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Abstract

We study an evolutionary model in which strategy revision protocols are based on agent spe-
cific characteristics rather than wider social characteristics. We assume that agents are primed
to play mixed strategies. At any time, the distribution of mixed strategies over agents in a
population is described by a probability measure. In each round, a pair of randomly chosen
agents play a game, after which they update their mixed strategies using certain reinforcement
driven rules based on payoff information. The distribution over mixed strategies thus changes.
In a continuous-time limit, this change is described by non-linear continuity equations. We
provide a general solution to these equations, which we use to analyze some simple evolutionary
scenarios: negative definite symmetric games, doubly symmetric games, generic 2×2 symmetric
games, and 2 × 2 asymmetric games. A key finding is that, when agents carry mixed strate-
gies, distributional considerations cannot be subsumed under a classical approach such as the
deterministic replicator dynamics.
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1 Introduction

It has long been recognized that the strong rationality assumptions on which modern economic
theory is founded are unrealistic as a representation of actual human behavior (Simon, 1956, 1957),
and the increasingly urgent challenge to rework these foundations has prompted much research
towards shifting the emphasis from substantive to procedural rationality; i.e to the way people ac-
tually make economic decisions. This research has in common the downgrading of hyper-rationality,
with its associated superhuman cognitive demands, in exchange for the upgrading of certain kinds
of psychological complexities that are claimed to better characterize the behavior of real people
in decision making contexts. One strand of this response is the ‘behavioral economics’ movement
- the attempt to account for empirically observed deviations from standard rationality assump-
tions by building into utility functions various inferred psychological dispositions (Camerer, 2003).
Another strand is ‘bounded rationality’, both in the original ‘satisficing’ sense of Herbert Simon
(1956, 1957, 1983)1, and in the more recent ‘adaptive toolbox’ perspective on human decision
making, which rejects optimization in favor of the ‘rules of thumb’ said to be part of the human
species-specific evolutionary heritage (Gigerenzer and Selten, 2001).2 Within bounded rationality,
there has emerged a substantial literature on learning in a game theoretic context.3 This is the
attempt to explain convergence to equilibrium by boundedly rational players through the use of
simple behavior-modifying mechanisms such as reinforcement learning (Borgers and Sarin, 1997,
2000; Erev and Roth, 1998), regret matching (Hart and Mas-Colell, 2000) and stochastic fictitious
play (Fudenberg and Levine, 1995).

A related response to the rationality challenge emphasizes learning in a social context through
repeated experience, but by boundedly rational agents using simple procedures of trial-and-error
or imitation through which players learn that some behaviors perform better than others. This is
the approach of ‘evolutionary game theory’, which studies the processes through which populations
of interacting agents find their way (or not) to an equilibrium.4 The assumption that agents do
not have hyper-rational cognitive abilities is reflected in the simple strategy adjustment procedures
that are designed to reward better performing behavior; analogously to the way a competitive
market rewards behavior leading to higher profits (Samuelson, 1997, Chapter 1). Thus, most recent
evolutionary models assume that each agent is primed to play, unreflectively, a pure strategy, which
is retained until a revision opportunity becomes available. Any cognitive sophistication is subsumed
under the revision protocol that agents use.

Evolutionary game theory potentially has great application in studying the impact of individual
level boundedly rational behavior on aggregate social outcomes. However, there has also been a
sharp dichotomy between evolutionary game theory and the larger game theoretic literature on

1See also Rubinstein (1998) for a more ‘rationalistic’ approach to bounded rationality.
2This approach has been dubbed ‘ecological rationality’, through its emphasis on fast and frugal heuristics that

are matched to specific environmental characteristics (Gigerenzer et al., 1999).
3See Young (2005) for a review of this literature.
4See Weibull (1995), Hofbauer and Sigmund (1988, 1998), Samuelson (1997), and Sandholm (2009) for book level

studies of evolutionary game theory.
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learning through boundedly rational rules that has prevented the realization of this potential. Our
primary aim in this paper is to construct a theoretical framework that can resolve this dichotomy
and allow the study of boundedly rational learning in the context of large population models. The
source of this dichotomy lies in the nature of the rules that individual agents use to revise their
actions in the two contexts. In the learning literature, a finite set of individuals repeatedly interact
in a game by conditioning their current strategic behaviour on the experience they have accumu-
lated in previous rounds of the game. The strategy revision rules in this context are therefore
history dependent, allowing the players to ‘learn’ from their previous experience. For example,
in reinforcement learning, actions which have been more successful in the past are employed with
higher probability in the present. In contrast, the revision protocols in evolutionary game theory
are generally conditioned on the current social state, which is the proportions of agents in a popu-
lation (or populations) playing different pure actions. For example, in imitative revision protocols
(Börnerstedt and Weibull, 1996; Schlag, 1998) that generate the replicator dynamic (Taylor and
Jonker, 1978), an agent may randomly select and imitate the strategy of a rival member of the
population.5 Revision protocols of this form, which emphasize social imitation, therefore fail to
take into account a very significant part of the cognitive abilities of human agents—the ability to
learn from personal experience (albeit in a social context). There is however considerable evidence
that such learning does take place and that past experience has a significant bearing on future
course of action; for example, Erev and Roth (1998) document empirical evidence in support of
reinforcement learning. In this paper, we resolve this dichotomy by developing a general theoretical
framework that allows agents to apply history dependent learning procedures in the setting of large
population games and analyze one particular such procedure, reinforcement learning, in detail.

