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1 Introduction

There exists a substantial theoretical literature focusing on the interaction between
the economic growth and the environmental degradation1. In these models, the
degradation of environmental quality either lowers the utility of the consumer or
lowers the productivity of the factors. Most of these models are built in an one
sector Ramsey-Solow framework. Environmental degradation is viewed as the social
byproduct of the use of modernized machineries in the production sector because
the operation of these modenized machines requires the use of pollution enhancing
raw materials like oil, coal etc. Some authors like Mohtadi (1996), Bretschger and
Smulders (2007), Perez and Ruiz (2007), Hettich (1998) etc. assume a direct rela-
tion between the level of environmental pollution and the stock of physical capital
when entire physical capital stock is fully utilized2. Other authors like Grimaud
and Tournemaine (2007), Hettich (1998), Grimaud (1999) etc. assume the level of
environmental pollution to be a function of the level of output of the aggregate
production sector.

There exists another set of theoretical literature focusing on the role of human
capital accumulation on economic growth3. The literature starts with the Lucas
(1988) model; and this model has been extended and reanalysed by various authors
in different directions. The rate of labour augmenting technical progress, i.e., the rate
of human capital accumulation is endogenous to the analysis; and the productivity
parameter of the human capital accumulation technology is an important determi-
nant of the rate of growth. Some of the works focusing on the interaction between
economic growth and environmental pollution are based on the Lucas (1988) frame-
work. In Hettich (1998), environmental pollution negatively affects the welfare of
the household; and, in Rosendahl (1996), environmental quality produces a positive
effect on the productivity of capital. Ricci (2007) makes a survey of the literature.
However, in none of these existing works, except of Gradus and Smulders (1993),
environmental quality affects the learning ability of the individuals.

When human capital accumulation is the engine of economic growth, the learning
ability of the individual becomes an important determinant of the rate of human cap-
ital accumulation. Environmental pollution produces negative effects on the health
of the individual; and this lowers the ability to learn. Noise pollution disturbs the
academic environment. Margulis (1991) finds significant empirical correlation be-
tween lead in air and blood lead levels. Next, he shows that children with higher
blood lead levels have a lower cognitive development and requires supplemental edu-
cation. Kauppi (2006) shows that methyl mercury, whose exposure to human comes

1See, for example, Mohtadi (1996), Dinda (2005), Gradus and Smulders (1993), Hettich (1998),
Rosendahl (1996), Perez and Ruiz (2007), Endress, Roumasset and Zhou (2005), Grimaud(1999),
Ricci (2007), Grimaud and Tournemaine (2007) etc.

2If capital accumulation means replacement of old machines by more eco-friendly machines, then
environmental pollution should vary negatively with capital accumulation.

3See for example, Lucas (1988), Rebelo (1991), Bengad (2003), Caballe and Santos (1993), Or-
tigueira (1998), Faig (1995), Mino(1996), Greiner and Semmler (2002), Alonso-Carrera and Freire-
Seren (2004), Chamley (1993) etc.
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from fish consumption, may lower the learning ability of the children. Air pollution
also causes problems related to eye sight and functioning of the brain. Gradus and
Smulders (1993) consider this negative effect of environmental pollution in an oth-
erwise identical Lucas (1988) model. However, they do not analyse the effects of
various fiscal policies and the transitional dynamic properties of that model.

Human capital accumulation also has a positive effect on the upgradation of
the environmental quality. Education makes the people aware of the environmental
problems and of the importance of protecting environment; and the educated peo-
ple can protect the environment in a scientific way. This positive effect of human
capital accumulation on the environmental quality is ignored not only by Gradus
and Smulders(1993) but also in the other theoretical models like of Mohtadi (1996),
Dinda (2005), Hettich (1998), Rosendahl (1996), Ricci (2007)4etc. However, there
are empirical supports in favour of this positive relationship. Torras and Boyce
(1998) regress environmental pollution on income, on literacy rate, Gini coefficient
of income inequality etc; and find that the literacy rate has a significant negative
effect on pollution particularly in low income countries. Petrosillo and Zurlini et.al.
(2007) find that the attitudes of the tourists, who visit Marine protected area, are
highly dependent on their education level. Clarke and Maantay (2006) find that
the participation rate of the people in the recycling program counducted in New
York city and its neighbourhood is highly dependent on the education level of the
participators.

In this paper, we consider a modified version of Lucas (1988) model with two
special features. (i)Environmental quality positively affects the marginal return to
education; and (ii) Environmental quality varies positively with the stock of human
capital and negatively with the stock of physical capital whose full utilization is
ensured by the perfect flexibility of factor prices. We analyse the effect of taxation on
the steady state equilibrium rate of growth of the economy. The interesting results
obtained in this paper are as follows. Firstly, the steady state equilibrium rate
of growth, in this model, varies positively with the proportional tax rate imposed
on output or on capital income when tax revenue is spent as lumpsum payment.
However, this rate of growth is independent of the tax rate imposed on labour income.
In Lucas (1988), this rate of growth is independent of the tax rates imposed either
on output or on capital income. In Rebelo (1991), the rate of growth varies inversely
with the tax rate imposed on output or on capital income. Secondly, there exists
unique saddle path converging to the unique steady state equilibrium point. Thirdly,
the positive effect of output taxation on the steady state equilibrium rate of growth
is strengthened when tax revenue is spent as abatement expenditure. Fourthly, the
optimum output tax rate, which is obtained maximizing the balanced rate of growth,
varies proportionately with competitive output share of human capital when tax
revenue is spent as educational subsidy.

