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Abstract

This paper examines the impact of adult mortality on the pattern of investment

and economic development. In the presence of high mortality risks and imperfect an-

nuities market, altruistic parents invest more in tangible assets (physical capital, land)

that are readily transferable to future generations compared to intangible human cap-

ital. This differential effect of mortality can translate into divergent growth paths for

economies, differing willingness to adopt modern skill-intensive technologies as well

as a late transition from physical to human capital accumulation. Parental altruism

can substitute for the absence of annuities reasonably well: investment in tangible

assets is typically higher under missing annuities.
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1 Introduction

This paper studies the impact of adult mortality on the choice between different income
generating assets and its consequence for intergenerational transfer and economic de-
velopment. We differentiate between physical assets and human capital as alternative
sources of future income, one of the key distinction being the latter’s “inalienability”
(Hart and Moore, 1994). Physical assets such as land and capital are readily transferable
across people in a way that human capital is not. This difference becomes important when
an investor faces lifetime uncertainty that can cut short his amortization period.

Transferability of physical assets implies that well-functioning annuity markets can
deliver a risk-free return on it, but not on human capital. Lifetime uncertainty will hence
tilt portfolio allocation in favour of physical assets. In developing countries where mortal-
ity risks are high, the predominant form of asset accumulation will consequently be land
and physical capital. Patterns of investment and production will shift towards human
capital only when adult survival rates improve with the process of development.

This differential impact of mortality on human capital is not predicated on the avail-
ability of annuities, however. Markets in such instruments may be absent in developing
countries and returns on both physical and human capital may be, it would seem, sub-
ject to lifetime uncertainties. This is where the transferability of physical assets becomes
salient. Apart from its economic returns, when altruistic parents derive pleasure from
bequests, the utility of an asset depends on its transferability to the future generation.
The possibility that an investor may die prematurely but leave some of his physical assets
for his survivors enhances the internal return on physical assets vis-a-vis human capi-
tal. When markets are not fully developed early in development, that constraint can be
overcome if parental altruism is strong enough.

That mortality impacts the return on physical or human capital, and thereby overall
investment and growth is well known in the literature (see, for example, Blackburn and
Cipriani, 1998; Cervellatti and Sunde, 2005; Chakraborty, 2004; Kalemli-Ozcan, 2002 for
various mechanisms). These works either focus on the relationship between mortality
and the effective rate of time preference or on a single growth-promoting asset, usually
human capital. By identifying more clearly the differential impact of mortality on the
choice between different assets, we add to this literature and highlight their relative im-
portance in various stages of development.

Related to our work, Galor and Moav (2004) differentiate between physical and hu-
man capital in terms of their technological characteristics. According to these authors, the
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fundamental asymmetry between human and physical capital accumulation is that the
former is subject to quicker diminishing returns due to physiological constraints. Our fo-
cus on another asymmetry, in transferability, complements Galor and Moav. If longevity
is positively associated with modern economic development, physical capital will be the
prime engine of prosperity in the early stages of development and gradually displaced
by human capital as living conditions improve. This predicted switch from physical to
human capital echoes the central thesis of Galor and Moav’s work without appealing to
technological differences.

We show that parental altruism, if strong enough, can substitute for imperfect annuity
markets that imperfections, even if perfect diversification of mortality risks may not be
possible. Thus at another level our work is an extension of Kotlikoff and Spivak (1981)
who show that resource sharing between household members with independent mortal-
ity risks can substantially compensate for missing annuities.

The following two sections present the overall structure of the economy and analyze
the extent to which intergenerational altruism can compensate for missing annuity mar-
kets when individuals invest in a single physical asset. Human capital is introduced in
section 4 which demonstrates how mortality differentially impacts the optimal allocation
across the two assets. A general equilibrium version in section 5 generalizes the result by
incorporating pecuniary externalities and demonstrates robustness to the inclusion of life
insurance.

2 Structure of the Model

In a discrete-time overlapping-generations economy individuals potentially live for two
periods. For convenience, we will refer to these periods as “youth” and “middle-age”.
Individuals live in youth for sure but they may or may not survive into middle-age, the
probability of surviving being a constant p ∈ [0, 1].

At the end of their youth, individuals give birth to a single offspring, before they
realize their mortality shock. They are perfectly altruistic toward their children and care
for the child’s lifetime utility (Becker, 1981). Individuals are endowed with a share of the
family income in youth, which constitutes their first period income. They also inherit
the tangible asset stock of the family (e.g. physical capital and/or land) upon the death
of the parent. First period income is used for consumption purposes, for investment
in improving the productivity of physical assets, and/or for acquiring human capital.
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The latter two activities determine second period income. If an agent survives into the
middle-age he consumes a part of his second period income and transfers the remainder
to his offspring as “intentional bequest”. When he does not survive, his share of second
period income either goes to the annuity issuer (in the case of perfect annuities) or to
her offspring as “unintentional bequests” (when annuities markets are absent). Parents
derive pleasure from both these bequests.

All agents in a generation are identical ex ante. The expected lifetime utility Vt of a
young adult at t with income endowment yt received either as intended or unintended
bequest is

Vt = u(c1t) + βpu(c2t+1) + γEtVt+1. (1)

Here β is the subjective discount rate, γ represents the intensity of parental altruism and
utility from death has been normalized to zero. Even though altruism is pure in that
parents care about their offsprings’ lifetime welfare, they do not necessarily discount their
offsprings’ lifetime utility at the same rate as they discount their own future consumption.
In fact it may be biologically “natural” to assume altruism is limited, γ ≤ β.

3 Altruism Substituting for Missing Annuities:

A Single Tangible Asset

We begin by assuming there is a single tangible asset that we refer to as land for con-
venience. A land stock of T generates an income f (T) where the production function
satisfies the usual conditions f (0) = 0, f

� > 0 and f
�� < 0. Let 1 − θ denote the share

of output in any period that a parent intends to share with his offspring. If the parent is
alive in middle-age, he consumes θ f (T) leaving the rest for his offspring. If he does not
survive, that 1−θ share goes either to the annuity issuer (under perfect annuities) or to
the offspring (when annuities are unavailable). Note that in the latter case the offspring
ends up with a higher income endowment. We assume θ is exogenous and non-zero,
determined by social customs and convention.

