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Abstract

This article provides a uni�ed approach to speci�cation testing of econo-

metric models de�ned through conditional moment restrictions. The arti-

cle reviews alternative methodologies in the verge of the state of the arts

and discusses new applications and developments to models of particular in-

terest in econometrics practice. We focus our attention on omnibus tests,
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able to detect alternative speci�cations in any direction, i.e. in the direc-

tion of non parametric alternatives. We �rst discuss speci�cation tests of

parametric conditional distribution functions. The joint distribution is esti-

mated semiparametrically, imposing the parametrically speci�ed conditional

distribution, and tests statistics are based on functionals of the empirical

process consisting on the di¤erence between the semiparametric estimator

and the empirical joint distribution function, its pure nonparametric coun-

terpart. Tests for conditional moment restrictions on functions indexed by

parameters are motivated in the same way. Now, a nonparametric estimator

of the integral of the conditional moment is the empirical process forming

a basis of the tests. Related to these tests are those designed to testing

conditional moment restrictions using a smooth estimator of the conditional

moment, which are discussed in a separate section. These tests are related to

signi�cance tests of nonparametric models and speci�cation tests of semipara-

metric models. In the two last sections we discuss applications to particular

econometric models. A section is devoted to models of interest in micro-

econometrics, like quantile regression, discrete choice, censored regression

and count data. Another section is devoted to speci�cation testing in time

series models, paying attention to testing serial independence, the martingale

hypothesis, testing lack of autocorrelation and conditional symmetry.

Keywords: Speci�cation tests; Conditional distributions; Conditional

moments; Empirical processes; Smoothers.

1. INTRODUCTION

A popular methodology in economics applied research consists of developing be-

havioral equations of economic agents de�ned as the �rst order optimization so-

lution in an optimization problem, eg. an utility maximization subject to budget
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constraints or the minimization of a cost function subject to a given production

technology. The equations are usually represented in terms of some q � valued

vector of variables, Z; and are indexed by a vector of parameters, �; taking values

in a restricted subset of Rp; � say, i.e. � 2 � � Rp: Let U� : Rq ! Rm be the m

functions, which describe the equations for some particular parameter value, i.e.

U�0 (Z) = 0 for some �0 2 �: (1)

Usually Z = (Y 0; X 0) ; where Y is a q1 � valued vector of endogenous variables

caused by the q2 � valued vector of exogenous variables X:

The econometric modeling in this context consists of introducing the random

sampling by considering Z as a random variable with an unknown joint distribution,

F say, and the set of unknown parameters �0 are assumed to be identi�ed by means

of the set of conditional moment restrictions

E [(U�0 (Z)
 I`) vec (
 (X))] = 0 for some �0 2 �; (2)

where 
 stands for Kronecker�s product, I` is the `� ` identity matrix; and 
 is a

` �m matrix of functions in Rq; each column of 
 (X) is the ` � valued vector of

instrumental variables, or instruments, for the corresponding component of U�0 (Z) :

Thus, there are m`2 moment restrictions - some of the components of 
 (X) may

be zero.

A somehow more natural approach consists of assuming that �0 is such that (1)

is satis�ed in average for each possible value of X: That is, it is assumed that

E [U�0 (Z)jX = x] = 0 for some �0 2 � and all possible x 2 Rq2 ; (3)

which means that an in�nite number of moment conditions like (2) are satis�ed, one

for each possible function of X: Notice that (3) is in fact an identi�cation restric-

tion on the parameters � 2 �: A number of tests have been developed for testing
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(2), which is necessary, but no su¢ cient for (3), e.g. Newey (1985a, b), Tauchen

(1985) or Wooldridge (1990). These tests were called M tests. Sargan�s tests for

overidenti�ed restrictions, Sargan (1958, 1959), can also be classi�ed within this

class. Testing the in�nite moment restrictions in (3) involves using nonparametric

procedures. The parameter vector �0 can be identi�ed in di¤erent ways by imposing

alternative moment restrictions on U�0 (Z) ; from the full speci�cation of the con-

ditional distribution of Y given X to much more less restrictive assumptions, like

(3), conditional quantile restrictions, conditional symmetry, etc. Of course, the in-

terpretation of the parameters depends very much on the identi�cation restrictions

done.

This article o¤ers a uni�ed approach to exiting omnibus tests on conditional

moment restrictions, which can be usually represented as (3), able to eventually

detect any nonparametric alternative. These speci�c tests are essential prior to

interpreting the parameters or performing any statistical inference.

The rest of the article is organized as follows. In the next Section we present tests

for the conditional distribution function of Y given X, FY jX say, and therefore for

the conditional distribution of U�0 (Z) : Given a family of conditional distributions

functions indexed by a vector of parameters # 2 �; F =
�
FY jX;# : # 2 �

	
; a correct

speci�cation means that FY jX 2 F . Notice that � = g (#) for a suitable g : �! �;

and when the speci�cation is correct and FY jX = FY jX;#0 for some #0 2 � and

�0 = g (#0) : The tests are based on a comparison between an unrestricted estimator

of the nonparametric joint distribution function,

F (y; x) =

Z x

�1
FY jX (yj �x)FX (d�x) ;

where FX is the marginal distribution of X; and its semiparametric counterpart,
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imposing the parametrically speci�ed conditional distribution, F#0 (y; x), with

F# (y; x) =

Z x

�1
FY jX;# (yj �x)FX (d�x) ; (4)

where, for a s�valued vector w = (w1; :::; ws)0 ;
R w
�1 �d �w =

R w1
�1 � � �

R ws
�1 �dw1 : : : dws:

Speci�cation tests are based on suitable functionals of an estimator of F# � F:

These tests form a basis for motivating omnibus tests of (3) in Section 3 and other

conditional restrictions in subsequent sections. Tests of (3) are based on functionals

of estimators of the semiparametric function,

T� (x) =

Z x

�1
E [U� (Z)jX = �x]FX (d�x) (5)

