
1 
 

HEALTH, INFRASTRUCTURE, 

ENVIRONMENT AND ENDOGENOUS GROWTH 

 

Manash Ranjan Gupta and Trishita Ray Barmanψ  

Economic Research Unit, 

Indian Statistical Institute, 

203, B. T. Road, 

Kolkata-700108. 

 

 

ABSTRACT 

This paper attempts to develop a model of endogenous growth with special focus on the 

role of health capital, public infrastructure and environmental pollution. It is an extension of 

the model of Agenor (2008) who does not consider environmental pollution. We analyse 

properties of optimal fiscal policy in the steady-state growth equilibrium when the level of 

production of the final good is the source of pollution. Tax revenue of the government is 

channelized into three expenditure heads-health expenditure, pollution abatement expenditure 

and public infrastructure expenditure. It is found that the optimum ratio of public 

infrastructural expenditure to national income in the steady-state equilibrium is less than the 

competitive output share of the public input; and it varies inversely with the magnitude of the 

pollution-output coefficient. There is no conflict between the social welfare maximizing solution 

and the growth rate maximizing solution in the steady-state equilibrium. There may exist 

indeterminacy in the transitional growth path converging to the unique steady-state 

equilibrium point that never satisfies saddle-point stability. The market economy growth rate is 

not necessarily less than the socially efficient growth rate in the steady-state equilibrium.  
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1. INTRODUCTION  

 

There exists a substantial literature on the theory of endogenous 

economic growth explained in terms of public infrastructural expenditure. 

Barro (1990) has started this literature and has shown that the optimum ratio 

of the income tax financed public infrastructural spending to national income 

is equal to the competitive output share of the public input. However, his 

model fails to show transitional dynamic properties; and his assumption, that 

public expenditure is a flow variable, has been questioned by many others1. 

Futagami, Morita and Shibata (hereafter called FMS) (1993) have extended the 

Barro (1990) model assuming that the productive public expenditure is a stock 

variable like physical capital. Transitional dynamic properties come back to 

this extended model; and the Barro (1990) result about the optimal fiscal policy 

remains valid in the steady-state equilibrium but not in the transitional phase 

of development. Both the Barro (1990) model and the FMS (1993) model have 

been extended by various authors in various directions2. Agenor (2008) extends 

the Barro (1990) model introducing productive health expenditure in addition 

to the infrastructural expenditure, where financing of both types of expenditure 

is made by the allocation of income tax-revenue. However, none of these 

models other than Greiner (2005) and Economides and Philippopoulos (2008) 

deals with the interaction between economic growth and environmental 

pollution when public infrastructural expenditure is the engine of economic 

growth. 

                                                           
1
 See, for example, Aschauer (1989), Futagami, Morita and Shibata (1993) etc. 

2
 See the works of Dasgupta (1999, 2001), Chen (2006), Tsoukis and Miller (2003), Chang (1999), Turnovsky (1997, 

1996), Hu, Ohdoi and Shimomura (2008), Ohdoi (2007), Greiner and Semmler (2000), Kalaitzidakis and Kalyvitis 
(2004), Baier and Glomm (2001), Yakita (2004), Shioji (2001), Tamai (2007), Burguet and Fernandez-Ruiz (1998), 
Ghosh and Mourmouras (2004), Raurich-Puigdevall (2000), Cazzavillan (1996), Zhang (2000), Neill (1996), 
Mourmouras and Lee (1999), Park and Phillippopoulos (2002), Tanaka (2002), Chen and Lee (2007), etc. 
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On the other hand, existing dynamic models3 focusing on the interaction 

between economic growth and environmental pollution are either exogenous 

growth models or endogenous growth models explaining growth in terms of 

endogenous technical progress. However, these models do not analyse the role 

of infrastructural expenditure and health expenditure on economic growth and 

environmental pollution. 

The objective of the present paper is to develop a model of endogenous 

economic growth and to analyse the properties of optimal fiscal policy in the 

presence of public infrastructural expenditure, health expenditure and 

environmental pollution. Greiner (2005) develops an FMS (1993) type of model 

with environmental pollution affecting the household’s utility function. 

Economides and Philippopoulos (2008) extend the Barro (1990) model in this 

direction. We follow these authors to assume that the level of production is the 

source of pollution. However, in our model environmental quality is an 

accumulable variable; and it affects the productivity of the inputs in the final 

goods sector. We follow Agenor (2008) to introduce health capital as an input in 

the production function. However, we assume health capital to be an 

accumulable input in the production function following the second model of 

Agenor (2008) while, in his first model, it is in the form of a flow variable. We 

also consider the negative role of environmental pollution on the depreciation of 

public health capital.    

We obtain interesting results analysing this model. The optimum ratio of 

combined public expenditure on infrastructure and health to national income 

is equal to the sum of the competitive shares of the public infrastructural input 

and the health capital in the unpolluted output of the final good; and hence 

this optimum ratio varies inversely with the rate of pollution per unit of 

production. However, in Barro (1990) and in FMS (1993), there is neither any 

environmental pollution nor any productive health capital; hence this ratio is 

                                                           
3
 See the works of Managi(2006), Dinda(2005), Di Vita(2008), Hartman and Kwon(2005), D. Ayong Le Kama(2001), 

Elbasha and Roe (1996), Oueslati(2002), Bertinelli, Strobl and Zou(2007), Smulders and Gradus(1996), Byrne 
(1997), Itaya(2008), Bovenberg and Smulders(1995), Benarroch and Weder(2006), Selden and Song(1995), 
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always equal to the competitive output share of the public infrastructural 

input. In Greiner (2005), the optimum share of investment to national income 

is also independent of the rate of pollution per unit of production because 

pollution, being a flow variable in his model, enters the utility function. 

However, neither the environmental quality nor the health infrastructure enters 

the production function as an accumulable input in his model. Secondly, in 

our model, optimum income tax rate is higher than that predicted by Barro 

(1990) and FMS (1993); and this rate varies positively with the pollution-output 

coefficient. This is so because a part of the income tax revenue is spent as 

abatement expenditure and health expenditure in this model. However, this is 

not necessarily so in Greiner (2005) who considers pollution tax as an 

alternative instrument of financing abatement expenditure. In Agenor (2008), 

the optimum tax rate is lower than that in our model but is higher than the 

Barro-FMS optimum tax rate because in Agenor (2008), there is a tax financed 

health expenditure though there is no abatement expenditure. Thirdly, our 

model exhibits transitional dynamic properties though it follows Barro (1990) 

to assume public expenditure to be a flow variable. Introducing environmental 

quality and health capital as accumulable inputs in the production function, 

we protect our model from being an AK model and thus get back transitional 

dynamic properties. The model of Agenor (2008) shows (does not show) 

transitional dynamic properties when health expenditure is a stock (flow) 

variable. However, steady-state equilibrium is a saddle-point when health 

expenditure is a stock variable in his model. In our model, with both health 

capital and environmental quality being stock variables, steady-state 

equilibrium never satisfies saddle-point stability but we find a possibility of 

indeterminacy of the transitional growth path what Agenor (2008) does not find 

in his model. FMS (1993) and Greiner (2005) also find the saddle-point stability 

property of the steady-state equilibrium in their models. Fourthly, like Barro 

(1990) and FMS (1993), we do not find any conflict between the growth rate 

maximizing solution and the social welfare maximizing solution along the 

steady-state equilibrium growth path. Agenor (2008) finds a conflict between 
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these two goals because health affects the utility function of the household in 

his model. Greiner (2005) also finds a similar conflict because environmental 

pollution affects the utility function in his model. Fifthly, the competitive 

equilibrium growth rate in this model is not necessarily less than the socially 

efficient growth rate which is unlike in Barro (1990) or in FMS (1993). This is 

so because we have two conflicting types of externalities on production-positive 

externality arising from the gross public expenditure and negative externality 

arising from capital accumulation and environmental pollution. Market 

economy growth rate may exceed the socially efficient growth rate when the 

pollution-output coefficient takes a high value. Barro (1990) and FMS (1993) 

consider only the positive externality of public expenditure. Agenor (2008) also 

considers two positive externalities from health expenditure and infrastructural 

expenditure. So market economy growth rate falls short of the socially efficient 

growth rate in their models.  

The paper is organized as follows. Section 2 describes the basic model of 

the household economy. Section 3 analyses its dynamic equilibrium properties. 

Subsection 3.1 shows the existence of a unique steady-state equilibrium 

growth rate in the market economy and subsection 3.2 analyses the properties 

of optimal fiscal policy along the steady-state equilibrium path. Section 4 

shows transitional dynamic results; and section 5 compares the market 

economy steady-state equilibrium growth rate to the command economy 

steady-state equilibrium growth rate. Final remarks are made in section 6. 

 

2. THE MODEL  

 

The single production sector of the economy uses physical capital, 

labour, public infrastructural input and the health capital as four inputs in 

production. The production function is of Cobb-Douglas type satisfying 

increasing returns to scale in these four inputs. However, it satisfies constant 
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returns to scale in physical capital, public infrastructural input and health 

capital; and there is diminishing marginal productivity to each input. 

The product market and private input markets are perfectly competitive; 

and every producer maximizes profit. The public infrastructural expenditure is 

treated as a flow variable like that in Barro (1990). However, health capital is a 

stock variable. The government imposes a proportional tax on income of the 

representative household who consumes a part of the post-tax income and 

saves (invests) the other part. Government allocates a part of the tax revenue to 

build up the additional infrastructure on health and provides it free of charge 

to the representative household. However, the health capital deteriorates with 

pollution of environment. The environmental quality is also considered a stock 

variable; and it deteriorates with pollution and is improved by the abatement 

activities undertaken by the government. Environmental quality is non-rival 

and is a free good. The budget of the government is balanced; and the 

allocation of tax revenue is made among three expenditure heads-public 

infrastructural expenditure, health expenditure and abatement expenditure. 

There is a negative congestion effect on the public infrastructural input; 

and so the effective benefit of public infrastructural expenditure derived by the 

representative producer varies inversely with the average private capital stock 

of the society and positively with the environmental quality. 

There is no population growth; and so labour endowment is normalized 

to unity. Every household maximizes her lifetime utility subject to the budget 

constraint. The lifetime utility is defined as the infinite integral of the 

discounted present value of instantaneous utility where instantaneous utility is 

assumed to be a positive and concave function of the level of consumption and 

the discounting is made at a constant rate. All variables are measured in terms 

of the final product.  

Following equations describe the model.   