3.1 Optimization under Perfect Annuities

A young adult’s decision at t is

Max u(c1t) + βpu(c2t+1) + γVt+1
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subject to

c1t + xt = (1−θ) f (Tt),

c2t+1 = θ f (Tt+1)/p,

Tt+1 = (1− δ)Tt + xt,

where δ ∈ [0, 1] is the depreciation rate of land quality. The middle-age constraint incor-
porates our annuity market assumption. Since the parent is committed to sharing 1−θ

fraction of the family income that period, she can pledge only θ f (Tt+1) to the annuity is-
suer. Zero expected profits in the annuity market imply annuities are actuarially fair, that
is, the annuity pays θ f (Tt+1)/p in the event of survival while the annuity issuer keeps
θ f (Tt+1) in the event of death. Expected investment returns are independent of mortality
risk.

As mentioned above, parental premature death has no effect on the offspring’s budget
constraints (given Tt). Rewrite the optimization problem as the dynamic programming
problem (DPP)

V(Tt) = max
{Tt+1}

{u(c1t) + βpu(c2t+1) + γV(Tt+1)}

subject to

c1t = (1−θ) f (Tt) + (1− δ)Tt − Tt+1,

c2t+1 = θ f (Tt+1)/p.

The necessary and sufficient first order condition for Tt+1 is

u
�(c1t) = βθu

�(c2t+1) f
�(Tt+1) + γV

�(Tt+1)

which when combined with the envelope condition

V
�(Tt) = [1− δ + (1−θ) f

�(Tt)]u�(c1t)

yields the Euler equation

u
�(c1t) = βθu

�(c2t+1) f
�(Tt+1) + γ[1− δ + (1−θ) f

�(Tt+1)]u�(c1t+1) (2)

Closed form solutions for the investment rate can be obtained only under two specific
utility functions, logarithmic and linear, in addition to full depreciation of land and con-
stant output elasticity of land.
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3.1.1 Example 1: Logarithmic Preferences

Suppose
u(c) = ln c, f (T) = AT

α, δ = 1

Then (2) becomes

1
(1−θ)ATα

t
− Tt+1

=
αβpAT

α−1
t+1

ATα
t+1

+
αγ(1−θ)AT

α−1
t+1

(1−θ)ATα
t+1 − Tt+2

(3)

We use a guess-and-verify approach to get the policy function for investment. Suppose
we conjecture that

Tt+1 = µ f (Tt) = µAT
α
t .

Substituting this in the LHS of the Euler equation, we get

1
1−θ−µ

1
ATα

t

.

Leading our candidate policy function by one period and substituting it on the RHS gives
us

αβpA

ATt+1
+

αγ(1−θ)A

1−θ−µ

1
ATt+1

.

Now equate the LHS and RHS expressions to get

1
1−θ−µ

1
ATα

t

=
�
αβp +

αγ(1−θ)
1−θ−µ

�
A

ATt+1

⇒ Tt+1 = [αβp(1−θ−µ) +αγ(1−θ)] AT
α
t

which takes the same functional form as our candidate policy function. Equating coeffi-
cients and solving for µ leads to

µ =
α(βp + γ)(1−θ)

1 +αβp
.

Concavity of the policy function ensures that, even if families differed in their initial land
holdings {T0}, all families eventually converge to the same asset holding T

∗ as long as
they face the same p. T

∗ is the fixed point of

Tt+1 =
α(βp + γ)

1 +αβp
(1−θ)AT

α
t . (4)

Since first period income is (1−θ)AT
α
t

, the investment rate isα(βp +γ)/(1 +αβp) which
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is increasing in the survival probability as long as αγ < 1. If families differed in their
survival rates as well, those facing longer lives would converge to a higher steady-state
wealth. Even though actuarially fair annuity markets ensure consumption smoothing
does not depend on lifetime uncertainty (Barro and Friedman, 1977), an increase in p

affects the saving rate since annuities now offer a lower return on saving for the same
level of investment.

3.1.2 Example 2: Linear Preferences

Under linear preferences, equation (2) becomes, assuming δ = 1 and f (T) = AT
α as

before,

1 = [βθ + γ(1−θ)] f
�(Tt+1) = [βθ + γ(1−θ)]αAT

α−1
t+1

⇒ Tt+1 = [αA {βθ + γ(1−θ)}]1/(1−α)

This solution is valid as long as

Tt ≥
�

[αA {βθ + γ(1−θ)}]1/(1−α)

A(1−θ)

�1/α

≡ T̂,

otherwise the individual is at a constrained optimum where he invests his entire first
period income in land

Tt+1 = (1−θ)AT
α
t

and consumes only in middle-age.

3.2 Optimization under Missing Markets

When annuities are unavailable, the offspring’s initial income depends on parental sur-
vival whose realization we denote by zt ∈ {a, d} corresponding to “alive” and “deceased”
respectively. We can denote the offspring’s initial endowment as

yt = y(Tt, zt) =

�
(1− δ)Tt + (1−θ) f (Tt), if zt = a

(1− δ)Tt + f (Tt), if zt = d

The DPP in this case is

V(Tt, zt) = max {u(c1t) + βpu(c2t+1) + γEtV(Tt+1, zt+1)}
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subject to

c1t = y(Tt, zt)− Tt+1

c2t+1 = θ f (Tt+1)

zt+1 ∼ iid

where expectations are taken with respect to zt+1.
FOC for land investment is now

u
�(c1t) = βpθu

�(c2t+1) f
�(Tt+1) + γEtV1(Tt+1, zt+1)

and the envelope condition

V1(Tt, zt) = u
�(c1t)y1(Tt, zt).

Leading the envelope condition by one period and using it in the FOC we get

u
�(c1t) = βpθu

�(c2t+1) f
�(Tt+1) + γEt

�
u
�(c1t+1)y1(Tt+1, zt+1)

�
(5)

3.2.1 Example 1: Logarithmic Preferences

Now make the same functional assumptions as before: u(c) = ln c, f (T) = AT
α and

δ = 1 which implies

y1(T, z) =

�
(1−θ)αAT

α−1
t

, if zt = a

αAT
α−1
t

, if zt = d

We will have two versions of (5) depending on the realization of zt. Optimal land invest-
ment at t will obviously depend on zt so that Tt+1 = T(Tt, zt). But since z takes discrete
values and y depends on z only through a scaling constant, lets conjecture that the effect
of z on T is through a scaling constant (that is the functional form of T itself does not
depend on z).

