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1. Motivation 

Divergence of social and private interests is a standard feature of many economic 

situations. Market failures may be minimized or avoided by an appropriate 

choice of a tax or subsidy schedule that induces the individual to internalize the 

external costs and benefits of his action. Consider, for instance, the external costs 

generated as a car travels at different speeds on an expressway. Suppose that as 

the car drives at a speed x  it imposes a net social externality ( )s x .  The external 

effect includes the danger to other drivers in the event of an accident as well as 

the possibility of an accident itself, both of which vary with speed.  If the driver 

has a net benefit ( )B x  from driving at a speed x  then he can be induced to drive 

at the socially optimal speed that maximizes B(x)-s(x) by a penalty or Pigouvian 

tax p(x), which, if speed is observed, satisfies p(x)=s(x) regardless of the specific 

functional form of ( )B x . 

The tax achieves its purpose when the speed x of the car is perfectly 

measured. If, however, the technology allows only an imperfect measurement of 

the speed of the car then the driver of the car will not generally choose the 

socially optimal speed.  As an example, suppose s(x) is convex, and Y is the 

unbiased but imperfect measure of speed.  Then [ ( ) | ] ( )E s Y x s x> .  Thus, a penalty 

function p(y)=s(y) based on the observed speed y will usually result in a choice of 

speed which is different from the socially optimal speed. 

The natural question then is whether a penalty function based on the 

imperfectly observed speed y can force the agent to internalize the cost s(x) for 

driving at speed x regardless of his benefit function. We consider the following 

problem: Suppose a tax or subsidy function s(x) associated with an action level x 

that is measured perfectly achieves a certain objective.1 For ease of reference, let 

us call s(x) a (social) externality function. The action x is only imperfectly 

observed as a random variable Y whose distribution depends on the true action x. 

                                                 
1 The function ( ) ( )p x s x=  could be a Pigouvian tax, or alternately, ( )s x  could be viewed as a 
price/penalty function that can help the market to co-ordinate towards the optimum described by Coase 
(1960). Generally, we will treat )(xs  to be a given target tax function. 
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We examine how and when a tax or subsidy function p(y) of the observed signal 

gives rise to the same choice of action by the agent as the tax or subsidy function 

s(x) regardless of the nature of his benefit function.  In this case, there is a 

Pigouvian solution to the problem of externalities even when the behavior is 

observed with error.1 

We will show that in a broad class of circumstances, there is indeed a 

solution to the problem for risk neutral agents.  What is needed is that there is 

enough information in the signal to separate distributions of behaviors.  If two 

distinct distributions over behaviors produce the identical distribution of signals, 

then it is not possible to distinguish these distributions with a penalty function.  

If the function s separates the distributions, then no solution can possibly exist, 

because the signal does not distinguish distributions that the penalty function 

separates. Therefore separating distributions is necessary.  The remarkable fact is 

that it is also sufficient.  Moreover, the same condition conveniently works for 

both finite and continuous state spaces. 

Interest in the implementability of desired outcomes by penalty functions 

is not new. Pigou (1952) suggested that forcing an agent to internalize the 

damage he causes by taxing him the amount of the damage would take the 

market toward efficiency. Coase (1960) critiqued that the Pigouvian scheme for 

providing the wrong incentives. However, interpreted appropriately (so that the 

price suggested by Coase is the tax) the Pigouvian principle continues to hold in 

his examples. In fact, Sandmo (1975) showed that in the absence of government 

revenue requirements the Pigouvian tax implements the first best, and when 

there is a revenue requirement the Pigouvian principle extends appropriately. In 

all these cases, of course, the agent’s action is perfectly observable and there is no 

uncertainty about any element of the model. 

                                                 
1 Note that the role of y is purely that of a signal on the true action x that actually gives rise to the 
externality. If the observable y completely determines the level of externality then we are back in the 
perfect observability case. 
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Kwerel (1977), Dasgupta, Hammond and Maskin (1980), Duggan and 

Roberts (2002), among others, assume that there are a finite number of polluting 

firms with costs not observable to the regulator. They show that the first best 

outcome (that arises when costs are perfectly observable) are implementable in 

equilibrium. In these models, the emission level by each firm is perfectly 

observable. In reality, the total pollution is often not observable. While the rate at 

which a car pollutes can be observed through some tests, the amount of gasoline 

burnt or the number of city miles are not easy to observe. Montero (2005) 

assumes that the emission level is not observable but the emission rate is. The 

first best outcome cannot be implemented in this framework. In contrast, we 

consider a situation where the agent cannot perfectly control what the principal 

observes, that is, his action gives rise to a stochastic signal. 