         𝑌 = 𝐾𝛼Ĝ𝐼
1−𝛼−𝛽

𝐻𝛽  𝑤𝑖𝑡ℎ 0 < 𝛼, 𝛽 < 1;                                                                             …… (1) 

         Ĝ𝐼 = 𝐺𝐼𝐾 
−𝜃𝐸𝜃  𝑤𝑖𝑡ℎ 0 < 𝜃 < 1;                                                                                        …… (2) 
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         𝐾 =  1 − 𝜏 𝑌 − 𝐶;                                                                                                                 …… (3) 

         𝐸 = 𝑇𝑌 − 𝛿𝑌 𝑤𝑖𝑡ℎ 0 < 𝛿 < 1;                                                                                           …… (4) 

         𝐻 = 𝐺𝐻 − 𝜂𝛿𝑌 𝑤𝑖𝑡ℎ 0 < 𝜂, 𝛿 < 1;                                                                                      ……(5) 

         𝐺 = 𝐺𝐼 + 𝐺𝐻 =  𝜏 − 𝑇 𝑌 𝑤𝑖𝑡ℎ 0 < 𝑇 < 𝜏 < 1;                                                             …… (6) 

         𝐺𝑖 = 𝑣𝑖 𝜏 − 𝑇 𝑌 𝑤𝑖𝑡ℎ 𝑖 = 𝐼, 𝐻;                                                                                          …… (7) 

and 

         𝑢 𝐶 =
𝐶1−𝜎

1−𝜎
 𝑤𝑖𝑡ℎ 𝜎 > 0.                                                                                                     …… (8) 

Equation (1) describes the Cobb-Douglas production function of the final 

good. 𝑌 is the level of output produced, 𝐾 is the stock of physical capital, and 

Ĝ𝐼 is the congestion effect adjusted effective benefit derived from the public 

infrastructural input. 𝐻 is the stock of health capital. Since labour endowment 

is normalized to unity, 𝑌, 𝐻 and 𝐾 can be considered as per capita variables 

with the labour elasticity of output being (1 − 𝛼). Elasticities of output with 

respect to physical capital, public infrastructural input, and health capital are 

denoted by 𝛼, (1 − 𝛼 − 𝛽) and 𝛽 respectively.  

Equation (2) describes the nature of the combined effect of congestion 

and of environment on the effectiveness of public infrastructure. 

 It shows that the effective production benefit obtained from the public 

infrastructural input varies inversely with the average physical capital stock of 

all private producers, 𝐾 , and positively with the environmental quality, 𝐸.  

The justification of this assumption of the negative external effect of 

average physical capital stock is available in the existing literature4. With the 

increase in the number of factories and housing colonies, limited roads cannot 

provide effective transportation service. The increase in power consumption 

disturbs the supply of power. Parks and footpaths are occupied by informal 

sector traders. This effective benefit of public infrastructure, , is treated as a 

composite input in the production function. We assume that the negative 

congestion effect of the average physical capital stock of the society is not 

                                                           
4
 See the works of Ott and Soretz (2008), Van Tuijl et. al (1997), Raurich-Puigdevall (2000), Turnovsky (1996, 1997), 

Eicher and Turnovsky, etc. 
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strong enough to outweigh the positive private technological contribution of 

physical capital of the representative producer. Hence, we assume   𝛼 −

𝜃1 − 𝛼 − 𝛽               > 0. Here   𝛼 − 𝜃1 − 𝛼 − 𝛽                represents the social elasticity of output 

with respect to physical capital. 

Degradation of environmental quality reduces the effective benefit of the 

public infrastructural expenditure and health expenditure in various ways. For 

example, deforestation reduces rainfall and thus lowers the efficiency of the 

public irrigation programme by reducing the supply of canals’ water flow and 

by reducing the recharging of groundwater. Poor qualities of natural resources 

(coal) and the lack of current in the flowing water of streams and rivers 

negatively affect the generation of electricity. Global warming leads to natural 

disasters like floods, earthquakes, cyclones, etc., which, in turn, cause a heavy 

loss of infrastructural capital damaging roads, electricity lines, power plants, 

building, industrial plants, etc. Water pollution and air pollution create a 

disease-friendly environment; and hence the public health expenditure 

programme cannot provide the maximum benefit to the workers. This, in turn, 

lowers the efficiency of the workers. 

Equation (3) describes the private budget constraint of the household 

who allocates its post tax disposable income between consumption, 𝐶, and 

savings (investment); and there is no depreciation of physical capital. 

Equation (4) shows how environmental quality changes over time 

depending upon the magnitudes of pollution and abatement activity. 

Abatement activities bring improvements in environmental quality; and there 

exists a substantial theoretical and empirical literature dealing with the role of 

abatement activities and abatement policies of the government5. 𝑇𝑌 is the 

abatement expenditure made by the government. We call 𝑇 as abatement 

expenditure rate. Here environmental pollution is assumed to be a flow variable 

and is proportional to the level of production of the final good; and 𝛿 is the 

                                                           
5
 See the works of Liddle (2001), Managi (2006), Dinda (2005), Di Vita (2008), Smulders and Gradus (1996), Byrne 

(1997), etc. 
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constant pollution-output coefficient. Many models of environmental pollution 

assume pollution to be a positive function of the level of production6 of the final 

good. This is consistent with only one segment of the Environmental Kuznets 

curve7, according to which, there exists an inverted U-shaped relationship 

between the pollution level and the income level. 

The accumulation of the stock of health capital is given by equation (5). 

The government spends an amount 𝐺𝐻 on the health infrastructure. Pollution 

causes depreciation of this stock; and this relationship is assumed to be 

proportional for the sake of simplicity. 𝜂 is the resulting depreciation per unit of 

pollution.  

Equation (6) describes the government budget constraint. The 

government finances the public infrastructural expenditure and health 

expenditure with its tax revenue after meeting the abatement expenditure. 𝑇 is 

the ratio of abatement expenditure to income; and 𝜏 is the income tax rate. A 

fraction 𝑣𝐼 of the tax revenue net of the abatement expenditure is used to 

finance the infrastructural expenditure, 𝐺𝐼; 𝑣𝐻is the fraction allocated to health 

expenditure. Public expenditure allocation ratios are given by equation (7).  

Equation (8) describes the instantaneous utility function of the 

household. The instantaneous utility is assumed to be a positive and concave 

function of the level of consumption. 𝜎 represents the constant elasticity of 

marginal utility with respect to consumption. Many models assume utility to be 

a positive function of the environmental quality8. Agenor (2008) introduces 

health as an argument in the utility function and Greiner (2005) introduces 

pollution as an argument in the utility function. We ignore these complications 

in this model for the sake of simplicity. 

                                                           
6
 For example, see the works of Liddle (2001), Oueslati (2002), Hartwick (1991), Smulders and Gradus (1996), Byrne 

(1997), Gruver (1976), Dinda (2005), etc. 
7
 Analysis on this curve is available in Managi (2006), Dinda (2005), Di Vita (2008), Hartman and Kwon (2005), 

Seldon and Song (1995), etc. 
8
 See the works of Howarth (1996), Tahvonen and Kuuluvainen (1991), Smulders and Gradus (1996), D. Ayong Le 

Kama (2001), Greiner (2005), Gruver (1976), Itaya (2008), etc.  
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Stocks of 𝐸, 𝐻 and 𝐾 are exogenous at a particular point of time. 𝐸 and 𝐻 

are non rival stocks and 𝐺 is a non rival flow. Given the stocks of physical 

capital, health capital and environmental quality, and given the fiscal 

instrument rates, equations (1), (2) and (6) together determine 𝑌 and 𝐺 at each 

point of time. Thus equations (4) and (5) determine absolute rates of 

improvement in the health capital and the environmental quality, denoted by 𝐻  

and 𝐸  respectively. The household then chooses 𝐶 and this determines the 

absolute rate of physical capital accumulation, 𝐾 . 

 

3. DYNAMIC EQUILIBRIUM  

 

The representative household maximizes  𝑢 𝐶 
∞

0
𝑒−𝜌𝑡𝑑𝑡 with respect to 

𝐶 subject to equations (3) and (8). The demand rate of growth9 of consumption 

is derived from this maximizing problem as follows. 

 
𝐶 

𝐶
=

1

𝜎
 𝛼 1 − 𝜏  𝑣𝐼 𝜏 − 𝑇  

1−𝛼−𝛽

𝛼+𝛽  
𝐸

𝐾
 

𝛽 +𝜃 1−𝛼−𝛽 

𝛼+𝛽
 
𝐻

𝐸
 

𝛽

𝛼+𝛽
− 𝜌 .                                    …… (9) 

We consider a steady-state growth equilibrium where all macroeconomic 

variables grow at the same rate, 𝑔𝑚 . Hence, we have  

 
𝐶 

𝐶
=

𝑌 

𝑌
=

𝐾 

𝐾
=

𝐸 

𝐸
=

𝐻 

𝐻
= 𝑔𝑚 .                                                                                                …… (10) 

 

3.1 EXISTENCE OF STEADY STATE GROWTH EQUILIBRIUM 

 

Using equations (1) to (7), (9) and (10), we obtain the following equations.  

          
1

𝜎
 𝛼 1 − 𝜏  𝑣𝐼 𝜏 − 𝑇  

1−𝛼−𝛽

𝛼+𝛽  
𝐸

𝐾
 

𝛽+𝜃 1−𝛼−𝛽 

𝛼+𝛽
 
𝐻

𝐸
 

𝛽

𝛼+𝛽
− 𝜌 = 𝑔𝑚 ;                               …… (11) 

                                                           
9
 The demand rate of growth of consumption is derived in appendix (A). 
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           1 − 𝜏  𝑣𝐼 𝜏 − 𝑇  
1−𝛼−𝛽

𝛼+𝛽  
𝐸

𝐾
 

𝛽 +𝜃 1−𝛼−𝛽 

𝛼+𝛽
 
𝐻

𝐸
 

𝛽

𝛼+𝛽
−

𝐶

𝐾
= 𝑔𝑚 ;                                        …… (12) 

          𝑇 − 𝛿  𝑣𝐼 𝜏 − 𝑇  
1−𝛼−𝛽

𝛼+𝛽  
𝐸

𝐾
 

𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽
 
𝐻

𝐸
 

𝛽

𝛼+𝛽
= 𝑔𝑚 ;                                                 …… (13) 

and 

          𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿  𝑣𝐼 𝜏 − 𝑇  
1−𝛼−𝛽

𝛼+𝛽  
𝐸

𝐾
 

𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽
 
𝐻

𝐸
 
−

𝛼

𝛼+𝛽
= 𝑔𝑚 .                           …… (14) 

Then we use equations (11), (12), (13) and (14) to obtain the following 

equation10 that solves for 𝑔𝑚 . 

          𝑔𝑚
𝛽+𝜃 1−𝛼−𝛽  𝜎𝑔𝑚 + 𝜌 𝛼−𝜃 1−𝛼−𝛽 = 𝛼𝛼−𝜃 1−𝛼−𝛽  1 − 𝜏 𝛼−𝜃 1−𝛼−𝛽  

                                                     𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿 𝛽  𝑣𝐼 𝜏 − 𝑇  1−𝛼−𝛽 𝑇 − 𝛿 𝜃 1−𝛼−𝛽  

                                                                                                             …… (15) 

The L.H.S. of equation (15) is an increasing function of 𝑔𝑚  and its R.H.S. 

is a constant term, given 𝜏, 𝑇 and 𝑣. Figure 1 shows the existence of a unique 

value of 𝑔𝑚 .     

                

 

 

 

                                                                                        

 

 

 

                                                                         

 

 

FIGURE 1 

 

                                                           
10

 The derivation of equation (15) is worked out in appendix (B). 