Given Tt, suppose we denote future assets as Ta,t+1 and Td,t+1 for the two realizations
of parental survival. For zt = a, we have

1
(1−θ)ATα

t
− Ta,t+1� �� �

u�(c
a

1t
)

= βpθ
αAT

α−1
a,t+1

θATα
a,t+1� �� �

u�(c
a

2t+1) f �(Tt+1)

+γ




p

(1−θ)αAT
α−1
a,t+1

(1−θ)ATα
a,t+1 − Ta,t+2� �� �

u�(c
a

1t+1)y1(Tt+1,a)

+ (1− p)
αAT

α−1
a,t+1

ATα
a,t+1 − Td,t+2� �� �

u�(c
d

1t+1)y1(Tt+1,d)





(6)
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and for zt = d

1
ATα

t
− Td,t+1� �� �

u�(c
d

1t
)

= βpθ
αAT

α−1
d,t+1

θATα
d,t+1� �� �

u�(c
d

2t+1) f �(Tt+1)

+γ




p

(1−θ)αAT
α
d,t+1

(1−θ)ATα
d,t+1 − Ta,t+2� �� �

u�(c
a

1t+1)y1(Tt+1,a)

+ (1− p)
αAT

α−1
d,t+1

ATα
d,t+1 − Td,t+2� �� �

u�(c
d

1t+1)y1(Tt+1,d)





(7)
As before we will use a guess-and-verify approach: Ta,t+1 = µAT

α
t

and Td,t+1 = νAT
α
t

.
Equation (6) then becomes

1
1−θ−µ

1
ATα

t

=
α

Ta,t+1

�
βp +

γp(1−θ)
1−θ−µ

+
γ(1− p)

1− ν

�

so that
Ta,t+1 = α(1−θ−µ)

�
βp +

γp(1−θ)
1−θ−µ

+
γ(1− p)

1− ν

�

or
µ = α(1−θ−µ)

�
βp +

γp(1−θ)
1−θ−µ

+
γ(1− p)

1− ν

�
. (8)

Similarly, using our policy function guesses, (7) becomes

1
1− ν

1
ATα

t

=
α

Td,t+1

�
βp +

γp(1−θ)
1−θ−µ

+
γ(1− p)

1− ν

�

from which it follows that

Td,t+1 = α(1− ν)
�
βp +

γp(1−θ)
1−θ−µ

+
γ(1− p)

1− ν

�
AT

α
t .

Comparing coefficients, we must have

ν = α(1− ν)
�
βp +

γp(1−θ)
1−θ−µ

+
γ(1− p)

1− ν

�
. (9)

Dividing (8) by (9)
µ

ν
=

1−θ−µ

1− ν
⇒ µ = (1−θ)ν (10)

which also verifies our conjecture that the effect of z on T is only through a scaling con-
stant. Make use of this relationship between µ and ν in (9) to obtain

ν =
α(βp + γ)

1 +αβp
(11)

and
µ =

α(βp + γ)
1 +αβp

(1−θ). (12)

Note the investment propensity does not depend on parental survival and, in particular,
is exactly as before, α(βp + γ)/(1 +αβp).
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3.2.2 Example 2: Linear Preference

Once again, equation (5) becomes

1 = βpθ f
�(Tt+1) + γ{p(1−θ) + (1− p)} f

�(Tt+1)

which gives, assuming the same functional form for f ,

Tt+1 = [αA{pβθ + γ (1− pθ)}]1/(1−α)

if

Tt ≥
�

[αA {pβθ + γ(1− pθ)}]1/(1−α)

A(1−θ)

�1/α

≡ T̄,

and
Tt+1 = (1−θ)AT

α
t

otherwise. Since marginal utility is independent of consumption level, bequest/income
uncertainty has no effect on land investment. Note also that investment in the uncon-
strained case is lower under missing markets as long as β > γ. It is only when β = γ

(which also ensures that T̄ = T̂) that the altruistic motive completely eliminates utility
loss due to lifetime uncertainty.

Average investment under missing annuity markets is higher than under annuities
when preferences are logarithmic even though the investment rate itself is invariant to
the availability of markets. For linear utility, however, missing markets does depress
investment unless parents value an extra unit of their offspring’s consumption exactly as
they would their own. In the first case, the degree of parental “selfishness” has no bearing
on the investment rate. In the second case, it does.

These parametric examples identify two effects at work: the role of consumption
smoothing and the relative valuation parents place on their own consumption vis-a-vis
their children’s. To understand how investment responds more generally to these two
effects, we choose a more general parametric example – CES preferences – and using
numerical methods examine how missing markets alter parental incentives and optimal
choices.
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3.3 A More General Case

3.3.1 The Net Marginal Benefit of Missing Markets

Closed form solutions are hard to obtain except for the polar cases of log and linear pref-
erence. But to gain intuition on the “general” case, it is instructive to consider the CES
utility function u(c) = c

1−σ/(1−σ) where we restrict σ ∈ (0, 1).1 Whether or not invest-
ment suffers due to missing annuity markets ultimately relates to whether altruism can
compensate for the utility loss that a parent suffers due to missing markets.

Let T denote the parental investment in land. Based on the Euler equations in the two
cases above, and assuming that δ = 1, the expected marginal utility loss an individual
suffers if annuity markets were to suddenly disappear, discounted appropriately, is

Γ ≡ βθ

�
u
�
�

θ f (T)
p

�
− pu

� (θ f (T))
�

f
�(T)

=
�
βθ[θ f (T)]−σ

p
σ(1− p

1−σ)
�

f
�(T)

The marginal benefit, on the other hand, comes from the offspring enjoying higher income
under parental death which the parent does take into consideration. Weighted by the
degree of parental altruism, and denoting by T

� the offspring’s land investment under
parental death, this benefit is

Ψ ≡ γ

�
p(1−θ) {u

� ((1−θ) f (T)− T))} f
�(T) + (1− p)u

� ( f (T)− T
�) f

�(T)
−(1−θ) {u

� ((1−θ) f (T)− T)}

�
f
�(T)

= γ(1− p)
�
{ f (T)− T

�}−σ − (1−θ){(1−θ) f (T)− T}−σ
�

f
�(T)

Denote by φ the investment propensity out of first period income. Under missing
annuity markets this income is different (higher) for an offspring whose parent dies pre-
maturely. But suppose the individual maintains his savings propensity when annuity
markets “disappear”. By exclusively identifying the effect of missing annuities on the
incentive to invest, we foreshadow which way optimal investment would respond to
missing annuities and hence, whether missing markets are costly for investment.