The rest of the paper is organized as follows. Section 2 presents the basic model
and contains the analysis of the effect of output taxation on the steady state equilib-

4Some authors e.g. Grimaud (1999), Goulder and Mathai (2000), Hart (2004) study the issue of
environment in R& D driven growth model where innovations help to improve the environment.
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rium rate of growth when tax revenue is distributed as lumpsum payment. Section
3 presents the analysis related to the transitional dynamic properties of the model.
Section 4 contains the analysis related to the effects of factor income taxation. In
section 5, we reanalyse the basic model when tax revenue is spent on abatement
activity. Section 6 contains the analysis with tax revenue financing the educational
subsidy. In section 7 we study the relationship between growth and welfare. Con-
cluding remarks are made in Section 8.

2 The model

The model presented in this paper is an extension of Lucas (1988) model. The
government imposes a proportional tax on output and the tax revenue is distributed
among the individuals as lumpsum payment. The dynamic optimization problem of
the representative individual is to maximize∫ ∞

0
U(C)e−ρtdt

subject to the production function given by

Y = A(aH)γK1−γ (1)

with A > 0 and 0 < γ < 1; the dynamic budget constraint given by

K̇ = (1− τ)Y − C + P (2)

with 0 ≤ τ ≤ 1; the human capital accumulation function given by

Ḣ = m(E)δ(1− a)H (3)

with δ > 0; and the environmental stock accumulation function given by

E = E0K
−βHβ (4)

with E0, β > 0. Here A is the technology parameter; K is the stock of physical
capital; H is the stock of human capital and τ is the proportional output tax rate.
E is the environmental quality; P is the lumpsum income transfer resulting from the
distribution of tax revenue; and C is the level of consumption of the representative
household. Y is the Level of output and a is the fraction of labour time allocated
to production. m is the productivity parameter in the human capital accumulation
function; u(.) is the utility function; ρ is the rate of discount and γ is the elasticity of
output with respect to human capital. Equations (3) and (4) make the present model
different from Lucas (1988). Equation (4) with β > 0 implies that environmental
quality varies positively with the stock of human capital and negatively with the stock
of physical capital. Equation (3) with δ > 0 implies that the positive external effect
of environmental quality is present in the human capital accumulation function. If
δ = 0, or β = 0, then we come back to the original Lucas (1988) model. The

4



representative individual solves this optimization problem with respect to the control
variables C and a. K and H are two state variables. However the individual can
not internalize the externality.

We assume U(C) = lnC for the sake of simplicity. We also impose a restriction
on the parameters given by

γ >
βδ

1− βδ
.

The current value Hamiltonian is given by

Z = lnC + λK [A(1− τ)(aH)γK1−γ − C + P ] + λH [m(E)δ(1− a)H].

Here λK and λH are the co state variables of K and H.
The first order optimality conditions are given by the following.

∂Z

∂C
=

1
C
− λK = 0, (5)

and
∂Z

∂a
= λKA(1− τ)γK1−γaγ−1Hγ − λHm(E)δH = 0. (6)

Time behaviour of the co state variables along the optimum growth path should
satisfy the following.

˙λK = ρλK − λKA(1− τ)(1− γ)(aH)γK−γ , (7)

and
˙λH = ρλH − λKA(1− τ)γ(a)γHγ−1K1−γ − λHm(E)δ(1− a). (8)

Transversality conditions are given by the followings.

lim
t→∞

e−ρtλK(t)K(t) = lim
t→∞

e−ρtλH(t)H(t) = 0.

The budget of the government is balanced; and hence

P = τY.

Hence, at the aggregate level, equation (2) is modified as follows:

K̇ = Y − C. (9)

2.1 Steady State Equilibrium

Along the steady state equilibrium growth path, K̇
K = Ḣ

H = Ċ
C and ȧ

a = 0. Using
equations (5) and (7), we have

Ċ

C
= A(1− τ)(1− γ)aγ(

H

K
)γ − ρ. (10)

From the equation (6), we have
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λK

λH
=

m(E)δH

A(1− τ)γK1−γaγ−1Hγ
. (11)

Differentiating both sides of equation (11) with respect to time and then using the
steady state equilibrium condition, we have

(
H

K
)γ−βδ =

m(E0)δ

A(1− τ)aγ(1− γ)
. (12)

Along the steady state equilibrium growth path, Ċ
C = Ḣ

H . So using equations (3),
(4), (10) and (12) we have

a = [
ργ−βδ(A(1− τ)(1− γ))βδ

mγ(E0)δγ
]

1
(γ−βδ−γβδ) . (13)

We assume γ > βδ+γβδ. Thus we find a negative relationship between optimum
a and τ in the steady state growth equilibrium. Note that a < 1; and this is
guaranteed if

ργ−βδ(A(1− τ)(1− γ))βδ

mγ(E0)δγ
< 1. (14)

Hence, using equations (10), (12) and (13), the balanced growth rate of the economy,
denoted by g, is obtained as

g = [A(1− τ)(1− γ)aγ ]−
βδ

γ−βδ [m(E0)δ]
γ

γ−βδ − ρ. (15)

Equation (13) shows that a is positively related to the discount rate, ρ, production
technology parameter, A, and the output elasticity coefficient with respect to physical
capital, (1 − γ). This also shows that a is negatively related to the tax rate, τ ,
productivity parameter of the human capital accumulation function, m, and the
initial environmental quality, E0.

