off profits against dam-
ages, thereby preventing them from pursuing arbitrarily large caps. Con-
sequently, results in Section 4 asserting that a nation manipulates its type
to increase its emission cap do not reflect a trivial desire to have a larger
amount of a free positive-valued option, but a desire to have a specific larger
cap for strategic reasons.

Given θ ∈ Θn with θi = (ti, ki), define the non-cooperative game G(θ) =
{N, ([0, h(ti, V (ti))], ui(θ, .))i∈N}; N is the set of players, [0, h(ti, V (ti))] is
player i’s strategy space and ui(θ, .) :

∏
j∈N [0, h(tj , V (tj))] → < is player i’s

payoff function.

Proposition 4.5 Given θ ∈ Θn, e∗ is a stationary point of (4) if and only
if e∗ is a Nash equilibrium of G(θ).

Needless to say, this result neither assumes nor implies that the nations
are playing G(θ) in Stage 1. However, the characterization is very useful
as it allows the application of many standard results; e.g., an application of
Nash’s existence theorem yields the following.

Proposition 4.6 Given Assumption 4.1 and θ ∈ Θn, (4) has a stationary
point.
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Theorem 3 in Moulin [19] implies the following much stronger result.

Proposition 4.7 Suppose Assumption 4.1 is satisfied. Also suppose that,
for every i ∈ N , for every θ ∈ Θn with θj = (tj , kj), and for every e ∈∏

j∈N [0, h(tj , V (tj))], we have

−Deef(ti, ei) > (n− 2)De+e+δ(ki, e+) (5)

Then, for every θ ∈ Θn, G(θ) is dominance-solvable and has a unique Nash
equilibrium that is globally asymptotically stable with respect to (4).

(5) is the Hahn condition. Combining this result with Proposition 4.5,
we have

Corollary 4.8 Given the assumptions of Proposition 4.7, (4) has a unique
stationary point that is globally asymptotically stable.

Thus, given appropriate assumptions, the BRD procedure converges to
the same stationary point, independent of the initial proposed profile. If
n = 2, then (5) is automatically satisfied. (5) becomes easier to satisfy as
(a) n decreases, (b) the curvature of f increases, and (c) the curvature of δ
decreases. For example, the closer the damage function δ is to being linear
in total emission e+, the more easily is (5) satisfied.

We now assess the welfare properties of stationary points. Proposi-
tion 4.4 implies that e ¿ (h(tj , V (tj)))j∈N for every stationary point e of
(4). As every firm is constrained to emit less than its pre-protocol optimal
choice, every firm is worse off compared to the pre-protocol outcome. As the
total emission is less than the pre-protocol level, every consumer is better
off. From the perspective of the nations, we show that the stationary point
represents a Pareto improvement over the pre-protocol outcome. Indeed,
the stationary profile is Pareto superior to every intermediate profile also.

Proposition 4.9 Suppose Assumption 4.1 is satisfied. If e is a stationary
point of (4) and z ∈ ∏

j∈N [ej , h(tj , V (tj))]− {e}, then ui(θ, z) < ui(θ, e) for
every i ∈ N .

Finally, we define an equilibrium of our model.

Definition 4.10 {e, v} is an equilibrium if
(a) v : <+ × <̄+ → <+ is such that, for every (t, e) ∈ <+ × <̄+, v(t, e)

maximizes g(t, .) subject to the constraint h(t, .) ≤ e, and
(b) e : Θn → <̄n

+ is such that e(θ) is a stationary point of (4) for every
θ ∈ Θn.

Given Assumption 4.1, Propositions 3.2(A) and 4.6 ensure the existence
of such an equilibrium. (a) requires optimal production choices by all firms
in Stage 2 given any profile of emission caps chosen in Stage 1. Given v, (b)
requires the selection of a stationary profile of emission caps in Stage 1.
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Remark 4.11 Consider the following artificial two-stage game. In the first
stage, for every θ ∈ Θn with θi = (ti, ki), the game G(θ) is played. Let
e be an outcome of G(θ). In the second stage, for every i ∈ N , Firm i
selects v ∈ Γ(ti, ei) to maximize g(ti, v). Consider an equilibrium {e, v} of
our model. By Proposition 3.2(A), for every ti ∈ <++, the restriction of
v(ti, .) to [0, h(ti, V (ti))] generates Firm i’s unique optimal Stage 2 action.
By Proposition 4.7, e(θ) is the unique Nash equilibrium of G(θ). Thus, {e, v}
generates the unique subgame perfect Nash equilibrium of the artificial two-
stage game.

Given Assumption 4.1, Propositions 3.2(A) and 4.6 guarantee the exis-
tence of such an equilibrium. Indeed, existence is guaranteed even if the
differentiability assumptions and part (c) of Assumption 4.1 are dropped.
The differentiability assumptions are used to derive the uniqueness and sta-
bility properties of the stationary point in Proposition 4.7. Part (c) of
Assumption 4.1 is used only in Proposition 4.4 to ensure that a stationary
point of (4) cannot involve a zero emission cap for some nation.

5 Comparative statics for the first stage

Suppose Assumption 4.1 and (5) hold. By Proposition 4.4 and Corollary 4.8,
there is a unique function e : Θn → ∏

j∈N (0, h(tj , V (tj))) that describes the
stationary cap profiles of (4) contingent on the type profile. In this section,
we analyze the variational properties of this mapping. By Propositions 4.3
and 4.4, e(θ) is identical to the profile of emissions for every profile of types
θ. Henceforth, “Nation i’s equilibrium cap” is interchangeable with “Nation
i’s emission”.

Our analysis so far has taken the type profile θ as given. Consequently,
we have only made assumptions about the dependence of g, h and δ on the
variable input and emissions, with types taken as parameters. Our analysis
in this section will require information on the effects of type variations on
emission, profit and damage.

Assumption 5.1 In addition to Assumption 4.1 and (5), assume that
(a) for every v ∈ <+, g(., v) is strictly increasing and h(., v) is strictly

decreasing,
(b) for every e ∈ <+, f(., e) is strictly concave,
(c) g, h and δ are C2 on <2

++.
(d) Dke+δ < 0, and
(e) for every e+ ∈ <+, δ(., e+) is strictly decreasing and strictly convex.

(a) implies that profit is increasing and emission is decreasing with re-
spect to private capital. (b) implies that private capital faces diminishing
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returns. (d) implies that greater adaptation capital reduces a nation’s vul-
nerability to damage. (e) means that a nation’s damage is a decreasing
function of adaptation capital but this beneficial effect is subject to dimin-
ishing returns. We note the following consequences of these assumptions.

Proposition 5.2 Given Assumption 5.1,
(A) v and f are C2 on {(t, e) ∈ <2

++ | e < h(t, V (t))},
(B) given e, t, t′ ∈ <+, if t < t′, e ≤ h(t, V (t)) and e ≤ h(t′, V (t′)), then

f(t, e) < f(t′, e), and
(C) for i ∈ N , ui is C2 on Θn ×∏

j∈N (0, h(tj , V (tj)).

Consider j ∈ N and θ ∈ Θn with θj = (tj , kj). By Proposition 4.4, uj

is given by (3). By definition, uj(θ, ., e−j(θ)) is maximized at ej(θ). Propo-
sition 4.4 implies ej(θ) ∈ (0, h(tj , V (tj))). Therefore, Proposition 5.2(C)
implies that uj(θ, ., e−j(θ)) is C2 on (0, h(tj , V (tj)). Proposition 4.4 implies
that

Dejuj(θ, e(θ)) = 0 (6)

for every j ∈ N . Dejuj(θ, e(θ)) is the shadow value of emission rights to
Nation j when the emission cap profile is e(θ). Thus, (6) means that, in
equilibrium, the shadow value of emission rights for every nation is equal
to the cost of acquiring the marginal right, which is zero. Analogously,
Def(tj , ej) is the shadow value of emission rights to Firm j with private
capital tj when Nation j’s emission cap is ej . It follows from Proposition 3.2
that the firm’s shadow value of emission rights is positive at ej(θ). Thus,
the national firm will prefer a larger cap than the equilibrium one negotiated
by the national government.

