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Abstract

The importance of Total Factor Productivity (TFP) in explaining output
changes is widely accepted, yet its sources are not well understood. We use
a proprietary data set on the floor-level operations at the Bhilai Rail and
Structural Mill (RSM) in India to understand the determinants of changes
in plant productivity between January 2000 and March 2003.
During this period there was a 35% increase in output with minimal

changes in the stock of physical capital or the number of employees, but
sizable reductions in the number and duration of various types of production
delays. We model interruptions to the production process as a function
of worker characteristics and find that a large part of the avoidable delay
reductions are attributable to training. Overall, changes in all delays account
for over half the changes in productivity.
Our results provide some explanation for the large within-industry dif-

ferences in productivity observed in developing countries and also suggest
that specific knowledge-enhancing investments can have very high returns.
Our approach also provides an example of how detailed data on production
processes can be fruitfully used to better understand TFP changes, which
have typically been treated as residuals in growth-accounting exercises.
Keywords: Total Factor Productivity (TFP), Plant level data, Competi-

tiveness and trade.
JEL Classification: D24, J24, L23, L61, M53.



1 Introduction

This paper studies a remarkable improvement in productivity that occurred
at the Bhilai Rail and Structural Mill (RSM) in India over the period 1999-
2003. Prior to 1999, the Bhilai RSM was the sole supplier of rails to Indian
Railways. A series of train wrecks, culminating in a major accident that
killed 210 people in 1998, led to investigations. The accidents were found to
be due to sub-standard rails. These rails were produced using steel with high
hydrogen content, which made the steel brittle, and the rails substandard.
This finding resulted in the suspension of rail purchases by the Indian Rail-
ways from the Bhilai RSM and new, more stringent, specifications for future
purchases were introduced.1 The government was under pressure to import
rails in 1999, and in fact did so. Questions were raised in parliament and the
government was contemplating allowing private players into rail production.
In this setting, the RSM faced not just competition, but a threat to its very
existence. A productivity surge ensued. How was this surge obtained? What
lessons can be drawn from their experience? These are our main questions.
Total Factor Productivity (TFP) is widely used as a measure of per-

formance in firm, industry and more aggregate country-level studies. By
definition, this is the increase in output that cannot be attributed to changes
in observable inputs. Despite it being a mere residual, it has been found to
be important in explaining income differences across countries. For exam-
ple, Hall and Jones (1999) find that in the 35-fold difference in output per
worker between the United States and Niger, TFP differences explain about
twice as much as differences in physical and human capital. Within-country
differences in TFP have also been shown to be large for developing countries.
Hsieh and Klenow (2008) use plant level data to show that TFP in India and
China is much more dispersed than in the US. Rationalization of production
that would bring this dispersion down to US levels could raise output by
30-50% in China and 40-60% in India.
A large range of institutional and policy variables could lie behind these

TFP patterns, such as access to credit, physical and social infrastructure,
technological spillovers and managerial practices to name just a few. While
the above studies and much of the literature treats TFP as a black box and
evaluates its response to policy changes through its correlation with a handful
of observed variables, more recent work tries to go even deeper.

1Hindu Business Line, June 9, 2000, Indian Express, December 12, 2004.
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This line of work is aided by the fact that very detailed data are collected
by the businesses themselves as a part of their normal practice and are in-
creasingly accessible to researchers.2 The use of such information could help
shed light on the types of allocative ineffi ciencies that underlie variations in
productivity. However, developing ways of using such data is a challenge in
itself! We utilize a simple and convenient framework that could be applied to
a wide range of industries using the information available in floor-level data.
The dataset that guides us in this effort documents daily operations at

the Bhilai RSM. The mill operates continuously with 3 production shifts per
day. We obtain shift-wise data on the number of steel blooms rolled into
rails in each shift, a list of all workers present during the shift (with their
designations), and all delay episodes with their duration and a description
of the cause of the delay. We combine these data on the production process
with administrative data on worker characteristics and all types of training.
Even though the overall number of workers remained relatively unchanged,
the numbers and combination of workers on the floor changes from one shift
to another, and we use this variation to estimate the determinants of output
changes.
Our focus on the details of production processes can be seen as a part

of a wave of work that relies on insider data to capture details of what
is going on inside the firm. This could be detailed data on the floor that
provides an objective view of what is happening there, more subjective data
about management practices, or purely subjective data about something,
such as job satisfaction. This “bottom-up”approach has been at the frontier
of research in both economics and management. Our work is most closely
related to that of Ichniowski et al. Ichniowski et al. (1997) use monthly data
to look at the productivity effects of human resource management practices
for 36 steel finishing lines across the United States. They find that workers
in plants with traditional employment contracts and hierarchical supervisory
structures are less productive than those in firms with innovative practices.
A major source of this productivity gain is increased uptime. Also related
is the work of Das and Sengupta (2004), who study blast furnaces making
steel in India. They find that productivity increased by raising the quality
of coal used, but that managers did not contribute to production unless they
are trained. Another example of work that uses “insider”data is Bloom and

2Such work has been labelled “insider econometrics” as only insiders typically have
access to such data, see Ichniowski and Shaw (2008).
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Van Reenen (2007), who use survey data evaluating management practices
combined with balance sheet data to estimate TFP in order to see if the two
are correlated. This work can be contrasted to the usual approach that treats
the firm as a single entity and uses aggregate factors of production like labor
and capital without specifying explicitly what happens inside the firm.
Also related is literature that examines the response of TFP to com-

petition. Galdon-Sanchez and Schmitz (2005) show that when competitive
pressures mounted in the market for iron ore due to the collapse in the
market for steel in the early 1980s, countries with mines that were close to
becoming non-competitive increased effi ciency, while others did not. Schmitz
(2005) argues this effi ciency increase came about from improved work prac-
tices. Loosening restrictive work practices increase labor productivity both
because it allowed excess staff to be shed, but also because it allowed down
time to be cut so that the mine machines can operate for longer parts of the
day.
In our data, we also find that productivity increases occurred at a time

when the plant was under severe competitive pressures due to their inability
to produce rails to quality specifications. An interesting contrast with other
studies is that we find increased uptime in the absence of any sizable changes
in employment. Other work on competition and productivity includes Caves
and Christensen (1980) , Rodriguez and Rodrik (1999), Tybout et al. (1991),
Tybout and Westbrook (1995), Trefler (2004) and Nickell (1996).
While we do not have data on plants not threatened by closure to compare

to those that were, we do have much finer data on a single plant during events
that led to increased competitive pressure. Our data is far more detailed and
extensive than that in any previous work in the area which allows us to
look at what occurred on the shop floor and suggests where the apparent
productivity improvements came from. We find that the lion’s share came
from reductions in preventable delays and increases in the rate of production.
However, there were no changes in work rules that were constraining effi ciency
in our case. Instead, the main causes of improvements were the programs of
employee training, better supply of quality raw materials and investments in
new equipment.3

The plan of the paper is as follows. Section 2 provides some background
of the BSP and the technology of production. Section 3 provides an overview

3These do not seem to have been very costly so the puzzle is why these were not
undertaken previously!