Substituting A(1− τ)(1− γ) from equation (13) in equation (15) we have

g = ρ(
1
a
− 1).

So the growth rate, g, varies negatively with a. As a varies negatively with the
tax rate, τ , the growth rate varies positively with the tax rate, τ . So we have the
following proposition.

Proposition 1 When human capital accumulation function in the Lucas (1988)
model receives the negative external effect from environmental pollution, the steady
state equilibrium rate of growth of the economy varies positively with the tax rate on
output.
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If either δ = 0, or, β = 0 then we go back to the Lucas (1988) model without external
effect. In this case

a =
ρ

m
; and g = m− ρ.

Hence the tax rate on output can not affect the growth rate in this case. In the
model of Rebelo (1991), the increase in output tax rate reduces the rate of growth
of the economy. However, in this present model, the rate of growth varies positively
with the output tax rate.

As the tax rate on output is increased, the post tax marginal productivity of
physical capital is reduced. This reduces the net rate of return on physical capital;
and hence the physical capital is accumulated at a lower rate. As a result, the rate of
upgradation of environmental quality is increased. This produces positive external
effect on human capital accumulation. So, in the new steady state equilibrium, the
rate of growth of human capital as well as the rate of growth of income are increased.

In the model of Rebelo (1991), an increase in the proportional output tax rate
causes a decline in the rate of growth. So the optimum tax rate is zero in the Rebelo
(1991) model. In Rebelo (1991), physical capital accumulation positively affects the
human capital accumulation. So the increase in the output tax rate reduces the rate
of growth of human capital and the rate of growth of the economy in the steady state
equilibrium. In Mohtadi (1996), an increase in the output tax rate reduces the rate of
growth of physical capital. Although there exists negative external effect of physical
capital accumulation on the environmental quality in his model, the rate of growth
of output is positively related to rate of growth of physical capital accumulation.
Hence, in his model, an increase in output tax rate reduces the rate of growth of
output. So our result contradicts the results obtained by Rebelo (1991) and Mohtadi
(1996). This model points out a case where growth rate is positively related to the
tax rate. This is so because physical capital accumulation has no positive effect on
the human capital accumulation in this model. If we assume Rebelo (1991) type of
human capital accumulation function where physical capital contributes positively
to the human capital accumulation and if we also consider the negative effect of
physical capital accumulation on environmental quality, then we may not have a
monotonic relationship between the growth rate and the tax rate. On the contrary,
we may have an interior optimal tax rate which would maximize the balanced growth
rate of the economy.

3 Transitional Dynamics

We now turn to analyse the transitional dynamic properties of the model around the
steady state equilibrium point. We derive the equations of motion which describe
the dynamics of the system.

We define two new variables x and y such that x = C
K and y = H

K
Using equations (1), (9) and (10) we have

ẋ

x
= Aaγyγ [(1− τ)(1− γ)− 1]− ρ + x. (16)
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Using equations (1), (3), (4) and (9) we have

ẏ

y
= mE0

δyβδ(1− a)−Aaγyγ + x. (17)

Differentiating both sides of the equation (11) with respect to time, t, and then using
equations (3), (7), (8) and (9), we have

ȧ

a
=
{1− (1− γ + βδ)(1− a)}

(1− γ)
m(E0)

δyβδ + Aaγyγ{ βδ

1− γ
+ τ} − (1− γ + βδ)

(1− γ)
x.

(18)
The dynamics of the system is now described by the differential equations (16), (17)
and (18). Their solutions describe the time path of the variables x, y and a. When
either β = 0, or δ = 0, and τ = 0, these equations of motion become identical to
those obtained in Benhabib and Perli (1994).

Along the steady state equilibrium growth path, ẋ = ẏ = ȧ = 0. Their steady
state equilibrium values are denoted by x∗, y∗ and a∗. From equation (16), we have

x∗ = ρ−Aa∗γy∗γ{(1− τ)(1− γ)− 1}.

From equations (17) and (18) we have

y∗ = [
A(1− τ)(1− γ)ργ

(mE0
δ)1+γ

]
1

βδ−γ+γβδ ;

and

a∗ = [
ργ−βδ{A(1− τ)(1− γ)}βδ

(mE0
δ)γ

]
1

γ−βδ−γβδ .

So the steady state equilibrium point is unique. If either β = 0, or, δ = 0, then

y∗ = [
A(1− τ)(1− γ)ργ

m(1+γ)
]

1
−γ ;

and
a∗ =

ρ

m
.