The principal-agent formulation of our problem demands a few words 

about its relationship with the agency literature. What we consider here is 

different from the standard agency problems in that we introduce externality to 

the standard problem and require that a single penalty function implement the 

target externality function for all relevant action levels. As a result, even if the 

principal and the agent are risk-neutral a non-linear externality function makes it 

a different type of problem. The difference in the nature of the problems is most 

easily seen by observing that in the moral hazard model (cf. Holmstrom, 1979), 

the first best is always implementable when the agent is risk neutral which is not 

true in our setting.2 Thus, our results sit nicely between the standard agency 

models and the literature on implementation of tax functions. 

Most mechanism design solutions entail complicated mechanisms that are 

very sensitive to the underlying description of the environment.  This sensitivity 

is especially extreme when correlation is exploited to mitigate incentive 

constraints.  In contrast to most related literature, we prove an approximation to 

the solution that has quite modest informational requirements (means and 

variances of the error function), which in many applications are knowable.  

                                                 
2 We will discuss our result in the agency context in greater detail below. 
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Consequently, our approach is plausibly applicable in real world settings, such as 

the speeding example discussed above. 

2. The Model 

Let x denote the action chosen by a risk neutral agent and Y be the associated 

(publicly observable) signal. Y is distributed according to density f(y|x) 

conditional on x, ∈x X, ∈y Y. The function f completely describes the relevant 

(stochastic) environment of the situation. In what follows, we present our results 

for the case where x and y take the same set of values, i.e., Y=X. However, with a 

little extra work it can be checked that the relevant results, i.e., the results and 

discussions of section 4, continue to hold when Y≠X. The action x generates a 

private return B(x,θ) for the agent with a privately known type θ.3 The agent has 

quasi-linear utility 

( ( , ), ) ( , ) .U B x t B x tθ θ= −  

from taking action x and making a payment t, if any. We assume that transfers 

are non-distortionary. 

Let us denote by s(x) the externality (i.e., tax) function that the regulator 

wants to implement. We are interested in studying when and how a penalty 

function ( )p y  makes the agent face the exact same problem that he would with 

perfect observation regardless of ( , )B x θ .4 If the action is measured imperfectly 

then a function p(y) which we refer to as the penalty function of the imperfect 

observation y will be said to implement s(x) if 

 ( ( , ), ( )) [ ( ( , ), ( )) | ]U B x s x E U B x p Y xθ θ=  

for all x. 

 

                                                 
3 In what follows we do not need to directly use θ  in the analysis. The notation is to highlight the fact that 
agents are assumed to have private information on how their utilities depend on the action. The notation 
also allows convenient exposition if one extends our analysis to other market structure or to the agency 
problems. 
4 Note, however, that the function s(x) that we seen to implement may itself depend on ( , )B x θ . 
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Quasi-linearity of utility implies that p(y) implements s(x) if 

 ( , ) ( ) ( , ) [ ( ) | ]B x s x B x E p Y xθ θ− = − , 

that is, 
 ( ) [ ( ) | ].s x E p Y x=  

If )(xs  is first-best and )(yp  implements ),(xs  then )(yp  is first-best in spite of 

imperfect observability of action. 

For expositional clarity, we consider the case where x takes finite values 

and the case where x takes continuous set of values over an interval. Our results 

will hold more generally. In the finite actions case we assume x takes values 

1,2,...,n  so that ( | )f i j  is the probability that action i is observed when action j is 

undertaken. In this case where the agent is risk-neutral we have that p(y) 

implements s(x) if 

  
1

( ) ( | ) ( )
n

i
p i f i j s j

=

=∑  

for all j . With continuous actions we have under risk-neutrality that , [ , ],x y a b∈  

and ( )p y  implements ( )s x  if 

 ( ) ( | ) ( )
b

a

p y f y x dy s x=∫  

for all .x  The reason for considering both cases is that a finite dimensional 

approach with finite matrices makes the analysis more manageable. Conclusions 

can be drawn more readily. However, the intuition from the finite dimensional 

case does not extend to the infinite dimensional analysis where a continuous set 

of actions is undertaken. Also, the standard literature on both externality and the 

basic agency problems primarily deal with the continuous models. Thus, it is 

necessary to treat the continuous actions case separately. The infinite 

dimensional analysis does not permit the ease of working with matrices, still, we 

are able to verify some of the key findings from the finite actions case. 
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Some Notation. Throughout this paper we will denote by μ  the uniform 

probability measure on the interval [ , ]a b . We denote by A  the expectation 

operator on p defined by ( ) ( ) [ ( ) | ]Ap x E p Y x= . In the finite action case, A  will 

denote the n n×  matrix which is a standard linear transformation from nR  to nR . 