Combining Propositions 3.2(F) and 5.2(A) with Assumptions 5.1(c) and
4.1(b) implies the second order condition

Dejejuj(θ, e(θ)) < 0 (7)

for every j ∈ N . The effects on e(θ) of varying either component of θ1 are
as follows; with appropriate notational adjustments, the same result holds
for all nations.

Proposition 5.3 Given Assumption 5.1, and interpreting x as either t1 or
k1,

(A) e : Θn → <n
+ is C1 on Θn,

(B) Sign Dxej = −Sign De1xu1 for j ∈ N − {1},
(C) Sign Dxe1 = Sign De1xu1, and
(D) Sign Dx

∑
j∈N ej = Sign De1xu1.

Evidently, the signs of all the variational formulae depend on how the
type variations affect the shadow values of emission rights for the nation

13



whose type is being perturbed. We classify technology as locally clean
(resp. dirty) if the firm’s shadow value of emission rights decreases (resp. in-
creases) with increases in private capital.

Definition 5.4 Technology f is dirty (resp. clean) at (t′, e′) if Dtef(t′, e′) >
0 (resp. Dtef(t′, e′) < 0).

Using this definition, we have the following corollary of Proposition 5.3.

Corollary 5.5 Let θ ∈ Θn with θi = (ti, ki). Let j 6= 1. Given Assump-
tion 5.1,

(A) Dt1e1(θ) < 0, Dt1ej(θ) > 0 and Dt1e+(θ) < 0 if Dtef(t1, e1(θ)) < 0,
(B) Dt1e1(θ) > 0, Dt1ej(θ) < 0 and Dt1e+(θ) > 0 if Dtef(t1, e1(θ)) > 0,

and
(C) Dk1e1(θ) > 0, Dk1ej(θ) < 0 and Dk1e+(θ) > 0.

(A) (resp. (B)) means that the growth of private capital in a clean
(resp. dirty) nation implies lower (resp. higher) domestic emission, higher
(resp. lower) foreign emissions and lower (resp. higher) aggregate emission.
(C) means that the growth of adaptation capital implies higher domestic
emission, lower foreign emissions and higher aggregate emission. The direc-
tional effects on aggregate emission are identical to the directional effects
on domestic emission and opposite to the directional effects on foreign emis-
sions.

6 Application: effects of historical asymmetries

Suppose the Stage 1 stationary emission caps are generated by a function
e : Θn → ∏

j∈N (0, h(tj , V (tj))). We first derive the ordering of emission
caps implied by the ordering of adaptation capital, ceteris paribus.

Proposition 6.1 Let θ ∈ Θn with θi = (ti, ki) for i ∈ N . Given Assump-
tion 5.1, if t1 = t2 and k1 > k2, then e1(θ) > e2(θ).

Proof. By (6) and Assumption 5.1(d), k1 > k2 implies

Def(t1, e1(θ)) = De+δ(k1, e+(θ)) < De+δ(k2, e+(θ)) = Def(t2, e2(θ))

As t1 = t2, Proposition 3.2(F) implies e1(θ) > e2(θ).
Ceteris paribus, nations with more adaptation capital have larger emis-

sions. In the case of private capital, the analogous result is more complicated
as the nature of technology affects the directions in which the emissions
change as private capital varies.

14



Proposition 6.2 Let θ ∈ Θn with θi = (ti, ki) for i ∈ N . Given Assump-
tion 5.1, if

(a) k1 = k2 and t1 > t2,
(b) Dtef(t1, e1(θ)) > 0 and Dtef(t2, e2(θ)) > 0 (resp. Dtef(t1, e1(θ)) < 0

and Dtef(t2, e2(θ)) < 0), and
(c) Dtef(., e1(θ)) is decreasing,

then e1(θ) > e2(θ) (resp. e1(θ) < e2(θ)).

Proof. Let t1 > t2, Dtef(t1, e1(θ)) > 0 and Dtef(t2, e2(θ)) > 0. It follows
from (c) that Dtef(x, e1(θ)) > Dtef(t1, e1(θ)) > 0 for every x ∈ [t2, t1].
As k1 = k2, (6) implies Def(t2, e2(θ)) − Def(t2, e1(θ)) = Def(t1, e1(θ)) −
Def(t2, e1(θ)) =

∫ t1
t2

dxDtef(x, e1(θ)) > 0. From Proposition 3.2(F), we
have e1(θ) > e2(θ). The other case follows analogously.

If (a) both nations have the same adaptation capital stock, (b) both
nations have clean (resp. dirty) technology, and (c) technology becomes
cleaner as private capital grows, then the nation with the greater private
capital stock has lower (resp. higher) emission.

7 Application: manipulation of protocol outcomes

Suppose that, prior to negotiating the protocol in Stage 1 of the model
studied in Sections 2 to 4, there is Stage 0, in which nations can invest in
private and adaptation capital. Let θ̄ ∈ Θn be the initial profile of types for
Stage 0, with θ̄i = (t̄i, k̄i). Let θ ∈ Θn, with θi = (ti, ki), be the modified
profile of types after the nations have invested in Stage 0. θ serves as data
for Stage 1 of the model studied in Sections 2 to 4. Nation i’s investment
in Stage 0 is Ii = θi − θ̄i = (ti − t̄i, ki − k̄i); the cost of this investment is
C(Ii) = ti− t̄i +ki− k̄i. Negative investment is interpreted as disinvestment,
e.g., the depletion of adaptation capital by cutting down trees. Naturally,
if there is disinvestment, the “cost of investment” is negative, i.e., it is the
revenue from disinvestment. Also, the amount of feasible disinvestment is
bounded because the modified type must be non-negative. Suppose the
Stage 1 stationary emission caps are generated by a function e : Θn →∏

j∈N (0, h(tj , V (tj))). The payoff function relevant for Nation i in Stage
0 is ui(θ, e(θ)) − C(Ii), where the first term is given by (1). As e is the
equilibrium mapping, Proposition 4.4 implies that ui is given by (3) and
ui(θ, e(θ)) = f(ti, ei(θ))− δ(ki, e+(θ)).

We shall consider a number of hypotheses about the determination of
Ii, depending on the identity of the decision-maker. Given the investment
profile I−i of the other nations, ti − t̄i (resp. ki − k̄i) may be chosen by
Nation i or Firm i. In addition, there is the possibility that Nation j or
Firm j select ti− t̄i and ki− k̄i. Thus, there are eight possible combinations
of decision-makers with respect to Nation i’s type. In Stage 0, Nation i’s
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investment choices seek to maximize

(x, y) 7→ ui(t̄i + x, k̄i + y, θ̄−i + I−i, e(t̄i + x, k̄i + y, θ̄−i + I−i))−C(x, y) (8)

while Firm i’s investment choices seek to maximize

(x, y) 7→ f(t̄i + x, ei(t̄i + x, k̄i + y, θ̄−i + I−i))− C(x, y) (9)

Nation j’s investment choices in Nation i seek to maximize

(x, y) 7→ uj(t̄i + x, k̄i + y, θ̄−i + I−i, e(t̄i + x, k̄i + y, θ̄−i + I−i))− C(x, y)

while Firm j’s investment choices in Nation i seek to maximize

(x, y) 7→ f(tj , ej(t̄i + x, k̄i + y, θ̄−i + I−i))− C(x, y)

In the following two sections we analyze the determination of I1; the
same arguments apply to every nation. As the cost of investments is linear
and additive, investment can move without friction between private and
adaptation capital. This allows us to study the investment choices in a
piecemeal manner without loss of generality. Moreover, it allows us to focus
on the purely strategic role of these investments.