These expressions are similar to those obtained in Benhabib and Perli (1994). We
now turn to show that there exists a unique saddle path converging to the unique
steady state equilibrium point. Note that it is a system of 3 differential equations.
Initial value of the variable, y, is historically given; and the values of other two
variables x and a can be chosen by the controller. So if the roots are real then, in
order to get the unique saddle path converging to the steady state equilibrium point,
we need exactly one latent root of the Jacobian matrix corresponding to the system
of differential equations to be negative and the other two roots to be positive.

We can show that5

Trace ofJ = x∗+A(a∗y∗)γγ[τ +
βδ

(1− γ)
−1]+m(E0y

β)
δ
[(1−a∗)βδ+

(1− γ + βδ)
(1− γ)

a∗];

5Derivation in detail is shown in the Appendix (A).
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and
Det ofJ = m(E0y

β)
δ
x∗

ρ

(1− γ)
[βδ(1 + γ)− γ].

Here J is the 3× 3 Jacobian matrix corresponding to the system of three differential
equations.

Since we have assumed [βδ(1 + γ) − γ] < 0, the Determinant of J is always
negative. Note that, if there does not exist any external effect of aggregate human
capital on production, then the determinant of the Jacobian matrix of corresponding
differential equations in the Lucas (1988) model is always negative. The negative
sign of the determinant of J implies that either all the three latent roots are negative
or only one root is negative with other two roots being positive. So we have to look
at the sign of the trace of J . Here the trace of J is positive. So all the roots can not
be negative. Hence, only one latent root would be negative and the other two roots
would be positive.

Hence, in this case, there is a unique saddle path converging to the unique steady
state equilibrium point. So we have the following proposition:

Proposition 2 There exists a unique saddle path converging to the unique steady
state equilibrium if [βδ(1 + γ)− γ] < 0.

Using equations (4), (17) and the definition of y, we have

Ė

E
= β[mE0

δyβδ(1− a)−Aaγyγ + x].

So it is clear from this differential equation that, once we obtain time behaviour of
y, x and a along the unique saddle path, we can easily solve for the intertemporal
transitional behaviour of the environmental quality, E. Since it is a 3 × 3 dynamic
system, we can not use the phase diagram to examine the transitional dynamics of
environmental quality. However, it is clear that Ė

E > (<)0 for ẏ
y > (<)0. So it is the

time behaviour of the capital intensity of production, H
K , which determines the time

behaviour of environmental quality, E.

4 Factor Income Taxation

Now we consider taxation on factor income at different rates. Suppose that a tax at
the rate of τK and a tax at the rate of τl are imposed on capital income and labour
income respectively. If τK = τl, then it is equivalent to taxing output at that rate.
The budget constraint of this individual in this case is given by

K̇ = (1− τK)rK + (1− τl)waH − C + P. (19)

Here r and w are rental rate on capital and wage rate respectively. The dynamic
optimization problem of the representative individual in this model is to maximize∫ ∞

0
U(C)e−ρtdt,
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with
U(C) = lnC,

subject to the equations (1), (3), (4) and (19).
The competitive equilibrium conditions of the profit maximizing firm are given

by
r = A(1− γ)(aH)γK−γ ;

and
w = Aγ(aH)γ−1K1−γ .

From the first order optimality conditions6, we have

Ċ

C
= (1− τK)r − ρ; (20)

and, in the steady state equilibrium, we have

(1− τK)r = m(E)δ. (21)

Substituting r = A(1− γ)(aH)γK−γ in equation (21) we have

(
H

K
)γ−βδ =

mE0
δ

(1− τK)A(1− γ)aγ
. (22)

Equating the rate of growth of consumption to the rate of growth of human
capital in the steady state equilibrium, we have

m(E)δa = ρ. (23)

Substituting E and H
K from equations (4) and (22) in the equation (23), we have

a = [
ργ−βδ(A(1− τK)(1− γ))βδ

mγ(E0)δγ
]

1
(γ−βδ−γβδ) . (24)

Note that this equation is same as equation (18) with τ replaced by τK . a varies
inversely with τK . Also note that a is independent of τl. Hence g = ρ( 1

a − 1) also
varies positively with τK and is independent of the change in τl.

Proposition 3 The balanced growth rate of the economy varies positively with the
tax rate imposed on capital income and is invariant to the tax rate imposed on labour
income.

If the tax rate imposed on physical capital income is increased, then the post
tax marginal productivity of capital is reduced. This lowers the rate of growth
of consumption. So the rate of growth of physical capital stock is reduced. As a
result environmental quality is improved; and this, in turn, exerts positive external
effect on human capital accumulation. Hence the rate of growth of human capital is
increased. In the steady state growth equilibrium, this causes the rate of growth of
output to rise. However, the change in the tax rate on labour income does not affect
the marginal productivity of capital; and so it keeps the rate of growth unchanged.