3



of the data. Section 4 decomposes output growth into its component parts,
that due to changes in rates of production, in delays and in the fraction defec-
tive and explores the patterns in each of these. Section 5 models production
focusing on delays and fits it to the data. Section 6 develops some counter-
factual experiments to identify the contribution of the various policies that
might have led to the growth in TFP. Section 8 outlines the lessons learnt
and concludes.

2 Background

The Bhilai Steel Plant covers about 17 square km. It provides work for
roughly 55,000 regular workers and another 12,000 contract workers. Em-
ploying contract workers is a way around the restrictive labor laws that essen-
tially prevent the firing of a worker. The jobs of regular workers are secure,
with excellent fringe benefits including schooling, health care and housing, as
well as travel benefits and ample leave (51 days a year).4 As a result, these
jobs were, and by all accounts remain, highly valued.
The description of the work environment is in some ways contradictory.

On the one hand, we have the descriptions of life in the Bhilai Steel Mill from
the social anthropology side as in the work of Parry (1999). His description
is of a work environment where bursts of effort alternate with periods where
little real work is required. Though shifts are 8 hours long, few workers stay
for more than half of the shift and many for far less. Even when technically
at work, much time is spent drinking tea and reading the newspaper, or
just roaming around as there is far more labor on the books than needed.
This is not surprising as there is little reason for workers to put in effort.
There is little correlation in pay and performance, and much more between
pay and seniority. Even overtime was abolished when it was determined
that it encouraged workers to put off work so as to obtain overtime hours
and earnings. Absenteeism is high, especially during peak demand times in
agriculture. In fact, in Parry’s mind, the real puzzle is why, despite little
reason to do so other than a feeling of self respect and job satisfaction, a
good share of them seem to work.
The other view is that which we obtained from field visits. Work on the

floor of the mill is hard and intense and is often performed under adverse

4Much of the description below is based on Parry (1999), which is a must for the
uninitiated. Not only is it informative, but it is just plain fun to read!
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circumstances as the temperature on the floor can be quite high. While some
stations have air conditioning, the floor does not and exposure to the heat
from the furnace, especially during the hot summer months, creates extreme
conditions. In addition, managers seem to put in long hours and pitch in
where needed.

2.1 The Rail and Structural Mill

The Rail and Structural Mill is an integral part of the Bhilai Steel Plant
(BSP). It was commissioned in 1960 with enough capacity to satisfy domes-
tic demand at that time. Since then, it has been the sole supplier of rails
for Indian Railways. The plant has had problems keeping up with orders
from the Railways, although the stated objective of management was output
maximization.
In 1998 and 1999, after a string of train accidents, which were supposedly

caused by high hydrogen content in the rail steel, the Railways committed to
using steel of higher quality. This quality could not be consistently provided
by BSP at that time. Consequently, Indian Railways suspended orders from
the BSP and switched temporarily to imports.5

At this time there was considerable questioning of the ability of the BSP
to adequately provide the rails needed by the Railways. Imports from China
and opening up the market to domestic entrants was considered. A question
was even raised in Parliament on this issue. Combined with the liberalization
on the domestic and import side that India has undertaken since the late 90’s,
this put pressure on the RSM to perform. Workers were suddenly aware their
plum jobs were at risk. If competition forced the mill to close, they could all
be legally fired.

3 Data.

In order to model production, we need to understand how the rail mill oper-
ates. The details of this are contained in Appendix 1. In a nutshell, the inputs
(“blooms”) enter the rail mill from the “bloom yard” and pass through dif-
ferent sections in a sequential process. In this process, they are transformed

5According to the UN Comtrade data, in 1999 India imported 92,000 tons of rails. This
is almost three times as much as it used to import in 1998 and more than eight times as
much as it imported in 2007.
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into not defective rails, or what is termed “blooms rolled”. The rails are kept
in the “cooling bed” before being going to the “finishing bay” to be cut and
stacked. Defective blooms (“blooms cobbled”) are set aside. The production
cycle at the Rail and Structural Mill runs 24 hours a day, 7 days a week,
with very rare shutdowns for service and repairs. A typical day consists of
three 8-hour shifts. For each of these shifts the available data includes total
input of steel, the total output, the share of defective output, the date, time,
the identities of workers who were present on the floor, their characteristics,
such as age, years worked, caste, education, training, as well as the reason
for and length of each delay in production that occurred during the shift.
More on the data is below.

3.1 Shifts and Brigades

There are 3558 total shifts in the dataset, covering the dates between January
1, 2000 and March 31, 2003. We dropped year 1999: at that time, the
problem of high hydrogen content has not been solved and the mill seems to
have been intentionally operated below full capacity.6

Shifts are operated by brigades —groups of workers relatively stable over
time. There are more people in a brigade than typically work in a shift,
allowing for days off on the part of workers. The brigades are rotated weekly
across shifts: if a brigade works the morning shift on week 1, it is switched
to work the afternoon shift on week 2 and so on. Overall, labor on the floor
per shift increased only by a bit less than 10%, while output rose by more
than 35%.

3.2 Workers

We have detailed information on employees. First, there is an attendance
sheet for each worker, which lists the shifts he spent on the floor, as well as
his designation in the production process. We can track people as they are
transferred across brigades, get hired, fired or promoted. The data allows us
to control for the composition of labor force, which is not possible in more
aggregate studies.
Second, we have information on the social background of the personnel,

including caste affi liation and home state. As informally observed by Parry
6This can be clearly seen in Figure 7; the rolling rate was remarkably low throughout

most of 1999.
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Table 1: Categories of training

Category Days spent Days, %

Motivational 511 27

Productivity 479 26

Environmental 184 10

Quality Control 165 9

Cost Reduction 135 7

Safety 131 7

Computer Skills (IT) 61 3

Job Instruction 57 3

Other 151 8

Total 1874 100

(1999), the local population of Bhilai experienced tensions with the newcom-
ers, who had often moved from other states of India to work at the plant.
Potentially, communal conflicts like this may be strong enough to impair
cooperation at the workplace and decrease productivity. We use both caste
and home state data to account for this possibility.
Finally, we obtained very detailed data on training programs administered

to the employees. Each program is given a brief description, a list of trainees,
a starting and an ending date. The programs can be roughly split into nine
categories by the purpose and the targeted skill: motivational, productivity,
environmental management, quality control, cost reduction, safety, computer
skills, job instruction, other training (see table 1).
On average, the recipients were less experienced than their peers.7 Some

training was conducted because it helped in obtaining International Organi-
zation for Standardization (ISO) certification. Most programs did not seem
to target any particular designation; only few of them focused on a narrow

7This is especially noticeable for the computer skills, cost reduction, safety and moti-
vational training types.
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workplace-specific skill. With minor exceptions, training was administered
to big groups of workers rather than individuals. Below is the list of the four
biggest programs; they account for two thirds of total training time.