When the actions are continuous it is the integral operator (a continuous linear 

transformation) from 2 ( )L μ  to 2 ( ).L μ  

In light of the fact, that we work with a 2 ( )L μ  space, the equalities and other 

similar relationships must be interpreted as almost everywhere μ  wherever 

appropriate. 

 

 3. Can the Crime Fit the Punishment? 

When does using the social externality function as a penalty work even in the 

presence of error?  Our first result shows that in the infinite dimensional space of 

all possible externality functions only a “negligible” sub-collection of externality 

functions ( )s x  can be implemented by ( ) ( )p y s y= . 

Proposition 1. Consider the continuous action case. In any given environment 

there are at most a finite number of linearly independent penalty functions that 

can be implemented straightforwardly by ( ) ( )p y s y= . In other words, given 

( | )f y x  the collection of 2 ( )L μ  functions that can be implemented 

straightforwardly belong to a finite dimensional space. 

Proof. See Appendix. 

 

Of course, if there is no error, the penalty function sp ≡  implements the 

externality function s.  However, not only is zero error sufficient, it is also 

necessary for all s to implement itself. 
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Proposition 2. In a given environment all penalty functions ( )s x  can be 

implemented by a penalty ( ) ( )p y s y=  if and only if actions are observable 

without errors in that environment. 

Proof. See Appendix. 

We now turn to positive results. 

 

4. Existence 

Most externality functions ( )s x  cannot be implemented directly by penalty 

functions ( ) ( )p y s y=  when action y  can only be observed imperfectly. We next 

examine environments where an externality function can be implemented by 

some penalty function. In the continuous actions case we need to also examine 

the extent to which it is possible to come arbitrarily close to implementing the 

externality function in order to state the necessary and sufficient condition. 

 

Definitions. (i) We say that externality function ( )s ⋅  is approximately 

implementable if there is a sequence of penalty functions { }( )np ⋅  such that 

[ ]( ) | ( )nE p Y X x s x= →  in 2 ( )L μ .5 

(ii) f  separates distributions 1G  and 2G  of X if  

∫∫ •≠•
xx

xdGxfxdGxf )()|()()|( 21  

in ).(2 μL 6 

(iii) s  separates distributions  1G  and 2G  of X if 

].~|)([]~|)([ 21 GXXsEGXXsE ≠  

                                                 
5 Note that )(2 μL  convergence implies convergence in probability. Therefore, if there is a sequence 

)}({ •np  such that )(]|)([ xsxXYpE n →=  in )(2 μL  then there exists a subsequence )}({ •
knp  of 

penalty functions with the property that )(]|)([ xsxXYpE
kn →=  almost surely. In other words, our 

results will not change if we adopt the stronger notion of almost sure convergence for approximate 
implementability. 
6 When x is discrete the integral is substituted by the summation. 
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Proposition 3 (Existence – infinite actions). A penalty function p  in 2 ( )L μ  

implements or approximately implements s  if and only if f  separates 

distributions on X  that are separated by s. 

Proof. See Appendix. 

The only if portion of proposition 3 is quite straightforward.  If f doesn’t 

separate two distributions of x, say G and H, then for any p, 

]~|)([]~|)([ 21 GXXpEGXXpE =  because both 1G  and 2G  give rise to the same 

distribution of Y.  The remarkable fact is that the condition is sufficient – if f 

separates any distribution that s separates, then there exists a function p that 

approximately implements s in the stochastic environment. 

 

When the set of actions is finite, existence is much more straightforward. 

Proposition 4 (Existence – finite actions). Suppose that the set of possible 

actions is finite. Then ( )s x  is implementable if and only if A  separates 

distributions on X  that are separated by .s 7 

Proof. First observe that the range of a finite dimensional linear transformation 

is closed. Hence by the Fredholm alternative theorem (see Appendix) the 

necessary and sufficient condition for the equation Ap s=  to have a solution is 

that. 

 0Ts z =  whenever 0TA z =  

By a construction similar to the infinite-dimensional case (see Appendix) 

we can assume w.l.o.g. that z  defined above can be written as a difference of two 

non-identical probability mass functions, i.e. z q q= −  for some probability 

distributions q and q . Then we can restate the above necessary and sufficient 

conditions as follows: For any pair of distributions q and q  

                                                 
7 We will refer to this necessary and sufficient condition for implementability as the separation condition 
later in this section. 
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whenever T Ts q s q≠  we have T TA q A q≠  

i.e., A  separates distribution on X  that give rise to distinct expectations 

[ ( )] [ ( )]q qE s X E s X≠   

 

Proposition 4 is the finite dimensional analog of Proposition 3 and has the 

same interpretation. Given the above result, it is generally straightforward to 

describe situations in the finite-actions case where an externality function cannot 

be implemented. The infinite-dimensional case is less straightforward. Situations 

where an exact penalty function cannot exist in the infinite-action case can arise 

very naturally. If the conditional distribution ( | )f y x  is continuous in x  and y  

discontinuous penalty functions are not exactly implementable. Of course, 

discontinuous functions may be obtained as limits of continuous functions. 