L.H.S. of (15), 
R.H.S. of (15) L.H.S. of (15) 

 

R.H.S. of (15) 

 
 

𝑔𝑚  

𝑔𝑚
⋆  0 
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We have the following proposition. 

Proposition 1: There exists a unique steady-state equilibrium growth 

rate in the market economy given the income tax rate, the abatement 

expenditure rate and the public expenditure allocation ratio. 

Equations (B7), (B8) and (B9) in Appendix (B) show that 
𝐸

𝐾
, 

𝐻

𝐸
 and 

𝐶

𝐾
 in the 

steady-state equilibrium are functions of 𝑔𝑚 . This proves that the steady-state 

equilibrium is also unique. 

 

3.2 OPTIMAL TAXATION 

 

We first assume that the government maximizes the steady-state 

equilibrium growth rate with respect to fiscal instruments-𝜏, 𝑇 and 𝑣𝐼. The 

L.H.S. of equation (15) is a monotonically increasing function of 𝑔𝑚 , because, 

by assumption, 𝛼 > 𝜃(1 − 𝛼 − 𝛽). Since the L.H.S. is always equal to the R.H.S. 

in the steady-state growth equilibrium, maximization of 𝑔𝑚  implies 

maximization of the R.H.S. of equation (15).  

Maximizing the R.H.S. of equation (15) with respect to 𝜏, 𝑇 and 𝑣𝐼 

respectively, we obtain following expressions of their optimum values11.           

          𝜏⋆ = 1 −  1 − 𝛿 − 𝜂𝛿  𝛼 − 𝜃 1 − 𝛼 − 𝛽  ;                                                               …… (16) 

          𝑇⋆ = 𝛿 +  1 − 𝛿 − 𝜂𝛿 𝜃 1 − 𝛼 − 𝛽 ;                                                                          …… (17) 

and 

          𝑣𝐼
⋆ =

 1−𝛿−𝜂𝛿   1−𝛼−𝛽 

𝜂𝛿 + 1−𝛿−𝜂𝛿   1−𝛼 
 .                                                                                                    …… (18) 

Using equations (16) and (17), we have 

          𝜏⋆ − 𝑇⋆ = 𝜂𝛿 +  1 − 𝛿 − 𝜂𝛿  1 − 𝛼 .                                                                         …… (19) 

                                                           
11

 The derivation of equations (16), (17) and (18) is worked out in appendix (C). 
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To ensure that the growth rate is non-negative deterioration of the two 

accumulable inputs-environmental quality and health infrastructure-due to 

pollution is neutralized by allocating 𝛿 and 𝜂𝛿 fractions of the total output to 

abatement expenditure, 𝑇𝑌 and aggregate productive public expenditure,  

 𝜏 − 𝑇 𝑌, respectively. The optimum net abatement expenditure rate is then 

 𝑇⋆ − 𝛿  and  1 − 𝛿 − 𝜂𝛿 𝜃 1 − 𝛼 − 𝛽  is the competitive unpolluted output share 

of environmental quality in the output of the final good. So the net optimum 

ratio is equal to the competitive share of environmental input in the unpolluted 

output. Similarly  𝜏⋆ − 𝑇⋆ − 𝜂𝛿  is the optimum ratio of net aggregate public 

expenditure on the intermediate public good and health infrastructure to the 

national income; and  1 − 𝛿 − 𝜂𝛿  1 − 𝛼  is the net competitive unpolluted 

output share of the two inputs taken together which are financed by 

government’s tax revenue. So the net optimum ratio is equal to the competitive 

share of the public intermediate good in the unpolluted output. In Barro (1990) 

and in FMS (1993), entire output is pollution free and this ratio is equal to the 

competitive share of the public input in the total output. 

We now examine whether the growth rate maximizing solution is 

consistent with the social welfare maximizing solution in the steady-state 

equilibrium. The social welfare function is given by 

          𝑊 =  𝑒−𝜌𝑡 𝐶1−𝜎

1−𝜎

∞

0
𝑑𝑡 .                                                                                                         …… (20) 

Using equations (11) and (12) and assuming that the economy is on the 

steady-state equilibrium growth path, it can be shown that 

         𝐶 =
1

𝛼
 𝜌 −  𝛼 − 𝜎 𝑔𝑚  𝐾 0 𝑒𝑔𝑚 𝑡 .                                                                                  …… (21)  

Using equations (20) and (21) we have 

         𝑊 = 𝛼𝜎−1 𝐾 0 1−𝜎

1−𝜎
 
𝜌− 𝛼−𝜎 𝑔𝑚

𝜌− 1−𝜎 𝑔𝑚
  𝜌 −  𝛼 − 𝜎 𝑔𝑚  −𝜎 .                                                   …… (22) 
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         Equation (22) shows that 𝑊 varies positively with 𝑔𝑚 . 

Thus the level of social welfare in the steady-state equilibrium is 

maximized when the steady-state equilibrium growth rate is maximized12. We 

now can state the following proposition. 

PROPOSITION 2: (i) The optimum income tax rate, the optimum 

abatement expenditure rate and the optimum public infrastructural 

expenditure allocation ratio in the steady-state growth equilibrium are given by 

         𝜏⋆ = 1 −  1 − 𝛿 − 𝜂𝛿  𝛼 − 𝜃 1 − 𝛼 − 𝛽  , 

         𝑇⋆ = 𝛿 +  1 − 𝛿 𝜃 1 − 𝛼 , 

and 

         𝑣𝐼
⋆ =

 1−𝛿−𝜂𝛿   1−𝛼−𝛽 

𝜂𝛿 + 1−𝛿−𝜂𝛿   1−𝛼 
. 

(ii) The net optimum ratio of combined public expenditure on 

infrastruture and health to national income in the steady-state equilibrium is 

equal to the combined competitive share of these two inputs in the unpolluted 

output of the final good; and hence this optimum ratio varies inversely with the 

magnitude of the pollution-output coefficient.  

The presence of three different effects makes our result different from 

those available in the existing literature. These are (i) congestion effect on 

public expenditure that makes 𝜃 > 0, (ii) the environmental pollution effect 

causing 𝛿 > 0 and (iii) the effect of pollution on health capital causing 𝜂 > 0. If 

we assume 𝜃 = 𝛿 = 0, we obtain 𝜏⋆ = 1 − 𝛼 and 𝑇⋆ = 0; and these results are 

identical to those of Barro (1990) and FMS (1993). The net optimum ratio of 

combined public expenditure on infrastructure and health to national income 

in this model, with 0 < 𝛿, 𝜂 < 1 and 𝜃 > 0, appears to be lower than that 

obtained in Barro (1990) and in FMS (1993). This is obvious because 

production of the final good generates environmental pollution. This, in turn, 
                                                           
12

 We do not analyse social welfare maximization including transitional dynamics. FMS (1993) does that. 
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lowers the rate of accumulation of environmental quality and of health capital. 

Thus the effective producer’s benefit derived from the public expenditure is 

reduced. So it is optimal for the government to allocate a smaller fraction of tax 

revenue to meet this expenditure. However, 

         𝜏⋆ = 1 − 𝛼 + 𝛼𝛿 + 𝛼𝜂𝛿 + (1 − 𝛿 − 𝜂𝛿)𝜃(1 − 𝛼 − 𝛽). 

Here, 𝜏⋆ > 1 − 𝛼 because 0 < 𝛿, 𝜂 < 1, 0 < 𝛼 < 1, and 𝜃 > 0. So the optimum 

income tax rate in the present model is higher than the corresponding rate 

obtained in the models like Barro (1990), FMS (1993), Agenor (2008). This is so 

because income tax is the only source of public revenue in this model and a 

part of that revenue is used to meet the abatement expenditure. This is not so 

in the models of Barro (1990), FMS (1993), Agenor (2008), etc., because there is 

no environmental pollution in those models. 

In this model, not only the aggregate of productive public expenditure, 

i.e., the excess of tax revenue over the abatement expenditure, but also the 

level of environmental pollution is proportional to the level of income. So 

 𝜏⋆ − 𝑇⋆  varies inversely with the pollution-output coefficient, 𝛿. If the level of 

pollution is independent of the level of income, then 𝛿 = 0; and the Barro 

(1990)-FMS (1993)-Agenor (2008) result comes back in this model in this 

special case. 

 

4. TRANSITIONAL DYNAMICS 

 

We now turn to investigate the stability properties of the unique steady-

state equilibrium point in the market economy. Equations of motion of the 

dynamic system are given by (3), (4), (5) and (9). We define the following ratio 

variables.  

 𝑥 =
𝐶

𝐾
; 
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 𝑦 =
𝐸

𝐾
; 

and 

          𝑧 =
𝐻

𝐸
. 

Using equations (3), (4), (5) and (9), we have 

          
𝑥 

𝑥
=  

𝛼

𝜎
− 1  1 − 𝜏  𝑣𝐼 𝜏 − 𝑇  

1−𝛼−𝛽

𝛼+𝛽 𝑦
𝜃 1−𝛼−𝛽 +𝛽

𝛼+𝛽 𝑧
𝛽

𝛼+𝛽 + 𝑥 −
𝜌

𝜎
;                              …… (23) 

          
𝑦 

𝑦
=  𝑇 − 𝛿  𝑣𝐼 𝜏 − 𝑇  

1−𝛼−𝛽

𝛼+𝛽 𝑦
𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽 𝑧
𝛽

𝛼+𝛽  

                                     − 1 − 𝜏  𝑣𝐼 𝜏 − 𝑇  
1−𝛼−𝛽

𝛼+𝛽 𝑦
𝜃 1−𝛼−𝛽 +𝛽

𝛼+𝛽 𝑧
𝛽

𝛼+𝛽 + 𝑥;                   …… (24) 

and 

          
𝑧 

𝑧
=  𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿  𝑣𝐼 𝜏 − 𝑇  

1−𝛼−𝛽

𝛼+𝛽 𝑦
𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽 𝑧
−

𝛼

𝛼+𝛽  

                                         − 𝑇 − 𝛿  𝑣𝐼 𝜏 − 𝑇  
1−𝛼−𝛽

𝛼+𝛽 𝑦
𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽 𝑧
𝛽

𝛼+𝛽 .                    …… (25) 

 

The determinant of the Jacobian matrix13 corresponding to the 

differential equations (23), (24) and (25) is given by 

           𝐽 =
𝛼−𝜃 1−𝛼−𝛽 

𝛼+𝛽
 𝑇 − 𝛿  𝑣𝐼 𝜏 − 𝑇  

2
1−𝛼−𝛽

𝛼+𝛽  𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿 𝑦
2
𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽
−1

𝑧
−2

𝛼

𝛼+𝛽   

                +
𝛼

𝜎

𝜃 1−𝛼−𝛽 

𝛼+𝛽
 1 − 𝜏  𝑣𝐼 𝜏 − 𝑇  

2
1−𝛼−𝛽

𝛼+𝛽  𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿 𝑦
2
𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽 𝑧
−2

𝛼

𝛼+𝛽  

                +
𝛼

𝜎

𝛽

𝛼+𝛽
 1 − 𝜏  𝑇 − 𝛿  𝑣𝐼 𝜏 − 𝑇  

2
1−𝛼−𝛽

𝛼+𝛽 𝑦
2
𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽 𝑧
2

𝛽

𝛼+𝛽
−1

. 