Given our assumptions above, the net marginal benefit from missing markets is (ig-
noring the common terms f (T)−σ and f

�(T))

∆(p) ≡ Ψ− Γ = γ(1− p)(1−φ)−σ [1− (1−θ)1−σ ]−βθ1−σ
p
σ(1− p

1−σ)
1With von Neumann Morgenstern preferences, the normalization of utility from death matters. Since we

have normalized this value to zero, an increase in the survival rate would decrease expected future utility if
σ > 1 (since u < 0 for all positive consumption levels).
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For linear utility (σ = 0), this simplifies to ∆ = −(β− γ)(1− p)θ. As long as β > γ,
the consumption loss from missing markets cannot compensate for the lifetime utility
gain the offspring enjoys. The individual would lower his investment in this case as
section 3.2.2 shows. When β = γ, that is when parents value an extra unit of their off-
spring’s consumption exactly as they would their own, altruism fully compensates for
missing markets and investment is unaffected.

For logarithmic utility (σ = 1), on the other hand, ∆ = 0 irrespective of p, β and
γ. This happens because both the marginal benefit and loss are zero due to the log-
arithmic function. In fact, we can interpret it as the familiar balancing of income and
substitution effects.2 Suppose the individual is consuming an endowment of future con-
sumption goods ω, which is priced at unity, which gives a marginal utility u

�(ω). If now
he were given a higher endowment, say aω, but at the same time its price were to in-
crease by the same proportion to a, then optimality requires that the individual would
compare the marginal utilities with price ratio: he would prefer this new endowment
if u

�(aω)/u(ω) > a. The endowment effect is measured by a pure income effect while
the price change is purely the substitution effect which cancel out for log preferences:
u
�(aω)/u(ω) = a.

The response of ∆ to changes in p for CES preferences is presented in Figures 1 and
2. The response of net marginal benefit to p is as expected: the net marginal benefit is
positive for all values of p and decreasing in p (Figure 1). That is, in these cases, miss-
ing markets leaves the individual no worse off and usually strictly better off (at the same
investment rate as under annuities). It follows then that the lack of annuities would ac-
tually encourage investment relative to actuarially fair annuity markets. Figures 1(a) and
(b) show that this result does not depend sensitively on the value of σ : lower σ has the
effect of raising the relative return of accidental bequests since the marginal utility of the
offspring is less sensitive to windfall gains.

As one would expect from our intuition from the linear case above, a higher subjective
discount rate (β) relative to altruism intensity (γ) tends to reduce the net marginal benefit
of missing markets. An increase in parental “selfishness” would then raise the cost of
missing annuity markets. Figure 1(c) uses the same set of numerical values as Figure 1(a)
but now posits γ < β.

The monotonicity of the net marginal benefit function does depend sensitively on θ.
For instance, under σ = 0.9, when θ becomes smaller, from 3/4 (Figure 2(a)) to 1/2 (Fig-

2Recall from above that the value function is logarithmic in this case.
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ure 2(c)), p has a non monotonic effect on ∆. The net benefit at first decreases with p

and then increases. The offspring gets a relatively large share of output now, which de-
creases by a lot the marginal utility of the offspring’s consumption under parental death.
This reduces the attractiveness of the accidental bequest motive to the parent, unless p

is relatively small as well in which case the individual’s expected marginal utility from
self-consumption is also small.

3.3.2 Optimal Investment with and without Annuity Markets

Following up on the intuition we get from considering the net marginal benefit, we explic-
itly consider how optimal investment compares in the two cases under CES preferences.
First, we make another simplification. We assume α = 1 so that marginal returns to land
are independent of the investment level. We can make considerable progress under this
assumption without having to solve the dynamic path of investment.

The assumption is also not unreasonable in that results do not depend on it qualita-
tively. In fact, the log case from above (for α = 1) will still be nested. But the linear
case will not be due to corner solutions. For linear utility and f (T) = AT, land in-
vestment is independent of p under annuity markets as long as [βθ + γ(1 − θ)]A ≥ 1.
When annuities are missing, land investment is positive and independent of p iff p ≥
[1− γ (1− pθ)]/(βθA), zero otherwise; investment is now a weakly increasing function
of the survival probability.

Denote by φ the investment rate under annuity markets. Under actuarially fair annu-
ities, consumption levels for a given T are

c1 = y− T
�,

c2 = θAT
�/p,

where y = (1 − θ)AT, T
� denotes the land stock one period ahead and T

�� two periods
ahead. The Euler equation

[(1−θ)AT− T
�]−σ = θβA[θAT

�/p]−σ + γ(1−θ)A[(1−θ)AT
� − T

��]−σ

under CES preferences implicitly defines the investment rate φ(p) as a function of the
survival probability

�
1−φ

φ

�−σ

= A
1−σ

�
βp

σθ1−σ + γ(1−θ)1−σ(1−φ)−σ
�

.
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When annuity markets are missing, consumption levels and investment choices de-
pend on parental survival. It can be shown though that optimal investment rates under
parental survival and death are identical for a linear production function. Let ψ denote
the investment rates in this case and denote by T

�
a and T

�
d

investments under parental sur-
vival and death respectively. The Euler equation, for an income endowment y in the first
period, is now

[y− T
�
a]−σ = θβpA[θAT

�
a]−σ + γA[p(1−θ){(1−θ)AT

�
a − T

��
a }−σ

+(1− p){AT
�
a − T

��
d
}−σ ]

where without loss of generality we have specified the problem for an adult who parent
survives in middle-age. Simplifying, the investment rate ψ(p) solves3

�
1−ψ

ψ

�−σ

= A
1−σ

�
βpθ1−σ + γp(1−θ)1−σ(1−ψ)−σ + γ(1− p)(1−ψ)−σ

�
.

Figure 3 compares φ to ψ for various values of p. At p = 0, the two investment rates
are

φ = [γA
1−σ(1−θ)1−σ ]1/σ ,

γ = [γA
1−σ ]1/σ .

Clearly ψ(0) > φ(0): when future survival is impossible, parents know for sure their
offsprings would benefit from land investment and enjoy a higher endowment under
missing annuities than under annuities.4 At p = 1, the two rates are equal since parental
bequests are same in both cases. As Figure 3 implies, investment is thus higher under
missing annuities and this result is not qualitatively affected by σ or γ.

4 Mortality, Altruism and the Pattern of Investment

We turn next to the effect of lifetime uncertainty on portfolio choice. Specifically we now
assume that people have access to a second investment vehicle, human capital. All indi-
viduals are born with the same level of human capital (normalized to zero) but have the
ability to invest in it.

3Substituting σ = 1 gives us the investment rates φ = ψ = (γ + βp)/(1 + βp), same as in (4), (11) and
(12) under α = 1.

4There is a discontinuity in φ at p = 0. For arbitrarily small p, annuity purchases are positive but zero
at p = 0.
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As above, we continue to assume that the first asset is land. This specific interpreta-
tion is important now since we assume returns to the tangible asset or human capital do
not depend on the other asset. This is more likely true of traditional activities involving
land – farming and small-scale business enterprise – than modern technologies involving
physical capital.