The implementable externality functions are dense in 2 ( )L μ  only under 

some stronger conditions on the environment. By the modified Fredholm 

alternative theorem (see Appendix) the implementable functions are dense if and 

only if 

 
1

2
0

( | ) ( ) 0 & ( ) ( ) ( ) 0.f y x g x dx g x L g xμ= ∈ ⇒ =∫  

By a construction similar to that in the proof of Proposition 3 (see Appendix) it 

follows that the implementable function are dense in 2 ( )L μ  if and only if for two 

densities 1( )g x  and 2 ( )g x  

 
1 1

1 2
0 0

( | ) ( ) ( | ) ( )f y x g x dx f y x g x dx=∫ ∫  

implies 1 2( ) ( )g x g x= , i.e. f separates every pair of distinct distributions.8 

 

                                                 
8 This is, in fact, an infinite dimensional counterpart of the individual full rank condition of Fudenberg, 
Levine and Maskin (1994). 
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Existence of transfer functions in agency problems 

Formulated in the principal-agent framework, our results can be placed naturally 

in the context of the standard agency literature. The problem of implementing a 

target expected payment function arises in Cremer and McLean (1988) for the 

discrete problem, and McAfee and Reny (1992). The main distinction is that both 

of these papers utilitize a menu of contracts, and hence can use selection by the 

agent as an indication of the agent’s type.  In contrast, we do not anticipate using 

a menu for the externalities problem because that requires contracting in 

advance.  Contracting in advance is implausible in the case of speeding and 

absurd in the case of intoxicated drivers. 

 

 Models of pure moral hazard (cf. Holmstrom, 1979) are closer to our 

model in spirit than the rent extraction literature; however these models typically 

aim to induce the appropriate behavior at a single point; in our notation, it would 

be as if the function B were given and identical for all types of agents.  This is a 

substantially easier problem to solve, because the goal is not to eliminate the 

randomness but to induce the agent to choose the targeted action.  A second 

difference is that, in the agency problem, the principal cares about the outcome 

(i.e. the observed signal), not the (hidden) effort.  In contrast, in the externalities 

problem, the natural assumption is that the principal cares about the hidden 

action, not about the signal.  Positing that the principal cares about the outcome 

makes sense when the outcome is, say, encyclopedia sales.  In contrast, when the 

observed outcome is performance on an exam and the hidden action is teacher 

effort, our model is the more sensible one.  Moreover, in the pure moral hazard 

problem, when the agent is risk neutral the solution is to ‘sell the agency’ to the 

agent.  That is not possible in the problem of externalities because the value 

created depends on an unobservable. 

 The need to implement a function at multiple points arises when the agent 

has multiple types. Such a situation arises when the moral hazard model also 

involves private agent types, e.g. Laffont and Tirole (1986) and the single agent 
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special case of McAfee and McMillan (1987).  These models have  both moral 

hazard and adverse selection, and quasi-linear utilities. The models are 

distinguished by whether the agent’s costs are separable in type and action.  As in 

the rent extraction problem, the agency problems approach the solution with a 

menu of contracts, that is, they contract in advance.  Here, too, the principle cares 

about the (observable) outcome.  In our problem, the signal is just a proxy.  In 

this alternate environment, we answer the question of when the incentive-

efficient solution can be implemented without using a menu of contracts, but 

with a single contract offered to all.  To our knowledge, the alternate environment 

(where the principal cares about the hidden action, not the signal) has not been 

studied, nor the solution characterized.  

The separation condition 

Conditions for solving systems of equations and inequations are widely used in 

economics and econometrics. The conditions that come closest to the finite action 

version of our model, in the sense that these conditions have also been used in 

the context of separation of public signals, are those in Fudenberg, Levine and 

Maskin (1994), FLM, henceforth, in the context of Folk Theorem.9 The individual 

full rank condition requires that rows of conditional probability distributions 

over signals given a player’s actions be linearly independent. The pairwise full 

rank is a similar full row rank condition on stacked matrices for pairs of 

players.10 These conditions are applicable only when the number of signals is no 

less than the number of actions to each player. A weaker condition is given by the 

pairwise identifiability condition that, when used with implementability, is also a 

type of full row rank condition.11 Thus, this condition also requires the signal 

space to be sufficiently rich. 