=

Z
Rq1

Z x

�1
U� (�y; �x)FY jX (d�yj �x)FX (d�x)

=

Z
Rq1

Z x

�1
U� (�y; �x)F (d�y; d�x)

= E
�
U� (Z) 1fX�xg

�
;

which is known as integrated regression function when U� are the residuals of a

regression function. Section 4 presents tests based on smooth estimators of non-

parametric curves. First, we discuss alternative tests to those presented in Section

3, which use, as test statistics, estimators of

S�0 =

Z
Rq2
fX (�x)E [U�0 (Z)jX = �x]T�0 (d�x) ; (6)

where, henceforth, fV is the probability density function of a generic random vari-

able V: Since the conditional expectation is of nonparametric nature, it is estimated

using smoothers, typically kernels. This contrasts with tests presented in Section

3, whose test statistics are functionals of estimators of T�0 ; without resorting to use

smoothers. In Section 4, we also discuss testing hypothesis involving restrictions on

nonparametric curves, like signi�cance tests in nonparametric models, and speci�ca-

tion tests of semiparametric models. The next sections are devoted to applications
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of the methodology presented in previous sections to di¤erent speci�cation tests.

Section 5 is devoted to problems of particular interest in microeconometrics, like

quantile regression and models with discrete and limited dependent variables. Sec-

tion 6 discusses applications to time series modeling, which include testing serial

independence and the martingale hypothesis.

Along the article, regularity conditions are not discussed and, in particular, the

required smoothness of underlying nonparametric functions is given by granted.

2. TESTING THE SPECIFICATION OF THE CONDITIONAL

DISTRIBUTION

Let F =
�
FY jX;# : # 2 �

	
be a family of conditional distribution functions of the

scalar random variable Y given the q2 � valued vector of random variables X; e.g.

the Gaussian family. The null hypothesis of correct speci�cation can be formally

written as

H0 : FY jX 2 F .

The alternative hypothesis, H1; is the negation of the null. The null hypothesis can

also be alternatively written as,

H0 : F#0 � F = 0 for some #0 2 �;

where F# was de�ned in (4).

2.1. Test statistic.

The tests statistics for H0 are based on the classical proposals for omnibus speci-

�cation testing of a marginal distribution, introduced by Cramér (1928), von Mises

(1931), Kolmogorov (1933), Glivenko (1933), Cantelli (1933) and Smirnov (1937).

The idea consists of comparing the sample distribution function and the speci�ca-
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tion under the null. This idea has been extended to nonparametric testing of the

speci�cation of many other functions, like the conditional distribution.

Let F̂Xn be the empirical distribution of X; i.e. F̂Xn (x) = n�1
Pn

i=1 1fXi�xg; 1fAg

the indicator function of the event A and for any s�valued vector w = (w1; :::; ws)0 ;

fw � �wg = fw1 � �w1; : : : ; ws � �wsg :Given a random sample of Z; fZigni=1 say, with

Zi = (Yi; X
0
i)
0, a natural estimator of F# (z) is

F̂#n (z) =

Z x

�1
FY jX;# (y j�x) F̂Xn (d�x)

=
1

n

nX
i=1

FY jX;# (y jXi ) 1fXi�xg;

where z = (y; x0)0. The nonparametric distribution F can also be estimated, without

imposing the parametric speci�cation under the null, by the empirical distribution

F̂n (z) = n�1
Pn

i=1 1fXi�xg1fYi�yg: Andrews (1998) suggested testing H0 using as

test statistics functionals of the empirical process

�#n =
p
n
�
F̂#n � F̂n

�
: (7)

For each # 2 �; �#n are random step functions in Rq taking values in D [Rq] ; the

space of functions continuous from above, with limits form below in the sense of

Bickel and Wichura (1971).

An estimator of the unknown parameter #0 is needed in order to implement the

test. While the asymptotic distribution function of the standard empirical process

without estimated parameters is asymptotically distribution free, when parameters

are estimated, the asymptotic distribution depends on these estimated parameters,

as shown by Durbin (1973).

Given a particular
p
n � consistent estimator of #0; #̂n say, the conditional

maximum likelihood estimator is obviously a good option, test statistics are suit-

able functionals of ��̂nn: Consider the continuous functional � : D [R
q] 7�! R+
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such that, given two functions f1,f2 2 D [Rq] with jf1 (z)j � jf2 (z)j for each

z 2 Rq; � (f1) � � (f2) :The test statistic is �
�
�#̂nn

�
: A leading proposal for �

is the Kolmogorov-Smirnov criteria, � (f) = supz2Rq jf (z)j ; the corresponding test

statistic is

Kn = sup
z2Rq

j�#n (z)j :

Andrews (1998), in this context, suggested the computationally more economical

statistic max0�i�n
���#̂nn (Zi)��. Another alternative is the Cramér-von Mises criteria,

� (f) =
R
Rq f (z)

2 � (dz) ; for some given measure �. A reasonable choice is the

empirical distribution of the data F̂n; which corresponds, in this context, to the

statistic

Cn =

Z
Rq
�#̂nn (z)

2 F̂n (dz) =
1

n

nX
i=1

�#̂nn (Zi)
2 :

The null hypothesis H0 is rejected at the (1� �) � level of signi�cance when

��
#̂nn

= 1f�(�#̂nn)>c�g takes the value one: The critical value c� must satisfy that

limn!1 E
�
��
#̂nn

�
� � under H0; in order to control the type I error. However, such

critical values cannot be obtained because, as it happens in the simplest case, when

testing the speci�cation of a marginal distribution, the asymptotic distribution of

�
�
�#̂nn

�
under H0 depends on the unknown features of F; i.e. #0 and FX :

The idea of comparing integrated nonparametric curves has been developed for

testing di¤erent conditional moment restrictions, as we shall discuss later. The im-

plementation usually requires the assistance of the bootstrap, in the lines described

in the next Subsection, designed for each speci�c problem.