The family shares its income from both land and human capital. Specifically a middle-
aged parent shares 1−θ1 fraction of the family’s land income and 1−θ2 fraction of his
labor income with the child. If all that is being shared is family income, it is natural to
assume θ1 = θ2. Human capital opportunities (urban areas), though, can be geographi-
cally removed from traditional farming (rural areas) requiring skilled workers to migrate
elsewhere. If sharing of labor earnings is relatively more difficult, θ2 < θ1. It is also
conceivable that land ownership in developing countries is not as well defined as human
capital ownership (which is embodied in a person in any case). Consequently land is a
family property with every member having some right over its produce: θ1 > 0, θ2 = 0.
This, of course, requires us to assume that the young can contribute to farm activities
without seriously hampering their learning process.

Denote by et parental investment in human capital at time t and labor earnings in the
second period of life as ht+1 = g(et) where g is an increasing concave function satisfying
g(0) = 0. We normalize the return to human capital at 1.

We will first establish results under linear utility, which abstracting from consumption
smoothing, starkly brings out the role of asset returns and their dependence on annuities
and altruism. We show below that, the non-transferability of human capital across gener-
ations tilts investment in favor of tangible assets even in the absence of annuities.

4.1 Optimization under Perfect Annuities

Given his income yt, an adult in period t maximizes his expected lifetime utility

Vt = u(c1t) + βpu(c2t+1) + γEtVt+1

subject to

c1t + xt + et = yt,

ct+1 = θ1 f (Tt+1)/p +θ2g(et),

Tt+1 = (1− δ)Tt + xt.
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Unlike before the offspring’s first period income/bequest is uncertain under annuities as
long as θ2 > 0:

yt+1 =

�
(1−θ1) f (Tt+1) + (1−θ2)g(et), with prob. p

(1−θ1) f (Tt+1), with prob.1− p

Note specifically the non-transferability aspect – the offspring still enjoys income from
land in the event of parental death but not his labor earnings. Assume δ = 1. The FOCs
are

et : u
�(c1t) = θ2βpu

�(c2t+1)g
�(et) + γEt

∂Vt+1
∂et

Tt+1 : u
�(c1t) = θ1βu

�(c2t+1) f
�(Tt+1) + γEt

∂Vt+1
∂Tt+1

and the Envelope conditions

∂Vt+1
∂et

=

�
(1−θ2)u

�(c
a

1t
)g
�(et), with prob. p

0, with prob. 1− p

∂Vt+1
∂Tt+1

=

�
(1−θ1)u

�(c
a

1t+1) f
�(Tt+1), with prob. p

(1−θ1)u
�(c

d

1t
) f
�(Tt+1), with prob. 1− p

Together these imply the Euler equations are

u
�(c1t) = p

�
θ2βu

�(c2t+1) + γ(1−θ2)u
�(c

a

1t+1)
�

g
�(et)

for human capital investment and

u
�(c1t) =

�
θ1βu

�(c2t+1) + γ(1−θ1)
�

pu
�(c

a

1t
) + (1− p)u

�(c
d

1t
)
��

f
�(Tt+1)

for land investment.

4.1.1 Example: Linear Preferences

Assuming linear utility requires us to explicitly recognize non-negativity constraints on
consumption levels. We reformulate the problem as

V(Tt, et−1, zt) = max
{Tt+1,et}

{yt − Tt+1 − et + βp [θ1 f (Tt+1)/p +θ2g(et)] + γEtV(Tt+1, et, zt+1}

subject to : Tt+1 + et ≤ yt.

The Lagrangian

L = yt − Tt+1 − et+1 + βp [θ1 f (Tt+1)/p +θ2g(et)] + γEtVt+1 + λ [yt − Tt+1 − et]
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leads to the FOCs

et : −1 +θ2βpg
�(et) + γEt

∂Vt+1
∂et

= λ

Tt+1 : −1 +θ1β f
�(Tt+1) + γEt

∂Vt+1
∂Tt+1

= λ

and the Envelope conditions

∂Vt+1
∂et

=

�
(1−θ2)g

�(et), with prob. p

0, with prob. 1− p

∂Vt+1
∂Tt+1

= (1−θ1) f
�(Tt+1)

Together these imply
−1 + p [θ2β + γ(1−θ2)] g

�(et) = λ

for et and
−1 + [θ1β + γ(1−θ1)] f

�(Tt+1) = λ

for Tt+1.
The exact solution depends on the Lagrange multiplier. If λ > 0, implying the non-

negativity constraint holds with equality and first period consumption is zero. The Euler
equations lead to

−1 + p [θ2β + γ(1−θ2)] g
�(et) = −1 + [θ1β + γ(1−θ1)] f

�(Tt+1)

or
g
�(et)

f �(Tt+1)
=

θ1β + γ(1−θ1)
p [θ2β + γ(1−θ2)]

.

If we assume now that f (T) = AT
α and g(e) = Be

α, then this equation gives us the
optimal ratio of investment in human capital vis-a-vis land as

ρ ≡ et

Tt+1
=

�
pB [θ2β + γ(1−θ2)]
A [θ1β + γ(1−θ1)]

�1/(1−α)
.

Higher longevity evidently tilts investment in favour human capital. Moreover, if the
assets are treated symmetrically in terms of intergenerational income sharing (θ1 = θ2),
the optimal ratio depends only on relative expected returns.

If, on the other hand, first period consumption is positive, λ = 0, and the two Euler
equations can be solved independently as

p [θ2β + γ(1−θ2)] g
�(et) = 1,
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and
[θ1β + (1−θ1)γ] f

�(Tt+1) = 1.

Optimal solutions for land and human capital investment are now

et = [Bp [θ2β + γ(1−θ2)]]1/(1−α)

and
Tt+1 = [A [θ1β + (1−θ1)γ]]1/(1−α)

which differs from the previous situation in that land investment is insensitive to mortal-
ity. Note, however, that the investment ratio ρ is still the same and an increase in p tilts
investment in favor of human capital.