1. Acceptance of rails program —accounts for 22% of total training time,
administered in June—July 2001, productivity category;

2. ISO-9000 workshop —9% of total training, two episodes: May 2001 and
March 2002, quality control category;

3. ISO-14001 workshop —10% of total training, January 2002 and July
2002, environmental management category;

4. Success through empowerment of people —24% of total training, Octo-
ber 2002 —January 2003, motivational category.

3.3 Delays

We have comprehensive information on delays, their durations and causes.
Delays are of four kinds. First, there are “outside delays”; these are denoted
by Do, and usually occur due to events outside the control of the managers,
such as shortages of steel, electricity or gas. These may be unanticipated, as
in the case with gas shortages, or anticipated but unavoidable as in the case
of electricity blackouts or load shedding.
Second, there are finishing delays, Df . These are delays caused by the

finishing bed being full and unable to accept more rails. This is a downstream
constraint that can shut down or slow down production in the mill.
Third, there are planned delays, Dp, which are used for scheduled main-

tenance or adjustments of equipment.
A fourth kind of delay is the most important one for our analysis; it con-

sists of unplanned delays avoidable for the brigade and is denoted by Da.
These are the delays caused by workers making mistakes. We will argue that
reductions in Da made possible notable productivity improvements at the
RSM during the time period of interest.
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4 Decomposition of Output Growth.

In this section we define an analog of the production function. We formulate
it in terms of variables that are either directly available in the data or can
be easily calculated. This way, we utilize the information on the internal
structure of the process instead of relying on the totals of raw inputs and the
final output as most of plant-level studies usually do.
Let Xs denote the total number of steel blooms used by the brigade on

duty during shift s. Some part, ps, of these blooms are successfully rolled
into rails, while the remaining ones get “cobbled”and removed from the line
as defective. The final output is

Ys = psXs.

The number of blooms the brigade is able to process is the product of
uptime Ts and rolling rate Rs

8:

Xs = RsTs.

Since we know the uptime and the input of steel for each shift, we can infer
the processing rate as Xs/Ts. Uptime makes 480 minutes less time spent in
delays of all kinds:

Ts = 480−Do,s −Dp,s −Df,s −Da,s.

Combining these three equations we obtain:

Ys = psRs(480−Do,s −Dp,s −Df,s −Da,s). (1)

As mentioned above, we know precisely what type of product was rolled
in each shift.9 To be sure, our statistics are not contaminated by movements
in the product mix, we only keep “rail”shifts in the sample.10

8Das and Sengupta (2004) refer to R and T , as the rate of output and the rate of
utilization.

9From discussions with the management we gathered that the product mix is not
driven by price/cost margins (in any case prices are administerd and not market) but is
demand driven since this is a public sector undertaking. As the mill is the sole supplier
for Indian Railways, they first produce what the Railways need. The buyers of structural
steel are big public sector firms such as BHEL and NTPC with whom they have long term
relationships. Production decisions do not depend on prices, but rather on excess capacity
after rail demand is satisfied. In coming years they expect proportion of structural output
to go up as other firms enter the rail market.
10The reason why we chose not to analyse structural shifts at all is because their output

is very heterogenuous (beams, angles, channels, crane rails, steel sleepers) and they account
for too few observations in 2003 to produce reliable growth statistics.
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Figure 1: Output per shift

Average output per shift grew from 158 blooms in the first quarter of
2000 to 214 blooms in the first quarter of 2003, a 35% increase (see Figure
1).11

As equation 1 suggests, there are six parts of the production function
that may be responsible for this growth: ps, Rs, and four downtime values
Dx,s.12 In the remainder of this section, we study each of them in more detail.
However, before proceeding further, it is useful to compare the importance
of these variables by looking at their contributions to output growth. By
definition, the percentage change in blooms rolled equals the sum of the
percentage change in ps, Rs, and uptime. The change in uptime can be
further decomposed into its component parts as done in Table 2. For example,
the contribution of outside delays to growth in total uptime is (46.8−31.9)

183−129 =
.276 ≈ .28.
11It is interesting to draw a comparison to a case from the similar industry studied by

other authors. Ichniowski et al. (1997) found that the introduction of new human resource
management practices accounted for 2-8% growth in output of the U.S. steel finishing lines.
12This is slightly richer than that in the literature. Ichniowski et al (1997) for example,

focus only on the increase in uptime as the major source of productivity improvements.
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Table 2: Components of the production function and their marginal contri-
butions to output growth

Q1 2000 Q1 2003 Growth

p 0.987 0.995 3%

R 0.54 0.614 42%

(480−D) 297 351 55%

Do 46.8 31.9 28%

Dp 90.4 72.5 33%

Df 2.41 2.22 0.35%

Da 43.6 22.7 39%

D 183 129 100%

Y 158 214 100%

According to table 2, finishing downtime and fraction non-defective do not
seem to be very important. The other two, Do and Dp, contribute greatly,
but represent the delays that are unavoidable to the workers, and thus are
exogenous to a certain degree. The remaining variables, R and Da, are
determined on the mill floor and make a substantial contribution to the
increase in output, and hence warrant most of our attention.

4.1 Fraction Non-defective

The growth in the non-defective fraction is about a percentage point (Fig-
ure 2). This variable contributes very little to productivity growth per se.
However, the same figure also shows that the percentage of defective rails
fell from 1.3% to 0.5%, a fall of more than a half. The fraction defective is
significantly higher in structurals than in rails (1.7% vs. 0.6%), so the overall
reduction of defects is largely attributed to the change in the composition of
output towards rails.
Like avoidable delays, defectives are associated with mistakes on the part

of workers. This is consistent with the data: the correlation between share
defective and avoidable downtime is positive and significant at the 1% level.
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Figure 2: Fraction non-defective

These two variables appear to be closely related to each other. Hence, their
effect on output will be more apparent in changes in avoidable delays than
directly via a reduction in defectives: hence we do not look any more at the
direct effect of defectives.

4.2 Delays

A regular shift rarely runs without delays in production. Delays make a
considerable part of a work day; during fiscal years 2001—2003 they accounted
for 30% of an average shift time.