6The optimality conditions are given in the Appendix B.
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5 Abatement Expenditure

The abatement expenditure is an important factor determining the quality of envi-
ronment. In this section, we assume that abatement activity is undertaken by the
government. Tax revenue is not distributed as lumpsum payment. It is spent to
meet the abatement expenditure denoted by S. Hence S = τY and P = 0. Our
modified environmental quality function is given by

E = E0K
−βHβ−θSθ (25)

with β > θ > 0
The budget constraint of the household is given by

K̇ = (1− τ)Y − C. (26)

which is same as equation (2) with P = 0. The dynamic optimization problem
of the representative individual in this model is to maximize∫ ∞

0
U(C)e−ρtdt,

with
U(C) = lnC,

and subject to the equations (1), (3), (25) and (26). S is treated as given in the op-
timization process because it is external to the individual in a competitive economy.

The optimality conditions remain same as obtained in section 2 and hence these
are represented again by equations (5), (6), (7) and (8).

Here also we obtain

ẋ

x
= −A(1− τ)γaγyγ − ρ + x. (27)

Using equations (1), (3), (25) and (26), we have

ẏ

y
= mE0

δ(τAaγ)θδyδ(β+(γ−1)θ)(1− a)−A(1− τ)aγyγ + x. (28)

Differentiating both sides of the equation (11) with respect to time, t, and then using
equations (2), (3), (7) and (8), we have

ȧ

a
=
{1− {(1− γ)(1− θδ) + δβ}(1− a)}

{(1− γ(1− θδ)}
m(E0)

δ(τAaγ)θδyδ(β+(γ−1)θδ))+

A(1− τ)aγyγ δ[β − θ(1− γ)]
{1− γ(1− θδ)}

− {(1− γ)(1− θδ) + δβ}
{1− γ(1− θδ)}

x. (29)

In the steady state equilibrium, from equation (27), we have

x∗ = ρ + Aa∗γy∗γ(1− τ)γ.
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From equations (28) and (29), we have

y∗ = [
ρ

(1− γ)(1− τ)Aa∗(γ+1)
]
1
γ ;

and

a∗ = [
ργ−βδ+θδ(1−γ){A(1− τ)(1− γ)}(βδ+θδ(γ−1))

(mE0
δAτ θδ))γ

]
1

γ+{θ−(1+γ)β)}δ .

We have already assumed β > θ which implies β > (1− γ)θ. Hence a∗ is negatively
related to the tax rate and the growth rate, g, is positively related to the tax rate.
Note that, compared to equation (13), the negative effect of the change in the tax
rate on a∗ becomes stronger in this case. This is so because, firstly, physical capital
accumulation has a direct negative effect on environment like that in the previous
section. Moreover, abatement expenditure to physical capital ratio also varies nega-
tively with the stock of physical capital because abatement expenditure, being equal
to tax revenue, is proportional to income and the average productivity of physical
capital is diminishing. So the negative effect of physical capital gets strengthened in
this case.

So we have the following proposition.

Proposition 4 Even if the environmental quality varies positively with the abate-
ment expenditure, an increase in the tax rate on output raises the balanced growth
rate of the economy.

6 Educational Subsidy

In this section, we assume that the tax revenue is spent to finance the educational
subsidy only. The modified human capital accumulation function is given by

Ḣ = mEδ(1− a)HGφ (30)

with φ > 0. Here

G =
τY

H
;

and G denotes the effectiveness of the educational subsidy that varies positively
with the level of subsidy and inversely with the stock of human capital. If φ =
0, we come back to the equation (3) of the basic model in section 2. Since G is
proportional to Y and since Y varies positively with capital stock, K, the rate of
human capital accumulation also receives a positive external effect from physical
capital accumulation. The budget constraint of the household is given by equation
(26). The representative individual maximizes∫ ∞

0
lnCe−ρtdt

with respect to C and a subject to the equations (1), (4), (26) and (30). G is treated
as given in the maximization process.
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We define again x and y such that x = C
K and y = H

K . From the definitions of x
and y and the optimality conditions7 we obtain following equations of motion.

ẋ

x
= −A(1− τ)γaγyγ − ρ + x, (31)

ẏ

y
= mE0

δ(τAaγ)φy(βδ+(γ−1)φ)(1− a)−A(1− τ)aγyγ + x, (32)

and

ȧ

a
=
{1− {(1− γ)(1− φ) + δβ}(1− a)}

{φγ + (1− γ)}
m(E0)

δ(τAaγ)φy(βδ+(γ−1)φ)+

A(1− τ)aγyγ [βδ − φ(1− γ)]
{φγ + (1− γ)}

− {(1− γ)(1− φ) + δβ}
{φγ + (1− γ)}

x. (33)

The steady state equilibrium values of the variables are given by

x∗ = ρ + Aa∗γy∗γ(1− τ)γ;

y∗ = [
ρ

(1− γ)(1− τ)Aa∗(γ+1)
]
1
γ ;

and

a∗ = [
ργ−βδ+φ(1−γ){A(1− τ)(1− γ)}(βδ+φ(γ−1))

(mE0
δ(Aτ)φ)γ

]
1

γ+φ−(1+γ)βδ .