4.2 Optimization under Missing Markets

As before when annuities are not available, we assume the offspring enjoys the entire
land income. Given his income yt, an adult in period t maximizes his expected lifetime
utility

Vt = u(c1t) + βpu(c2t+1) + γEtVt+1

subject to

c1t + xt + et = yt

ct+1 = θ1 f (Tt+1) +θ2g(et)

Tt+1 = (1− δ)Tt + xt

and recognizing that the child’s first period income will be stochastic

yt+1 =

�
(1−θ1) f (Tt+1) + (1−θ2)g(et), w.p. p

f (Tt+1), w.p.1− p

FOCs are

et+1 : u
�(c1t) = θ2βpu

�(c2t+1)g
�(et) + γEt

∂Vt+1
∂et

Tt+1 : u
�(c1t) = θ1βpu

�(c2t+1) f
�(Tt+1) + γEt

∂Vt+1
∂Tt+1

and Envelope conditions

∂Vt+1
∂et

=

�
(1−θ2)u

�(c
a

1t+1)g
�(et), with prob. p

0, with prob. 1− p
,

∂Vt+1
∂Tt+1

=

�
(1−θ1)u

�(c
a

1t+1) f
�(Tt+1), with prob. p

u
�(c

d

1t+1) f
�(Tt+1), with prob. 1− p

.
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Hence optimality conditions for the two assets become

u
�(c1t) = p

�
θ2βu

�(c2t+1) + γ(1−θ2)u
�(c

a

1t+1)
�

g
�(et+1)

for et and

u
�(c1t) =

�
θ1βpu

�(c2t+1) + γ
�

p(1−θ1)u
�(c

a

1t
) + (1− p)u

�(c
d

1t
)
��

f
�(Tt+1)

for Tt+1.

4.2.1 Example: Linear Preferences

Incorporating the non-negativity constraint on first period consumption Tt+1 + et ≤ yt,
the Lagrangian is

L = yt − Tt+1 − et + βp [θ1 f (Tt+1)/p +θ2g(et)] + γEtVt+1 + λ [yt − Tt+1 − et] ,

the associated FOCs

et : −1 +θ2βpg
�(et) + γEt

∂Vt+1
∂et

= λ

Tt+1 : −1 +θ1β f
�(Tt+1) + γEt

∂Vt+1
∂Tt+1

= λ

and Envelope conditions

∂Vt+1
∂et

=

�
(1−θ2)g

�(et), with prob. p

0, with prob. 1− p
,

∂Vt+1
∂Tt+1

=

�
(1−θ1) f

�(Tt+1), with prob. p

f
�(Tt), with prob. 1− p

.

Together these imply
−1 + p [θ2β + γ(1−θ2)] g

�(et) = λ

for et and
−1 + [θ1β + γ [p(1−θ1) + (1− p)]] f

�(Tt+1) = λ

for Tt+1.
If λ > 0, the associated Euler equations lead to

−1 + p [θ2β + γ(1−θ2)] g
�(et) = −1 + [θ1β + γp(1−θ1) + (1− p)] f

�(Tt+1)
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or
g
�(et)

f �(Tt+1)
=

θ1β + γ(1− pθ1)
p [θ2β + γ(1−θ2)]

.

For the same technologies as above the optimal ratio of land vis-a-vis human capital in-
vestment is now

ρ =
�

B

A

p [θ2β + γ(1−θ2)]
[θ1β + γ(1− pθ1)]

�1/(1−α)

which is lower than under perfect annuities. This is specifically due to land investment
being higher.

If λ = 0, the Euler equations can be solved independently and the solutions would be
the same as in the previous section. For land, the condition is

[θ1βp + γ{p(1−θ1) + (1− p)}] f
�(Tt+1) = 1

and for human capital the same as before

p [θ2β + γ(1−θ2)] g
�(et) = 1.

Hence

ρ =
�

B

A

p{θ2β + γ(1−θ2)}
γ +θ1 p(β−γ)

�1/(1−α)
.

4.3 A More General Case

To generalize this result on the differential effect of mortality we appeal to CES prefer-
ences, full depreciation of land and linear production technologies for the two assets,
f (T) = AT and g(e) = Be, with B ≥ A. Without loss of generality we impose θ1 ≡ θ and
θ2 = 0.5

We start with the annuity markets case. Let φ and η denote the investment propensi-
ties in land and human capital. The Euler equations for the two assets are

[y− T
� − e

�]−σ = θβA[θAT
�/p + Be

�]−σ + γ(1−θ)A[(1−θ)AT
� − T

�� − e
��]−σ

for an income endowment of y. The investment rates (φ, η) solve the pair of equations

(1−φ− η)−σ = θβpB

�
θAφ

p
+ Bη

�−σ

(13)
�

1− A

pB

�
= γA

1−σ(1−θ)1−σφ−σ (14)

5θ2 > 0 would only accentuate the effect of p on human capital investment since premature parental
death would eliminate the ability to enjoy a share of parental labor income.
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The role of p in portfolio allocation can be examined by considering the relative invest-
ment rates η/φ in human-to-physical capital.

When annuities are missing let ψ and ν denote the investment propensities in land
and human capital. The Euler equations for an individual whose parent has survived
(and bequeaths y) are

[y− T
�
a − e

�
a]−σ = θβpA[θAT

�
a + Be

�
a]−σ + γp(1−θ)A[(1−θ)AT

� − T
��
a − e

��
a ]−σ

+γ(1− p)A[AT
� − T

��
d
− e

��
d
]−σ .

The investment rates now solve the pair of equations6

(1−ψ− ν)−σ = θβpB(θAψ + Bν)−σ (15)�
1− A

B

�
= γA

1−σψ−σ [p(1−θ)1−σ + (1− p)]. (16)

Here our object of interest is the response of relative investments ν/ψ to changes in p.
Figures 4 and 5 illustrate how the relative responsive of investments to p in the pres-

ence and absence of annuities. The blue solid lines correspond to η/φ and the red dashed
lines to ν/ψ.

In Figure 4(a), both relative investment rates are increasing in survival. While individ-
uals may or may not diversify away mortality risks on physical assets via altruism, p still
has a differentially higher impact on human capital investment. The relative investment
rates rise faster in Figure 4(b) compared to Figure 4(a) where γ is higher. Since human
capital investment is immune to the degree of parental altruism, a lower value of γ does
not affect it as much as it dampens physical capital investment. Note also the curvature
of the two relative investment rates. Under missing annuities, the switch from physi-
cal assets to human capital occurs at a faster rate. Indeed, as Figures 1–3 foreshadowed,
land investment is higher for the parameter values used in Figure 4 so that human capital
investment is lower relative to the annuities case.

Finally Figure 5 establishes that our results are not sensitive to the curvature of the
utility function: investment in human capital rises faster for a smoother function (lower
σ) under both cases because the parent does not have to “compensate” for strongly di-
minishing marginal utility of the offspring by investing more in land.