Investment in private capital

If t1 is chosen by Nation 1 (resp. Firm 1), then denote t1 by t∗ (resp. t∗∗).
(8) and (9) imply that t1 = t∗ and t1 = t∗∗ maximize

u1(t1, k1, θ−1, e(t1, k1, θ−1))− t1 and f(t1, e1(t1, k1, θ−1))− t1

respectively, taking k1 and θ−1 as given. Using (6), t∗ and t∗∗ are charac-
terized by

Dtf(t∗, e1(t∗, k1, θ−1))−De+δ(k1, e+(t∗, k1, θ−1))
∑

j 6=1

Dtej(t∗, k1, θ−1) = 1

(10)
and

Dtf(t∗∗, e1(t∗∗, k1, θ−1)) + Def(t∗∗, e1(t∗∗, k1, θ−1))Dte1(t∗∗, k1, θ−1) = 1
(11)

respectively. We first ask: in what direction would Nation 1 like to perturb
Firm 1’s choice t∗∗? Let G(t1, k1) = u1(t1, k1, θ−1, e(t1, k1, θ−1)) − t1. (11)
implies that

DtG(t∗∗, k1) = −De+δ(k1, e+(t∗∗, k1, θ−1))Dte+(t∗∗, k1, θ−1)

Therefore, Assumption 4.1(b) and Corollary 5.5 imply
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Proposition 7.1 Given that the Stage 1 stationary emission caps are gen-
erated by a function e, Nation 1 prefers a higher (resp. lower) level of pri-
vate capital than Firm 1 if Nation 1’s technology is clean (resp. dirty) at
(t∗∗, e1(t∗∗, k1, θ−1)).

Let t1 = t0 and t1 = t00 maximize

u1(t1, k1, θ−1, e(t∗, k1, θ−1))− t1 and f(t1, e1(t∗∗, k1, θ−1))− t1

respectively. Given the caps e(t∗, k1, θ−1), Nation 1 prefers t0 to t∗. Simi-
larly, given the cap e1(t∗∗, k1, θ−1), Firm 1 prefers t00 to t∗∗. The difference
between t0 (resp. t00) and t∗ (resp. t∗∗) represents Nation (resp. Firm) 1’s
ability to manipulate the Stage 1 equilibrium caps via its Stage 0 choice of
private investment. t∗ > t0 (resp. t∗ < t0) is interpreted as strategic overin-
vestment (resp. underinvestment) by Nation 1 in domestic private capital.
Similarly, t∗∗ > t00 (resp. t∗∗ < t00) is interpreted as strategic overinvest-
ment (resp. underinvestment) by Firm 1 in domestic private capital. t0 and
t00 are characterized by

Dtf(t0, e1(t∗, k1, θ−1)) = 1 (12)

and
Dtf(t00, e1(t∗∗, k1, θ−1)) = 1 (13)

respectively.

Proposition 7.2 Suppose the Stage 1 stationary emission caps are gener-
ated by a function e.

(A) If Nation 1’s technology is clean (resp. dirty) at (t∗, e1(t∗, k1, θ−1)),
then Nation 1 underinvests (resp. overinvests) in domestic private capital.

(B) If Nation 1’s technology is clean (resp. dirty) at (t∗, e1(t∗, k1, θ−1)),
then Firm 1 underinvests (resp. overinvests) in domestic private capital.

(C) In all the cases considered in (A) and (B), the effect of the strategic
manipulation is to raise e1, lower e−1 and raise e+.

Proof. Suppose Dtef(t∗, e1(t∗, k1, θ−1)) < 0. The proofs for the other case
are analogous.

(A) (10), (12), Assumption 4.1(b) and Corollary 5.5(A) imply that

Dtf(t0, e1(t∗, k1, θ−1)) = Dtf(t∗, e1(t∗, k1, θ−1))
−De+δ(k1, e+(t∗, k1, θ−1))

∑

j 6=1

Dtej(t∗, k1, θ−1)

< Dtf(t∗, e1(t∗, k1, θ−1))

Assumption 5.1(b) implies t0 > t∗.
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(B) (11), (13), Proposition 3.2(E) and Corollary 5.5(A) imply that

Dtf(t00, e1(t∗∗, k1, θ−1)) < Dtf(t∗∗, e1(t∗∗, k1, θ−1))

Assumption 5.1(b) implies t00 > t∗∗.
(C) follows from Corollary 5.5(A).
Although the directions of the manipulations carried out by Nation 1

and Firm 1 are identical, their targets for manipulation are different. Since,
in equilibrium, e1 is a best response to e2 in terms of Nation 1’s preference,
we have the following observation.

Remark 7.3 (10) shows that Nation 1 strategically uses investment in pri-
vate capital to manipulate downwards the equilibrium emission of other na-
tions. (11) shows that Firm 1 strategically manipulates upwards Nation 1’s
equilibrium emission.

Finally, we consider the possibility of Nation 2 investing in Nation 1’s
private capital. By Corollary 5.5(B), if Nation 1’s technology is dirty, then an
increase in Nation 1’s private capital hurts Firm 2 by reducing its emission,
and therefore its profit, while it hurts Consumer 2 by increasing the total
emission. Thus, in this case, Nation (resp. Firm) 2 will not invest in Nation
1’s private capital.

Proposition 7.4 (A) Nation 2 (resp. Firm 2) invests in Nation 1’s private
capital only if Nation 1’s technology after investment is clean.

(B) If Firm 2 invests in Nation 1’s private capital, then Nation 2 has
an even stronger incentive to make such an investment.

(B) follows as Nation 2 stands to gain from the fall in total emission in
addition to the rise in Firm 2’s emission.

Investment in adaptation capital

The analysis of investment in adaptation capital mimics the analysis of the
previous Section. If k1 is chosen by Nation 1 (resp. Firm 1), then denote k1

by k∗ (resp. k∗∗). (8) and (9) imply that k1 = k∗ and k1 = k∗∗ maximize

u1(t1, k1, θ−1, e(t1, k1, θ−1))− k1 and f(t1, e1(t1, k1, θ−1))− k1

respectively, taking t1 and θ−1 as given. Using (6), k∗ and k∗∗ are charac-
terized by

Dkδ(k∗, e+(t1, k∗, θ−1))+De+δ(k∗, e+(t1, k∗, θ−1))
∑

j 6=1

Dkej(t1, k∗, θ−1) = −1

(14)
and

Def(t1, e1(t1, k∗∗, θ−1))Dke1(t1, k∗∗, θ−1) = 1 (15)
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respectively. Consider the choice of k∗. Combining Assumption 5.1, and
Propositions 3.2 and 5.3, the benefits of investment in adaptation capital
are: (a) an increase in domestic profit caused by higher domestic emission,
(b) lower domestic vulnerability to damage, and (c) a decrease in domestic
damage on account of lower foreign emission. The costs are: (d) an increase
in domestic damage caused by higher domestic emission, and (e) the oppor-
tunity cost of investment. In equilibrium, each nation’s emission (cap) is
chosen to balance benefit (a) and cost (d) at the margin. Thus, (14) ensures
that marginal benefits (b) and (c) are balanced by the marginal cost (e).
(b) is the direct benefit of investment in adaptation capital, while (c) is the
indirect or strategic benefit.