Here 𝛼 − 𝜃(1 − 𝛼 − 𝛽) > 0. Also 1 > 𝜏 > 𝑇 > 𝛿 when 𝜏 and 𝑇 are optimally 

chosen and when 𝜃 > 0. Also 𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿 > 0. So  𝐽 > 0 in this case, when it 

is evaluated at the steady-state equilibrium point. So either all the three latent 

roots of J matrix are positive or two of them are negative with the third one 

being positive. Hence the steady-state equilibrium cannot be a saddle point. 

Either it is unstable with all the latent roots being positive or there exists 

                                                           
13

 The derivation of the determinant is worked out in appendix (D). 
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indeterminacy in the transitional growth path converging to the equilibrium 

point. 

The trace of the Jacobian matrix is given by  

          𝑇𝑟 𝐽 = 1 +
𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽
 𝑇 − 𝛿  𝑣𝐼 𝜏 − 𝑇  

1−𝛼−𝛽

𝛼+𝛽 𝑦
𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽
−1

𝑧
𝛽

𝛼+𝛽  

                   −
𝜃 1−𝛼−𝛽 +𝛽

𝛼+𝛽
 1 − 𝜏  𝑣𝐼 𝜏 − 𝑇  

1−𝛼−𝛽

𝛼+𝛽 𝑦
𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽 𝑧
𝛽

𝛼+𝛽  

                   −
𝛼

𝛼+𝛽
 𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿  𝑣𝐼 𝜏 − 𝑇  

1−𝛼−𝛽

𝛼+𝛽 𝑦
𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽 𝑧
−

𝛼

𝛼+𝛽
−1

 

                   −
𝛽

𝛼+𝛽
 𝑇 − 𝛿  𝑣𝐼 𝜏 − 𝑇  

1−𝛼−𝛽

𝛼+𝛽 𝑦
𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽 𝑧
−

𝛼

𝛼+𝛽 . 

Using equations (16), (17), (18) and using the expression of the steady- 

state equilibrium values of x, y and z in terms 𝑔𝑚  from equations (B7), (B8) and 

(B9) in Appendix (B), we find that the trace of the Jacobian matrix is negative14 

if 

          1 +
𝜌

𝜎

 𝛼−𝜃 1−𝛼−𝛽  2

𝛼+𝛽

𝛼

𝜃 1−𝛼−𝛽 

𝑔𝑚

 𝜎𝑔𝑚 +𝜌 
+

𝜌

𝜎

𝜃 1−𝛼−𝛽 

𝛽
<  

𝛼

𝜎

 𝛼−𝜃 1−𝛼−𝛽  

𝛼+𝛽
 +

𝜃 1−𝛼−𝛽 +𝛽

𝛼+𝛽
 

                           
1

𝜎

 𝜃 1−𝛼−𝛽  2

𝛽 𝛼−𝜃 1−𝛼−𝛽  

 𝜎𝑔𝑚 +𝜌 

𝑔𝑚
  1 − 𝛿 − 𝜂𝛿 

1

𝛼+𝛽  1 − 𝛼 − 𝛽 
 1−𝛼−𝛽 

𝛼+𝛽  

                           
𝛽

𝜃 1−𝛼−𝛽 
 

𝛽

𝛼+𝛽  𝛼 − 𝜃 1 − 𝛼 − 𝛽  
1+

 𝛼−𝜃 1−𝛼−𝛽  

𝛼+𝛽  
𝛼

𝜃 1−𝛼−𝛽 
 

 𝛼−𝜃 1−𝛼−𝛽  

𝛼+𝛽
 

                           
𝑔𝑚

 𝜎𝑔𝑚 +𝜌 
 

 𝛼−𝜃 1−𝛼−𝛽  

𝛼+𝛽
. 

If the determinant of the Jacobian matrix takes a positive sign and its 

trace takes a negative sign, then there are one positive and two negative latent 

roots of this matrix15. It means that there exists indeterminacy in the 

transitional growth path converging to the unique equilibrium point. So we 

have the following proposition. 

                                                           
14

 The derivation is worked out in Appendix (D). 
15

 It is a sufficient condition but not a necessary one. There may be one positive and two negative roots even if the 
trace takes a positive sign. However, all the roots may also be positive in that case implying that no trajectory 
converges to the equilibrium point. See Benhabib and Perili (1994). 
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Proposition 3: the unique steady-state equilibrium point never 

satisfies saddle-point stability; but there exists indeterminacy in the 

transitional growth path converging to the steady-state equilibrium point if the 

steady-state equlibrium growth rate satisfies the following condition:  

         1 +
𝜌

𝜎

 𝛼−𝜃 1−𝛼−𝛽  2

𝛼+𝛽

𝛼

𝜃 1−𝛼−𝛽 

𝑔𝑚

 𝜎𝑔𝑚 +𝜌 
+

𝜌

𝜎

𝜃 1−𝛼−𝛽 

𝛽
<  

𝛼

𝜎

 𝛼−𝜃 1−𝛼−𝛽  

𝛼+𝛽
 +

𝜃 1−𝛼−𝛽 +𝛽

𝛼+𝛽
 

                             
1

𝜎

 𝜃 1−𝛼−𝛽  2

𝛽 𝛼−𝜃 1−𝛼−𝛽  

 𝜎𝑔𝑚 +𝜌 

𝑔𝑚
  1 − 𝛿 − 𝜂𝛿 

1

𝛼+𝛽  1 − 𝛼 − 𝛽 
 1−𝛼−𝛽 

𝛼+𝛽  

                             
𝛽

𝜃 1−𝛼−𝛽 
 

𝛽

𝛼+𝛽  𝛼 − 𝜃 1 − 𝛼 − 𝛽  
1+

 𝛼−𝜃 1−𝛼−𝛽  

𝛼+𝛽  
𝛼

𝜃 1−𝛼−𝛽 
 

 𝛼−𝜃 1−𝛼−𝛽  

𝛼+𝛽
 

                    
𝑔𝑚

 𝜎𝑔𝑚 +𝜌 
 

 𝛼−𝜃 1−𝛼−𝛽  

𝛼+𝛽
. 

This sufficient condition is always satisfied for low values of 
𝑔𝑚

 𝜎𝑔𝑚 +𝜌 
; and the 

value of 𝑔𝑚  is determined by the exogenous values of the parameters. Here very 

low values of 𝛿 and 𝜂 will ensure that  1 − 𝛿 − 𝜂𝛿  is positive; and this is 

necessary for the inequality to be satisfied. Note that 
𝑔𝑚

 𝜎𝑔𝑚 +𝜌 
 is low when 𝑔𝑚  is 

high; and figure 3 shows that 𝑔𝑚  is high when 𝛿 and 𝜂 take very low values16. 

This is an important result. Barro (1990) model, with a flow public 

expenditure, does not exhibit any transitional dynamic properties. FMS (1993) 

brings back transitional dynamic properties in Barro (1990) model introducing 

durable public input but shows the saddle-point stability property of the 

unique steady-state equilibrium. The model of Agenor (2008) shows saddle-

point stability property of the steady-state equilibrium when health 

expenditure is a stock variable but does not exhibit transitional dynamic 

properties when health expenditure is a flow variable. Greiner (2005), Dasgupta 

(1999), etc., also prove the saddle-point stability property of the long-run 

equilibrium in their models. However, we show that saddle-point stability 

property of the steady-state equilibrium is never satisfied in our model. On the 

                                                           
16

 Since it is a sufficient condition and not a necessary one, a low value of 𝑔𝑚  does not rule out the possibility of 
indeterminacy. 
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contrary, we find a possibility of indeterminacy of the transitional growth path 

without introducing physical capital stock on public expenditure into the utility 

function17. This is so because both the environmental quality and health 

infrastructure are stock variables in our model generating externalities in the 

productivity of the system. Also the physical capital stock generates a negative 

externality through congestion effect. That the externality of physical capital 

may generate indeterminacy in the transitional growth path has been explained 

by Benhabib and Farmer (1993), Chen and Lee (2006), Mino (2001), Benhabib, 

Meng and Nishimura (2000). These externalities cannot be internalized by the 

private agents; and the interaction among conflicting type of externalities may 

generate indeterminacy in the transitional growth path. 

 

5. COMMAND ECONOMY 

 

The market economy solution may not coincide with the socially efficient 

solution in the steady-state equilibrium due to the distortion caused by the 

proportional income tax and by the failure of private individuals to internalize 

externalities. The presence of three non rival inputs in the production function 

- public infrastructure, health capital and environmental quality - causes 

positive externalities. Also, physical capital generates negative externalities 

through congestion effects. Therefore, we next turn to solve the planner’s 

problem in order to obtain the first best solution. The planner, who also 

maximizes a social welfare function identical to that of the representative 

household’s lifetime utility function, can internalize the externalities. Equations 

(1), (2), (5) and (8) remain unchanged; equations (3), (4), (6) and (7) are modified 

as follows.  

          𝐾 = 𝑌 − Π − 𝐶;                                                                                                                 …… (3.1) 

                                                           
17

 Cazzavillan (1996), Chang (1999), Chen (2006), Zhang (2000), Raurich-Puigdevall (2000), etc. explain 
indeterminacy when public expenditure enters as an argument in the utility function. 
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          𝐸 = Ω − δY;                                                                                                                        …… (4.1) 

 𝐺 = 𝐺𝐼 + GH = Π − Ω;                                                                                                    …… (6.1) 

and 

          𝐺𝑖 = 𝑣𝑖 Π − Ω 𝑤𝑖𝑡ℎ 𝑖 = 𝐼, 𝐻.                                                                                        …… (7.1) 

Here  denotes planner’s combined lump sum expenditure on public 

intermediate input, health infrastructure and abatement activities; and the 

abatement expenditure is denoted by . 

The planner’s problem is to maximize  𝑒−𝜌𝑡 𝐶1−𝜎

1−𝜎

∞

0
𝑑𝑡 with respect to 𝐶, Π, Ω 

and 𝑣𝑖 subject to equations (3.1), (4.1), (5), (6.1) and (7.1). We consider a 

steady-state growth equilibrium where the growth rate is denoted by 𝑔𝑐; and 

the following equation solves for the steady-state equilibrium growth rate18 in 

the command (planned) economy. 

           𝜌 + 𝜎𝑔𝑐 
𝛼+𝛽 =  1 − 𝛿 − 𝜂𝛿 𝛽𝛽 1 − 𝛼 − 𝛽 1−𝛼−𝛽  𝜃 1 − 𝛼 − 𝛽  𝜃 1−𝛼−𝛽  

                                                               𝛼 − 𝜃 1 − 𝛼 − 𝛽  𝛼−𝜃 1−𝛼−𝛽           …… (26) 

The L.H.S. of equation (26) is an increasing function of 𝑔𝑐 and the R.H.S. 

is a parametric constant. Figure 2 shows the determination of the unique value 

of 𝑔𝑐, when 𝜃 > 0. 