4.2.1 Avoidable delays

The avoidable downtime decreased by almost half, from 43 minutes per shift
in the first quarter of 2000 to 22 minutes in the first quarter of 2003 (Figure
3). The outlier in Q2 2001 coincided in time with an unusually long shutdown
in production. According to our information, the time when the mill stood
idle was used for training and equipment replacements. A training episode to
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Figure 3: Avoidable downtime

raise productivity in rails termed the “acceptance of rails program”occurs at
this time.13 The decline in delays that followed may thus have been caused
by either training or equipment replacement. However, it is reasonable to
expect the better equipment is likely to get broken less frequently in both rail
and structural shifts, which is not observed in the data (for structurals, the
avoidable downtime becomes even higher in Q4 2001). The training program
explicitly focused on raising the output of rails, which is consistent with the
observed decrease downtimes during rail shifts, but not structural ones.
Although delay descriptions are available in the data, it is rather prob-

lematic to locate the source of each delay on the process chart in Figure 10.
In each case, there is no reference to any person or group who were at fault,
so we can only rely on management’s ability to properly classify delays as
avoidable.
The descriptions look very heterogeneous. Most entries contain one of

these keywords: “not working”, “tripped”, “fallen”, “broken”, “jammed”,
“grinding”, “adjustment”, “crane down”.

13As we argue below, this training episode is the only one that looks like it actually
worked.
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Figure 4: Outside downtime

4.2.2 Outside Delays

The patterns of outside delays were very different for rail and structural shifts
(Figure 4). This is especially noticeable for year 2000, when RSM faced
problems with the supply of low-hydrogen steel. Since hydrogen content is
not so important for the steel used in heavy structurals, as it is for rails,
there was less outside downtime during structural shifts.
More than 60% of outside delays were associated with insuffi cient supply

of inputs (keywords “shortage”, “voltage”, “restriction”) or their bad quality
(keywords “lengthy”, “short”, “bad metal”, “asymmetry”). Some keywords
from the “avoidable delay list” are also frequently used for outside delays
(e.g. “adjustment”, “broken”and “jamming”). However, they account for
less than 20% of observations. Even if some part of this 20% was mis-
classified by the management, this is unlikely to make a dramatic impact
on our statistics.
During 2001—2003, outside delays stayed at approximately the same level,

but were very volatile at the same time. For this reason, they do not notice-
ably affect long-run growth of output, but they do greatly affect quarter-to-
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Figure 5: Planned downtime

quarter fluctuations.
To summarize, there was a striking fall in outside delays in the first and

second quarter of 2001, while after that, the average remained roughly the
same, though there was a lot of variance. Since the fall in 2001 was outside
the control of the mill, we say no more about this.

4.2.3 Planned Delays

After an initial drop in 2000, planned downtime has been slowly increasing
until mid-2002 (Figure 5). We interpret this increase as a natural conse-
quence of higher capital utilization. As output per shift grows over time, the
equipment requires more frequent service. We did not observe any qualita-
tive difference between rail and structural shifts which is consistent with this
interpretation.
The descriptions of delay causes suggest that planned delays were pri-

marily used for regular maintenance. More than 90% of planned delays
were associated with “checking”, “adjustment”and “changing”of “section”,
“stand”or “hot saw disc”.
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4.2.4 Finishing Delays
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Figure 6: Finishing delays

Finishing delays fluctuated around 5—6 minutes per shift in 2000—2003
(Figure 6). This is a very low level compared to all other delay categories.
Finishing downtime change does not contribute much to output growth per
se. However, it serves as a source of information about downstream bottle-
necks that may restrict the productivity of the mill.
Finishing delays occur at the final phase of production —when the rails

are coming from the Hot Saw section to the cooling bed. There is only one
cause listed for all finishing delays: “cooling bed full”. If there is no suffi cient
space on the cooling bed, the operations at the Rail Mill are halted until the
space becomes available.14

14To check for consistency of this story, we ran a regression of finishing delay on the
performance measures of the upstream sections: processing rate, fraction non-defective,
outside, avoidable and planned delays. If it is true that the worse Rail Mill personnel
perform, the easier it is for downstream workers to keep up and not cause finishing delays.
According to the estimates, delays at the rail mill lead to lower finishing downtime.

The processing rate coeffi cient is negative, but not significant. This may be explained by
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Figure 7: Rolling rates
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4.3 Rolling Rates

Figure 7 plots the dynamics of the rolling rate. It includes both heavy struc-
turals and rails.
It is evident from this figure that the rates seem to switch between discrete

regimes. The switching clearly occurs at least three times: on September 15th
1999, November 7th 2000 and September 4th 2002. Within each regime, the
rates are dispersed around some average level that is stable overtime. This
makes sense as dispersion will naturally arise in day to day operations.
Before September 1999, the mill had few orders as it was deemed inca-

pable of producing the required quality. As a result, it was operating far
below capacity. It is recorded that one furnace out of four was running be-
tween Sept. 1999 and November 1999, consistent with the low average rolling
rate in this period.
After this first switch, between September 1999 and November 2000, there

is a period where rolling rates fluctuated from one level to another. In this
period, the mill had limited access to low hydrogen steel from outside. There
are two ways of reducing the hydrogen content in the rails. One is to use
a degasser to make better steel. The other is to accept steel with a high

possible endogeneity: the workers at the Rail Mill may slow down when the cooling bed is
nearly full. Overall, the data seems to support our understanding of how finishing delays
occur.
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Figure 8: Finishing and outside delays
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hydrogen content but to cool the rail slowly, allowing hydrogen to escape
(see Rai and Agarwal (2007)). The mill installed a degasser in early 2000.15

It took six months or so to get consistent operation out of this unit, and
until October of 2000, it was not fully effective. Note the high and variable
levels of outside delays and finishing delays as depicted in Figure 8 (consistent
with using the finishing bed to slowly cool the rails to reduce the hydrogen
content) in this period.
After November 2000, the degasser was running consistently, and this is

reflected in the higher, more stable, rate pattern. Finally, the regime switch
that took place on September 4th 2002 is explained by the installation of
some new equipment. We identify this using delay cause descriptions. On
September 4th, a new delay cause started appearing in the data; it is listed as
“jamming at new descaling unit”. This delay occurred nine times in the first
three days following the regime switching. Gradually, its frequency declined
to five occurrences per quarter. Since the increase in the rolling rate occurred
simultaneously with the installation of the new equipment, we conclude that
the former was likely to be caused by the latter.
Overall, it seems fair to say the long run dynamics of the rolling rate seem

15It is recorded that the degasser was put in for hot trials in March 2000 (Hindu Business
Line Newspaper, June 9th 2000.) The Degasser was effective October 1st 2000, as recorded
in the controller general report 2003.
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to be determined by technological considerations and the outside constraints
operating.