2.2. Bootstrap approximations.

Andrews (1997) suggested to approximate the critical values with the assistance of

a parametric bootstrap. Consider the bootstrap resample fY �i ; Xig
n
i=1 ; where Y

�
i is

randomly generated, using a numerical random number generator, with distribution
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FY jX;#̂n ( �jXi) : Then, the bootstrap test statistic is � (�
�
n) ; where

��n =
p
n
�
F̂#̂�nn � F̂

�
n

�
;

and F̂ �n is the sample distribution of fY �i ; Xig
n
i=1 : The bootstrap critical value is

the (1� �)� th quantile of the conditional distribution of � (��n) given the observed

sample, i.e.

c�n� = inf fc : P [� (��n) � cj fYi; Xig
n
i=1] � 1� �g :

The bootstrap test consists of using cn�� rather than c�; and it is described by the

binary random variable ���
�̂nn

= 1f�(�#̂nn)>c�n�g: Andrews (1997) showed, under weak

regularity conditions, that,

lim
n!1

E
�
���
#̂nn

�8><>: � � under H0

= 1 under H1
; (8)

which justi�es to use the procedure in practice. If (8) does not hold, we say that

the bootstrap test is inconsistent. The bootstrap critical value c�n� may be di¢ cult

to calculate in practice, but it can be approximated, as accurately as desired, by

Montecarlo, i.e. by generating a large number of bootstrap resamples, B say, and for

each resample we compute the corresponding bootstrap empirical process, �(b)�n , and

the corresponding test statistic �
�
�(b)�n

�
; b = 1; :::; B : The Montecarlo estimator

of c�n� is

ĉ�n� = inf

(
c :

1

B

BX
b=1

1n
�
�
�
(b)�
n

�
<c
o � 1� �

)
The bigger B, the better the accuracy of ĉ�n� approximating c

�
n�:

This methodology is applied to implementing many other test procedures de-

signed to test other conditional moment restrictions based on resampling schemes

designed for each speci�c problem.

Delgado and Stute (2008) have proposed to implement the test by substituting

�#̂nn by a martingale transformation in the lines suggested by Khamaladze (1981,
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1988 and 1993) for the standard empirical process with estimated parameters, which

converges to a standard Kiefer�s process. So, the corresponding critical values of

the test can be tabulated without the assistance of the bootstrap. However, this

procedure is computationally more demanding than implementing the parametric

bootstrap. However, the bootstrap approximation applied to the martingale trans-

form results in important level accuracy improvements.

2.3. Smooth alternatives.

It is worth mentioning that we can use smooth alternatives to F̂#n and F̂n in (7).

Let k be a kernel function, typically a probability density, and

K` (t) =
Z t1

�1
� � �
Z t`

�1

Ỳ
j=1

k (tj) dtj; t = (t1; :::; t`)
0 :

The smooth versions of F̂#n and F̂n are

~F#n (z) =
1

n

nX
i=1

FY jX;# (y jXi )Kq2
�
x�Xi

h

�
and

~Fn (z) =
1

n

nX
i=1

K1
�
y � Yi
h

�
Kq2

�
x�Xi

h

�
;

respectively. That is, we just substitute indicator functions by integrated kernels.

The smooth version of �#n is

~�#n (z) =
p
n
�
~F#n � ~Fn

�
(z) ;

and �
�
~�#n

�
is the smoothed version of � (�#n) : Applying the result in van der

Vaart (1994), �
�
~�#n

�
= � (�#n) + op

�
n�1=2

�
; which means that the two tests are

asymptotically equivalent.

In this section we have implicitly considered that Y is a continuous variable.

However, Y is discrete or censored in important econometric models, e.g. in discrete

choice models and in count data models. Speci�cation tests in these situations are

discussed in Section 5, once tests for conditional moment restrictions are presented.
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3. TESTING CONDITIONAL MOMENT RESTRICTIONS.

Henceforth, we consider U� scalar. In order to test the hypothesis

H0 : E [U�0 (Z)jX = x] = 0 for some �0 2 � and all possible x; (9)

in the direction of nonparametric alternatives H1; we can use the natural estimator

of T� in (5) ;

Tn� (x) =

Z
Rq1

Z x

�1
U� (�y; �x)Fn (d�y; d�x)

=
1

n

nX
i=1

U� (Zi) 1fXi�xg;

and proceed like in the previous section for testing (9) using the empirical process

�n� (x) =
p
nT�n (x). Conceptually, �n� and �n� are identical and tests can be per-

formed applying the same methodology. Given a
p
n�consistent estimator of �0; �̂n

say, and a functional � : D [Rq2 ] 7�! R+; with the described properties in Subsection

2.1., the test statistic is �
�
�n�̂n

�
and H0 is rejected at the � signi�cance level when

the binary random variable ��
�̂n
= 1f�(�n�̂n)>d�g takes the value one. The critical

values, d� are unknown, because the asymptotic distribution of �
�
�n�̂n

�
depends

on the unknown parameters �0 and other unknown features of the data generating

process. See e.g. Bierens (1982, 1990), Bierens and Ploberger (1997), Stute (1997),

and Delgado, Domínguez and Lavergne (2006). In particular, it depends on the

conditional variance of U�0 (Z) given X:

Stute, González-Manteiga and Presedo (1998) proposed a bootstrap procedure

designed to respect the conditional moment relation between U�0 (Z) and X up

to the second order, using the wild bootstrap resampling proposed by Wu (1986).

Let fV 3i g
n
i=1 be numerical randomly generated iid variables with mean zero and

variance one. It is usually chosen distributions with E (Vi) = 1 in the context of

regression models in order to respect also the third order moments relation, see Liu
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(1998). The choice of

Vi =

8><>: �
p
5�1
2

with probability
p
5+1
2
p
5

p
5+1
2

with probability
p
5�1
2
p
5

; i = 1; ::; n

proposed by Mammen (1993) has been very popular. The bootstrap sample is

fY �i ; Xig
n
i=1 ; where Y

�
i is the solution to the equation U�̂n (Y

�
i ; Xi) = U�̂n (Yi; Xi)Vi;

i = 1; :::; n: Bootstrap critical values are

d�n� = inf
n
d : P

�
�
�
� �
n�̂n

�
� d

��� fYi; Xigni=1� � 1� �o :
These critical values are approximated by Monte Carlo, as explained in Subsec-

tion 2.2. Stute, González-Manteiga and Presedo (1998) showed that the resulting

Bootstrap test is consistent.