Here,

da∗

dτ
= −[

ργ−βδ+φ(1−γ){A(1− γ)}(βδ+φ(γ−1))

(mE0
δAφ)γ

]
1

γ+φ−(1+γ)βδ (1− τ)
βδ(2+γ)+(γ−2)φ−γ

γ−(1+γ)βδ+φ

τ
(1+γ)βδ−φ−γ(1+φ)

γ−(1+γ)βδ+φ [
(βδ − φ)τ + φγ

γ − (1 + γ)βδ + φ
].

If βδ > (1 − γ)φ, then a∗ varies negatively with the tax rate. βδ > (1 − γ)φ
implies that the negative effect of physical capital accumulation generated through
environmental degradation outweighs its positive effect generated through subsidiza-
tion to the human capital accumulation sector. However, if βδ < (1 − γ)φ, then a∗

is not monotonically related to the tax rate, τ . Here,

da∗

dτ
> (<)0 if τ > (<)

φγ

φ− βδ
.

So the growth rate maximizing (a∗ minimizing)8 tax rate is given by

τ̂ =
φγ

φ− βδ
< 1.

7The optimality conditions are shown in the Appendix C.
8Second order condition is also satisfied. See the Appendix (D).
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This optimum tax rate, τ̂ , varies positively with γ which represents the competitive
output share of human capital. This is justified because the tax revenue is spent as
educational subsidy. Here τ̂ = γ when β = δ = 0; and β > 0 implies τ̂ > γ. So in the
absence (presence) of the negative effect of environmental degradation on the human
capital accumulation, optimum tax rate is equal to (greater than) the competitive
output share of human capital.

Proposition 5 If the revenue obtained from the output tax is spent as educational
subsidy and if βδ < (1−γ)φ, then there exists a unique positive tax rate, τ̂ , satisfying
0 < τ̂ < 1 and maximizing the steady state equilibrium growth rate. However, this
growth rate varies positively with the tax rate when βδ > (1− γ)φ.

7 Growth and Social Welfare

If the social welfare is a positive function of the balanced growth rate, then there is no
conflit between the growth rate maximization and the social welfare maximization.
Fortunately, this is true in all the models described in the earlier sections.

Here W stands for the level of social welfare. So

W =
∫ ∞

0
lnCe−ρtdt = g

∫ ∞

0
te−ρtdt + lnC(0)

∫ ∞

0
e−ρtdt =

lnC(0)
ρ

+
g

ρ2

because C(t) = C(0)egt along the balanced growth path. In section 2 and in section
4, where the tax revenue is returned to the individuals as lumpsum income transfer,
we have C(0) = Y (0)− gK(0). Hence, we have

dW

dg
=

1
ρ2

− K(0)
ρ{Y (0)− gK(0)}

=
1
ρ2

[
C(0)
K(0) − ρ

C(0)
K(0)

]

Here, dW
dg > 0, because

C(0)
K(0)

−ρ = (mE0
δ)

−γ
βδ−γ+γβδ ρ

γβδ
βδ−γ+γβδ (A(1−τ)(1−γ))

βδ
βδ−γ+γβδ [

1− (1− τ)(1− γ)
(1− τ)(1− γ)

] > 0.

In section 5 and in section 6, we have C(0) = (1− τ)Y (0)− gK(0). In this case also,
we have

dW

dg
=

1
ρ2

[
C(0)
K(0) − ρ

C(0)
K(0)

]

In these two cases, along the steady state growth path, C(0)
K(0) is given by

C(0)
K(0)

= ρ +
γρ

(1− γ)a∗
.

Hence, in section 5, C(0)
K(0) is given by

14



C(0)
K(0)

− ρ =
γρ

(1− γ)
[
ργ−βδ+θδ(1−γ){A(1− τ)(1− γ)}(βδ+θδ(γ−1))

(mE0
δAτ θδ))γ

]
−1

γ+{θ−(1+γ)β)}δ > 0

and in section 6, C(0)
K(0) is given by

C(0)
K(0)

− ρ =
γρ

(1− γ)
[
ργ−βδ+φ(1−γ){A(1− τ)(1− γ)}(βδ+φ(γ−1))

(mE0
δ(Aτ)φ)γ

]
−1

γ+φ−(1+γ)βδ > 0.

Hence dW
dg > 0. So the social welfare along the balanced growth path varies positively

with the balanced growth rate, g. Hence there is no difference between the growth
rate maximizing tax rate and the social welfare maximizing tax rate. However, we
can not derive the socially optimal tax rate along the transitional growth path9.

8 Conclusion

We have developed an endogenous growth model where the environmental quality is
negatively affected by the accumulation of physical capital and is positively affected
by the accumulation of human capital. The rate of human capital accumulation is
positively affected by the external effect emanating from environment. The interest-
ing results obtained in this paper are as follows. Firstly, the steady state equilibrium
rate of growth, in this model, varies positively with the proportional tax rate imposed
on output or on capital income when tax revenue is spent as lumpsum payment. This
result holds even if the environmental quality is positively related to the abatement
expenditure and the entire tax revenue is spent as abatement expenditure. The op-
timum tax rate may appear to be finite and positive when the tax revenue is spent
as educational subsidy. However, this rate of growth is independent of the tax rate
imposed on labour income. In Lucas (1988), this rate of growth is independent of the
tax rates imposed either on output or on capital income. In Rebelo (1991), Mohtadi
(1995) etc. the rate of growth varies inversely with these tax rates. Garcia Castrillo
Sanso (2000), Gomez (2003) find optimal physical capital tax to be zero and optimal
labour tax to be positive in the Lucas (1988) model when tax revenue is spent as
educational subsidy. But none of these models consider the negative effect of envi-
ronmental degradation on the human capital accumulation. However, in this model,
we have considered the negative effect of environmental degradation on the human
capital accumulation and have shown that the steady state equilibrium growth rate
would receive a positive effect from taxation either on output or on capital income.
Existing literature does not point out such a possibility.