 

 

 

 

 

 

 

 

 

 

                                                           
18

 Equation (26) is derived in the appendix (E). 
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FIGURE 2 

 

We compare the market economy solution to the socially efficient 

solution by comparing equation (26) to equation (15) when 𝜏 = 𝜏⋆,  𝑇 = 𝑇⋆ and 

𝑣𝐼 = 𝑣𝐼
⋆. We modify equation (15) with 𝜏 = 𝜏⋆, 𝑇 = 𝑇⋆ and 𝑣𝐼 = 𝑣𝐼

⋆ as follows. 

         𝛼−𝛼−𝛽  
𝛼𝑔𝑚

 𝜎𝑔𝑚 +𝜌 
 
𝛽+𝜃 1−𝛼−𝛽 

 𝜎𝑔𝑚 + 𝜌 𝛼+𝛽 =  1 − 𝛿 − 𝜂𝛿 𝛽𝛽 1 − 𝛼 − 𝛽 1−𝛼−𝛽  

                                𝜃 1 − 𝛼 − 𝛽  𝜃 1−𝛼−𝛽  𝛼 − 𝜃 1 − 𝛼 − 𝛽  𝛼−𝜃 1−𝛼−𝛽 .     …… (15.1) 

                                                                                                          

The R.H.S. of equations (26) and (15.1) are identical. However, the L.H.S. 

of equation (15.1) is greater than that of equation (26) for all values of 

𝑔𝑚 = 𝑔𝑐 >
𝜌

𝛼
𝜃 1−𝛼−𝛽 −𝛼
𝜃 1−𝛼−𝛽 +𝛽−𝜎

. Hence comparing equation (15.1) to equation (26) we find 

that 𝑔𝑚  exceeds (falls short of) 𝑔𝑐 when the parametric term  1 − 𝛿 − 𝜂𝛿  takes a 

low (high) value. This is shown in figure 3. The L.H.S. of equations (15.1) and 

(26) are plotted as positively sloped curves and the R.H.S. is depicted by 

horizontal straight lines for exogenous values of the parameters. The L.H.S. 

L.H.S. of (26),  
R.H.S of (26) 

L.H.S. of (26) 

 

R.H.S. of (26) 

 
 

𝑔𝑐  

𝑔𝑐
⋆ 0 
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curve obtained from equation (15.1) starts from the origin but the L.H.S. curve  

obtained from equation (26) starts from a point on the vertical axis. The 

intersection point of the two L.H.S. curves shows that 𝑔𝑚 = 𝑔𝑐 =
𝜌

𝛼
𝜃 1−𝛼−𝛽 −𝛼
𝜃 1−𝛼−𝛽 +𝛽−𝜎

. 

When  1 − 𝛿 − 𝜂𝛿  takes a very low value the points of intersection of the two 

L.H.S. curves with the lower horizontal line in figure 3 show that 𝑔𝑐
⋆ falls short 

of 𝑔𝑚
⋆ . When  1 − 𝛿 − 𝜂𝛿  takes a high value we find that 𝑔𝑐 > 𝑔𝑚 .  
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We can state the following proposition. 

Proposition 4: If 𝜃 > 0, then  𝑔𝑐 − 𝑔𝑚  takes a positive (negative) sign 

when  1 − 𝛿 − 𝜂𝛿  takes a high (low) value19. 

 

Barro (1990) and FMS (1993) show that the market economy growth rate 

in the steady-state equilibrium falls short of the socially efficient growth rate. 

Agenor (2008) does not find out the socially efficient solution but the 

implication should be same as those of Barro (1990) and FMS (1993). Each of 

them considers the role of a positive externality. The result obtained from the 

present model may be different from theirs’. Here the planner internalizes two 

conflicting types of externalities-the negative externality arising due to pollution 

of the environment as well as due to the congestion effect of capital 

accumulation, and the positive externalities caused by the presence of the 

public infrastructure, the health capital and the environmental quality. So the 

net benefit of internalization of externalities is ambiguous. Socially efficient 

growth rate should exceed (fall short of) the competitive equilibrium growth rate 

when a positive (negative) externality is internalized.  

The relationship between the market economy equilibrium growth rate 

and the socially efficient growth rate in our model depends on the value 

 1 − 𝛿 − 𝜂𝛿 . This term takes a high (low) value if the pollution-output 

coefficient, 𝛿,takes a low (high) value or if the pollution produces a weak 

(strong) negative effect on the depreciation of capital. When  1 − 𝛿 − 𝜂𝛿  takes a 

low value, the negative externality of environmental pollution dominates all 

other positive externalities; and the opposite happens when  1 − 𝛿 − 𝜂𝛿  takes a 

high value.  

 

                                                           
19

 We assume the existence of a unique point of intersection of two L.H.S. curves in the figure 3. If they never 
intersect, 𝑔𝑚  is always greater than 𝑔𝑐 . If they intersect twice,  𝑔𝑐 − 𝑔𝑚   takes a positive sign for very low and 
very high values of  1 − 𝛿 − 𝜂𝛿  but is negative for its intermediate values. 
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6. CONCLUSION 

 

The paper develops an endogenous growth model with a special focus on 

the role of public infrastructural expenditure, health expenditure and 

environmental pollution. Economic growth leads to environmental pollution 

which lowers the rate of improvement in environmental quality as well as the 

rate of accumulation of health capital; and the improvement in environmental 

quality and the accumulation of the health capital lead to an increase in the 

social marginal productivity of physical capital. This model is different from 

those of Greiner (2005) and of Economides and Philippopoulos (2008) where 

environmental pollution affects the utility of the representative household. 

We derive following interesting results from this model. The optimal rate 

of allocation of the income tax revenue to the productive public expenditure 

(combined health and infrastructural expenditure) is less than the combined 

competitive output share of the two public inputs-health and infrastructure. 

This result differs from what Barro (1990), FMS (1993), Agenor (2008), etc. 

obtain. Secondly, the model exhibits transitional dynamic properties and we 

find the possibility of indeterminacy in the transitional growth path converging 

to the steady-state equilibrium point. There is no transitional dynamics 

property in Barro (1990) model; and the steady state equilibrium is saddle-

point stable in Greiner (2005) model, FMS (1993) model and also in the stock 

health version of Agenor (2008) model. Thirdly, the competitive equilibrium 

growth rate in this model is not necessarily less than the socially efficient 

growth rate due to the presence of conflicting types of externalities on 

production; and thus the result is different from what Barro (1990), FMS 

(1993), Agenor (2008), etc., obtain.    

However, our model is abstract and fails to consider many aspects of 

reality. We rule out the possibility of skill accumulation and technical progress 

and hence do not consider the allocation of tax revenue to education and R & D 

sectors. We do not consider durable public capital and hence ignore the 

problem of depreciation of public capital and the role of maintenance 
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expenditure. We ignore external effects of public infrastructural expenditure, 

health infrastructure and environmental quality on the utility function of the 

representative household. We consider the level of production as the only 

source of environmental pollution. Ignoring labour as a variable factor of 

production, we cannot analyse the problem of unemployment. One sector 

aggregative framework fails to highlight the inter-relationship among different 

sectors in the context of environmental pollution and revenue generation; and 

thus we cannot analyse the differences in the properties of sector-specific 

optimal tax rates. We plan to do further research in future attempting to 

remove these problems. 
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APPENDIX (A) 

 

DERIVATION OF EQUATION (9) IN SECTION 3 

 

 The dynamic optimization problem of the representative household is to 

maximize  𝑒−𝜌𝑡 𝐶1−𝜎

1−𝜎

∞

0
𝑑𝑡 with respect to C subject to equation (3) and given 𝐾(0). 

Here 𝐶 is the control variable satisfying 0 ≤ 𝐶 ≤  1 − 𝜏 𝑌; and K is the state 

variable. 

The Hamiltonian to be maximized at each point of time is given by 

          𝐻 = 𝑒−𝜌𝑡 𝑐1−𝜎

1−𝜎
+ 𝑒−𝜌𝑡𝜆𝐾  1 − 𝜏 𝑌 − 𝐶 . 

Here λK is the co-state variable representing the shadow price of investment. 

Maximizing the Hamiltonian with respect to 𝐶 and assuming an interior 

solution, we obtain 

          𝐶−𝜎 = 𝜆𝐾 .                                                                                                                            …… (𝐴1) 

Also the optimum time path of λK satisfies the following. 

          
𝜆𝐾

 

𝜆𝐾
= 𝜌 −  1 − 𝜏 𝛼𝐾𝛼−1Ĝ1−𝛼−𝛽𝐻𝛽 .                                                                              …… (𝐴2) 

Using equations (1), (2), (6), (7) and (A2) we have 

              
𝜆𝐾

 

𝜆𝐾
= 𝜌 − 𝛼 1 − 𝜏  𝑣𝐼 𝜏 − 𝑇  

1−𝛼−𝛽

𝛼+𝛽  
𝐸

𝐾
 

𝛽+𝜃 1−𝛼−𝛽 

𝛼+𝛽
 
𝐻

𝐸
 

𝛽

𝛼+𝛽
.                                      …… (𝐴3) 

 Using the two optimality conditions (A1) and (A3), we have 

           
𝐶 

𝐶
=

1

𝜎
 𝛼 1 − 𝜏  𝑣𝐼 𝜏 − 𝑇  

1−𝛼−𝛽

𝛼+𝛽  
𝐸

𝐾
 

𝛽+𝜃 1−𝛼−𝛽 

𝛼+𝛽
 
𝐻

𝐸
 

𝛽

𝛼+𝛽
− 𝜌 ,                                …… (𝐴4) 

which is same as equation (9) in the body of the paper. 
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APPENDIX (B) 

 

DERIVATION OF EQUATION (15) IN SECTION 3.1 

 

Using equations (1) to (7), (9) and (10) we have the following equations. 

         𝑔𝑚 =
𝐶 

𝐶
=

1

𝜎
 𝛼 1 − 𝜏  𝑣𝐼 𝜏 − 𝑇  

1−𝛼−𝛽

𝛼+𝛽  
𝐸

𝐾
 

𝛽+𝜃 1−𝛼−𝛽 

𝛼+𝛽
 
𝐻

𝐸
 

𝛽

𝛼+𝛽
− 𝜌 ;                      …… (𝐵1) 

             𝑔𝑚 =
𝐾 

𝐾
=  1 − 𝜏  𝑣𝐼 𝜏 − 𝑇  

1−𝛼−𝛽

𝛼+𝛽  
𝐸

𝐾
 

𝛽 +𝜃 1−𝛼−𝛽 

𝛼+𝛽
 
𝐻

𝐸
 

𝛽

𝛼+𝛽
−

𝐶

𝐾
;                                …… (𝐵2) 

         𝑔𝑚 =
𝐸 

𝐸
=  𝑇 − 𝛿  𝑣𝐼 𝜏 − 𝑇  

1−𝛼−𝛽

𝛼+𝛽  
𝐸

𝐾
 

𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽
 
𝐻

𝐸
 

𝛽

𝛼+𝛽
;                                        …… (𝐵3) 

and 

         𝑔𝑚 =
𝐻 

𝐻
=  𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿  𝑣𝐼 𝜏 − 𝑇  

1−𝛼−𝛽

𝛼+𝛽  
𝐸

𝐾
 

𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽
 
𝐻

𝐸
 
−

𝛼

𝛼+𝛽
;                  …… (𝐵4) 

From equation (B1) we have, 

         
𝐸

𝐾
=   𝑣𝐼 𝜏 − 𝑇  1−𝛼−𝛽  

 𝜎𝑔𝑚 +𝜌 

𝛼 1−𝜏 
 
−𝛼−𝛽

 
𝐻

𝐸
 
𝛽

 
−

1

𝜃 1−𝛼−𝛽 +𝛽

.                                         …… (𝐵5) 

Again, from equation (B3) we have, 

         
𝐸

𝐾
=   𝑣𝐼 𝜏 − 𝑇  1−𝛼−𝛽  

𝑔𝑚

𝑇−𝛿
 
−𝛼−𝛽

 
𝐻

𝐸
 
𝛽

 

1

𝛼−𝜃 1−𝛼−𝛽 

.                                                   …… (𝐵6) 

Using equations (B5) and (B6) we derive the following equation. 