We ask: in what direction would Nation 1 like to perturb Firm 1’s choice
k∗∗? Let G(t1, k1) = u1(t1, k1, θ−1, e(t1, k1, θ−1))− k1. Then,

DkG(t1, k∗∗) = −Dkδ(k∗∗, e+(t1, k∗∗, θ−1))
−De+δ(k∗∗, e+(t1, k∗∗, θ−1))Dke+(t1, k∗∗, θ−1)

Assumption 4.1(b), Assumption 5.1(e) and Corollary 5.5(C), imply that this
marginal incentive cannot be signed unambiguously as an increase in Nation
1’s adaptation capital has two opposing effects on Nation 1’s damage. On
the one hand, it directly decreases domestic damage (the direct effect), but
on the other hand, it increases domestic damage by inducing higher total
emission (the indirect effect).

Proposition 7.5 If the direct effect is larger (resp. smaller) than the indi-
rect effect, then Nation 1 prefers a higher (resp. lower) level of adaptation
capital than Firm 1.

Let k1 = k0 and k1 = k00 maximize

u1(t1, k1, θ−1, e(t1, k∗, θ−1))− k1 and f(t1, e1(t1, k∗∗, θ−1))− k1

respectively. Given the caps e(t1, k∗, θ−1), Nation 1 prefers k0 to k∗. Simi-
larly, given the cap e1(t1, k∗∗, θ−1), Firm 1 prefers k00 to k∗∗. The difference
between k0 (resp. k00) and k∗ (resp. k∗∗) represents Nation (resp. Firm) 1’s
ability to manipulate the Stage 1 equilibrium caps via its Stage 0 choice of
adaptation investment. k∗ > k0 (resp. k∗ < k0) is interpreted as strategic
overinvestment (resp. underinvestment) by Nation 1 in domestic adaptation
capital. Similarly, k∗∗ > k00 (resp. k∗∗ < k00) is interpreted as strategic
overinvestment (resp. underinvestment) by Firm 1 in domestic adaptation
capital. k0 and k00 are characterized by

Dkδ(k0, e+(t1, k∗, θ−1)) = −1 and k00 = 0 (16)

respectively.
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Proposition 7.6 Nation 1 (resp. Firm 1) overinvests in domestic adap-
tation capital, thereby strategically raising e1, lowering e2 and raising e+.

Proof. (16), (14), Assumption 4.1(b) and Corollary 5.5(C) imply that

Dkδ(k0, e+(t1, k∗, θ−1)) = Dkδ(k∗, e+(t1, k∗, θ−1))
+De+δ(k∗, e+(t1, k∗, θ−1))

∑

j 6=1

Dkej(t1, k∗, θ−1)

< Dkδ(k∗, e+(t1, k∗, θ−1))

Assumption 5.1(e) implies k0 < k∗. (15) and (16) imply that k∗∗ > k00.
The strategic effects follow from Proposition 10(C).

We also record an observation analogous to Remark 7.3.

Remark 7.7 (14) shows that Nation 1 uses investment in adaptation cap-
ital to manipulate downwards the equilibrium emissions of other nations.
(15) shows that Firm 1 strategically manipulates upwards Nation 1’s equi-
librium emission.

We finally consider the possibility of Nation (resp. Firm) 2 investing in
Nation 1’s adaptation capital. By Corollary 5.5(C), an increase in Nation
1’s adaptation capital hurts Firm 2 by reducing its emission, and therefore
its profit, while it hurts Consumer 2 by increasing the total emission.

Proposition 7.8 Nation (resp. Firm) 2 will not invest in Nation 1’s adap-
tation capital.

8 The model with post-capping trade

Consider the model of Section 2 with an intermediate stage between Stages 1
and 2, say Stage 1*, in which the endowments of emission rights negotiated in
Stage 1 are traded on a competitive market by the firms. In Stage 2, firms
make production decisions that respect the new distribution of emission
rights. As the analysis of Stage 2 of this modified model is identical to
that contained in Section 3, we begin the analysis of the modified model by
studying the Stage 1* emission rights market.

Suppose θ ∈ Θn is the type profile and e ∈ ∏
i∈N (0, h(ti, V (ti))) is the

profile of endowments available for trading in Stage 1*. Since ei constrains
Firm i to emit less than its pre-protocol level, it has an incentive to acquire
more emission rights than provided by ei. As this holds for every firm,
the equilibrium price of emission rights in Stage 1* will be positive. Let
p(t, e) > 0 be this equilibrium price given e and the profile of private capitals
t = (ti)i∈N . The damage functions and adaptation capitals do not affect the
price of emission rights as firms are the only traders in the rights market.
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Let zi(t, e) be the equilibrium quantum of rights traded by Firm i, inter-
preting zi(t, e) > 0 (resp. zi(t, e) < 0) as a purchase (resp. sale). Given t, e,
p(t, e) and i ∈ N , zi = zi(t, e) maximizes f(ti, ei +zi)−p(t, e)zi. f(ti, ei +zi)
is Firm i’s profit from using emission rights ei +zi in Stage 2. p(t, e)zi is the
cost of buying rights (resp. revenue from selling rights) in Stage 1* if zi > 0
(resp. zi < 0). The equilibrium trades (zi(t, e))i∈N are characterized by the
conditions

∑

i∈N

zi(t, e) = 0 and Def(ti, ei + zi(t, e)) = p(t, e) (17)

for every i ∈ N . The first equation represents market-clearing in the rights
market, while the second equation represents the optimality of Firm i’s
trade; given the first order condition, Proposition 3.2(F) ensures optimality.
N(t, e) = {i ∈ N | zi(t, e) > 0} is the set of buyers in Stage 1*. Using (6),
(17) and Proposition 3.2(F), we have i ∈ N(t, e) if and only if Def(ti, ei) >
Def(ti, ei + zi(t, e)) = p(t, e). Equivalently, i ∈ N − N(t, e) if and only if
Def(ti, ei) ≤ Def(ti, ei+zi(t, e)) = p(t, e). Thus, firms in N(t, e) profit from
trade by buying emission rights at a price less than their own shadow value
of the rights and firms in N − N(t, e) profit by selling emission rights at a
price higher than their own shadow value of the rights. Given e, trading in
Stage 1* re-allocates emission rights to make all firms better-off but does not
change the total emission e+ and the resulting damages suffered by nations.
So, given e, all firms and all nations prefer the trading arrangement to the
autarkic arrangement.

Now consider the capping negotiations in Stage 1. If firms can trade
emission rights in Stage 1*, then the equilibrium implications of this trading
will be anticipated when caps are negotiated in Stage 1. Given a cap profile
e, the marginal cost to Nation i entailed by an additional emission right
is De+δ(ki, e+), while the marginal benefit is either Def(ti, ei + zi(t, e)) if
Firm i uses this right to offset an extra unit of domestic emission or p(t, e)
if Firm i sells the marginal right in Stage 1*. The Stage 1* equilibrium
condition (17) equates the two benefits at the margin. Thus, a profile e will
be accepted by all nations in Stage 1 only if the marginal cost of an extra
emission right exceeds the marginal benefit for all nations, i.e.,

p(t, e) ≤ min{De+δ(ki, e+) | i ∈ N} (18)

Consider a profile of emission caps e such that e+ ≤ e+(θ) and e + z(t, e) 6=
e(θ), where e(θ) is the equilibrium profile of caps for the model of Section
2. Then, ei + zi(t, e) < ei(θ) for some i ∈ N . It follows from (17), Proposi-
tion 3.2(F), (6) and Assumption 4.1 that

p(t, e) = Def(ti, ei + zi(t, e)) > Def(ti, ei(θ))
= De+δ(ki, e+(θ)) ≥ De+δ(ki, e+)

which violates (18). So, e cannot be an equilibrium profile of caps.
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Proposition 8.1 Consider the model with trading in Stage 1*. In an equi-
librium for this model, the profile of caps e negotiated in Stage 1 is either
e(θ) (i.e., the autarkic profile) or is such that e+ > e+(θ).