These tests can also be applied to two sample tests for the equality between

regression curves, or other conditional moments, as proposed by Delgado (1993)

and Ferreira and Stute (2004).

4. TESTS BASED ON SMOOTHERS

Härdle and Mammen (1993), in the context of speci�cation testing of a regres-

sion model, proposed to use as test statistics functionals of the di¤erence between

a parametric and a nonparametric �t. This idea has been very popular in the

econometric literature, see Zheng (1996), Li and Wang (1998), Wang (2000, 2001),

Horowitz and Spokoiny (2001) or Guerre and Lavergne (2005), and it has been also

used for signi�cance testing in conditional models, e.g. Delgado and Stengos (1993),

Fan and Li (1996), Chen and Fan (1999), Lavergne and Vuong (2000) or Delgado

and González-Manteiga (2001), amongst others.

The tests are based on U � statistics and this methodology has been applied

to testing di¤erent restrictions on nonparametric curves, from testing conditional

independence to speci�cation testing of semiparametric models
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4.1. Tests of conditional moment restrictions using smoothers.

Henceforth, given a sample fVigni=1 from the p-valued vector of random variables

V; the product kernel estimator of the nonparametric probability density function

fV is

~fV n (v) =
1

n

nX
j=1

pY
`=1

kh (V`i � v`) ;

where kh (�) = h�1k ( �/h) ; v = (v1; :::; vp)0 and Vi = (V1i; :::; Vpi)0 ; and k : R ! R

is a kernel function, typically a univariate symmetric probability density. The

Nadaraya-Watson kernel estimator of E [U�0 (Z)jX = x] is

~mn (x) =
1

n ~fXn (x)

nX
i=1

U�̂n (Zi)

q2Y
`=1

kh (X`i � x`) :

Thus, S�0 in (6) can be estimated by

Ŝ�̂nn =

Z
Rq1

Z
Rq2

~fXn (x) ~mn (x)Tn�̂n (dx)

=
1

n

nX
i=1

~fXn (Xi) ~mn (Xi)U�̂n (Zi) :

Using kernel weights, with symmetric kernels,

Ŝ�̂nn =

0B@ n

2

1CA
�1

n�1X
i=1

nX
j=i+1

Hn�̂n (Zi; Zj)

+
k (0)

n2hq2

nX
i=1

U�̂n (Zi)
2

is a degenerate U � statistic with kernel

H�n (z1; z2) = U� (z1)U� (z2)

q2Y
`=1

k (x`1 � x`2) ; zj =
�
yj; x

0
j

�0
;

which is symmetric with respect to its arguments and has zero mean. The test

statistics is

ŝ�̂nn =
Ŝ�̂nnq

2dV arn (H�0n (Z1; Z2)) ;
13



where

dV arn (H�0n (Z1; Z2)) =
1

n (n� 1)hq2
nX
i=1

nX
j=1

q2Y
`=1

k (X`i �X`j)

�U�̂n (Zi)U�̂n (Zj)

is a consistent estimator of V ar (H�0n (Z1; Z2)) : Under H0 and suitable regularity

conditions, dealing with the smoothness of underlying nonparametric functions,

ŝ�̂nn
d! N (0; 1) as h+

1

nhq2
! 0:

Since ŝ�̂nn is a positive magnitude under H0; it is performed a one-sided test using

the critical values of the standard normal. The asymptotic normal approximation

can be very poor in practice and too sensitive to the choice of the smoothing pa-

rameter. However, bootstrap approximations are more accurate and less sensitive

to the bandwidth choice, e.g. applying the wild bootstrap resampling described in

the previous section as suggested by Delgado, Domínguez and Lavergne (2005).

Power comparisons between the tests presented in Section 3 are tricky. These

tests are unable to detect nonparametric local alternatives converging to the null at

the rate n�1=2: However, they are able to detect peak local alternatives, of the type

introduced by Rosenblatt (1975), which are not detected by the tests presented in

Section 3.

Testing conditional restrictions on nonparametric functions usually involve using

smoothers. We discuss below tests of conditional independence and speci�cation

tests of semiparametric models.

4.2. Testing conditional independence

Consider the null hypothesis,

H0 : FY jX = FY jX(1) ;
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where X(1) is a q(1)2 �dimensional subset of X; i.e. X =
�
X(1)0; X(2)

�0
: That is,

Y is conditional independent of X(2) given X(1): The joint distribution F can be

expressed under the restriction in the null hypothesis as

F (1) (z) =

Z x(1)

�1
FY jX(1)

�
yj �x(1)

�
FX
�
d�x(1); �x(2)

�
; z =

�
y; x(1)0; x(2)0

�0
;

which can be estimated by

~F (1)n (z) =

Z x(1)

�1
~FY jX(1)n

�
yj �x(1)

�
F̂Xn

�
d�x(1); �x(2)

�
=

1

n

nX
i=1

~FY jX(1)n

�
yjX(1)

i

�
1n
X
(1)
i �x(1)

o1n
X
(2)
i �x(2)

o; z = �y; x(1)0; x(2)0�0 ;
where ~FY jX(1)n is a kernel estimator of FY jX(1). Delgado and González-Manteiga

(2001) characterize H0 as

H0 :

Z x(1)

0

fX(1)

�
�x(1)
� �
F � F (1)

� �
y; d�x(1); x(2)

�
= 0;

where fX(1) is the probability density of X(1): They suggested to test H0 using as

test statistics functionals of the empirical process

~�n (z) =
p
n

Z x(1)

0

~fX(1)n

�
�x(1)
� �
F̂n � F̂ (1)n

� �
y; d�x(1); x(2)