6Suppose B = ωA where ω > 1. For very low values of p, the LHS of equation (14) can turn negative as
returns to human capital are not high enough to compensate for mortality risk. To avoid that we restrict to
p ∈ [1/ω, 1]. ω > 1 also ensures that A < B for equation (16).
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5 Pecuniary Externalities

The interpretation of the tangible asset is more general than we have insisted on so far.
Specifically, any form of physical asset that is transferable ought to face the same kind
of incentives vis-a-vis inalienable human capital. But there is a subtle difference between
modern forms of physical capital – equipment, machinery, business enterprise, workshop
and cottage industry – and land. While it is relatively easy to imagine traditional activities
involving land do not involve skills or other forms of human capital, that assumption is
harder to justify with physical capital. In other words, physical and human capital may
be complementary production inputs and if so, the accumulation of physical assets can
depend on the survival probability through pecuniary externalities that we have ruled
out so far.

We establish in this section, by means of a Cobb-Douglas production function that
utilizes physical capital and skilled labor to produce a final consumption good, that our
intuition from the previous sections generalize. An increase in p has a relatively more
pronounced effect on human capital investment that increases its aggregate supply. This
raises the equilibrium return on the complementary input, physical capital, encouraging
its accumulation. The net effect of a higher p is similar to section 4 except that it now tilts
investment and production towards human capital.

The aggregate technology is CRS in aggregate physical (K) and human capital (H)
stocks

Yt = AK
α
t H

1−α
t

where α ∈ (0, 1). In perfectly competitive factor and goods markets, wage per efficiency
unit of labor and rental on capital (assume δ = 1) are

wt = (1−α)A(Kt/Ht)α , (17)

rt = αA(Ht/Kt)1−α .

We assume a unit measure of people are born at each date, p fraction of whom survive
into middle age. Since agents are ex ante identical in their preferences and survival and
make the same optimizing choices (see below), we denote individual holdings of the two
assets by k and h. The aggregate stocks are then

Kt = kt,

Ht = pht,
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where h is the human capital of each middle-aged person before experiencing their sur-
vival shock. As with the CES case of the previous section, individuals do not possess any
human capital endowment in youth and depend on their families to consume out of the
returns on physical capital. Labor income in youth as well as sharing of labor income
across generations are easy to incorporate and do not change our results qualitatively.

In their youth individuals invest xt in physical capital and et in their human capital
that yields asset levels, the following period,

kt+1 = f (xt)

ht+1 = g(et)

where the production functions f and g are concave and satisfy f (0) = 0 = g(0). Un-
like the standard model output is not converted into physical capital one-for-one. This
assumption is necessary to allow for relative price effects on k since marginal utility will
be constant (see below).

We focus exclusively on the case of missing annuities. The decision problem is to
maximize expected lifetime utility

Vt ≡ u(c1t) + βpu(c2t+1) + γEtVt+1

subject to

c1t = yt − xt − et,

c2t+1 = θrt+1kt+1 + wt+1ht+1,

and given the income endowment yt, stochastic first period income for the offspring

yt+1 =

�
(1−θ)rt+1kt+1, w.p. p

rt+1kt+1, w.p. 1− p

The middle-age budget constraint embodies our assumption that returns to physical cap-
ital are shared with the offspring and ownership of that asset is costlessly passed on to
him if the parent dies prematurely.

The first order conditions for optimal investment are

xt : u
�(c1t) = [θβpu

�(c2t+1) + γ
�

p(1−θ)u
�(c

a

1t+1) + (1− p)u
�(c

d

1t+1)
�
]rt+1 f

�(xt) (18)

and
et : u

�(c1t) = βpu
�(c2t+1)wt+1g

�(et) (19)
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To proceed further, we will simplify by assuming linear utility and

f (x) = ax
χ, (20)

g(e) = be
χ,

where χ ∈ (0, 1). Suppose also that all families start with a relatively high initial en-
dowment of physical capital k0 so that the individual is at an unconstrained optima and
c1 > 0. Equations (24) and (25) then lead to optimal investment decisions of

xt = [aχ {γ + pθ(β−γ)} rt+1]1/(1−χ)

et = [bβpχwt+1]1/(1−χ)

Individual stocks of the two assets are

kt+1 = a
1/(1−χ) [χ{γ + pθ(β−γ)}]χ/(1−χ)

r
χ/(1−χ)
t+1

ht+1 = b
1/(1−χ)(χβp)χ/(1−χ)

w
χ/(1−χ)
t+1

and the ratio of aggregate capital stocks

Kt

Ht

=
kt

pht

=
�

a

b

�1/(1−χ)
�
γ + pθ(β−γ)

βp

�χ/(1−χ) 1
p

�
rt

wt

�χ/(1−χ)
. (21)

From (17), on the other hand,
rt

wt

=
α

1−α

Ht

Kt

(22)

Using (21) and (22), we can solve for the equilibrium factor ratio

Kt

Ht

=
a

b

�
α

1−α

�χ 1
p1−χ

�
γ + pθ(β−γ)

βp

�χ

(23)

which is a decreasing function of p for β ≥ γ.
Investment in physical capital depends positively on its return, r. Since K and H are

complementary inputs, an increase in the supply of human capital induced by p, would
raise returns to physical capital and encourage its investment. Equilibrium supply of
physical capital now depends positively on p. But as equation (23) shows, this second
round effect is not enough to bias the equilibrium response away from human capital.

It is also easy to show that output per capita

Y = Γ p
1−α
1−χ

�
1
β
{γ +θp(β−γ)}

� αχ
1−χ
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in this economy depends positively on longevity (as long as β ≥ γ). Since both physical
and human capital depreciate fully, the economy will jump straight to this steady-state
output level assuming a high enough k0. If capital did not fully depreciate, however, the
transition path would also depend on p. Not only would low-p countries converge to a
lower steady-state, their transition would be slower too. These high mortality economies
would rely more intensively on physical capital, the switch from physical to human cap-
itals as engines of development occurring later and remaining incomplete.

Obviously such a transition can be triggered by health and mortality improvements.
The widespread mortality reductions (not limited to child and infant survival) in late
nineteenth century Western Europe may have spurred accumulation and innovation to-
wards newer generations of technologies that were biased towards human capital.7 If
newer technologies in the twentieth century have been skill oriented, as a body of work
now argues, it has implications for developing countries. For instance an increase in the
return to human capital B in a low-p country would see a more muted response in skill
acquisition compared to a high-p country. High mortality, in other words, biases the re-
sponse away from newer technologies. The lack of catch-up in parts of the developing
world plagued by epidemics and health challenges may be as much to do with the low
return from adopting modern technologies as with institutional constraints that prevent
such adoption.8

5.1 Availability of Life Insurance

In our analysis so far we have ignored the possibility of buying a life insurance policy
that guarantees a return (to the survivor) only in the event of premature parental death.
The appeal of such a policy is that it allows an altruistic parent to circumvent the problem
of non-transferability of human capital (Fischer, 1973). We show here that our results are
robust to the availability of such policies.