9 The literature

With the description and analysis of our model complete, we can now jux-
tapose it with other models in the same area.

The cooperative game approach (Chander and Tulkens [7], [8], [9]) uses
the core as the solution concept to generate a striking result: for emission al-
location games with many nations, they characterize zero-sum transfers that
implement efficient emission allocations and satisfy individual and group ra-
tionality constraints. The use of international transfers and the ability of
members of a coalition of nations to correlate decisions so as to maximize
the sum of their utilities generate large welfare improvements from the pre-
protocol situation. Our non-cooperative model does not permit transfers
and makes relatively conservative assumptions about international institu-
tions, resulting in smaller improvement from the pre-protocol situation.

The stable coalition approach (Barrett [2], Black et al. [4] and Carraro
and Siniscalco [5]) adopts the methodology of d’Aspremont et al. [1] to de-
rive the likely size of a “stable coalition” of participating nations. This
methodology, which sits between the cooperative and the non-cooperative
game categories, seems expressly designed to model the participation deci-
sion and cannot readily be adapted for other purposes such as the concerns
of this paper.

The non-cooperative multi-period approach (Cesar [6], Dockner and van
Long [10], Hoel [13], Martin et al. [18], van der Ploeg and de Zeeuw [23])
explores strategies other than emission capping for dealing with the global
emission externality. They study the possibility of sustaining emission agree-
ments among nations in repeated interaction settings via (1) implicit penal
codes that provide appropriate incentives, or (2) explicit international fiscal
incentives.

10 Conclusions

The results of Sections 3 to 8 show that our model of protocol formation and
implementation is tractable and has attractive properties. For every profile
of types, there is a unique profile of equilibrium caps. The profile of resulting
emissions is identical to the profile of caps. Moreover, this profile is globally
asymptotically stable. The assumptions on the primitives of the model that
imply these strong properties also facilitate the comparative statics results.
Finally, from the perspective of the nations, for every profile of types, the
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equilibrium profile of caps is a Pareto improvement over the pre-protocol
situation.

With respect to our first application, we find that, ceteris paribus, na-
tions with greater adaptation capital have larger caps in equilibrium. The
result in terms of private capital depends on the assumption that larger
private capital implies cleaner technology. Given this assumption, ceteris
paribus, the emission caps of nations with dirty (resp. clean) technology
are positively (resp. negatively) related to the size of their private capital.
While such comparisons are empirically problematic as “ceteris paribus”
rarely holds when comparing actual nations, the theoretical results do iden-
tify the principles governing the ordering of caps.

With respect to our second application, we find that all nations will over-
invest in domestic adaptation capital and nations with clean (resp. dirty)
technologies will underinvest (resp. overinvest) in domestic private capital.
The effects of these manipulations are to raise domestic emission, lower
foreign emissions and raise the total emission. The results regarding the do-
mestic investment choices by firms’ are directionally similar, but there are
significant differences. For instance, the variables targeted for manipulation
by a nation are the foreign caps, while the variable targeted by a firm is the
domestic cap. Nor is the extent of manipulation the same. With respect to
domestic private capital, a nation with clean (resp. dirty) technology under-
invests (resp. overinvests) less severely than its firm, while the comparison
is ambiguous in the case of adaptation capital. Neither nations, nor their
firms, will invest in foreign adaptation capital. Nor will they invest in foreign
private capital if the investment recipient has dirty technology.

Consider the following thought experiment. Suppose the adaptation cap-
itals of all nations are fixed and nations with clean technology (the “North”)
emit more than nations with dirty technology (the “South”). In this sce-
nario, Corollary 5.5 suggests that the exogenous growth of either Northern
or Southern private capital raises Southern emission and lowers Northern
emission, i.e., their emissions “converge”.

Our model generates an unambiguous policy conclusion: if one is suffi-
ciently concerned about total global emission and the resulting damages, or
in the extreme case, wish to minimize total emission subject to the usual
incentive constraints, then an international cap-and-trade arrangement is in-
ferior to the cap-and-hold arrangement modeled by us. This result (Propo-
sition 8.1) cautions against the facile application of the proposition that,
given endowments, voluntary trade must be welfare improving. However, in
the context of capping protocols, the endowments of emission rights are not
given but are generated endogenously. As we show, the expectation of equi-
librium trade creates the incentives to raise the total endowment of emission
rights, which translates into higher emission. The practical implication of
this finding is that pre-protocol deliberations to determine the architecture
of a capping regime should not view post-capping trade in rights as an unal-
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loyed blessing, and therefore an automatic choice, but as a choice involving
significant welfare trade-offs since it makes all consumers unambiguously
worse-off relative to the autarkic arrangement.

Finally, we note three political-economic implications of our model.
First, a nation’s equilibrium emission cap is an active constraint on the

domestic firm. Growth of a nation’s adaptation capital is a means for relax-
ing this constraint. Thus, reduction of damage to the consumer is not the
only motive for investing in domestic adaptation capital; such investment
is also a strategic way of gaining head-room for higher emission by the do-
mestic firm, resulting in higher profit and national welfare. The strategic
motive is particularly strong for nations with clean technology as invest-
ment in their private capital makes an already active emission constraint
still tighter; thus, over-investment in adaptation capital is a strategic way
of loosening this constraint or counteracting the effects of private capital
growth.

Secondly, the growth of Southern private capital raises total emission,
while the growth of Northern private capital lowers total emission. If a
“Green” is someone who wishes to minimize total emission, then a “Green”
will favor private investment (i.e., growth) in the North and not in the
South. This points to a conflict between the objectives of Green lobbies and
the growth ambitions of the South.

Thirdly, investment is a tool for manipulation in our model. Conse-
quently, affluent nations with the wherewithal for substantial investments
can manipulate the emission caps in ways that poorer nations cannot do.

An extension of our model is to embed it in a multi-period setting. It
is certain that national types will evolve over time on account of technical
change and economic growth, and knowledge of the interaction between
the economic process and the environment (modeled by g, h and δ) will
also evolve over time. Thus, emission rights will have to be re-allocated
periodically. Therefore, learning about the relevant processes is important
for every nation so that it can position itself better for future renegotiations.
Such concerns have motivated a literature (e.g., Kelly and Kolstad [14],
Kolstad [15], Ulph and Maddison [21], Ulph and Ulph [22]) on learning in
this context. However, a general model is awaited.

Appendix

Proof of Proposition 3.2 (A) Fix (t, e) ∈ <+ × <̄+. As h(t, 0) = 0 ≤ e,
we have Γ(t, e) 6= ∅. As h is continuous, {v ∈ <+ | h(t, v) ≤ e} is closed in
<+. As V (t) ∈ <+, [0, V (t)] is compact. Therefore, Γ(t, e) is compact. As g
is continuous, Weierstrass’ theorem implies the existence of v ∈ Γ(t, e) such
that g(t, v) = sup g(t,Γ(t, e)).

We now show that there is a unique solution. Suppose v, v′ ∈ Γ(t, e)
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such that g(t, v) = g(t, v′) = sup g(t,Γ(t, e)) and v 6= v′. Let λ ∈ (0, 1).
As v, v′ ∈ Γ(t, e), we have h(t, v) ≤ e, h(t, v′) ≤ e and v, v′ ∈ [0, V (t)]. It
follows that λv+(1−λ)v′ ∈ [0, V (t)], and as h(t, .) is strictly convex, we have
h(t, λv + (1− λ)v′) < λh(t, v) + (1− λ)h(t, v′) ≤ e. Thus, λv + (1− λ)v′ ∈
Γ(t, e), and as g(t, .) is strictly concave, we have g(t, λv + (1 − λ)v′) >
λg(t, v) + (1− λ)g(t, v′) = sup g(t,Γ(t, e)), a contradiction.