9The detailed derivations are shown in Appendix E.
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Appendix A

Here the Jacobian matrix corresponding to the system of differential equations (16),
(17), (18) is given by:

J =


∂ẋ
∂x

∂ẋ
∂y

∂ẋ
∂a

∂ẏ
∂x

∂ẏ
∂y

∂ẏ
∂a

∂ȧ
∂x

∂ȧ
∂y

∂ȧ
∂a

 ;
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and the elements of the Jacobian matrix evaluated at the steady state equilibrium
values of the variables are given as follows.

∂ẋ

∂x
= x∗;

∂ẋ

∂y
= Aa∗γx∗γy∗γ−1{(1− τ)(1− γ)− 1};

∂ẋ

∂a
= Aa∗γ−1x∗γy∗γ{(1− τ)(1− γ)− 1};

∂ẏ

∂x
= y∗;

∂ẏ

∂y
= m(E0)δ(1− a)βδyβδ −Aaγγyγ ;

∂ẏ

∂a
= −Aγaγ−1yγ+1 −m(E0)δy∗(βδ+1);

∂ȧ

∂x
= −(1− γ + βδ)a∗

(1− γ)
;

∂ȧ

∂y
=
{1− (1− γ + βδ)(1− a)}

(1− γ)
m(E0)δyβδ−1aβδ + {τ +

βδ

(1− γ)
}Aaγ+1γyγ−1;

and
∂ȧ

∂a
=

(1− γ + βδ)
(1− γ)

m(E0)δyβδa + {τ +
βδ

(1− γ)
}Aγaγyγ .

The characteristic equation of the J matrix is given by

|J − λI3| = 0;

where λ is an eigenvalue of the Jacobian matrix with elements being evaluated at
the steady state equilibrium values. The three charateristic roots can be solved from
the equation

a0λ
3 + b0λ

2 + a1λ + b1 = 0

where
a0 = −1,

b0 = Trace of J,

a1 = sum of the minors of diagonal terms of J

and
b1 = Determinant ofJ.
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Clearly a0 is negative. We can derive that

b0 = Trace of J = Jxx+Jaa+Jyy = x∗+
(1− γ + βδ)

(1− γ)
m(E0)δyβδa+{τ+

βδ

(1− γ)
}Aγaγyγ

+m(E0)δ(1− a)βδyβδ −Aaγγyγ

= x∗ + A(a∗y∗)γγ[τ +
βδ

(1− γ)
− 1] + m(E0y

β)
δ
[(1− a∗)βδ +

(1− γ + βδ)
(1− γ)

a∗].

Also it can be shown that

b1 = Determinant of J = Jxx[JyyJaa−JyaJay]−Jxy[JyxJaa−JyaJax]+Jxa[JyxJay−JyyJax]

= m2E0
2δa(1− a)y2βδxβδ

(βδ + 1− γ)
(1− γ)

−AmE0
δaγ+1yγ+βδx(1− τ)γ(1− γ)

+mE0
δyβδ+1x[mE0

δβδyβδ−1a
{1− (βδ + 1− γ)(1− a)}

(1− γ)
+Aγaγ+1yγ−1(1−τ)(βδ−γ)].

From the steady state equilibrium values x∗, y∗ and a∗ obtained from equations
(16), (17), (18) we have the following equations.

Aa∗γ+1y∗γ =
ρ

(1− τ)(1− γ)
;

and
mE0

δy∗βδ =
Aa∗γy∗γ(1− τ)(1− γ)− ρ

(1− a∗)

Using the above equations we have

b1 = Determinant of J =
mE0

δy∗βδx∗ρ

(1− γ)
[βδ(1 + γ)− γ].

Appendix B

The current value Hamiltonian function is given by

Z = lnC + µK [(1− τK)rK + (1− τl)waH − C + P ] + µH [m(E)δ(1− a)H]

where µK and µH are the co state variables.
The first order optimality conditions are given by the following.

∂Z

∂C
=

1
C
− µK = 0, (B.1)

and
∂Z

∂a
= µK(1− τl)wH − λHm(E)δH = 0. (B.2)
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Time behaviour of the co state variables along the optimum growth path should
satisfy the following.

˙µK = ρµK − µK(1− τK)r, (B.3)

and
˙µH = ρµH − µK(1− τl)wa− µHm(E)δ(1− a). (B.4)

Transversality conditions are given by the followings.

lim
t→∞

e−ρtλK(t)K(t) = lim
t→∞

e−ρtλH(t)H(t) = 0.