                                                 
9 We thank Larry Samuelson and the referees for pointing out these and other related conditions. 
10 One of the rows of the matrix of conditional probabilities drops out due to linear dependence, leaving the 
rest of the rows linearly independent. 
11 The implementability condition may cause some of the incentive constraints that must be solved in their 
problem hold with strict inequality, and thus drop out of the system of equations whose solutions they look 
for. In that case, what the system is left with is a system of linearly independent equations. 
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 The biggest difference between the above conditions and our separation 

condition comes from the nature of applications. The Folk Theorem is derived for 

multi-player games, whereas our problem is to implement payment functions in a 

single agent model. As a result, FLM have to work with beliefs spanning over 

pairs of players unlike our problem where we have to focus on a single agent’s 

beliefs. The steps for deriving the Folk Theorem involve incentive (inequality) 

constraints and the problem is to show the existence of continuation payoffs that 

satisfy those constraints. Our problem is to check the existence of transfer 

schedule whose expectation is equal to a given target transfer function of actions. 

Moreover, we consider an environment where an agent has private types where 

the Folk Theorem does not hold. 

The conditions also differ because of the approaches taken. The FLM 

conditions try to guarantee the decomposition of payoff profiles along all regular 

hyperplanes. Our objective, however, is to describe the complete set of transfer 

functions that are implementable in a given environment. Therefore, while FLM 

have to look for some sufficiency conditions, we must look for necessary and 

sufficient conditions. In short, the problem that we solve is completely different 

from that solved by FLM, which makes the machinery used to solve the problems 

quite different. The “full row rank” type conditions of FLM are weaker than 

invertibility of the coefficient matrix for a system of linear equations. Under such 

a condition, the system always produces a solution. Our separation condition is 

equivalent to a consistency condition for a system of linear equations. The 

coefficient matrix need not have linearly independent rows, so the existence of 

the solution depends on whether or not the intercept terms of the equations are 

consistent with the coefficients. One of the important consequences of this 

difference is that our conditions are applicable even if the signal space is not rich 

enough. The FLM conditions, however, require that the signal space be 

sufficiently rich relative to the action space. For instance, the individual full rank 

condition requires that the number of signals be at least as many as the number 

of actions. The pairwise identifiability condition weakens this requirement to 
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some extent. Still, depending on the situation it may not allow the signal space to 

be much smaller than the action space. 

 If the Folk Theorem has to hold under consistency conditions like ours on 

FLM’s signal and payoff generating environment then one needs to obtain a 

result that shows that for each discount level there exists a convenient set 

(possibly a hyperplane) that contains the continuation payoffs. It is, however, not 

clear whether that is a tractable exercise. One could also ask whether the Folk 

Theorem with imperfect monitoring could be extended to the continuous action 

case as done here. The individual full rank condition for the continuum case is 

precisely the following: f separates every pair of distributions on the action space 

that differ on a measure non-zero set (see footnote 8). It is, however, not obvious 

that the other conditions of FLM have a natural extension for continuous actions 

that would be useful for proving the Folk Theorem. 

5. Construction of a Penalty Function 

Existence theorems are often cold comfort to someone who needs to use a 

construct.  In this section we provide a method of constructing the penalty 

function in the case of multiplicative errors. 

  Suppose that Y xε= , 0ε ≥  and that the externality function s  is analytic, 

so that it can be expressed by a Taylor series: 

 ( ) .i
i

i
s x a x=∑  

Let 

 ( )
i

i
i

i

a yp y
Eε

=∑  

Then 

 
( )

[ ( ) | ] | ( )
i

ii
ii

a x
E p Y x E x a x s x

E
ε
ε

⎡ ⎤
= = =⎢ ⎥

⎣ ⎦
∑ ∑  

whenever the series converges absolutely at each point in the support (so that the 

expectation can be taken inside the summation). This is a full solution for 

analytic s  for the multiplicative case. In addition, for any continuous s  on a 
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compact set of x , we can approximate arbitrarily closely by first approximating s  

with an analytic function and then using the p  for the analytic function. 

How does the penalty compare to the externality?  Suppose that  Y=xε, for 

ε≥0, and the error is either unbiased or upward biased, i.e. 1≥εE  and that all the 

derivatives of )(xs  are nonnegative, i.e. ,0≥ia  as arises with the exponential 

function. Then the penalty is less than the externality, i.e. ),()( ysyp ≤  because  

.1)( ≥≥ ii EE εε  Thus ).()( ysya
E

yayp i
ii

i
i =≤= ∑∑ ε

 

The multiplicative error model provides a construction for additive errors 

for many externality functions. Consider the additive error model  Y x ε= +  and 

assume that (log( ))s z  is an analytic function of z , and that jEe ε < ∞  for all j < ∞ .  