         
𝐻

𝐸
=   𝑣𝐼 𝜏 − 𝑇  1−𝛼−𝛽  

𝑇−𝛿

𝑔𝑚
 
𝛽+𝜃 1−𝛼−𝛽 

 
𝛼 1−𝜏 

 𝜎𝑔𝑚 +𝜌 
 
𝛼−𝜃 1−𝛼−𝛽 

 
−

1

𝛽

.                       …… (𝐵7) 

Using equations (B6) and (B7) we obtain the following equation. 

         
𝐸

𝐾
=

 𝜎𝑔𝑚 +𝜌 

𝑔𝑚

 𝑇−𝛿 

𝛼 1−𝜏 
.                                                                                                              …… (𝐵8) 

Similarly using equations (B1) and (B2) we can show that 
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𝐶

𝐾
=

 𝜎−𝛼 𝑔𝑚 +𝜌

𝛼
.                                                                                                                     …… (𝐵9) 

Now, using equations (B4), (B7) and (B8) we derive the following 

equation. 

         𝑔𝑚 =  𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿  𝑣𝐼 𝜏 − 𝑇  
1−𝛼−𝛽

𝛼+𝛽  
 𝜎𝑔𝑚 +𝜌 

𝑔𝑚

 𝑇−𝛿 

𝛼 1−𝜏 
 

𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽
 

         𝑣𝐼 𝜏 − 𝑇  1−𝛼−𝛽  
𝑇−𝛿

𝑔𝑚
 
𝛽+𝜃 1−𝛼−𝛽 

 
𝛼 1−𝜏 

 𝜎𝑔𝑚 +𝜌 
 
𝛼−𝜃 1−𝛼−𝛽 

 

𝛼

𝛽 𝛼+𝛽 

, 

or, 

         𝑔𝑚
𝛽+𝜃 1−𝛼−𝛽  𝜎𝑔𝑚 + 𝜌 𝛼−𝜃 1−𝛼−𝛽 = 𝛼𝛼−𝜃 1−𝛼−𝛽  1 − 𝜏 𝛼−𝜃 1−𝛼−𝛽  

                                                     𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿 𝛽  𝑣𝐼 𝜏 − 𝑇  1−𝛼−𝛽 𝑇 − 𝛿 𝜃 1−𝛼−𝛽 .  

                                                                                                            …… (𝐵10)   

This is same as equation (15) in the body of the paper. 
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APPENDIX (C) 

 

DERIVATION OF EQUATIONS (16), (17) AND (18) AND THE SECOND 

ORDER CONDITIONS IN SECTION 3.2 

 

Maximizing the R.H.S. of equation (15) with respect to τ, we obtain the 

following first order condition. 

         𝛼𝛼−𝜃 1−𝛼−𝛽  1 − 𝜏 𝛼−𝜃 1−𝛼−𝛽  𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿 𝛽  𝑣𝐼 𝜏 − 𝑇  1−𝛼−𝛽 𝑇 − 𝛿 𝜃 1−𝛼−𝛽  

              
𝛽 1 − 𝑣𝐼  𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿 −1 −  𝛼 − 𝜃 1 − 𝛼 − 𝛽   1 − 𝜏 −1

+ 1 − 𝛼 − 𝛽  𝜏 − 𝑇 −1  = 0; 

or, 

          𝛽 1 − 𝑣𝐼  𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿 −1 −  𝛼 − 𝜃 1 − 𝛼 − 𝛽   1 − 𝜏 −1  

                                                                 + 1 − 𝛼 − 𝛽  𝜏 − 𝑇 −1 = 0.          …… (𝐶1) 

Maximizing the R.H.S. of equation (15) with respect to T, we obtain the 

following first order condition. 

         𝛼𝛼−𝜃 1−𝛼−𝛽  1 − 𝜏 𝛼−𝜃 1−𝛼−𝛽  𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿 𝛽  𝑣𝐼 𝜏 − 𝑇  1−𝛼−𝛽 𝑇 − 𝛿 𝜃 1−𝛼−𝛽  

                  
−𝛽 1 − 𝑣𝐼  𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿 −1 + 𝜃 1 − 𝛼 − 𝛽  𝑇 − 𝛿 −1

− 1 − 𝛼 − 𝛽  𝜏 − 𝑇 −1  = 0; 

or, 

          −𝛽 1 − 𝑣𝐼  𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿 −1 + 𝜃 1 − 𝛼 − 𝛽  𝑇 − 𝛿 −1 

                                                                − 1 − 𝛼 − 𝛽  𝜏 − 𝑇 −1 = 0.           …… (𝐶2) 

Maximizing the R.H.S. of equation (15) with respect to 𝑣𝐼, we obtain the 

following first order condition. 

𝛼𝛼−𝜃 1−𝛼−𝛽  1 − 𝜏 𝛼−𝜃 1−𝛼−𝛽  𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿 𝛽  𝑣𝐼 𝜏 − 𝑇  1−𝛼−𝛽 𝑇 − 𝛿 𝜃 1−𝛼−𝛽  

                           −𝛽 𝜏 − 𝑇  𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿 −1 +  1 − 𝛼 − 𝛽 𝑣𝐼
−1 = 0.               … (𝐶3) 

 

Using equations (C1), (C2) and (C3) we arrive at the following expressions 

for the optimal tax rates and the optimal public expenditure allocation ratio. 
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          𝜏⋆ = 1 −  1 − 𝛿 − 𝜂𝛿  𝛼 − 𝜃 1 − 𝛼 − 𝛽  ; 

          𝑇⋆ = 𝛿 +  1 − 𝛿 − 𝜂𝛿 𝜃 1 − 𝛼 − 𝛽 ; 

and 

          𝑣𝐼
⋆ =

 1−𝛿−𝜂𝛿   1−𝛼−𝛽 

𝜂𝛿 + 1−𝛿−𝜂𝛿   1−𝛼 
. 

These are the same as equations (16), (17) and (18) in the body of the paper. 

To check the second order conditions for optimality we twice differentiate 

equation (15), with respect to 𝜏, 𝑇 and 𝑣𝐼 respectively and arrive at the following 

three second order conditions. 

          −  𝛽 + 𝜃 1 − 𝛼 − 𝛽  𝑔𝑚
−2

+ 𝜎2 𝛼 − 𝜃 1 − 𝛼 − 𝛽   𝜎𝑔𝑚 + 𝜌 −2  
𝜕𝑔𝑚

𝜕𝜏
 

2

 

                             +  𝛽 + 𝜃 1 − 𝛼 − 𝛽  𝑔𝑚
−1 + 𝜎 𝛼 − 𝜃 1 − 𝛼 − 𝛽   𝜎𝑔𝑚 + 𝜌 −1 

𝜕2𝑔𝑚

𝜕𝜏2  

                             = −  1 − 𝛼 − 𝛽  𝜏 − Τ −2 +  𝛼 − 𝜃 1 − 𝛼 − 𝛽   1 − 𝜏 −2   

                              +𝛽 𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿 −2𝑣𝐻
2  ;                                                                  …… (𝐶4) 

           −  𝛽 + 𝜃 1 − 𝛼 − 𝛽  𝑔𝑚
−2

+ 𝜎2 𝛼 − 𝜃 1 − 𝛼 − 𝛽   𝜎𝑔𝑚 + 𝜌 −2  
𝜕𝑔𝑚

𝜕𝑇
 

2

 

                             +  𝛽 + 𝜃 1 − 𝛼 − 𝛽  𝑔𝑚
−1 + 𝜎 𝛼 − 𝜃 1 − 𝛼 − 𝛽   𝜎𝑔𝑚 + 𝜌 −1 

𝜕2𝑔𝑚

𝜕𝑇2  

                             = −  1 − 𝛼 − 𝛽  𝜏 − Τ −2 + 𝜃 1 − 𝛼 − 𝛽  𝑇 − 𝛿 −2              

                              +𝛽 𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿 −2𝑣𝐻
2  ;                                                                  …… (𝐶5) 

and 

−  𝛽 + 𝜃 1 − 𝛼 − 𝛽  𝑔𝑚
−2

+ 𝜎2 𝛼 − 𝜃 1 − 𝛼 − 𝛽   𝜎𝑔𝑚 + 𝜌 −2  
𝜕𝑔𝑚

𝜕𝑣𝐼
 

2

 

                             +  𝛽 + 𝜃 1 − 𝛼 − 𝛽  𝑔𝑚
−1 + 𝜎 𝛼 − 𝜃 1 − 𝛼 − 𝛽   𝜎𝑔𝑚 + 𝜌 −1 

𝜕2𝑔𝑚

𝜕𝑣𝐼
2  

                             = − 𝛽 𝜏 − Τ 2 𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿 −2 +  1 − 𝛼 − 𝛽 𝑣𝐼
−2 ;            …… (𝐶6) 

Now we evaluate the above three second order conditions at 𝜏 = 𝜏⋆, 𝑇 = 𝑇⋆ 

and 𝑣𝐼 =  𝑣𝐼
⋆ where 

𝜕𝑔𝑚

𝜕𝜏
=  

𝜕𝑔𝑚

𝜕𝑇
=

𝜕𝑔𝑚

𝜕𝑣𝐼
= 0. Hence we obtain the followings. 

          
𝜕2𝑔𝑚

𝜕𝜏2
= −

 1−𝛼−𝛽  𝜏⋆−𝑇⋆ −2+ 𝛼−𝜃 1−𝛼−𝛽   1−𝜏⋆ −2+𝛽 𝑣𝐻
⋆  𝜏⋆−𝑇⋆ −𝜂𝛿  −2𝑣𝐻

⋆ 2

  𝛽+𝜃 1−𝛼−𝛽  𝑔𝑚
−1+𝜎 𝛼−𝜃 1−𝛼−𝛽   𝜎𝑔𝑚 +𝜌 −1 

; 
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𝜕2𝑔𝑚

𝜕𝑇2 = −
 1−𝛼−𝛽  𝜏⋆−𝑇⋆ −2+𝜃 1−𝛼−𝛽  𝑇⋆−𝛿 −2+𝛽 𝑣𝐻

⋆  𝜏⋆−𝑇⋆ −𝜂𝛿  −2𝑣𝐻
⋆ 2

  𝛽+𝜃 1−𝛼−𝛽  𝑔𝑚
−1+𝜎 𝛼−𝜃 1−𝛼−𝛽   𝜎𝑔𝑚 +𝜌 −1 

; 

and 

          
𝜕2𝑔𝑚

𝜕𝑣𝐼
2 = −

 𝛽 𝜏⋆−𝑇⋆ 2 𝑣𝐻  𝜏⋆−𝑇⋆ −𝜂𝛿  −2+ 1−𝛼−𝛽 𝑣𝐼
⋆−2

 

  𝛽+𝜃 1−𝛼−𝛽  𝑔𝑚
−1+𝜎 𝛼−𝜃 1−𝛼−𝛽   𝜎𝑔𝑚 +𝜌 −1 

. 