The conditioning of revision protocols in evolutionary game theory on the social state is a legacy
of the origins in biology. The evolutionary process in biology is modeled as an automatic process,
driven by births and deaths, working to increase the frequency of better performing strategies.
While the motivation of an evolutionary process in economics is the same, it requires to be micro-
founded on decision behavior by agents, given the higher (relative to animals) cognitive abilities
of humans. This has led to a variety of revision protocols conditioned on the current social state
(see footnote 5). However, it is unlikely that in a decentralized environment agents would be
privy to such detailed information about the social state, thereby rendering the implementation
of such revision protocols essentially unfeasible. Some characterizations of revision protocols that
generate the classical replicator dynamic can, of course, be much more parsimonious in their level
of information requirement. For example, agents are required to observe only their immediate

5Other examples of the difference between revision procedures in the two fields can be cited. In learning under
regret matching, actions which would have reduced aggregate past regret become more probable. Thus, if ri is the
aggregate average regret of not always having played strategy i, then under the Hart and Mas-Colell (2000) regret
matching rule, the current probability of playing i is proportional to max{0, ri}. In contrast, the revision protocol
to generate the ‘Brown–Nash–von Neumann’ (BNN) dynamic (Sandholm, 2005) assigns probabilities proportional to
the excess of the payoffs over the mean population payoff, with payoffs calculated as expectations over the current
social state. Note that the functional forms of the two revision procedures are similar but the state variable each is
conditioned on differ. Similarly, in evolution under perturbed best response agents play a near best response to the
current social state (Hofbauer and Sandholm, 2005).
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payoff against a randomly matched opponent, rather than the expected payoff against the current
social state6, as long as they can also imitate the current (pure) strategy of some other randomly
selected agent. However, in some contexts, this assumption of the observability of a potential rival’s
strategy may be a very strong informational assumption; for example, traders in a stock market
would normally take care to conceal their planned strategies from rivals. Nevertheless, in most
scenarios in evolutionary game theory it remains the case that, for behaviors more sophisticated
than random imitation, the informational requirements are significantly more onerous, thus severely
compromising their feasibility.

In contrast, the evolutionary framework that we construct is free from such onerous infor-
mational requirements, being based on strategy revision protocols that require only knowledge
of agent-specific characteristics rather than of wider social characteristics. This allows a greater
range of behaviors – whether resulting from conscious deliberation or from essentially subcon-
sciously processes – to be feasibly implemented, thereby doing justice to a greater range of the
cognitive abilities of human agents. In particular, we use revision protocols based on reinforcement
learning, since these are both simple and extremely parsimonious in the information required for
their implementation.

We focus on reinforcement learning since it is the simplest and most widely studied class of
learning rules, and also has significant empirical support (Erev and Roth, 1998). However, our
general theoretical framework can be adapted to other learning mechanisms like regret matching
or stochastic fictitious play.7 To allow the application of procedures like reinforcement learning, we
postulate that each agent in a population game is primed with a mixed strategy, which we interpret
as the agent’s behavioral disposition, expressing her intrinsic uncertainty about what pure action
to take in the game when called upon to play. In this approach, the population state is specified
by a probability measure over the set of mixed strategies, defining the ‘mass’ of agents using a
particular mixed strategy. We note that this introduces a radical form of agent heterogeneity into
the population, extending the classical setting in which all agents use a fixed mixed strategy or,
equivalently, a fixed mixture of pure strategies. As players revise their individual mixed strategies in
the light of experience using some learning protocol such as reinforcement learning, the population
state changes. We track the changes in population states using a generalization to a probability
measure setting of a first-order partial differential equation system akin to the continuity equations
used in physics in the study of conserved quantities, such as bulk fluids.8 These evolutionary

6If agents are being randomly matched to play a symmetric normal form game with payoff matrix U , they are
required only to observe the realized payoffs uij rather than the expected payoffs of the form

∑
j uijxj , where xj is

the proportion of agents playing pure action j.
7Among the well known learning rules, reinforcement learning and regret matching require an agent to remember

only the actions he has played in the past. Stochastic fictitious play requires agents to remember the actions of the
opponents they encountered in the earlier rounds of the game. The application of these rules in large population
models would therefore require agents to know only their own actions or the actions of those opponents they personally
encountered in the past. It is of course not necessary that in applying a rule such as reinforcement, agents are
consciously increasing the probability on some action. It may be equally true that they are responding to some
subconscious cues that incline them towards adopting some actions with greater likelihood. We discuss this point in
greater detail in Section 12. Our technical framework is general enough to accommodate both interpretations.