5 A Semi Structural Model of Production

Now we turn to estimating the production model. We could do so at various
levels of reality. One way would be to model the process on the computer, in-
cluding all interactions that occur at various stages of the production process.
For example, in practice, whenever any upstream delay occurs, it makes the
downstream finishing delay less likely, as rails can exit the cooling bed during
this time. Then, we could choose some arbitrary values of the parameters
of the generating process, generate data using these parameters, then choose
the parameters to best match the relevant moments of the generated data to
the actual data.16 This SMM (simulated method of moments) approach is
widely used in structural estimation.
We choose a more simple route to begin with that does not allow feedback

loops to be present. While such loops are undoubtedly part of reality, they
result in enormous complications for the estimation, but we hope to graduate
to incorporating them in future work.
We build the following stylized model of the Rail Mill. Each bloom that is

sent to the Rail and Structural Mill triggers the following sequence of events:

1. A steel bloom is fed into the furnace area for reheating.

2. An event may occur at this point, call it an “outside event”. When
this outside event occurs, it triggers an outside delay. We model the
occurrence of the event by drawing a binary variable Mo from the dis-
tribution Pr{Mo = 1}. We assume that the probability of an outside
delay is constant within a calendar quarter q: Pr{Mo = 1} = Po(q).
This will be a rough approximation of the true probability distribution.
As the factors that create delays outside the RSM are not covered in
the data we choose to model them in the simplest possible way.

16For a concrete example, consider an ice cream stall. Customers arrive at random, say
according to a Poisson process. Each customer takes t time to serve. As a result of random
arrival, customers may have to wait in line. This generates a distribution of waiting times.
A similar distribution of waiting times could be generated by the computer for given
parameters of the Poisson arrival process. These parameters could thus be estimated by
making the empirical and simulated distributions of waiting times as close to each other
as possible.
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(a) If Mo = 1, then a delay is triggered. This takes Do minutes,
where Do is drawn from the distribution Fo(Do|Z). We assume
F (.) depends on Z, the characteristics of the brigade on the floor.
Some delays involve intervention by the Rail Mill personnel; this
is why we condition Fo(Do) on Z.17

(b) If Mo = 0, there is no outside delay.

3. The workers make an avoidable mistake (Ma = 1) with probability
Pr{Ma = 1|Z}.

(a) If Ma = 1, it takes Da minutes to fix the mistake. Da is sampled
from Fa(Da|Z).

(b) Otherwise, there is no avoidable delay.

4. The bloom is rolled into the final product. This takes time t where
t = 1/R where R is the rate of production. This rate is set to be the
quarterly rate in the data and so is denoted by R(q), where q denotes
the quarter. As we demonstrated in the previous section, the processing
rate seems to be driven largely by outside factors and is switched rather
infrequently. Since we cannot control for these factors, we approximate
R by quarterly averages.

5. The cooling bed gets full (Mf = 1) with probability Pr{Mf = 1} =
Pf (q). In other words, we set the probability quarter by quarter to
equal the number of finishing delays relative to the blooms rolled. We
do not think we are missing much by doing so as changes in finishing
downtime per se make a very small contribution to output growth.

(a) If Mf = 1, the workers at the Rail Mill stand by for Df minutes
until the cooling bed is cleared. The delay duration Df is drawn
from Ff (Df ). It does not depend on Z, since Rail Mill personnel
are not involved into clearing the delay.

(b) Otherwise, no finishing downtime is registered.

17For example, flooding in the rainy season requires darainage of the affected area before
production can be resumed.
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6. With probability p the final product is non-defective, and this is set at
the share of non-defective blooms quarter by quarter and so is denoted
by p(q). Again, we lose little by doing so since its contribution to
output dynamics is small.

7. The equipment requires maintenance (Mp = 1) with probability Pr{Mp =
1} = Pp(q). Again, this is proxied for quarter by quarter by the number
of planned delays relative to blooms rolled. Though it can be argued
that planned delays are neither low, nor exogenously determined, ap-
proximation by quarterly averages should be precise enough, as long as
the equipment requires uniform servicing per unit of input.

(a) If Mp = 1, Dp minutes are spent in a planned delay, where Dp is
drawn from Fp(Dp|Z).

(b) If Mp = 0, no maintenance is scheduled.

8. The process is repeated starting from step 1.

We assume the processes that generate delays of various kinds have a logit
form. For avoidable delays the probability of a delay depends on brigade
characteristics, so

Pr{Ma = 1|Z} = (1 + exp(−θaZ))−1.

For other delays this probability is allowed to vary by quarter only, thus

Pr{Mx = 1|q} = (1 + exp(−θx(q)))−1, x = o, p, f.

Turning to the length of the delays, the distributions Fx(Dx|Z) for x ∈
{a, o, p} are assumed to take the gamma form18 where the shape parameter,
β, is allowed to depend on Z while the scale parameter, λ, is not. Thus:

f(Dx|Mx = 1, Z) = DβxZ−1
x

e−Dx/λx

λβxZx Γ(βxZ)
, x = a, o, p.

We chose the Gamma distribution for its flexibility and as it fits the
data quite well. In Appendix 2 we plot the actual data and show that the

18In the data, the shape of downtime distribution seems to be well approximated by the
exponential family, which is a special case of the gamma family. Exponential distribution
is commonly used in queuing theory to model service times.
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fitted gamma distributions do a good job approximating the data. The other
reason we choose this form is that it allows for a simple interpretation of the
estimates. Assume the observed delay durations come from the sum of delays
caused by each individual on the floor and that these individually generated
delays are independently generated. Then if the delays of a single worker come
from the gamma distribution Γ(αi, λ) where αi is the individual characteristic
of worker i, by the summation property of the Gamma distribution, the total
delay is distributed as Γ(Σiαi, λ). This property makes the estimates easy to
interpret.
We assume that Ff (Df ) takes a similar gamma form but with the addi-

tional restriction that the shape parameter is not dependent on Z, though it
is allowed to vary by quarter. Thus

f(Df |Mf = 1, q) = D
βf (q)−1
f

e−Df/λf

λ
βf (q)

f Γ(βf (q))
.