�
; z =

�
y; x(1)0; x(2)0

�0
;

where ~fX(1)n is a kernel estimator of fX(1) and ~FY jX(1)n; in F̂
(1)
n ; is a kernel estimator

of ~FY jX(1)n: Notice that

~�n (z) =
1

n3=2

nX
i=1

nX
j=1

�
1fYi�yg1

n
X
(1)
i �x(1)

o � 1fYj�yg1nX(1)
j �x(1)

o�

�1n
X
(2)
i �x(2)

o q
(1)
2Y
`=1

kh

�
X
(1)
`i �X

(1)
`j

�
; z =

�
y; x(1)0; x(2)0

�0
;

is a U � process: Delgado and González-Manteiga (2001) showed that ~�n converges

to a Gaussian process with an unknown covariance function depending on fX(1)

and FY jX(1) : Given a suitable functional and its corresponding test statistic, the
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critical values are approximated with the assistance of the bootstrap. The bootstrap

resample is f(Y �i ; Xi)g
n
i=1 ; where Y

�
i is the solution to

U�i =
~FY jX(1)n

�
Y �i jX

(1)
i

�
; i = 1; :::n;

and fU�i g
n
i=1 are randomly generated with an uniform distribution in the interval

[0; 1] : The bootstrap critical values are approximated by Monte Carlo.

A nonparametric signi�cance test for marginal e¤ects, where the null hypothesis

is

H0 : E (U�0 (Z)jX) = E
�
U�0 (Z)jX(1)

�
for some �0 2 �

can be performed using the empirical process

~�n (x) =

Z
R

Z x

�1
U�̂n (�y; �x)

~�n (d�y; d�x)

=
1

n3=2

nX
i=1

nX
j=1

�
U�̂n (Zi) 1

n
X
(1)
i �x(1)

o

�U�̂n (Zj) 1nX(1)
j �x(1)

o� 1n
X
(2)
i �x(2)

o q
(1)
2Y
`=1

kh

�
X
(1)
`i �X

(1)
`j

�
:

The bootstrap test is performed using the wild resample f(Y �i ; Xi)g
n
i=1 ; where Y

�
i

solves the equation,

U�̂n (Y
�
i ; Xi) = m̂

(1)
n

�
X
(1)
i

�
+ Vi

h
U�̂n (Yi; Xi)� m̂

(1)
n

�
X
(1)
i

�i
;

where m̂(1)
n (�) = n�1

Pn
j=1 U�̂n (Zi)

Yq
(1)
2

`=1
kh

�
� �X(1)

`j

�
and fVigni=1 are randomly

generated variables with mean zero and variance one.

4.3. Speci�cation testing of semiparametric models.

Consider the null hypothesis for the speci�cation of the partially linear model

H0 : E (Y jX) = X(1)0�0 + g
�
X(2)

�
for some �0 2 �;
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where g is a nonparametric function. The null hypothesis can be alternatively

written as

H0 : E (RY jX) = R0X(1)�0 for some �0 2 �;

where RY = Y �E
�
Y jX(2)

�
and RX(1) = X(1) �E

�
X(1)

��X(2)
�
are nonparametric

residuals. If these residuals were observed for each data point, fRY i; RX(1)ig
n
i=1 ;

we could proceed as in Section 3. In order to implement the test, the residuals

are estimated using kernel smoothers, say
n
~RY ni; ~RX(1)ni

on
i=1

and �0 is estimated

using a semiparametric estimator, �̂n say; e.g. Robinson (1988). Test statistics are

functionals of the U � process ~�n (x) =
p
n ~Tn�̂n (x) with

~Tn� (x) =
1

n

nX
i=1

~fX(1)n

�
X
(1)
i

��
~RY ni � ~R0X(1)ni�̂n

�
1f ~RX(1)ni�xg

=
1

n2

nX
i=1

nX
j=1

�
(Yi � Yj)�

�
X
(1)
i �X(1)

j

�0
�

� q(2)2Y
`=1

kh

�
X
(2)
`i �X

(2)
`j

�
where ~fX(1)n is the density estimator of the density of fX(1) : Delgado and González-

Manteiga (2001) showed that this is a non-degenerated U � process with a case

dependent limiting distribution. Since the critical values are unknown, they can be

approximated using wild bootstrap resamples fY �i ; Xig
n
i=1 ; where

Y �i =
~R0X(1)ni�̂n + ~m

(2)
ni + Vi

�
Yi � ~R0X(1)ni�̂n � ~m

(2)
ni

�
;

~m
(2)
ni = Yi� ~RY ni and fVigni=1 are randomly generated variables with mean zero and

variance one.

A similar idea has been presented for testing the speci�cation of index models.

The null hypothesis is in this case,

H0 : E (Y jX) = G (X 0�0) for some �0 2 �;

where G is a nonparametric function. This model has been considered in the econo-

metrics literature by Powell, Stock and Stoker (1989) and Robinson (1989) amongst
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others. After noticing that in this case E (Y jX) = E (Y jX 0�0) with probability

one under H0; and given a suitable estimator of �0; �̂n say, Gi = G (X 0
i�0) can be

estimated by the kernel estimator,

~Gni =
1

n ~fX0�̂n

�
X 0
i �̂n

� nX
j 6=i

Yj

q2Y
`=1

kh

�
�̂
0
n (Xi �Xj)

�
:

Now, the U � process

~�n (x) =
1p
n

nX
i=1

�
Yi � ~Gni

�
1fXi�xg

forms a basis for the test. The critical values of the resulting tests are approximated

by bootstrap using the resample fY �i ; Xig
n
i=1 where Y

�
i = ~Gni + Vi

�
Yi � ~Gni

�
;

i = 1; :::; n where fVigni=1 are random numbers generated from a random variable

with mean zero and variance one. Related tests for the speci�cation of index models

have been proposed by Stute and Zhu (2005).