(B) Define mappings Γ1, Γ2 and Γ, each from <+ × <̄+ to <+, by
Γ1(t, e) = {v ∈ <+ | h(t, v) ≤ e}, Γ2(t, e) = [0, V (t)] and Γ(t, e) =
Γ1(t, e) ∩ Γ2(t, e) respectively. Suppose Γ is continuous and has nonempty
and compact values. Using this fact, (A) and the continuity of g, the result
follows from the Theorem of the Maximum (Berge [3], Theorem VI.3). We
now confirm the hypothesized properties of Γ.

Assumptions 3.1 implies that 0 ∈ Γ(t, e) for every (t, e) ∈ <+×<̄+. Thus,
Γ has nonempty values. As h is continuous, Gr Γ1 is closed in <+×<̄+×<+.
It follows immediately that Γ1 has closed values. As V (t) ∈ <++, Γ2 has
compact values. Thus, Γ has compact values.

If Γ2 is upper hemicontinuous, then so is Γ (Berge [3], Theorem VI.1.7).
We show that Γ2 is upper hemicontinuous. Consider (t, e) ∈ <+ × <̄+ and
ε > 0. As V is continuous, there exists an open neighborhood of t in <+, say
U , such that V (U) ⊂ [0, V (t)+ε). It follows that [0, V (t′)] ⊂ [0, V (t)+ε) for
every t′ ∈ U . Thus, Γ2(U ×<̄+) = ∪t′∈U [0, V (t′)] ⊂ [0, V (t)+ ε). Suppose E
is open in <+ and Γ2(t, e) = [0, V (t)] ⊂ E. It follows that there exists ε > 0
such that [0, V (t) + ε)) ⊂ E. By the above argument, there exists an open
neighborhood of t in <+, say U , such that Γ2(U × <̄+) ⊂ [0, V (t) + ε) ⊂ E,
as required.

We now show that Γ is lower hemicontinuous. Consider (t, e) ∈ <+×<̄+

and E open in <+ such that Γ(t, e) ∩ E 6= ∅.
Suppose e = 0. Then Γ(t, e) = {0} ⊂ E. As Γ is upper hemicontinuous,

there exists an open neighborhood of (t, e) in <+ × <̄+, say U , such that
Γ(U) ⊂ E. Thus, Γ(t′, e′) ∩ E 6= ∅ for every (t′, e′) ∈ U .

Suppose e > 0. Define mappings Γ̂1, Γ̂2 and Γ̂, each from <+ × <̄+ to
<+, by Γ̂1(t, e) = {v ∈ <+ | h(t, v) < e}, Γ̂2(t, e) = [0, V (t)) and Γ̂(t, e) =
Γ̂1(t, e) ∩ Γ̂2(t, e) respectively. As Γ(t, e) ∩ E 6= ∅, there exists v ∈ E such
that v ∈ [0, V (t)] and h(t, v) ≤ e. If v = 0, then h(t, v) = 0 < e and
v = 0 ∈ [0, V (t)). Thus, v ∈ Γ̂(t, e)∩E. If v > 0, then ∅ 6= [0, v) ⊂ Γ̂(t, e) as
h(t, .) is strictly increasing. As E is open in <+ and v ∈ E, ∅ 6= [0, v)∩E ⊂
Γ̂(t, e) ∩ E. We conclude that Γ̂(t, e) ∩ E 6= ∅.

If Γ̂ is lower hemicontinuous at (t, e), then there exists an open neigh-
borhood of (t, e) in <+×<̄+, say U , such that ∅ 6= Γ̂(t′, e′)∩E ⊂ Γ(t′, e′)∩E
for every (t′, e′) ∈ U . Thus, Γ is lower hemicontinuous at (t, e), as required.

It remains to show that Γ̂ is lower hemicontinuous. Suppose E is open
in <+. As h and V are continuous, Gr Γ̂1 = {(t, e, v) ∈ <+ × <̄+ × <+ |
h(t, v) − e < 0} and Gr Γ̂2 = {(t, e, v) ∈ <+ × <̄+ × <+ | v − V (t) < 0}
are open in <+ × <̄+ × <+. Consequently, Gr Γ̂ = Gr Γ̂1 ∩Gr Γ̂2 is open in
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<+ × <̄+ ×<+. Note that

{(t, e) ∈ <+ × <̄+ | Γ̂(t, e) ∩ E 6= ∅} = π(Gr Γ̂ ∩ <+ × <̄+ ×E)

where π : <+ × <̄+ ×<+ → <+ × <̄+ is the projection mapping π(t, e, v) =
(t, e). As π is an open mapping and Gr Γ̂ and <+ × <̄+ × E are open in
<+×<̄+×<+, we have {(t, e) ∈ <+×<̄+ | Γ̂(t, e)∩E 6= ∅} open in <+×<̄+.
Thus, Γ̂ is lower hemicontinuous.

(C) and (D) follow immediately from Assumption 3.1.
(E) Let e, e′ ∈ [0, h(t, V (t))] and e < e′. (D) implies h(t, v(t, e)) = e <

e′ = h(t, v(t, e′)). Assumption 3.1 implies v(t, e) < v(t, e′) ≤ V (t), and
therefore, f(t, e) = g(t, v(t, e)) < g(t, v(t, e′)) = f(t, e′).

(F) Let e, e′ ∈ [0, h(t, V (t))] and λ ∈ (0, 1), with e 6= e′. Let v(t, e) = v
and v(t, e′) = v′. By definition, h(t, v) ≤ e and h(t, v′) ≤ e′. Assumption 3.1
implies h(t, λv + (1 − λ)v′) ≤ λh(t, v) + (1 − λ)h(t, v′) ≤ λe + (1 − λ)e′.
Therefore, by Assumption 3.1, f(t, λe + (1 − λ)e′) ≥ g(t, λv + (1 − λ)v′) >
λg(t, v) + (1− λ)g(t, v′) = λf(t, e) + (1− λ)f(t, e′).

(G) By (C), if e ≥ h(t, V (t)), then f(t, e) = g(t, v(t, e)) = g(t, V (t)).

Proof of Proposition 4.2 (A) follows immediately from the definition of
V (t).

(B) Consider e > h(t, V (t)). By Proposition 3.2(C), v(t, e′) = V (t) for
every e′ > h(t, V (t)). Thus, Dev(t, e) = 0, and using (A), Dvg(t, v(t, e)) =
Dvg(t, V (t)) = 0.

(C) By Proposition 3.2(D), if e ∈ (0, h(t, V (t))), then h(t, v(t, e)) = e.
In this case, we can combine Assumptions 3.1(c) and 4.1(a), and use the
implicit function theorem (Lang [16], XIV, Theorem 2.1) to conclude that
v(t, .) is C1 on (0, h(t, V (t))).

(D) Combining (B), (C) and Assumption 4.1(a), it follows that f(t, .) =
g(t, v(t, .)) is C1 on (0, h(t, V (t))) ∪ (h(t, V (t)),∞).

Proof of Proposition 4.3 (A) If ei ≥ h(ti, V (ti)), then Proposition 3.2(C)
implies v(ti, ei) = V (ti). It follows that ui(θ, e) = ui(θ, h(ti, V (ti)), e−i) is
independent of ei for ei ≥ h(ti, V (ti)).