7See Cutler et al (2006) on mortality reduction. On technological change, Abramovitch (1993) writes, as
quoted in Galor and Moav (2004): “In the nineteenth century, technological progress was heavily biased
in a physical capital-using direction. ... In the twentieth century, however, the physical capital-using bias
weakened; it may have disappeared altogether. The bias shifted in an intangible (human and knowledge)
capital-using direction and produced the substantial contribution of education and other intangible capital
accumulation to this century’s productivity growth...”

8Similar distributional implications are possible if households differed in their survival rates: low-p

households would exhibit a preference towards tangible assets and benefit less from skill-biased technolog-
ical change.
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Let us assume that an agent has the option of investing a part of his first period in-
come in life insurance with the objective of transferring a part of his total earnings (from
physical as well as human capital) to his child even in the event of premature death. Life
insurance firms operate on a no-profit no-loss basis and invest the funds in the market.
The returns from this are transferred to offsprings whose parents have died prematurely.
Children whose parents are alive to make an end-of-the-period bequest get nothing. Since
human capital is inalienable, the only investment vehicle available to life insurance com-
panies is physical capital stock.

We focus exclusively on the existence of a life insurance market which allows parents
to diversify bequest risks arising due to the possibility of premature death. Whether there
exists a parallel annuities market (which allows for diversification of consumption risks)
is irrelevant for this part of the analysis. Thus the results derived here can be compared
directly to the results derived in the first part of this section which does not allow for life
insurance.

As before the aggregate technology is still represented by a technology CRS in aggre-
gate physical (K) and human capital (H) stocks and the corresponding perfectly compet-
itive factor payments given by (17). The total human capital stock, aggregated over an
ex anteidentical population of unit measure p fraction of whom survive into middle age
is ph, where h is the human capital of each middle-aged person before experiencing their
survival shock. The aggregate physical capital stock now has two components: individ-
ual holdings of physical capital stock (denoted by k) and holding of capital stock by the
life insurance firms (denoted by κ per investor). The aggregate stocks are then

Kt = kt +κt,

Ht = pht.

Suppose in their youth individuals invest xt in physical capital, et in human capital
and zt in buying life insurance that yields asset levels in the following period,

kt+1 = f (xt)

κt+1 = f (zt)

ht+1 = g(et)

where the production functions f and g are concave as specified in (20).
The decision problem of a young adult at time t is to maximize expected lifetime utility

Vt ≡ u(c1t) + βpu(c2t+1) + γEtVt+1
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subject to

c1t = yt − xt − et − zt,

c2t+1 = θrt+1kt+1 + wt+1ht+1,

and given the income endowment yt, stochastic first period income for the offspring

yt+1 =






(1−θ)rt+1kt+1, w.p. p

rt+1

�
kt+1 +

κt+1
1− p

�
, w.p. 1− p

The middle-age budget constraint now embodies the additional assumption that the life
insurance firms pass on the returns that they earn from the market to the children of
prematurely dead parents.

The first order conditions for optimal investment are

xt : u
�(c1t) = [θβpu

�(c2t+1) + γ
�

p(1−θ)u
�(c

a

1t+1) + (1− p)u
�(c

d

1t+1)
�
]rt+1 f

�(xt) (24)

et : u
�(c1t) = βpu

�(c2t+1)wt+1g
�(et) (25)

and
zt : u

�(c1t) = [γu
�(c

d

1t+1)]rt+1 f
�(zt) (26)

For comparability we proceed by assuming linear utility and that all families start
with a relatively high initial endowment of physical capital k0 so that the individuals are
at their unconstrained optima where c1 > 0. Equations (24) , (25) and (26) then lead to
optimal investment decisions of

xt = [aχ {γ + pθ(β−γ)} rt+1]1/(1−χ)

et = [bβpχwt+1]1/(1−χ)

zt = [aχγrt+1]1/(1−χ) .

Consequently the individual stocks of the assets are

kt+1 = a
1/(1−χ) [χ{γ + pθ(β−γ)}]χ/(1−χ)

r
χ/(1−χ)
t+1

ht+1 = b
1/(1−χ)(χβp)χ/(1−χ)

w
χ/(1−χ)
t+1

κt+1 = a
1/(1−χ) [χγ]χ/(1−χ)

r
χ/(1−χ)
t+1

and the ratio of aggregate capital stocks are

Kt

Ht

=
kt +κt+1

pht

=
�

a

b

�1/(1−χ)
�

2γ + pθ(β−γ)
βp

�χ/(1−χ) 1
p

�
rt

wt

�χ/(1−χ)
. (27)
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From (17), on the other hand,
rt

wt

=
α

1−α

Ht

Kt

(28)

Using (21) and (22), we can solve for the equilibrium factor ratio

Kt

Ht

=
a

b

�
α

1−α

�χ 1
p1−χ

�
2γ + pθ(β−γ)

βp

�χ

(29)

which once again is a decreasing function of p for β ≥ γ.
The corresponding output per capita is given by

Y = Γ p
1−α
1−χ

�
1
β
{2γ +θp(β−γ)}

� αχ
1−χ

which also depends positively on longevity (as long as β ≥ γ).
A direct comparison with the results derived without life insurance immediately tells

us that the values are almost identical - except for a constant term. In fact for any given
value of p, the equilibrium K/H ratio is higher with life insurance than without. Thus
availability of life insurance tilts the direction of investment more towards physical capi-
tal than otherwise.

6 Conclusion

Two themes underlie our study of the effects of mortality on economic development.
When people face lifetime uncertainties, they are more inclined to invest in tangible as-
sets that can be passed on to their survivors. Mortality dissuades human capital accu-
mulation relative to physical capital and land. This has implications for long-run growth,
convergence, and technology adoption. From an accounting point of view, moreover,
high mortality societies would rely on physical capital accumulation more intensively
relative to low mortality ones.

The second contribution of this paper has been to establish these results without ap-
pealing to the standard assumption of perfect annuities. Annuity markets are more likely
to be underdeveloped in poorer societies. We have demonstrated that the parental altru-
ism motive can substitute for missing annuity markets reasonably well and in particular,
for investment in tangible assets. Future work will delineate the implications of this for
lifetime utility.
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