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Abstract

Consider a Bertrand-Edgeworth duopoly with linear cost functions.

If the firms produce to stock then no Nash equilibrium in pure strate-

gies exists. If, however, the firms produce to order then all subgame

perfect Nash equilibria involve the firms charging a price equal to

marginal cost.
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1 Introduction

Consider a Bertrand duopoly where the firms have identical and linear cost

functions and must supply the whole of the demand coming to them. It is

well known that there is a unique Nash equilibrium where both the firms

charge a price equal to marginal cost. In the literature this result is known

as the Bertrand (1833) paradox, since it suggests that competition among

only two firms may be sufficient to yield the perfectly competitive outcome

(see, for example, Tirole (1988), pp. 209-211).

Efforts at resolving the Bertrand paradox have involved relaxing the

various assumptions underlying the model, e.g. that the cost functions are

linear, or that the product is homogeneous, etc. (see Tirole (1988), Chapter

5). In the process the Bertrand paradox has played an important role in the

development of the literature.

Here we focus on another critical assumption behind the Bertrand para-

dox, that firms must supply all demand. It is often implicitly assumed that

the result goes through even if this assumption is relaxed. In this paper,

however, we argue that the Bertrand paradox is fundamentally altered if the

firms are free to supply less than the quantity demanded (this assumption

is due to Edgeworth (1897)).

Given the Edgeworth (1897) assumption there are two ways of mod-

elling a game of price competition. Under the production to stock (or PTS)

framework, the firms simultaneously decide on both their price and output

levels.1 Under the production to order (or PTO) framework, however, the
1The PTS game can be interpreted as one with advance production, so that firms

must decide on their output levels before trading starts. Thus they make their price

and output decisions without knowing the price and output decisions of the other firms.

Retail markets are often characterized by such production conditions (see Mestelman et

al. (1987)).
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firms play a two stage game where they first simultaneously decide on their

prices, and then on their output levels.

We find that under PTS competition no pure strategy Nash equilibrium

exists, i.e. in this case we are faced with the Edgeworth (1897), rather than

the Bertrand (1833) paradox.2

Under PTO competition, however, all subgame perfect Nash equilibria in

pure strategies involve both the firms charging a price equal to the marginal

cost. The equilibria, however, are non-unique in terms of output and may

involve an aggregate supply that is less than demand. Thus in this case the

Bertrand (1833) paradox can be said to hold, but only partially.

2 The Model

There are 2 identical firms, both producing the same homogeneous good.

The market demand function is q = d(p) and the cost function of both the

firms is cq.

Assumption 1. ∀p > 0, d(p) is well defined and once differentiable,

with d′(p) < 0 and bounded.
2Edgeworth (1897) used a Bertrand duopoly model with linear, but capacity con-

strained cost functions to argue that in such models equilibria in pure strategies may

not exist. This is the well known Edgeworth paradox (though Edgeworth (1897) himself

thought of this as a case of indeterminate equilibrium, with prices cycling within a certain

range). For a formal analysis of the Edgeworth (1897) paradox see, among others, Levitan

and Shubik (1972), Maskin and Tirole (1988) and Tasnádi (1999a).

Given the Edgeworth paradox, one strand of the literature looks for existence in mixed

strategies. One can mention, among others, Maskin (1986) who uses the fixed point

theorems for discontinuous games developed by Dasgupta and Maskin (1986) to show

existence of mixed strategy equilibria for both PTS and PTO games.
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Let Ri(p1, p2, qj), j 6= i, denote the residual demand facing firm i, where

Ri(p1, p2, qj) =


max[0, d(pi)− qj{λ + (1− λ) d(pi)

d(pj)
}], if pi > pj ,

max[d(pi)
2 , d(pi)− qj ], if pi = pj ,

d(pi), if pi < pj ,

(1)

where λ ∈ [0, 1].

The first line of equation 1 (i.e. the rationing rule) draws heavily on

the combined rationing rule introduced by Tasnádi (1999b). Clearly, for

λ = 1 we have the efficient rationing rule, whereas for λ = 0 we have

the proportional rationing rule (see Tirole (1988) and Vives (1999) for a

discussion of these two rationing rules). For intermediate values of λ other

rationing rules emerge. Thus this formulation allows for a large class of

rationing rules, including the two most well known one, the efficient and the

proportional, as special cases.

The second line of equation 1 (i.e. the tie-breaking rule) follows Davidson

and Deneckere (1986) and Kreps and Scheinkman (1983). One nice feature of

this formulation is that it allows for the spill-over of unmet residual demand

from one firm to another. However we later argue, in Remarks 1 and 2, that

our results go through for other tie-breaking rules also.

We can now define the profit function of the i-th firm.

πi(p1, p2, q1, q2) = pi min{qi, Ri(p1, p2, qj)} − cqi, i = 1, 2. (2)

2.1 Production to Stock Framework

We first examine a simultaneous move game where the i-th firm’s strategy

consists of choosing both a price pi ∈ [0,∞) and an output qi ∈ [0,∞).

We solve for the pure strategy Nash equilibrium of this game.

Lemma 1 below is useful. The proof, which is standard, has been rele-

gated to the appendix.
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Lemma 1. Any Nash equilibrium must involve both the firms charging

a price equal to c.

Proposition 1 below shows that this game has no Nash equilibrium in

pure strategies.

Proposition 1. The production to stock game with linear cost functions

has no Nash equilibrium in pure strategies.

Proof. Given Lemma 1, it is sufficient to argue that any outcome,

(p̃1, p̃2, q̃1, q̃2), where p̃1 = p̃2 = c, cannot be a Nash equilibrium.