Let ei ∈ (0, h(ti, V (ti))). Proposition 3.2(D) implies that h(ti, v(ti, ei)) =
ei and ui(θ, e) is given by (2). Proposition 4.2(C) and Assumption 4.1(a)
yield Deiv(ti, ei) = 1/Dvih(ti, v(ti, ei)). Using Proposition 4.2(D), the deriva-
tive of the first term of (2) with respect to ei is

Dvig(ti, v(ti, ei))Deiv(ti, ei) =
Dvig(ti, v(ti, ei))
Dvih(ti, v(ti, ei))

(19)

As v is continuous by Proposition 3.2(B),

lim
ei↑h(ti,V (ti))

v(ti, ei) = v(ti, h(ti, V (ti))) = V (ti)
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Using (19), Assumptions 3.1(c) and 4.1(a), and Proposition 4.2(A), we have

lim
ei↑h(ti,V (ti))

Dvig(ti, v(ti, ei))Deiv(ti, ei) =
Dvig(ti, V (ti))
Dvih(ti, V (ti))

= 0

The derivative of the second term of (2) with respect to ei, evaluated at
h(ti, V (ti)), is

−De+δ


ki, h(ti, V (ti)) +

∑

j∈N−{i}
h(tj , v(tj , ej))


 < 0

Thus, ei = h(ti, V (ti)) cannot maximize (2). As Nation i’s expected payoff
is invariant with respect to ei for ei ≥ h(ti, V (ti)), we have b < h(ti, V (ti)).
It follows from Proposition 3.2(D) that h(ti, v(ti, b)) = b.

(B) follows as ui(θ, ., e−i) is strictly concave on [0, h(ti, V (ti))].

Proof of Proposition 4.4 Let θ ∈ Θn and let e be a stationary point of (4).
Proposition 4.3 implies ej = βj(e−j ; θ) ∈ [0, h(tj , V (tj))) for every j ∈ N .
Therefore, uj(θ, e) is given by (3). Suppose ei = 0. Consequently, v(ti, ei) =
0, f(ti, ei) = 0 and ui(θ, e) = −δ(ki,

∑
j∈N−{i} ej) ≤ 0. Set e′i = h(ti, V (ti)).

By Proposition 3.2(G), f(ti, e′i) = g(ti, V (ti)). By Assumption 4.1(b) and
the fact that ej < h(tj , V (tj)) for every j ∈ N , we have

ui(θ, e′i, e−i) = f(ti, e′i)− δ


ki, e

′
i +

∑

j∈N−{i}
ej




> g(ti, V (ti))− δ


ki,

∑

j∈N

h(tj , V (tj))




which is positive by Assumption 4.1(c). Thus, ui(θ, e′i, e−i) > 0 ≥ ui(θ, e),
a contradiction.

Proof of Proposition 4.5 Let e∗ be a stationary point of (4). Consider
j ∈ N . By Proposition 4.3, 0 ≤ e∗j = βj(e∗−j ; θ) < h(tj , V (tj)). As e∗j =
βj(e∗−j ; θ), we have uj(θ, e∗) ≥ uj(θ, b, e∗−j) for every b ∈ <̄+. Therefore,
uj(θ, e∗) ≥ uj(θ, b, e∗−j) for every b ∈ [0, h(tj , V (tj))]. So, e∗ is a Nash
equilibrium of G(θ).

Conversely, suppose e∗ is a Nash equilibrium of G(θ). By definition,
for every j ∈ N , e∗j ∈ [0, h(tj , V (tj))] and uj(θ, e∗) ≥ uj(θ, b, e∗−j) for every
b ∈ [0, h(tj , V (tj))]. As uj(θ, ., e∗−j) is strictly concave on [0, h(tj , V (tj))],
uj(θ, e∗) > uj(θ, b, e∗−j) for every b ∈ [0, h(tj , V (tj))] − {e∗j}. By Proposi-
tion 4.3, βj(e∗−j ; θ) ⊂ [0, h(tj , V (tj))]. Thus, if b′ ∈ <̄+ − [0, h(tj , V (tj))],
then there exists b ∈ [0, h(tj , V (tj))], such that uj(θ, b, e∗−j) > uj(θ, b′, e∗−j).
Consequently, uj(θ, e∗) > uj(θ, b′, e∗−j). Therefore, e∗j = βj(e∗−j ; θ) for every
j ∈ N . Thus, e∗ is a stationary point of (4).
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Proof of Proposition 4.6 Consider G(θ). By Assumption 3.1(a), each
player’s strategy set is a nonempty, compact and convex subset of <. Propo-
sition 3.2(B) and Assumption 4.1(b) imply that each player’s payoff function
is continuous. Proposition 3.2(F) and Assumption 4.1(b) imply that each
player’s payoff is concave in his own strategy. Thus, by Nash’s existence
theorem, G(θ) has a Nash equilibrium, which is a stationary point of (4) by
Proposition 4.5.

Proof of Proposition 4.9 Fix i ∈ N and a stationary point e of (4). Let
Rj = [ej , h(tj , V (tj))] for j ∈ N and let R =

∏
j∈N Rj . Proposition 4.4

ensures that IntR 6= ∅. Given x ∈ R−{e}, define ej = (e1, . . . , ej) and xj =
(xj , . . . , xn) for j = 1, . . . , n; formally define (e0, x1) = x and (en, xn+1) = e.

Consider x ∈ R such that x 6= (h(tj , V (tj)))j∈N and x 6= e. As xj ∈
[0, h(tj , V (tj))] for every j ∈ N , ui(θ, x) is given by (3). Assumption 4.1(b)
implies Dek

ui(θ, x) = −De+δ(ki, x+) < 0 for every k ∈ N − {i}. Proposi-
tion 4.4 and Assumption 4.1(b) imply

Deiui(θ, x) = Deiui(θ, e) +
n∑

k=1

[
Deiui(θ, ek−1, xk)−Deiui(θ, ek, xk+1)

]

= Deiui(θ, e) +
n∑

k=1

∫ xk

ek

dy Deiek
ui(θ, ek−1, y, xk+1)

< Deiui(θ, e)
= 0

Given z ∈ R− {e}, it follows that

ui(θ, z)− ui(θ, e) =
n∑

k=1

[
ui(θ, ek−1, zk)− ui(θ, ek, zk+1)

]

=
n∑

k=1

∫ zk

ek

dy Dek
ui(θ, ek−1, y, zk+1)

< 0

as required.

Proof of Proposition 5.2 (A) Consider (t, e) ∈ <2
++ such that e <

h(t, V (t)). By Proposition 3.2(D), h(t, v(t, e)) = e. As e > 0, Assump-
tion 3.1(c) implies v(t, e) > 0. By Assumption 3.1, h and V are continuous.
Consequently, there exist an open neighborhood T ×E ⊂ <2

++ of (t, e) such
that h(τ, V (τ)) − η > 0 for every (τ, η) ∈ T × E. Consider the function
F : T × E × <++ → < defined by F (t, e, v) = h(t, v) − e. By defini-
tion, F (t, e, v(t, e)) = 0. By Assumption 5.1(c), F is C2. Combining As-
sumptions 3.1(c) and 5.1(c), we have DvF (t, e, v(t, e)) = Dvh(t, v(t, e)) > 0.
By the implicit function theorem (Lang [16], XIV, Theorem 2.1), there ex-
ists an open neighborhood T ′ × E′ ⊂ T × E of (t, e) and a C2 function
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v′ : T ′ ×E′ → <++ such that F (τ, η, v′(τ, η)) = 0 for every (τ, η) ∈ T ′ ×E′,
i.e., h(τ, v′(τ, η)) = η for every (τ, η) ∈ T ′ × E′. Therefore, h(τ, V (τ)) > η
for every (τ, η) ∈ T ′ × E′. By Proposition 3.2(D), h(τ, v(τ, η)) = η for
every (τ, η) ∈ T ′ × E′. Thus, h(τ, v(τ, η)) = η = h(τ, v′(τ, η)) for every
(τ, η) ∈ T ′ × E′. Assumption 3.1(c) implies v(τ, η) = v′(τ, η). Thus, v is C2

on {(t, e) ∈ <2
++ | e < h(t, V (t))}. Assumption 5.1(c) implies that f is C2

on {(t, e) ∈ <2
++ | e < h(t, V (t))}.