Hence the R.H.S. of each of these three equations is negative. Thus the 

second order conditions are also satisfied. 
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APPENDIX (D) 

 

DERIVATION OF THE DETERMINANT AND THE TRACE OF THE 

JACOBIAN MATRIX IN SECTION 4 

 

We define the following variables. 

         𝑀 =  1 − 𝜏  𝑣𝐼 𝜏 − 𝑇  
1−𝛼−𝛽

𝛼+𝛽 𝑦
𝜃 1−𝛼−𝛽 +𝛽

𝛼+𝛽 𝑧
𝛽

𝛼+𝛽 ;                                                             …… (𝐷1)                                 

         𝑁 =  𝑇 − 𝛿  𝑣𝐼 𝜏 − 𝑇  
1−𝛼−𝛽

𝛼+𝛽 𝑦
𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽 𝑧
𝛽

𝛼+𝛽 ;                                                             …… (𝐷2) 

and 

         𝑄 =  𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿  𝑣𝐼 𝜏 − 𝑇  
1−𝛼−𝛽

𝛼+𝛽 𝑦
𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽 𝑧
−

𝛼

𝛼+𝛽 .                                       …… (𝐷3) 

Now we consider following equations from the body of the paper. 

          
𝑥 

𝑥
=  

𝛼

𝜎
− 1  1 − 𝜏  𝑣𝐼 𝜏 − 𝑇  

1−𝛼−𝛽

𝛼+𝛽 𝑦
𝜃 1−𝛼−𝛽 +𝛽

𝛼+𝛽 𝑧
𝛽

𝛼+𝛽 + 𝑥 −
𝜌

𝜎
;                              …… (23) 

          
𝑦 

𝑦
=  𝑇 − 𝛿  𝑣𝐼 𝜏 − 𝑇  

1−𝛼−𝛽

𝛼+𝛽 𝑦
𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽 𝑧
𝛽

𝛼+𝛽  

                                     − 1 − 𝜏  𝑣𝐼 𝜏 − 𝑇  
1−𝛼−𝛽

𝛼+𝛽 𝑦
𝜃 1−𝛼−𝛽 +𝛽

𝛼+𝛽 𝑧
𝛽

𝛼+𝛽 + 𝑥;                   …… (24) 

and 

          
𝑧 

𝑧
=  𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿  𝑣𝐼 𝜏 − 𝑇  

1−𝛼−𝛽

𝛼+𝛽 𝑦
𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽 𝑧
−

𝛼

𝛼+𝛽  

                                     − 𝑇 − 𝛿  𝑣𝐼 𝜏 − 𝑇  
1−𝛼−𝛽

𝛼+𝛽 𝑦
𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽 𝑧
𝛽

𝛼+𝛽 .                          …… (25) 

Thus using equations (D1), (D2) and (D3) we modify equations (23), (24) 

and (25) as follows. 

          
𝑥 

𝑥
=  

𝛼

𝜎
− 1 𝑀 + 𝑥 −

𝜌

𝜎
;                                                                                                    …… (𝐷4) 

          
𝑦 

𝑦
= 𝑁 − 𝑀 + 𝑥;                                                                                                                  …… (𝐷5) 

and 

          
𝑧 

𝑧
= 𝑄 − 𝑁.                                                                                                                           …… (𝐷6) 
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We obtain the following partial derivatives corresponding to three 

modified differential equations. 

 
𝜕 

𝑥 

𝑥
 

𝜕𝑥
= 1; 

          
𝜕 

𝑥 

𝑥
 

𝜕𝑦
=

𝜃 1−𝛼−𝛽 +𝛽

𝛼+𝛽
 
𝛼

𝜎
− 1 

𝑀

𝑦
; 

          
𝜕 

𝑥 

𝑥
 

𝜕𝑧
=

𝛽

𝛼+𝛽
 
𝛼

𝜎
− 1 

𝑀

𝑧
; 

 
𝜕 

𝑦 

𝑦
 

𝜕𝑥
= 1; 

          
𝜕 

𝑦 

𝑦
 

𝜕𝑦
=

𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽

𝑁

𝑦
−

𝜃 1−𝛼−𝛽 +𝛽

𝛼+𝛽

𝑀

𝑦
; 

          
𝜕 

𝑦 

𝑦
 

𝜕𝑧
=

𝛽

𝛼+𝛽

𝑁

𝑧
−

𝛽

𝛼+𝛽

𝑀

𝑧
; 

          
𝜕 

𝑧 

𝑧
 

𝜕𝑥
= 0; 

          
𝜕 

𝑧 

𝑧
 

𝜕𝑦
=

𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽

𝑄

𝑦
−

𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽

𝑁

𝑦
; 

and 

          
𝜕 

𝑧 

𝑧
 

𝜕𝑧
= −

𝛼

𝛼+𝛽

𝑄

𝑧
−

𝛽

𝛼+𝛽

𝑁

𝑧
. 

So the determinant of the Jacobian matrix can be written as follows. 

           𝐽 =  
 𝜃 1−𝛼−𝛽 −𝛼 

 𝛼+𝛽 

𝑁

𝑦
−

 𝜃 1−𝛼−𝛽 +𝛽 

 𝛼+𝛽 

𝑀

𝑦
  −

𝛼

 𝛼+𝛽 

𝑄

𝑧
−

𝛽

 𝛼+𝛽 

𝑁

𝑧
  

                        −  
 𝜃 1−𝛼−𝛽 −𝛼 

 𝛼+𝛽 

𝑄

𝑦
−

 𝜃 1−𝛼−𝛽 −𝛼 

 𝛼+𝛽 

𝑁

𝑦
  

𝛽

 𝛼+𝛽 

𝑁

𝑧
−

𝛽

 𝛼+𝛽 

𝑀

𝑧
  

                 −
 𝜃 1−𝛼−𝛽 +𝛽 

 𝛼+𝛽 
 
𝛼

𝜎
− 1 

𝑀

𝑦
 −

𝛼

 𝛼+𝛽 

𝑄

𝑧
−

𝛽

 𝛼+𝛽 

𝑁

𝑧
  

                 +
𝛽

 𝛼+𝛽 
 
𝛼

𝜎
− 1 

𝑀

𝑧
 
 𝜃 1−𝛼−𝛽 −𝛼 

 𝛼+𝛽 

𝑄

𝑦
−

 𝜃 1−𝛼−𝛽 −𝛼 

 𝛼+𝛽 

𝑁

𝑦
 ; 

or, 

           𝐽 =
 𝛼−𝜃 1−𝛼−𝛽  

 𝛼+𝛽 

𝑁

𝑦

𝑄

𝑧
+

𝛼

𝜎

𝜃 1−𝛼−𝛽 

 𝛼+𝛽 

𝑀

𝑦

𝑄

𝑧
+

𝛼

𝜎

𝛽

 𝛼+𝛽 

𝑀

𝑦

𝑁

𝑧
; 

or, 

           𝐽 =
𝛼−𝜃 1−𝛼−𝛽 

𝛼+𝛽
 𝑇 − 𝛿  𝑣𝐼 𝜏 − 𝑇  

2
1−𝛼−𝛽

𝛼+𝛽  𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿 𝑦
2
𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽
−1

𝑧
−2

𝛼

𝛼+𝛽   
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                +
𝛼

𝜎

𝜃 1−𝛼−𝛽 

𝛼+𝛽
 1 − 𝜏  𝑣𝐼 𝜏 − 𝑇  

2
1−𝛼−𝛽

𝛼+𝛽  𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿 𝑦
2
𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽 𝑧
−2

𝛼

𝛼+𝛽  

                +
𝛼

𝜎

𝛽

𝛼+𝛽
 1 − 𝜏  𝑇 − 𝛿  𝑣𝐼 𝜏 − 𝑇  

2
1−𝛼−𝛽

𝛼+𝛽 𝑦
2
𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽 𝑧
2

𝛽

𝛼+𝛽
−1

. 

Here 𝛼 > 𝜃 1 − 𝛼 − 𝛽 , 1 > 𝜏 > 𝑇 > 𝛿 and 𝑣𝐻 𝜏 − 𝑇 − 𝜂𝛿 > 0. Thus the 

determinant is positive in sign. 

The trace of the Jacobian matrix is given by, 

          𝑇𝑟 𝐽 = 1 +
𝜃 1−𝛼−𝛽 −𝛼

𝛼+𝛽

𝑁

𝑦
−

𝜃 1−𝛼−𝛽 +𝛽

𝛼+𝛽

𝑀

𝑦
−

𝛼

𝛼+𝛽

𝑄

𝑧
−

𝛽

𝛼+𝛽

𝑁

𝑧
. 

Using equations (D4), (D5) and (D6) the trace can be written as follows. 

          𝑇𝑟 𝐽 = 1 +  
 𝜃 1−𝛼−𝛽 −𝛼 

 𝛼+𝛽 

𝛼

𝜎

1

𝑦
−

 𝜃 1−𝛼−𝛽 +𝛽 

 𝛼+𝛽 

1

𝑦
−

𝛼

𝜎

1

𝑧
 𝑀 −

 𝜃 1−𝛼−𝛽 −𝛼 

 𝛼+𝛽 

𝜌

𝜎

1

𝑦
+

𝜌

𝜎

1

𝑧
. 