5. SOME APPLICATIONS TO MICROECONOMETRIC MODELS.

In this section we discuss the application of omnibus testing methodology pre-

sented in previous sections, to some popular microeconometric models. We pay

attention to quantile regression and regression models with discrete or limited de-

pendent variables.

5.1. Quantile regression models.

Consider the quantile regression function m : Rq2 � [0; 1] ; such that

FY jX (m (x; �)jx) = � for each � 2 (0; 1) and x 2 Rq2 :

The speci�cation test consists of testing the hypothesis

H0 : m (x; �) = x
0�0 (�) for each � 2 (0; 1) (10)

and some function �0 : [0; 1]! Rq2 :
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Let �̂n be a suitable estimator of the function �0: See e.g. Koenker and Bassett

(1978). A test can be performed using as test statistics continuous functionals of

�n (x; �) =
1p
n

nX
i=1

�
1fYi�X0

i�̂n(�)g � �
�
1fXi�xg: (11)

In order to implement the test with the assistance of the bootstrap, we realize that

under H0; Yi = X 0
i�0
�
FY jX (YijXi)

�
; i � 1: Thus, taking into account that under

H0
�
FY jX (YijXi)

	n
i=1

are independent and identically distributed as a uniform in

[0; 1] and independent of fXigni=1 ; a bootstrap assisted test can be performed using

the resample fY �i ; Xig
n
i=1 ; where Yi = X

0
i�0 (U

�
i ) and fU�i g

n
i=1 are random numbers

generated according to a uniform in [0; 1] : The critical values are approximated by

Monte Carlo, as explained in Subsection 2.2.

Domínguez (1998), Koul and Stute (1999) and Bierens and Ginther (2007) have

studied the asymptotic properties of the test. Zheng (1998) proposed the smoothed

based counterpart.

5.2. Discrete choice and count data models.

Suppose that Y is a discrete random variable taking integer values with

P fY = kjX = xg = � (kj �) ; k 2 N,

i.e. � is a conditional probability function. Given a family of probability functions

indexed by a vector of parameters P = f�# :
P1

k=0 �# (kj �) = 1; �# � 0; # 2 �g ;

consider the hypothesis,

H0 : � 2 P.

Popular families in econometrics research are the Poisson and Negative Binomial,

see e.g. Cameron and Trivedi (1998). Of course, discrete choice models belongs to

this class with k = 0; 1:
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Given a suitable estimator of #0; #̂n say, e.g. the ML; we can estimate p (x; k) =

P (X � x; Y = k) for each k 2 N by its fully nonparametric sample analog

p̂ (x; k) =
1

n

nX
i=1

1fYi=kg1fXi�xg; k 2 N,

and by its semiparametric counterpart imposing the speci�cation under the null

p#̂n (x; k) ; with

p# (x; k) =
1

n

nX
i=1

�# (kjXi) 1fXi�xg; k 2 N:

For each k 2 Z, we can consider the empirical process

�n# (x; k) =
p
n (p̂n (x; k)� p# (x; k)) :

Test statistics are functionals of the empirical process

�n;N (x) =
NX
k=0

�n#̂n (x; k)
2 ;

where N is a fairly large integer. Usually, in economics practice, count data

observations take few large values with very small sample frequencies. WhenPM
k=0 �# (kj �) = 1, with M small, e.g. in discrete choice models M = 2; we

take N = M � 1: The empirical process �n;N has a cumbersome limiting distri-

bution under the null hypothesis. Bootstrap assisted tests are implemented using

resamples fY �i ; Xig
n
i=1 ; where Y

�
i are random numbers generated according to a dis-

crete random variable distribution with probability function �#̂n ( �jXi), i = 1; :::; n:

Bootstrap critical values are approximated by Monte Carlo.

Alvarez and Delgado (2002) have implemented these speci�cation tests for Pois-

son and Negative Binomial models in the context of dental care demand.

5.3. Censored models

Consider the censored model

Y = max f0; X 0�0 + Ug ;
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where U is the error term of the underlying latent variable regression model. In

the Tobit model is assumed that U is independent of X and distributed accord-

ing to a normal random variable centered at zero and with unknown variance �20;

which prevent for the presence of conditional heteroskedasticity and other higher

order conditional moment heterogeneity: This hypothesis can be tested using the

test presented in Section 2. The bootstrap resample in this case is fY �i ; Xig
n
i=1 ;

where Y �i = max f0; X 0
i�n + U

�
i g ; where �n is the ML estimator and fU�i g

n
i=1 are

generated according to a normal with mean zero and variance �2n; where �
2
n is the

maximum likelihood estimator of �20:

TheML estimator is inconsistent under misspeci�cation of the underlying condi-

tional distribution function, including heteroskedasticity. There is a large literature

on the estimation of censored models in the presence of a conditional distribu-

tion of unknown parametric form, robust to heteroskedasticity. Powell (1984, 1986)

suggested censored regression quantile estimators, consistent under weaker assump-

tions. The main speci�cation assumptions are stated as follow.

Let Y y be the underlying unobserved latent variable, such that Y = Y y1fY y>0g;

and consider its conditional quantile function my; such that

FY yjX
�
my (x; �)

�� x� = � for each � 2 (0; 1) and x 2 Rq2 :
The hypothesis of correct speci�cation is similar to (10), i.e.

H0 : m
y (x; �) = x0�0 (�) for some function �0 : [0; 1]! Rq2 :

The problem is that Y y is not observable and we cannot apply the test discussed

in subsection 5.1. However, we can take advantage of the fact that under H0, the

conditional quantile function of Y given X is

H0 : m (x; �) = max f0; x0�0 (�)g for each � 2 (0; 1) (12)
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Using this, Powell (1984, 1986) extended the estimator of Koenker and Bassett

(1978) to these circumstances. This estimator, �̂n (�) say, is squared root consistent

for each � 2 (0; 1) when the speci�cation in (12) is correct. This hypothesis can

be tested using the procedure discussed in Subsection 5.1., based on the empirical

process in (11) applied to this speci�cation, i.e.