Because s(log(•)) is analytic, we can express ∑
∞

=

=
0

))(log(
j

j
j zazs .  Consequently, 

setting log( )x z= , ( ) ( ) .x j jx
j js x a e a e= =∑ ∑  It is readily verified that 

( )
jy

j
j

a e
p y

Ee ε= ∑ satisfies [ ]( ) ( ).E p Y s x=   

6. Small Errors 

So far, our main results – existence and a construction under multiplicative or 

additive errors – tell us little about the actual nature of the penalty function.  

Under the hypothesis that errors are small, we can provide a sharper 

characterization of the penalty functions.  Imagine that a car going at 100 mph 

generates an externality s , would the corresponding penalty function charge 

more than s  or less upon observing a speed of 100 mph? A 10 mph increase in 

speed at 100 mph could presumably do much more damage than the same 

increase would do at 70 mph. Would the corresponding penalty function reflect 

that? 
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When the error is sufficiently “local” in nature, the Taylor expansion 

allows close approximation of the penalty function given the externality function. 

Moreover, the higher order terms can be ignored for broad classes of situations 

and the penalty function compared with the externality function based on its 

lower order derivatives.  Small errors are reasonable in many settings where large 

errors would prohibit legal remedies. 

 

In what follows we let Y be the observation by the regulator and provide a 

formula for approximating the penalty function that implements an externality 

function ( )s x  when the associated observational error is small.  Let ]|[)( xYEx =μ  

and ].|))([()( 22 xxYEx μσ −=  

 

Proposition 5. Suppose that the family of random variables 

 ))(()(~ xYbxYb μμ −+≡  with distribution functions 

)|/))()1(~(()|~( xbxbyFxyGb μ−−=  separate any pair of distributions on X for all 

small 0>b  that are separated by ).(•s  Assume also that )(xμ  is twice 

differentiable and monotonic.12 If the σ2(x) is small, the penalty function is 

approximated by13 

 
2

1 2 1
2

1( ) ( ( )) ( ( ))
2

dp z s z s z
dz

μ σ μ− −≈ −  

 
Proof. See Appendix. 

 

In particular, when the signal distribution is unbiased, we have 

 
  2 )(½)()( σxsxsxp ′′−≈  

                                                 
12 The two assumptions are necessary to apply the Taylor approximation result at ( )xμ , i.e. to apply the 
approximation on a function at the point it is necessary for the function to exist in a small neighborhood. 
The assumptions guarantee precisely that. 
13 Obviously, the smaller the error the better the approximation. 
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It is now much easier to relate the penalty to the externality function. For 

instance, when the observation is unbiased ( xx =)(μ ) and the error ( )(2 xσ ) is 

small, the penalty function is smaller or larger than the externality function 

depending on whether s  is convex or concave. 

 

7. Conclusion 

Given a penalty function which implements a social objective, this paper 

examines the possibility of implementing the social objective when the action is 

observed with error.  Provided that the signal is informative in the sense that it 

separates distributions of actions and agents are risk neutral, the social objective 

remains implementable even with observational error.  In addition, when errors 

are small, there is a closed form second-order approximation for the penalty 

function that depends only on first and second moments and two derivatives of 

the externality function.  The formula is applicable when activity is measured 

reasonably accurately, which is necessary for a fair implementation.  This formula 

is simple enough to lend itself to actual implementation. 

In our formulation of the problem we have kept the model as context-free 

as possible insofar as the market structure is concerned. The principal-agent 

framework in which we posed our problem immediately fits the case of an 

externality producing monopoly firm. The analysis holds for other market 

structures, as well, even if with some modification. 

 The analysis does not apply in the form of first-best implementation when 

the agent is risk averse. The difficulty arises due to the welfare effect of the 

redistributive role of tax function when the agent is risk averse. If the agent is risk 

averse and the penalty is a function of a stochastic signal, the socially optimal 

penalty function depends on the conditional distribution of the signal. 

Implementing a function that is first-best when the action is observed perfectly 
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may not be optimal in the stochastic environment due to the risk cost to the 

society.14 

 Implementation of a target function s(x) in itself may, however, be 

possible. For instance, when the agent has constant absolute risk aversion utility 

of the form 

( )))()((11 xsxBe −−− λ

λ
. 

Steps similar to those under risk neutrality show that the penalty function of y 

that forces the agent to behave the same as the externality function s(x) is 

approximated by 

( ))()(
2
1)()( 22 ysysysyp ′′+′−≈ λσ  

for small observational error )(xY με −=  satisfying .0=εE  Of course, p(y) is 

generally not optimal any more. 