Now, 𝑇𝑟 𝐽 < 0 if 

          1 +
 𝛼−𝜃 1−𝛼−𝛽  

 𝛼+𝛽 

𝜌

𝜎

1

𝑦
+

𝜌

𝜎

1

𝑧
<  

 𝛼−𝜃 1−𝛼−𝛽  

 𝛼+𝛽 

𝛼

𝜎

1

𝑦
+

 𝜃 1−𝛼−𝛽 +𝛽 

 𝛼+𝛽 

1

𝑦
+

𝛼

𝜎

1

𝑧
 𝑀 

At the steady-state equilibrium, 
𝑥 

𝑥
=

𝑦 

𝑦
=

𝑧 

𝑧
= 0. Using 

𝑧 

𝑧
= 0 and the optimal 

values of the policy variables given by equations (16), (17) and (18) we have,  

          𝑧 =
𝑣𝐻  𝜏−𝑇 −𝜂𝛿

𝑇−𝛿
=

𝛽

𝜃 1−𝛼−𝛽 
.                                                                                             …… (𝐷7) 

Now using equations (B5), (D7) and the optimal values of the policy 

variables, the condition for the trace of the Jacobian matrix to be negative can 

be written as 

          1 +
𝛼 𝛼−𝜃 1−𝛼−𝛽  2

𝜃 1−𝛼−𝛽  𝛼+𝛽 

𝜌

𝜎

𝑔𝑚

 𝜎𝑔𝑚 +𝜌 
+

𝜌

𝜎

𝜃 1−𝛼−𝛽 

𝛽
 

               <  
 𝛼−𝜃 1−𝛼−𝛽  

 𝛼+𝛽 

𝛼

𝜎
+

 𝜃 1−𝛼−𝛽 +𝛽 

 𝛼+𝛽 
+

𝛼

𝜎

 𝜃 1−𝛼−𝛽  2

𝛼𝛽  𝛼−𝜃 1−𝛼−𝛽  

 𝜎𝑔𝑚 +𝜌 

𝑔𝑚
  

         1 − 𝛿 − 𝜂𝛿 
1

𝛼+𝛽𝛽
𝛽

𝛼+𝛽𝛼
𝛼−𝜃 1−𝛼−𝛽 

𝛼+𝛽  1 − 𝛼 − 𝛽 
1−𝛼−𝛽

𝛼+𝛽  𝜃 1 − 𝛼 − 𝛽  
𝛼−𝜃 1−𝛼−𝛽 +𝛽

𝛼+𝛽  

                  𝛼 − 𝜃 1 − 𝛼 − 𝛽  
𝛽+𝜃 1−𝛼−𝛽 

𝛼+𝛽  
𝑔𝑚

 𝜎𝑔𝑚 +𝜌 
 

𝛼−𝜃 1−𝛼−𝛽 

𝛼+𝛽
. 
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APPENDIX (E) 

 

DERIVATION OF EQUATION (26) IN SECTION 5 

 

The relevant Hamiltonian to be maximized by the planner at each point 

of time is given by 

          𝐿 = 𝑒−𝜌𝑡 𝐶1−𝜎

1−𝜎
+ 𝑒−𝜌𝑡𝜆𝐾  𝑣𝐼 Π − Ω  1−𝛼−𝛽𝐾𝛼−𝜃 1−𝛼−𝛽 𝐸𝜃 1−𝛼−𝛽 𝐻𝛽 − Π − 𝐶  

               +𝑒−𝜌𝑡𝜆𝐸 Ω − 𝛿 𝑣𝐼 Π − Ω  1−𝛼−𝛽𝐾𝛼−𝜃 1−𝛼−𝛽 𝐸𝜃 1−𝛼−𝛽 𝐻𝛽   

               +𝑒−𝜌𝑡𝜆𝐻  1 − 𝑣𝐼  Π − Ω − 𝜂𝛿 𝑣𝐼 Π − Ω  1−𝛼−𝛽𝐾𝛼−𝜃 1−𝛼−𝛽 𝐸𝜃 1−𝛼−𝛽 𝐻𝛽  . 

The state variables are 𝐾, 𝐻 and 𝐸. The control variables are 𝐶, Π,  Ω and 

𝑣𝐼. 𝜆𝐾, 𝜆𝐻, and λE are three co-state variables. 

Maximising 𝐿 with respect to 𝐶, Π,  Ω and 𝑣𝐼  we have 

         𝐶−𝜎 = 𝜆𝐾;                                                                                                                               …… (𝐸1) 

              
𝜆𝐾

𝜆𝐸
− 𝛿  1 − 𝛼 − 𝛽 

𝑌

Π−Ω
+

𝜆𝐻

𝜆𝐸
  1 − 𝑣𝐼 − 𝜂𝛿 1 − 𝛼 − 𝛽 

𝑌

Π−Ω
 =

𝜆𝐾

𝜆𝐸
;                …… (𝐸2) 

          
𝜆𝐾

𝜆𝐸
− 𝛿  1 − 𝛼 − 𝛽 

𝑌

Π−Ω
+

𝜆𝐻

𝜆𝐸
  1 − 𝑣𝐼 − 𝜂𝛿 1 − 𝛼 − 𝛽 

𝑌

Π−Ω
 = 1;                 …… (𝐸3) 

and 

          
𝜆𝐾

𝜆𝐸
− 𝛿  1 − 𝛼 − 𝛽 

𝑌

𝑣𝐼
=

𝜆𝐻

𝜆𝐸
  Π − Ω + 𝜂𝛿 1 − 𝛼 − 𝛽 

𝑌

𝑣𝐼
 .                                  …… (𝐸4) 

Using equations (E2) and (E3) we find that 

         
𝜆𝐾

𝜆𝐸
= 1.                                                                                                                                    …… (𝐸5) 

Using equations (E3) and (E5) we obtain the following. 

         
𝜆𝐻

𝜆𝐸
=

1− 1−𝛿  1−𝛼−𝛽 
𝑌

𝑣𝐼

 1−𝑣𝐼 −𝜂𝛿  1−𝛼−𝛽 
𝑌

Π−Ω

.                                                                                                  …… (𝐸6) 

Using equations (E4), (E5) and (E6) we obtain the following equation. 

          1 − 𝛿 − 𝜂𝛿  1 − 𝛼 − 𝛽 
𝑌

𝑣𝐼
= Π − Ω.                                                                            …… (E7) 

Now, using equations (E6) and (E7) we find that, 

         
𝜆𝐻

𝜆𝐸
= 1.                                                                                                                                    …… (𝐸9) 
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Also, along the optimum path, time behaviour of the co-state variables 

satisfies the followings. 

             1 − 𝛿
𝜆𝐸

𝜆𝐾
  𝛼 − 𝜃(1 − 𝛼 − 𝛽) 

𝑌

𝐾
−

𝜆𝐻

𝜆𝐾
𝜂𝛿 𝛼 − 𝜃(1 − 𝛼 − 𝛽) 

𝑌

𝐾
= 𝜌 −

𝜆𝐾
 

𝜆𝐾
;        …… (𝐸10) 

          
𝜆𝐾

𝜆𝐸
− 𝛿 𝜃 1 − 𝛼 − 𝛽 

𝑌

𝐸
−

𝜆𝐻

𝜆𝐸
𝜂𝛿𝜃 1 − 𝛼 − 𝛽 

𝑌

𝐸
= 𝜌 −

𝜆𝐸
 

𝜆𝐸
;                                   …… (𝐸11) 

and 

         
𝜆𝐾

𝜆𝐻
𝛽

𝑌

𝐻
− 𝛿  

𝜆𝐸

𝜆𝐻
+ 𝜂 𝛽

𝑌

𝐻
= 𝜌 −

𝜆𝐻
 

𝜆𝐻
.                                                                                …… (𝐸12) 

Equations (E5) and (E9) imply that 
𝜆𝐾

 

𝜆𝐾
=

𝜆𝐻
 

𝜆𝐻
=

𝜆𝐸
 

𝜆𝐸
. Thus using equations 

(E5), (E9), (E10) and (E11) we obtain the following equation. 

          
𝐸

𝐾
=

𝜃 1−𝛼−𝛽 

𝛼−𝜃 1−𝛼−𝛽 
.                                                                                                                …… (𝐸13) 

Again using, equations (E5), (E9), (E11) and (E12) we obtain, 

          
𝐻

𝐸
=

𝛽

𝜃 1−𝛼−𝛽 
.                                                                                                                    …… (𝐸14) 

Using equations (1), (2) and (7.1) we have 

          
𝑌

𝑣𝐼 Π−Ω 
 𝑣𝐼 Π − Ω  𝛼+𝛽 = 𝐾𝛼−𝜃 1−𝛼−𝛽 𝐸𝜃 1−𝛼−𝛽 𝐻𝛽 .                                          …… (𝐸15) 

Now, using equations (E7) and (E15) we derive the following. 

          𝑣𝐼 Π − Ω  =   1 − 𝛿 − 𝜂𝛿  1 − 𝛼 − 𝛽 𝐾𝛼−𝜃 1−𝛼−𝛽 𝐸𝜃 1−𝛼−𝛽 𝐻𝛽  
1

𝛼+𝛽 .    ……  𝐸16  

From equation (E1), we have 

         −𝜎
𝐶 

𝐶
=

𝜆𝐾
 

𝜆𝐾
.                                                                                                                           …… (𝐸17) 

Using equations (E5), (E9), (E10), (E16) and (E17) we obtain the following 

         
𝐶 

𝐶
=

1

𝜎
  𝛼 − 𝜃(1 − 𝛼 − 𝛽)  1 − 𝛿 − 𝜂𝛿 

1

𝛼+𝛽   

                              (1 − 𝛼 − 𝛽)
1−𝛼−𝛽

𝛼+𝛽  
𝐸

𝐾
 

𝜃 1−𝛼−𝛽 +𝛽

𝛼+𝛽
 
𝐻

𝐸
 

𝛽

𝛼+𝛽
− 𝜌 .                                …… (𝐸19) 

In the steady state growth equilibrium, 

         
𝐶 

𝐶
=

1

𝜎
  𝛼 − 𝜃 1 − 𝛼 − 𝛽   1 − 𝛿 − 𝜂𝛿 

1

𝛼+𝛽   

                           (1 − 𝛼 − 𝛽)
1−𝛼−𝛽

𝛼+𝛽  
𝐸

𝐾
 

𝜃 1−𝛼−𝛽 +𝛽

𝛼+𝛽
 
𝐻

𝐸
 

𝛽

𝛼+𝛽
− 𝜌 = 𝑔𝑐 ;                          …… (𝐸20) 



40 
 

         
𝐾 

𝐾
=  

𝐾

Π−Ω
 
𝛼−1

 
𝐸

𝐾
 
𝜃(1−𝛼)

−
Π

𝐾
−

𝐶

𝐾
= 𝑔𝑐 ;                                                                       …… (𝐸21) 

         
𝐻 

𝐻
= 𝑣𝐻  

Π−Ω

H
 − 𝜂𝛿  𝑣𝐼  

Π−Ω

H
  

1−𝛼−𝛽

 
𝐸

𝐾
 
𝜃 1−𝛼−𝛽 −𝛼

 
𝐻

𝐸
 
−𝛼

= 𝑔𝑐 ;                       …… (𝐸22) 

and 

         
𝐸 

𝐸
=

Ω

𝐸
− 𝛿  

𝐾

Π−Ω
 
𝛼−1

 
𝐸

𝐾
 
𝜃 1−𝛼 −1

= 𝑔𝑐 .                                                                       …… (𝐸23) 

Therefore, using equations (E13), (E14) and (E20) we obtain the following 

equation. 

          𝜌 + 𝜎𝑔𝑐 
𝛼 =  1 − 𝛿 − 𝜂𝛿 𝛽𝛽 1 − 𝛼 − 𝛽 1−𝛼−𝛽  𝜃 1 − 𝛼 − 𝛽  𝜃 1−𝛼−𝛽  

                                                               𝛼 − 𝜃 1 − 𝛼 − 𝛽  𝛼−𝜃 1−𝛼−𝛽 .      …… (𝐸24)                                                                        

This is same as equation (26) in section 5 in the body of the paper. 

 

 

 

 

 

 

 

 

 