From equations (B.1) and (B.3) we have

Ċ

C
=

(1− τK)r − ρ

σ
.

From equation (B.2) we have

µK

µH
=

mEδ

(1− τl)w
.

Since w is constant in the steady state, we have

˙µK

µK
=

˙µH

µH
.

From the above equation, we have

(1− τK)r = m(E)δ.

Appendix C

The dynamic optimization problem of the representative individual in this model is
to maximize ∫ ∞

0
U(C)e−ρtdt

with
U(C) = lnC

subject to the equations (1), (4), (26) and (30). While maximizing their present
discounted value of utility the individual would consider G to be given.

The first order optimality conditions are given by the following:

∂Z

∂C
=

1
C
− λK = 0, (C.1)

and
∂Z

∂a
= λKA(1− τ)γK1−γaγ−1Hγ − λHm(E)δH(

τY

H
)φ = 0 (C.2)
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Time behaviour of the co-state variables along the optimum growth path should
satisfy the following:

˙λK = ρλK − λKA(1− τ)(1− γ)(aH)γK−γ (C.3)

and

˙λH = ρλH − λKA(1− τ)γ(a)γHγ−1K1−γ − λHm(E)δ(1− a)(
τY

H
)φ (C.4)

From equations (C.1) and (C.3) we have

Ċ

C
= (1− τ)(1− γ)A(aH)γK−γ − ρ (C.5)

From equation (C.2) we have

λK

λH
=

mEδ( τY
H )φ

(1− τ)Aγaγ−1Hγ−1K1−γ

Taking logarithm and differentiating both sides of the above mentioned equation
with respect to time, t, and then using equations (26), (30), (C.3), (C.4) we have

ȧ

a
=
{1− {(1− γ)(1− φ) + δβ}(1− a)}

{φγ + (1− γ)}
m(E0)

δ(τAaγ)φ(
H

K
)(βδ+(γ−1)φ)+

A(1− τ)aγ(
H

K
)γ [βδ − φ(1− γ)]
{φγ + (1− γ)}

− {(1− γ)(1− φ) + δβ}
{φγ + (1− γ)}

C

K
. (C.6)

Using equations (26) and (C.5) we obtain the equation (31). Using equation (C.6)
and the definitions of x and y we obtain the equation (33). Using equations (26) and
(30) we obtain the equation (32).

Appendix D

The steady state equilibrium value of a is

a∗ = [
ργ−βδ+φ(1−γ){A(1− τ)(1− γ)}(βδ+φ(γ−1))

(mE0
δ(Aτ)φ)γ

]
1

γ+φ−(1+γ)βδ .

Here,

da∗

dτ
= −[

ργ−βδ+φ(1−γ){A(1− γ)}(βδ+φ(γ−1))

(mE0
δAφ)γ

]
1

γ+φ−(1+γ)βδ (1− τ)
βδ(2+γ)+(γ−2)φ−γ

γ−(1+γ)βδ+φ

τ
(1+γ)βδ−φ−γ(1+φ)

γ−(1+γ)βδ+φ [
(βδ − φ)τ + φγ

γ − (1 + γ)βδ + φ
]
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Hence,
da

dτ
= 0

when
τ =

φγ

φ− βδ
= τ∗

d2a∗

dτ2
at(τ = τ∗) = [

ργ−βδ+φ(1−γ){A(1− γ)}(βδ+φ(γ−1))

(mE0
δAφ)γ

]
1

γ+φ−(1+γ)βδ
φγ(φ− βδ − φγ)

(φ− βδ){γ − (1 + γ)βδ + φ}

(1− τ∗)
βδ(2+γ)+(γ−2)φ−γ

γ−(1+γ)βδ+φ
−1

τ∗
(1+γ)βδ−φ−γ(1+φ)

γ−(1+γ)βδ+φ
−1

This is positive when βδ < (1− γ)φ.

Appendix E

In section 2 and in section 4, we have

K̇ = Y − C.

Hence, along the steady state growth path,

K̇

K
= g =

Y (0)
K(0)

− C(0)
K(0)

.

Now, from equation (1) we find that, along the steady state growth path,

Y (0)
K(0)

= Aa∗γ(
H

K
)∗

γ

.

Using equation (10) we have,

g = A(1− τ)(1− γ)a∗γ(
H

K
)∗

γ

− ρ.

Hence
C(0)
K(0)

=
Y (0)
K(0)

− g = ρ + Aa∗γ(
H

K
)∗

γ

[1− (1− τ)(1− γ)].

Substituting the values of a∗ and (H
K )∗ from section 3 we obtain the expression of

( C(0)
K(0) − ρ) in section 7.

In section 5 and in section 6, we have

K̇ = (1− τ)Y − C.

Hence,
C(0)
K(0)

= (1− τ)
Y (0)
K(0)

− g.
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In these sections also, we find that

g = A(1− τ)(1− γ)a∗γ(
H

K
)∗

γ

− ρ.

The expression of Y (0)
K(0) remains same as above. Hence,

C(0)
K(0)

− ρ =
γρ

(1− γ)a∗
.
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