                                                 
14 We thank Ilya Segal for pointing out this difficulty in analyzing risk aversion. 
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Appendix: Proofs 

Proof of Proposition 1. First note that the integral operator A  is compact. 

Therefore, if there is  a non-zero function ( )s x  such that As s=  then the operator 

has an eigenvalue 1. The result then follows upon applying Proposition II.4.13 of 

Conway (1990) and observing that the space of functions s  for which ( ) 0A I s− =  

is at most finite dimensional.  

Proof of Proposition 2. The “if” part follows straightforwardly. To show the 

“only if” part, let us consider I , the identity operator  Is s s V= ∀ ∈  where V  is the 

relevant (finite or infinite dimensional) space of penalty functions. Now, As s=  

for all s V∈  implies that ( ) 0A I s− =  for all s V∈ . This implies that 0A I− =  

where ⋅  is the norm for the space ( )B V  of bounded linear operators on .V  Thus 

we have A I=  which completes the proof.  

The proof of propositions 3 and 4 will use the following result: 

Fredholm Alternative Theorem (cf. Keener, 1988). If A  is a bounded linear 

operator in Hilbert space H  with a closed range, the equation Ap s=  has a 

solution if and only if , 0s u =  for every u  in the null space of the adjoint 

operator *A . 

Definition. We say that the equation Ax b=  has an approximate solution if 

there exists a sequence { } 1n n
x ∞

=
 in 2 ( )L μ  with nAx b→ .15 

A Modified Fredholm Alternative Theorem. Let A  be a compact linear 

operator. Then Ax b=  has either a solution or an arbitrarily close approximate 

solution if and only if 

 , 0v b =  for all v  satisfying * 0A v = . 

                                                 
15 Note that { } 1n n

x ∞

=
 may or may not be convergent or even have an accumulation point. 
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Moreover, all solutions in the equation Ax b=  are exact if and only if ran A  is 

finite dimensional. 

 

Proof. Only if part. Suppose that Ax b=  is at least approximately solvable. Then 

there exists a sequence { } 1n n
x ∞

=
 possibly all identical such that n nb Ax b≡ → . 

This implies that for v  satisfying * 0A v =  

 *, lim , lim , lim , lim 0 0n n n n n n nv b v b v Ax A v x= = = = =  

 

If part. Suppose , 0v b =  for all v  satisfying * 0,A v = but Ax b=  does not have 

even an approximate solution. Then r ob b b= +  where rb  is in the closure of the 

range of A  and ob  is in its orthogonal subspace. Therefore, , 0 ob Ax x= ∀  so that 

* , 0 oA b x x= ∀  which implies that * 0oA b = . Now using the hypothesis of this part 

we have , 0ob b =  which implies , 0o o rb b b+ = , that is , , 0o o o rb b b b+ = . 

Since ob is orthogonal to rb  this implies that , 0o ob b =  or 0ob = . 

Hence, ( )cl ranb A∈ , i.e. Ax b=  either has an exact solution or an approximate 

solution. 

 

To prove the second part of the result observe that by Problem 7.1.1 of 

Abrahamovich and Aliprantis, a compact operator has a closed range if and only 

if its range is finite dimensional. Next we show that Ax b=  has only exact 

solutions if and only if ran A  is closed. The if part follows from the original 

Fredholm Alternative Theorem (see above). To see the second part, suppose 

ran A  is not closed. Then there exists a sequence { } 1n n
x ∞

=
 such that limn nb Ax≡  is 

well defined and ran b A∉ . Thus Ax b=  is only approximately solvable.  
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Proof of Proposition 3.  

The modified Fredholm alternative theorem implies that a necessary and 

sufficient condition for at least an approximate solution to the equation 

 ( ) ( | ) ( )
b

a

p y f y x dy s x=∫  

to exist is that 

 ( ) ( ) 0
b

a

s x u x dy =∫  whenever ( | ) ( ) 0
b

a

f y x u x dy =∫  

Now suppose a 2 ( )L μ  function ( )u x  satisfies ( | ) ( ) 0
b

a

f y x u x dx =∫  and does 

not vanish over some positive μ  measure subset. Define 

 ( ) ( ) ( )  and  ( ) ( ) .v x u x u x w x u x= + =  

Then v  and w  are non-negative functions satisfying ( ) ( ) ( )u x v x w x= − . 

Also, ( : ( ) 0) 1x u xμ = <  implies that ( ) ( )v x w x≠  over a set with positive measure. 