�n (x; �) =
1p
n

nX
i=1

�
1fYi�max(0;X0

i�̂n(�))g � �
�
1fXi�xg:

The critical values are approximated using the bootstrap procedure discussed in

Subsection 5.1. Now, we use a bootstrap resample fY �i ; Xig
n
i=1 with Y

�
i = max

�
0; Y y�i

�
;

where Y y�i = X 0
i�0 (U

�
i ) and fU�i g

n
i=1 are random numbers generated according to

a uniform in [0; 1] : Related to this test is that proposed by Nikabadze and Stute

(1997) for regression models with random censorship.

6. SOME APPLICATIONS TO TIME SERIES MODEL SPECIFICA-

TION

In this section, we present testing restrictions in models dealing with strictly

stationary time series data. Along this Section it is assumed that the underlying

time series process is strict stationary. First, we discuss the generalization of the

tests presented in Section 3 to speci�cation testing of Markovian time series. Then

we discuss testing serial independence, testing the martingale hypothesis and testing

conditional symmetry.

6.1. Speci�cation testing of Markovian time series.

Consider an univariate strictly stationary time series process fZtgt2Z : There are

di¤erent hypothesis interesting to test. For instance,

H0 : E
�
U�0 (Zt)j fZjg

t�1
j=s

�
= 0 for some �0 2 �:
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Given observations fZtgnt=1 and a suitable
p
n� consistent estimator of �0; �̂n say,

tests are based on the empirical process

�n (z) =
1p
n

nX
t=s+1

U�̂n (Zt)

sY
`=1

1fZt�`�z`g:

Koul and Stute (1998) have studied the asymptotic properties of this empirical

process under very week serial dependence regularity conditions. They propose to

use the martingale part of this empirical process, which is asymptotically distrib-

ution free, for performing omnibus tests of H0: The test can also be implemented

with the assistance of a wild bootstrap.

A large number of existing time series tests can be developed applying the

methodology presented in preceeding sections.

6.2. Testing serial independence.

Another interesting hypothesis is that �t = U�0 (Zt) and �t�s = U�0 (Zt�s) are

independent, with �0 known at the moment, which can be expressed as

H0 : 
� (s; u1; u2) = 0 for a given s 2 N, (u1; u2) 2 R2.

where, given a stationary time series process f� ig
n
i=1,


� (s; u1; u2) = G� (s; u1; u2)�G� (0; u1;1)G� (0;1; u2) (13)

is the generalized autocorrelation function, with

G� (s; u1; u2) = E
�
1f�t�u1g1f�t�s�u2g

�
:

The methodology presented along this article can also be applied to this case,

extending the tests proposed by Hoe¤ding (1948) and Blum, Kiefer and Rosenblatt

(1961) for the independence of two random variables using iid observations. See

Delgado (1999) for a review. The sample analog of G� (s; u1; u2) is

Ĝ�n (s; u1; u2) =
1

n

nX
t=s+1

1f�t�u1g1f�t�s�u2g;
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and the corresponding estimator of 
� (s; u1; u2) is,


̂�n (s; u1; u2) = Ĝ�n (s; u1; u2)� Ĝ�n (0; u1;1) Ĝ�n (0;1; u2)

Then, tests statistics are continuous functionals of the empirical process ��n =
p
n
̂�n:

Skaug and Tjøstheim (1993) proposed this test based on ��n for testing H0. They

show that the limiting process under the null share the distribution of the classi-

cal Hoe¤ding-Blum-Kiefer-Rosenblatt test, which has been tabulated for the main

criteria. Delgado (1996) considers the extension to testing serial p� independence

(independence at p lags) is still distribution-free. Delgado and Mora (1998) showed

that estimating parameters does not have e¤ect on the asymptotic pivotal distrib-

ution of the empirical process.

Though asymptotic tests are possible in this case, the asymptotic distribution of

the test statistics can also be approximated with the assistance of the bootstrap by

using as resample f�tg
n
t=1 a random permutation of f��tg

n
t=1 : When parameters are

estimated, the test statistics are not distribution free and the bootstrap assisted

test is sorely needed.

The hypothesis of pairwise independence

H0 : �t independent of �t�s for all s 2 Z

can also be tested by resorting to the generalized spectral density. This hypothe-

sis can be expressed in terms of 
� evaluated at all the lags: Let us consider the

generalized spectral density

h� (�; u1; u2) =
1

2�

1X
j=�1


� (s; u1; u2) exp (�ij�) ; � 2 [��; �] :

Pairwise serial independence tests are based on estimates of the generalized spectral
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distribution

H� (!; u1; u2) = 2

Z !�

0

h�
�
��; u1; u2

�
d��

= 
� (0; u1; u2)�+ 2

1X
s=1


� (s; u1; u2)
sin (s��)

s�
; ! 2 [0; 1] :

Under H0; H� (!; u1; u2) = ! � 
� (0; u1; u2) ; which forms a basis for the test. Hong

(2000) proposed, in the context of simple hypothesis, the estimator,

Ĥ�n (!; u1; u2) = 
̂�n (0; u1; u2)!

+2

n�1X
s=1

�
1� s

n

�1=2

̂�n (s; u1; u2)

sin (!s�)

s�
; ! 2 [0; 1] :

The restricted estimator under H0 is

Ĥo
�n (!; u1; u2) = 
̂�n (0; u1; u2)!; ! 2 [0; 1] :

Test statistics are fuctionals of the empirical process ���n; where,

���n =

r
n

2

�
Ĥ�n � Ĥo

�n

�
: (14)

This empirical process is asymptotically distribution-free when parameters are known.