Consider some outcome (p̃1, p̃2, q̃1, q̃2), where p̃1 = p̃2 = c. Suppose to

the contrary that this outcome is Nash. Since both the firms are charging c,

and the outcome is Nash, it must be that q̃1 + q̃2 ≤ d(c). Thus there exists

q̃j such that d(c)− q̃j ≥ d(c)
2 > 0. Without loss of generality let j = 2. Since

d(c)− q̃2 ≥ d(c)
2 , it follows that R1(p1, c, q̃2) is right continuous at p1 = c.

Next suppose that firm 1 deviates by charging a price p1 greater than c.

Note that, for p1 ≥ c, it is optimal for firm 1 to supply R1(p1, c, q̃2). Thus

for p1 ≥ c, the profit of firm 1, assuming that its output level is optimal, is

π1(p1, c, R1(p1, c, q̃2), q̃2) = (p1 − c)R1(p1, c, q̃2). (3)

Hence, for p1 ≥ c,

∂π1(p1, c, R1(p1, c, q̃2), q̃2)
∂p1

= R1(p1, c, q̃2) + (p1 − c)
∂R1(p1, c, q̃2)

∂p1
. (4)

Consequently,

∂π1(p1, c, R1(p1, c, q̃2), q̃2)
∂p1

|p1=c = R1(c, c, q̃2) = d(c)− q̃2 > 0. (5)

Thus firm 1 can increase its price slightly and gain.
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Remark 1. Note that Proposition 1 goes through even if the tie-breaking

rule is of the form d(pi)
2 , or d(pi) qi

q1+q2
(if q1 = q2 = 0, then the second tie-

breaking rule takes the form d(pi)
2 ). Recall that these are the two examples

of tie-breaking rules provided in Maskin (1986). In both the cases it is

sufficient to observe that for the outcome, (p̃1, p̃2, q̃1, q̃2), where p̃1 = p̃2 = c,

it must be the case that q̃1 + q̃2 ≤ d(c),3 so that d(c) − q̃j ≥ d(c)
2 > 0, for

some j. Thus the argument in Proposition 1 goes through.

2.2 Production to Order Framework

We next examine a two stage game where, in stage 1, the firms simultane-

ously decide on their price levels, and in stage 2, they simultaneously decide

on their quantity levels.

We then solve for the subgame perfect Nash equilibria of this game in

pure strategies.

Proposition 2. If the firms produce to order and cost functions are

linear then, any outcome (p′
1, p

′
2, q

′
1, q

′
2), where p′

1 = p′
2 = c and q′

1+q′
2 ≤ d(c),

can be supported as a subgame perfect Nash equilibrium. Moreover, no other

subgame perfect Nash equilibrium exists.

Proof. It is clear that Lemma 1 applies in this case as well.

Next let us consider some outcome (p′
1, p

′
2, q

′
1, q

′
2), where p′

1 = p′
2 = c and

q′
1 + q′

2 ≤ d(c). It is sufficient to see that the following strategies sustain this

outcome as a subgame perfect Nash equilibrium:

Stage 1. Both the firms charge a price equal to c.

Stage 2. In case both the firms charge c in stage 1, then, in stage

2, firm 1 supplies q′
1 and firm 2 supplies q′

2. If, in stage 1, one of the

3If, to the contrary, q̃1 + q̃2 > d(c), then one of the firms must be incurring losses.
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firms charges c, while the other firm charges a strictly higher price, then

in stage 2 the firm charging c supplies d(c), while the other firm supplies

nothing.

Interestingly, while the equilibrium price equals the perfectly competitive

level, the aggregate supply, q′
1 +q′

2, may be less than the demand d(c). Thus

in this case the Bertrand paradox applies only partially. Of course, the

result, that in equilibrium supply can be less than demand, is paradoxical

in itself.

Remark 2. It is clear that Proposition 2 goes through even if the tie-

breaking rule is of the form d(pi) qi
q1+q2

. Whereas if the tie-breaking rule is

of the form d(pi)
2 , then any outcome (p′

1, p
′
2, q

′
1, q

′
2), where p′

1 = p′
2 = c and

q′
1, q

′
2 ≤

d(c)
2 , constitutes a subgame perfect Nash equilibrium. Moreover, no

other subgame perfect Nash equilibrium exists.4

3 Conclusion

In this paper we examine a model of Bertrand-Edgeworth duopoly where the

firms are free to supply less than the quantity demanded and cost functions

are linear. If the competition is of the production to stock type, then no

Nash equilibrium in pure strategy exists. If, however, the competition is of

the production to order type, then all subgame perfect Nash equilibria in

pure strategies involve both the firms charging a price equal to the marginal

cost. The aggregate supply, however, may be less than demand.
4It is easy to see that in both the cases the strategies outlined in the proof of Proposition

2 will work.
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4 Appendix

Proof of Lemma 1. Consider an outcome (p̂1, p̂2, q̂1, q̂2). We argue that for

this outcome to be a Nash equilibrium it is necessary that p̂1 = p̂2 = c.

Case 1. Suppose p̂i > p̂j > c. Then firm i can deviate by undercutting

firm j slightly and gain. Hence such a price configuration cannot be a part

of a Nash equilibrium.

Case 2. Suppose p̂i > c ≥ p̂j . Then firm j can charge some p′′
j , such

that p̂i > p′′
j > c, and gain.

Case 3. Suppose that p̂i < p̂j ≤ c. Then firm j can charge a price

slightly higher than c and gain.

Case 4. Suppose p̂1 = p̂2 > c. Then firm 1 can undercut slightly and

gain.

Case 5. Suppose p̂1 = p̂2 < c. Then firm 1 can charge a price slightly

higher than c and gain.
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