Recall that the mean of the gamma distribution is given by λβZ, while
the variance is λ2βZ. Thus, our parametrization (for all but the finishing
delay) allows both the mean and the variance of the delays to depend on
who is on the floor. For finishing delays, it allows the mean and variance to
vary by quarter only.
We could estimate the model we describe by using SMM techniques. If

there are correlations between the random processes in the model we would
have no choice but to do so or to use some other such technique. To stay
simple, we further assume that all random processes in the model (Mx, Dx)
are jointly independent conditional on Z. This means the only correlation
between outside, avoidable and planned delays goes through the brigade on
the floor. This assumption allows avoidable, outside and planned delays to
be estimated independently of each other.
We estimate βx and λx by applying the method of maximum likelihood to

the sub-sample of blooms with positiveDx. We do this independently for x =
a, o, p, f (avoidable, outside, planned and finishing delays). The unknown
parameters are straightforwardly estimated by using maximum likelihood. It
is well known that this likelihood function is concave and so has a unique
maximum. See for example, Choi and Wette (1969). For completeness, we
provide a sketch of the proof in Appendix 2.
We estimate the probability of delays of various forms by applying the

logit model to the sample of all rolled blooms.
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6 Estimation

We begin by describing the variables we use in our estimation.

6.1 Brigade Characteristics

The vector of brigade characteristics Z includes labor by designation (LABOR_X),
diversity indices (LOCAL_MIX and CASTE_MIX), and training by cat-
egory (SSTOCK_X).

6.1.1 Labor

The technological process is organized around ten groups of workers. Seven
of them are assigned to a particular section of the line (see Figure 10) in
Appendix 1. The other three groups are Executives, Crane operators and
Technicians, who may appear at any stage of the process. Since different
groups perform different tasks, we treat them as separate types of labor.
We construct ten total labor variables for each shift: number of workers
in the Services group (LABOR_SERV ), in the CM (control men) group
(LABOR_CM), and so on. The variables are mnemonically defined to
correspond to the labor groups in Appendix 1.

6.1.2 Diversity

Effi ciency of labor depends greatly on the level of cooperation within work-
ing groups. Communal and social tensions could hinder cooperation, which
would make labor productivity decline.
In his study of Bhilai working communities, Parry (1999) observed the

local population was increasingly anxious about the inflow of newcomers.
At the same time, he rejected the claim that people of different castes are
uncooperative at the workplace.
To allow for a possible link between communal tensions and productivity,

we look at two dimensions of diversity: home state and caste affi liation. We
construct an index for both of them:

LOCAL_MIX = min(Slocal, 1− Slocal),
CASTE_MIX = min(Sscst, 1− Sscst),

where Slocal is the share of locals in a brigade, and Sscst is the share of workers
from scheduled castes (backward castes) and tribes.
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6.1.3 Training

Brigade characteristics also include training obtained by the workers. For
each individual in the sample we construct nine training stocks —one per
category of training as defined in Table 1:

ISTOCKX(w, s) =
∑
t<s

TRGX(w, t)

X =MOTIV, PROD,ENV IR,QC, SAFETY,

COST, IT, JOBINST,OTHER.

That is, an individual stock of worker w on day s equals the total amount of
training administered to him by that date. To obtain shift-level values, we
add up the individual stocks of all workers on the attendance sheet:

SSTOCKX(s) =
∑

w∈attends

ISTOCKX(w, s).

The model is estimated on the sample of “rail” shifts that covers the
period of January 1, 2000 —March 31, 2003. Table 3 presents the results.
The estimates suggest that more labor does not necessarily leads to higher

output. First, note that (column 1 of Table 3) whenever the coeffi cient on the
number of workers on the floor of a given type in explaining the probability
of an avoidable mistake is significant, it is positive. Second, there is no clear
evidence that the mistakes are fixed faster by larger brigades (column 2-4 of
Table 3). Hence, an increase in labor input is unlikely to reduce downtime
and raise output per shift. These results are supported by the anecdotal
evidence on overstaffi ng at the BSP given in Parry (1999).
Productivity training seems to lower the probability of avoidable mis-

takes. The effects of ISO 14001 workshop and motivational training are also
significantly negative. However, as we are about to show, they do not survive
a change in model specification.
The estimation results do not support the hypothesis that diversity im-

pairs productivity; on average, caste heterogeneous brigades seem to make
fewer mistakes.
Total labor variables alone might not be able to capture all the rele-

vant dynamics in workforce composition. By looking at total numbers of
employees, we implicitly assume that workers’ characteristics are homoge-
neous within groups. If this is not the case, our estimates may be subject
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Table 3: Estimates of downtime components

Dependent variable Ma, logit Da, ML Do, ML Dp, ML

LABOR_CM 2.75† -0.19 -0.97 0.48

LABOR_COGG -1.24 -0.25 1.24 0.40

LABOR_CRANE -0.26 0.25 3.56∗ -0.23

LABOR_EXEC -5.24 -0.48 0.92 -1.28

LABOR_FURN -0.46 -0.13 -2.10 -0.16

LABOR_GRST 1.78† 0.33 0.58 -0.03

LABOR_SCM 2.54∗ -0.43† -1.13 -0.11

LABOR_SERV 3.14† 0.02 -1.00 -0.10

LABOR_SS 0.65 -0.11 -0.92 0.02

LABOR_TECH 8.18∗∗ -0.21 0.83 0.81

SSTOCK_COST 4.66 -0.03 -3.14 0.19

SSTOCK_ENVIR -7.52∗∗ 0.06 -0.77 -0.72

SSTOCK_IT 2.53 -1.20 3.03 0.29

SSTOCK_JOBINST -4.04 1.30 0.72 1.75

SSTOCK_MOTIV -1.76∗ 0.17 0.71 -0.12

SSTOCK_OTHER -4.71 -1.08 -0.13 0.79

SSTOCK_PROD -4.79∗∗ -0.13 -1.08† -0.08

SSTOCK_QC -1.09 -0.16 -1.97 -0.17

SSTOCK_SAFETY -0.60 0.86 11.90∗∗ 0.89

CASTE_MIX -2.11∗∗ -10.8 -26.0 -18.5

LOCAL_MIX 0.34 -7.47 -36.5 15.6

Observations 418,819 3,366 1,788 5,219

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
Column 1: SSTOCK coeffi cients are scaled up by 1000, LABOR coeffi cients

are scaled up by 100
Columns 2-4: SSTOCK coeffi cients are scaled up by 10λx,

all other coeffi cients are scaled up by λx

Unlisted control variables: brigade dummies
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Table 4: Estimates of downtime components —robustness check with worker
dummies
Dependent variable Ma, logit Da, ML Do, ML Dp, ML