(B) Suppose e, t, t′ ∈ <+, t < t′, e ≤ h(t, V (t)) and e ≤ h(t′, V (t′)).
Proposition 3.2(D) and Assumption 5.1(a) imply that h(t, v(t, e)) = e =
h(t′, v(t′, e)) < h(t, v(t′, e)). Assumption 3.1(c) implies v(t, e) < v(t′, e) and
the definition of v implies v(t′, e) ≤ V (t′). Therefore, Assumptions 3.1(b)
and 5.1(a) imply f(t, e) = g(t, v(t, e)) < g(t′, v(t, e)) < g(t′, v(t′, e)) =
f(t′, e).

(C) Our assumptions imply that ui(θ, e) is given by (3). The result
follows from Proposition 5.2(A) and Assumption 5.1(c).

Proof of Proposition 5.3 Fix θ ∈ Θn with θi = (ti, ki). Denote f(ti, .)
and δ(ki, .) by fi and δi respectively. In the following arguments, ui, fi, δi

and their derivatives are evaluated at (θ, e(θ)) for every i ∈ N . Let

A =




De1e1u1 . . . De1enu1
...

. . .
...

Dene1un . . . Denenun


 and b =




−De1xu1

0
...
0




where
Deiejui =

{
Deieifi −De+e+δi, if j = i
−De+e+δi, if j ∈ N − {i}

for i ∈ N . Let Aj be the (n − 1) × (n − 1) matrix derived from A by
eliminating the first row and the j-th column.

By the fundamental theorem of algebra (Markushevich [17], Theorem
17.7), A has n roots. As A is real, its characteristic polynomial has real
coefficients. Therefore, the conjugate of every complex root of A with mul-
tiplicity m is also a root of A with multiplicity m. Therefore, the product
of all complex roots is positive. As A is similar to its Jordan canonical form
(Gantmacher [12], Section VI.6.3), detA equals the product of its roots. (5)
implies that A is a row dominant diagonal matrix. (7) implies that A has a
negative diagonal.

Suppose λ is a root of A with a non-negative real part. Let |c| de-
note the modulus of a complex number c. As aii < 0 for every i ∈ N ,
|aii−λ| ≥ |aii| >

∑
j∈N−{i} |aij | for every i ∈ N . This implies H = A−λI is

an n× n complex matrix with a row dominant diagonal. H is singular as λ
is a root of A. Thus, there exists a complex n-tuple x 6= 0 such that Hx = 0,
which implies hiixi +

∑
j∈N−{i} hijxj = 0 for every i ∈ N . The triangle in-

equality implies |hii||xi| = |hiixi| = |∑j∈N−{i} hijxj | ≤
∑

j∈N−{i} |hijxj | =
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∑
j∈N−{i} |hij ||xj |. Let k ∈ N be such that |xk| ≥ |xj | for every j ∈ N . It

follows that |hkk||xk| ≤
∑

j∈N−{k} |hkj ||xk| = |xk|
∑

j∈N−{k} |hkj |. As x 6= 0,
|xk| > 0. Therefore, |hkk| ≤

∑
j 6=k |hkj |, a contradiction. Thus, all the roots

of A have negative real parts.
It follows that, if n is even (resp. odd), then detA > 0 (resp. detA <

0). By copying this argument, if n is even (resp. odd), then detA1 < 0
(resp. detA1 > 0).

(A) Consider the function F : Θn × ∏
j∈N (0, h(tj , V (tj))) → <n such

that Fi = Deiui : Θn × ∏
j∈N (0, h(tj , V (tj))) → <. As (6) implies that

Deiui(θ, e(θ)) = 0 for every i ∈ N , we have F (θ, e(θ)) = 0. By Proposi-
tion 5.2(C), F is C1. As DeF (θ, e(θ)) = A and A is non-singular, the implicit
function theorem (Lang [16], XIV, Theorem 2.1) implies that there exists
an open neighborhood T ⊂ Θn of θ and a unique C1 function e′ : T → <n

++

such that F (θ′, e′(θ′)) = 0 for every θ′ ∈ T , i.e., Dejuj(θ′, e′(θ′)) = 0 for
every θ′ ∈ T and every j ∈ N . But (6) implies Dejuj(θ′, e(θ′)) = 0 for every
θ′ ∈ T and every j ∈ N . Strict concavity of uj(θ′, .) implies that e′ = e on
T . The result follows as the same argument holds at every θ ∈ Θn.

(B) Differentiating (6) with respect to x yields the equation ADxe = b.
Using Cramer’s rule, we have

Dxej =
(−1)jDe1xu1 detAj

detA
(20)

We first evaluate detAj for j ∈ N −{1}. Subtracting the first column of Aj

from every other column yields detAj = det Bj , where

Bj =




−De+e+δ2 De2e2f2 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

−De+e+δj−1 0 . . . Dej−1ej−1fj−1 0 . . . 0
−De+e+δj 0 . . . 0 0 . . . 0
−De+e+δj+1 0 . . . 0 Dej+1ej+1fj+1 . . . 0

...
...

. . .
...

...
. . .

...
−De+e+δn 0 . . . 0 0 . . . Denenfn




By a sequence of j − 2 adjacent column interchanges, we transform Bj into

Cj =




De2e2f2 . . . 0 −De+e+δ2 0 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . Dej−1ej−1fj−1 −De+e+δj−1 0 . . . 0
0 . . . 0 −De+e+δj 0 . . . 0
0 . . . 0 −De+e+δj+1 Dej+1ej+1fj+1 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . 0 −De+e+δn 0 . . . Denenfn
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As interchanging adjacent columns changes the sign of a determinant, we
have

det Aj = detBj = (−1)j−2 det Cj = (−1)j−1 De+e+δj

De1e1f1Dejejfj

n∏

k=1

Dekek
fk

Thus,

Dxej =

[
(−1)2j−1 ∏n

k=1 Dekek
fk

detA

]
De1xu1De+e+δj

De1e1f1Dejejfj
(21)

Proposition 3.2(F) implies Dekek
fk < 0 for every k ∈ N . Therefore,

(−1)2j−1 ∏n
k=1 Dekek

fk

det A
< 0

for every n and j ∈ N − {1}. The result follows from (21) and Assump-
tion 4.1(b).

(C) follows from (20) and the fact that detA and detA1 have opposite
signs.

(D) It follows from (20) that

Dx

∑

j∈N

ej =
De1xu1

det A

∑

j∈N

(−1)j det Aj =
De1xu1

detA
det K

where

K =




−1 . . . −1
De2e1u2 . . . De2enu2

...
. . .

...
Dene1un . . . Denenun




Subtracting the first column of K from every other column yields detK =
detL, where

L =




−1 0 . . . 0
−De+e+δ2 De2e2f2 . . . 0

...
...

. . .
...

−De+e+δn 0 . . . Denenfn




Thus, Dx
∑

j∈N ej = De1xu1 det L/det A = −De1xu1
∏n

k=2 Dekek
fk/detA.

Note that
∏n

k=2 Dekek
fk < 0 if and only if n is even.
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