The asymptotic distribution is the product of independent Brownian-Bridges in

[0; 1]. However, the distribution is case dependent when the parameters are esti-

mated. In this case, the critical values of the resulting tests can be approximated

with the assitance of a bootstrap procedure using as resample the random permu-

tation of the original sample, as explained before. The spectral representation of

���n;

���n (!; u1; u2) =

r
2

n

n�1X
j=1

�
1� j

n

�1=2

̂�n (j; u1; u2)

sin (j�!)

j�
; ! 2 [0; 1]

is useful for interpreting the resulting tests. The Crámer von Mises criterium pro-
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vides the statistic

CMn =

Z 1

0

Z
R2
���n (!; u1; u2)

2 d�G�n (0; du1;1)G�n (0; du2;1)

=
1

n

n�1X
j=1

(n� j)
�̂2�n (j)

(�j)2
;

with

�̂2�n (j) =

Z
R2

̂�n (j; u1; u2)

2G�n (0; du1;1)G�n (0;1; du2)

=
1

n

nX
t=1

nX
i=1


̂�n (j; Zi; Zt)
2 :

That is these tests are taking into account all the pairwise dependences amongst

the di¤erent lags. A bootstrap test is performed using as resample a random per-

mutation of fZigni=1 :

6.3. Testing the martingale hypothesis.

Another interesting hypothesis is the martingale hypothesis,

H0 : E
�
U�0 (Zt)j fZjg

t�1
j=�1

�
= E (U�0 (Zt)) , for some �0 2 �:

This hypothesis is hard to test because the conditioning set is in�nite dimensional.

However, we can test the slightly less ambitious restriction

H0 : E (U�0 (Zt)jZt�s) = E (U�0 (Zt)) for each s < t; some �0 2 �:

Notice that H0 can be alternatively expressed as

H0 : E
�
U�0 (Zt) 1fZt�s�zg

�
= E (U�0 (Zt)) for each s < t; some �0 2 �;

which in turns can be expressed in terms of the generalized spectral distribution,

by noticing that, under H0

Cov
�
U�0 (Zt) ; 1fZt�s�zg

�
=

Z 1

�1
U�0 (�z) 
Z (s; d�z; z) ;
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where 
Z was de�ned in (13) with � in place of Z: Then, given a suitable estimator

of �0; �̂n say, tests statistics of the martingale hypothesis can be based on the two

parameter empirical process

�� �n =

Z 1

�1
U� (�z) ��Zn (!; d�z; z)

=

r
2

n

n�1X
j=1

�
1� j

n

�1=2
~
�n (j; z)

sin (j�!)

j�
;

with

~
�n (j; z) =
1

n

nX
i=j+1

�
U� (Zi)� �U�n

�
1fZi�j�zg

and �U�n = n�1
Pn

i=1 U� (Zi) : Escanciano and Velasco (2006a) have studied tests

based on this empirical process. They have shown that �� �0n; suitably scaled, con-

verges to a Brownian Motion under H0; and the corresponding test statistics can be

tabulated. However, when parameters are estimated, the tests are not asymptoti-

cally distribution free, but critical values can be approximated with the assistance

of a wild bootstrap. Related tests are those proposed by Escanciano and Velasco

(2006b) and Escanciano (2007).

6.4. Testing lack of autocorrelation.

The classical omnibus tests for lack of autocorrelation proposed by Bartlett (1955)

can also be expressed in terms of the empirical process ���n discussed in (14). Sup-

pose we are interested in testing

H0 : Cov (U�0 (Zi) ; U�0 (Zi�s)) = 0 for all s 2 Z and some �0 2 �:

When parameters are known under H0; The lack of autocorrelation between � i =

U�0 (Zi) and � i�s = U�0 (Zi�s) for all s 2 Z can be carried out using the Bartlett�s
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Tp � process Tn (!) = ~��n (!)
.

̂�n (0) with

~��n (!) =

Z 1

�1

Z 1

�1
u1u2���n (!; du1; du2)

=

r
2

n

n�1X
j=1

�
1� j

n

�1=2

̂�n (j)

sin (j�!)

j�
;

where 
̂�n (j) = n
�1Pn

i=j+1

�
� i � ��n

� �
� i+1 � ��n

�
is the sample autocorrelation func-

tion of f� ig
n
i=1 : The empirical process ~��n converges to the standard Brownian

Bridge, see e.g. Anderson (1993), and the asymptotic critical values are tabulated.

However, when parameters are estimated the resulting tests are not distribution free

and critical values can be approximated using bootstrap methods, as suggested by

Chen and Romano (2002) or implementing a suitable asymptotically distribution

free transformation, as suggested by Delgado, Hidalgo and Velasco (2005).

6.5. Conditional symmetry

Testing symmetry of the conditional distribution of residuals U�0 (Zt) around zero

is interesting in many applications, see Bai and Ng (2001). Let the information set

at time t be It = f(Ys�1; Xs) ; t�m+ 1 � s � tg : The hypothesis to test is

H0 : FU�0 (Zt)jIt ( �j `) 2 S for each ` 2 R
mq,

where S = fG : G (u) = 1�G (�u)g is the class of symmetric distributions around

zero.

Given a suitable estimator of �0; �̂n say, test are constructed using the sample

analog of the joint distribution of (U�0 (Zt) ; It) ; G�0 say;

Ĝn (u; `) =
1

n

nX
t=m+1

1fU�̂n (Zt)�ug
mY
j=1

1fYt�j�yjg1fXt�j+1�xjg;

` = (y1; :::; ym; x
0
1; :::; x

0
m)

0 : Tests are functionals of the empirical process

�n (u; x) =
p
n
h
Ĝn (u; `)� Ĝn (1; `) + Ĝn (u; `) (�1; x)

i
;
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which extends the empirical process proposed by Butler (1969) for testing simple

symmetry hypothesis, when parameters are known, which in turn is a variation of

the empirical process introduced by Smirnov (1947).

Delgado and Escanciano (2007) showed, in a context allowing serial dependence,

that the limiting distribution of �n depends on �0 and other features of G�0 : They

proposed a bootstrap assisted test using a resample fY �i ; Xig
n
i=1 ; where U�̂n (Y

�
i ; Xi) =

U�̂n (Yi; Xi)Vi; and fVig
n
i=1 are Rademacher�s random variables, i.e. P (Vi = 1) =

P (Vi = �1) = 0:5:
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