LABOR_CM 1.40 -0.30 -8.36 1.28

LABOR_COGG 0.11 -0.36 1.71 1.23

LABOR_CRANE -3.14 5.22 5.93 1.22

LABOR_EXEC -0.17 0.46 -1.26 -2.26

LABOR_FURN 2.49 -2.30 -19.1 3.85

LABOR_GRST 2.23 1.85 -12.1 1.46

LABOR_SCM 1.22 -0.18 -12.7 0.86

LABOR_SERV 3.82 2.74 -9.55 2.17

LABOR_SS 2.03 2.54 -13.0 0.33

LABOR_TECH -1.24 -1.62 20.0 -4.64

SSTOCK_COST -10.6 2.24 4.14 -2.80

SSTOCK_ENVIR -0.24 -0.77 -0.85 -0.95

SSTOCK_IT -4.73 0.27 21.5 2.61

SSTOCK_JOBINST 68.8∗∗ 4.61 -30.0 5.63

SSTOCK_MOTIV 0.99 -0.21 0.48 -0.60∗∗

SSTOCK_OTHER -4.87 0.45 -3.88 1.06

SSTOCK_PROD -5.96∗∗ -0.43 -1.88 -0.10

SSTOCK_QC -3.18 -1.00 -1.38 -0.46

SSTOCK_SAFETY 4.79 2.88 9.96 0.30

CASTE_MIX -6.18 -92.3 -262 3.67

LOCAL_MIX 0.16 -5.11 46.8 11.8

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
Column 1: SSTOCK coeffi cients are scaled up by 1000, LABOR coeffi cients

are scaled up by 10
Columns 2-4: SSTOCK coeffi cients are scaled up by 10λx,

all other coeffi cients are scaled up by λx

Unlisted control variables: worker dummies
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to the omitted variable bias. To address this issue, we perform a robustness
check. We augment Z by individual worker dummies and reestimate these
equations.
The estimates presented in table 4 confirm our main result: productivity

training significantly reduces downtime. In addition, job instruction training
becomes associated with more frequent avoidable mistakes, while motiva-
tional training seems to reduce the average time spent in planned delays.
Caste mix is no longer significant. Thus, the only robust result is that pro-
ductivity training helps.

7 Counterfactual Experiments

The estimates reported in tables 3 and 4 apply to the separate elements of
the production function. In this section, we put these elements together to
study the impact of counter factual changes in labor, diversity and the stock
of training on the overall output. For example, could run the model with all
the elements that existed at the start of the period. Then we add the effect
of productivity training and see how much of the variation over time this
explains.
To implement this we simulate production bloom by bloom, following the

same multistep procedure outlined in Section 5. Each bloom that enters the
mill takes time 1/R. to be processed if no mistakes or delays occur. If the
model generates the event that a draw from a delay distribution is warranted,
then the delay drawn is added to this time. Many delays may occur and these
are additively incorporated. At the end, there is a probability that the bloom
may be deemed defective, i.e., cobbled, in which case the simulation will trow
this bloom out. This goes on till the 480 minutes of the day are used up.
At the end of each day, the total blooms rolled are generated. We then take
the monthly output generated by the simulation and label this to be the
simulated output. The simulation are run using the parameters estimated in
the previous section. To avoid omitted variable bias, we choose the version
with worker dummies.
In each of our counterfactual experiments, the set of brigade character-

istics is split in two parts: Z = [Z1, Z2]. This split varies simulation by
simulation. The first part contains variables that we freeze at the level of
quarter 1, 2000 in the simulation. The second consists of characteristics that
are allowed to change over time as in the data. This way, we predict the time
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path of output that would occur, had the management chosen not to adjust
the variables in Z1.
We start with simulating a full model, i.e., where Z2 contains all the

covariates:

Z2 = [CASTE_MIX,LOCAL_MIX,LABOR_j,WD, SSTOCK_k]

where j takes all the values for the different kinds of labor and k takes all
the values for the different kinds of training. Z1 is therefore empty. Then, we
incrementally shrink the list of variables in Z2, and observe how simulated
output changes in response.
The results of these experiments are depicted in Figure 9. Panel (a) shows

that the full model does a good job of fitting monthly output data. In the
interest of not over parametrizing the model, we only allow for quarterly
changes in the probabilities of outside, planned and finishing delays. As a
result, if outside delays, for example, are high in a particular week or month,
the model will not pick it up. This is why the model does not track the data
spike by spike, but it does a good job of tracking it on average.
In panel (b), we assume that the diversity indices are kept at the level

of Q1 2000. This does not change output predictions much (compare panels
(a) and (b)). In other words, the effect of changing diversity is very small in
its absolute magnitude.
In the next panel, we impose restrictions on an additional set of variables:

total labor and worker dummies. Now the management does not control the
composition of workforce at all. The fluctuation in output are now driven
by training and the outside factors only. This causes a slight decrease in
predicted output starting in the beginning of 2002 onwards. This suggest
that the adjustments in labor employment and the composition of the work-
ing brigades are unlikely to have been responsible for output growth. This
contrasts the findings by Schmitz (2005), who argues that the productivity
improvements at the US iron ore mines were primarily driven by the reduc-
tions in the excessive workforce. The example of BSP demonstrates that the
inability to fire unnecessary workers need not curtail productivity improve-
ments.
Panel (d) shows what output would be produced if no changes in diversity

or labor composition were allowed and only productivity type of training
were administered to the workers. This way, we shut down the effects of all
training that does not belong to the productivity category. Although the
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Figure 9: Diversity, labor and training, and their overall effects on output

(a) Full model: Z2 = Z
(b) Freeze diversity indices at the level of Q2
2001: Z2 = [LABOR_X,WD,SSTOCK_X]
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(c) Freeze diversity, total labor and worker
dummies: Z2 = [SSTOCK_X]

(d) Freeze all covariates, except for
productivity training:

Z2 = SSTOCK_PROD
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Confidence bands are based on simulation draws only, conditional on the model parameters. They do

not account for the randomness in the parameter estimates.
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latter is the only covariate not frozen in time, the model still fits the data
well.
There is a period in the first and second quarter of 2001 when the model

in panel (d) over-predicts the output. In the panel (c) specification, this over-
prediction is canceled out by something. This something may be the negative
effects of job instruction and safety training. Intuitively, job instruction is
likely to be administered when the workers are hired or promoted to the po-
sitions they never held. In our data, most promotions and hires take place in
the beginning of a calendar year. Thus, the inflow of inexperienced workers
around January 2001 could coincide in time with the job instruction train-
ing, so that this training is associated negatively with productivity. Safety
training also contributes to the downtime; this type of training is likely to
occur in the periods when the management is highly concerned about safety.
Since there is always a trade-off between safety and the speed of production,
there is no surprise that safety training is associated with lower output.
Finally, in panel (e) we fix all covariates at the level of Q1 2000. The

predicted time path of output is driven by the outside factors only, such
as outside mistakes and variations in the processing rate. This experiment
yields a large discrepancy between prediction and the actual data.
The last two panels suggest that productivity training was crucial in

increasing output. Had management done nothing to train the employees,
the growth in output would have been much more modest.