 Next ( | ) ( ) 0
a

a

f y x u x dx =∫  implies that 

( | ) ( ) 0
b b

a a

f y x u x dxdy =∫ ∫  ⇒  ( ) ( | ) 0
b b

a a

u x f y x dydx =∫ ∫  ⇒  ( ) 0
b

a

u x dx =∫  

i.e. 

 ( ) ( )  (say)
b b

a a

v x dx w x dx K= =∫ ∫  

Since v  and w  are non-negative functions satisfying ( ) ( )v x w x≠  on a set 

with positive measure, 0K > . Thus 

 
( ) ( )( )   and  ( )v x w xv x w x
K K

= =  

are probability density functions satisfying 
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 ( | ) ( ) ( | ) ( ) .
b b

a a

f y x v x dx f y x w x dx=∫ ∫  

Thus the necessary and sufficient condition above can be restated as that 

for two densities ( )v x  and ( )w x  

( ) ( ) ( ) ( )
b b

a a

s x v x dy s x w x dy=∫ ∫  whenever ( | ) ( ) ( | ) ( )
b b

a a

f y x v x dy f y x w x dy=∫ ∫  

In other words, ( | )f y x  separates any pair of densities ( )v x  and ( )w x , i.e. 

 ( | ) ( ) ( | ) ( ) ,
b b

a a

f y x v x dy f y x w x dy≠∫ ∫  

whenever ( )v x  and ( )w x  give rise to separate expectations for ,s  i.e. 

 ( ) ( ) ( ) ( ) .
b b

a a

s x v x dx s x w x dx≠∫ ∫   

 
 
Proof of Proposition 5 

Let Y  be the observation with a conditional distribution ( | )F y x . Define 

( )Y xε μ= − , which has a distribution ).|)(()|( xxFxH μεε +=  The corresponding 

density is ( | ).h xε   Recall that µ(x)=E[Y|x] and σ2(x)=E[(Y—µ(x))2|x]  so that 

0]|[ =xE ε    and  ).(]|[ 22 xxE σε =  

For any 0>b  but small let ),(~ bp •  solve (suppressing the limits in the 
integrations) 

 1( , ) ( | ) ( ( ))p z b b h x d s zε ε ε μ−+ =∫         (P5.1) 

Our hypothesis guarantees that the functions ),(~ bp •  exist for all small 0.b >  

Existence in the case of 0=b  is, of course, immediate from the monotonicity of 

).(xμ  
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Our target is the solution at 1=b .  Note that 1( ,0) ( ( ))p z s zμ−= , so that 

1
1( ,0) ( ( ))dp z s z

dz
μ−=  and 

2
1

11 2( ,0) ( ( )).dp z s z
dz

μ−=  

Taking the derivative with respect to b of both sides of equation (P5.1) 

above we have 

 [ ]1 2( , ) ( , ) ( | ) 0p z b b p z b b h x dε ε ε ε ε+ + + =∫ , 

which at 0=b  gives 

 1 2( ,0) ( | ) ( ,0) ( | ) 0p z h x d p z h x dε ε ε ε ε+ =∫ ∫  

or, 2 ( ,0) 0.p z =  This also implies 0)0,(12 =zp . 

Taking the second derivative with respect to b of both sides of equation 

(P5.1), we have 

 2
11 12 22( , ) 2 ( , ) ( , ) ( | ) 0p z b b p z b b p z b b h x dε ε ε ε ε ε ε⎡ ⎤+ + + + + =⎣ ⎦∫ . 

Setting 0,b =  

 2
11 12 22( ,0) 2 ( ,0) ( ,0) ( | ) 0p z p z p z h x dε ε ε ε⎡ ⎤+ + =⎣ ⎦∫  

or,  

)0,(~]|[)0,(~0 22
2

11 zpxEzp += ε  

Hence 
                  ]|[)0,()0,(~ 2

1122 xEzpzp ε−=  

                                            
2

2 1
2 ( ( ))d s z

dz
σ μ−= −  

 
Now we use the second order approximation on the first argument of 

p(x,b): 

 

1 2
2 22

2
1 2 2 1

2

1( , ) ( ( )) ( ,0) ( ,0)
2

1                ( ( )) ( ( ))
2

p z b s z bp z b p z

ds z b s z
dz

μ

μ σ μ

−

− −

≈ + +

= −
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At b=1, 
2

1 2 1
2

1( ,1) ( ( )) ( ( ))
2

dp z s z s z
dz

μ σ μ− −≈ −  

 
It is straightforward at this point to see that scaling the error down and 

scaling b  up in the same amount keeps the entire calculation the same. Hence, 

1b =  is without loss of generality and we have the result.  
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