8 Conclusion

In this paper we study a proprietary dataset that documents floor-level oper-
ations at Bhilai Rail and Structural Mill, a unit of Steel Authority of India,
during a time when output increased by about a third in response to ex-
ternal pressures. We provide a decomposition of output changes into six
components: due to changes in the processing rate, the share of defectives
and the four types of downtime. We find that changes in the rate and delays
account for a almost all of the growth. Delays account for about 55% of the
growth. Avoidable, planned and outside delays account for 39, 33, and 28%
respectively of the contribution of all delays.
We then present and estimate a simple model of production that goes

beyond the traditional production function approach and exploits the struc-
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ture of the technological process.19 Our estimated model allows us to turn
on and off various channels through which production could have increased.
By conducting such counterfactual experiments, we show, for example, that
most of the growth in production that came from reductions in avoidable
delays occurred due to a single training episode. We also show that there
were significant changes in rates across quarters that we attribute to the
installation of new equipment.
Our results suggest that training and other improvements have the ca-

pability to increase output significantly. Yet these were not undertaken by
the firm until the threat of closure in the face of non-performance became
dire. In this way, our work suggests that the old fashioned “x-ineffi ciency”a
la Liebenstein (1966) exists today, at least in public sector undertaking like
the Bhilai RSM.
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9 Appendix 1: Production in the Mill

The layout plan of the RSM can be pictured as an assembly line production
process, being made up of different sections, where employees of different
designations work, either individually or in groups (see Figure 10). The
inputs (“blooms”) enter the rail mill from one end and pass through these
different sections in a sequential process, coming out as rails or “blooms
rolled” from the other end or discarded blooms (“blooms cobbled”). Thus,
the final output of the rail mill can be modelled as a combined effort or
output of these different sections with a vertical structure (as production is
sequential) coming from the assembly line feature of the process.
The layout of the rail mill can be divided into 3 sequential parts: the

furnace, the mill area and the finishing area that has a “hot saw area”and a
“cooling bed”.The steel slabs are first reheated in the furnace and then enter
the mill area where they are rolled. Ultimately the final output comes out
in forms of standardized rails or “blooms rolled”from the hot saw area and
goes on to be cooled on the cooling bed.
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Figure 10: Production process

The production process has a sequential as well as a hierarchical structure
of employment. At the top of the operational hierarchy are the executives
(designations: Roller and Foreman), who interact with the heads of non-
executives. The furnace area is headed by Master Operative (reheating) and
in his absence by Senior Operative (reheating). The mill area is headed by
the Assistant Roller.
Let us first describe the furnace area of the rail mill. The first three

pulpits are used for recording of the inputs that come through. The Services
group (designations: Operative(services) and Senior Operative (services))
do the recording job and pass on the information to the Master Operative
(reheating) before the inputs enter the main production process.
The next three pulpits in the furnace area are manned by the Control

Men, where each of them works individually. Within a shift, there maybe
more than three Control Men, but at any given point of time only one of
them mans each pulpit. They are responsible for pushing the blooms into
the furnace and also for pushing out the intermediate output into the mill
area.
In the furnace area, there also works a group of people of different des-

ignations, who are responsible for the proper working of the furnaces —they
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see to it that there is no jamming or jumping in the furnace during the pro-
duction process. We call this group the Furnace Maintenance group, which is
made up of the Operative (Furnace), Senior Operative (Furnace) and Senior
Operative (Reheating).
We next come to the mill area. The next three pulpits are the most

important sections of the rail mill in the sense that the chance of having
“blooms cobbled”occurs here. Pulpit 6 is manned by a group of Coggers,
Manipulators and main Motor Operators designated as the Cogger group.
Pulpits 7 and 8 are manned by a group of Control Men (Mill), Senior Control
Men and Main Motor Operators designated as the SCM group.
Next we come to the biggest section of the rail mill, the ground stand and

roll building area. We call this group the Ground Staff, which is comprised
of the Roller (executive), the Assistant Rollers (head of non-executives in the
mill), the Senior Operatives (Roll Building), the Operatives/Senior Opera-
tives (Mill) and the Plant Attendant.
Finally we come to the Hot Saw area and the stamping machine. Here

we have the Operatives (Saw Spell) and the Senior Operatives (Saw Spell),
stamping the blooms rolled and cutting them to standard lengths. We call
this group the Saw Spell. This is the point at which the blooms are recorded
as having been rolled in our data. After this, the rails pass on to the Cooling
Bed
There is also a shift manager, or the Foreman, who takes charge of the

entire production process of the rail mill. Sometimes there are two Foremen
in a shift. In case there is no Foreman on a given shift, the Roller (shift
in-charge) takes over. We call this group the Executive group; it supervises
the entire production process. In addition, we have Crane Operators who
remove cobbled blooms and Technicians who appear mostly in the mainte-
nance groups. This is, in a nutshell, the assembly line production process of
the rail mill.

10 Appendix 2: Use of the Gamma Distrib-
ution

10.1 The Fit to the Data

We chose the Gamma distribution for its flexibility and a fairly good fit with
the actual data. Below the histograms represent the actual distributions,
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while the dashed lines are fitted gamma pdf’s where the parameters are
chosen to best fit the actual data. As is evident, the fitted distributions are
every close to the data.
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10.2 Estimation

We assume that α is a linear function of brigade characteristics: α = β′X.
The values of β and λ are not restricted to be the same across delay classes;
this gives four separate unknown pairs (β, λ), one pair per class. For each
delay class the data provides us with a sample of delay durations Ds, indexed
by shift, as well as the brigade characteristics Xs. The unknown parameters
are straightforwardly estimated by using maximum likelihood. Loglikelihood
function takes the following form:

lnL =
∑
s

[(β′Xs − 1) lnDs + β′Xs ln k − ln Γ(β′Xs)− kDs] , where k = 1/λ
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It is easy to demonstrate that lnL is a concave function of β and k.

Let S be a matrix of its second derivatives, y =
[
y1 y′−1

]′
be an arbitrary

vector partitioned into the scalar y1 and the remainder y′−1. Let ψ1 denote a
trigamma function: ψ1(z) = d2

dz2
(ln Γ(z)).

y′Sy =
[
y1 y′−1

]−k−2β′∑Xs k−1
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∑
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∑
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−1XsX
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)
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As the trigamma function ψ1(z) =

∞∑
n=0

1
(z+n)2

, and since 1
(z+n)2

decreases

in n,

ψ1(z) =
∞∑
n=0

1

(z + n)2
>

∞∫
0

dt

(z + t)2
=

1

z
.

That means, y′Sy 6 0, i.e., S is negative semi-definite. It is guaranteed
to be negative definite if matrix

∑
s

XsX
′
s has full rank, in which case the

objective likelihood function is strictly concave. Therefore, the first order
conditions for maximum likelihood have a unique solution that can be easily
found numerically given arbitrary starting values of β and k.
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