8In physics, the continuity equation is a linear partial differential equation that describes the rate of change in the
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dynamics can also track the change in the mean of the population state which is the proportion
of agents playing different pure actions thereby permitting comparison with the results from the
classical approach to evolutionary game theory. We use this approach to study the impact of
heterogeneity on the long run population state in Sections 10 and 11.

To illustrate the application of these evolutionary ideas in an economic context, consider a
simple pricing game in which a population of homogeneous sellers interact with a population of
homogeneous buyers. The sellers can quote one of three prices; p0, p1, p2 with 0 < p0 < p1 < p2.
A consumer randomly matches two suppliers and asks them to submit quotations. Consumers are
of two types: a proportion y1 simply pick one of the two quotations at random and pays whatever
price it asks to the supplier, and the remaining proportion y2 compares both quotations and buys
at the lower price, breaking ties with a random choice. This situation defines a 2-player, 3 × 3
symmetric game between suppliers.9 Under certain conditions, it is easy to show that the game has
a unique mixed strategy equilibrium. A conventional equilibrium-focused approach would therefore
predict price dispersion as an equilibrium in this model.

However, evolutionary models studied in Hopkins and Seymour (2002) (using the replicator
dynamic) and Lahkar (2009) (using the logit dynamic – Fudenberg and Levine, 1995) show that
under standard evolutionary adjustment procedures, the mixed equilibrium is unstable; a conclusion
that is validated by evidence both from the field (Lach, 2002) and the laboratory Cason et. al.
(2005). These evolutionary models are based on sellers conditioning their behaviour on the current
social state. We have already expressed our reservations about how feasible it is to implement these
protocols (see footnote 9); particularly one as onerous as the logit best response where sellers would
actually need to observe the social state in order to update their actions. In contrast, to apply
reinforcement learning in our framework, sellers are construed as (heterogeneous) carriers of mixed
strategies over possible prices, and simply need to update their probability of charging a particular
price on the basis of whether or not the presently quoted price results in a sale. Note that in this
strategy revision process, a seller need not even observe the price charged by the opponent with
whom he is currently matched. This is certainly a far less onerous requirement than that imposed
by even the simplest imitation revision protocol, where the seller would need to observe the price
that a randomly selected rival seller would charge were that seller invited to submit a quotation.

We derive our evolution equations for two models of population games, asymmetric and sym-

mass of fluid in any part of the medium through which the fluid is flowing. See, for example, Margenau and Murphy
(1962). However, our continuity equations differ from classical versions encountered in physics in that they contain
non-linearities. See Ramsza and Seymour (2009) for an application of continuity equation techniques to track the
evolution of fictitious play updating weights in a population game. Our paper provides a more general method of
constructing continuity equations that can be used for a variety of learning algorithms.

9This is a simplified case of the finite dimensional Burdett and Judd (1983) model studied in Lahkar (2009). The
payoff matrix of the game is as follows. Matched with a seller charging price pj , the seller charging pi obtains expected
payoff

1
2
piy1, if pi > pj ,

1
2
pi(y1 + y2) = 1

2
pi, if pi = pj ,

1
2
pi(y1 + 2y2), if pi < pj .

Let xi be the proportion of sellers charging price pi. The expected payoff from charging pi is then πi =
1
2
pi
(
y1 + 2y2

(
xi
2

+
∑
j>i xj

))
.
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metric. In the asymmetric case, there are two populations of agents with one player from each
population randomly matched in each round to play a two-player asymmetric normal form game.
If we let the time interval between each round of play go to zero, we obtain a coupled pair of
non-linear continuity equations, one for each population. In symmetric games, agents are matched
with members of their own population leading to a single continuity equation tracking the change
in the probability measure of that population.

From the general continuity equation, we generate one particular form—the replicator continuity
equation—using two reinforcement learning based updating rules, one from Börgers and Sarin
(1997) and a second that we propose as an alternative. When applied in the context of learning,
the expected change in mixed strategy of an agent under either of these rules is given by the classical
replicator dynamic. Such a relationship between reinforcement rules and the replicator dynamic has
been established in Börgers and Sarin (1997) and Hopkins (2002). However, by applying learning
algorithms explicitly to large population models, our work provides a more general perspective on
the link between learning and evolution.

We solve the replicator continuity equation using standard methods based on Liouville’s for-
mula.10 To characterize solutions explicitly requires us to derive an associated ODE system whose
solutions describe trajectories of certain aggregate quantities associated to the population means.
We call this ODE system the distributional replicator dynamics. We show that the continuity
replicator dynamics has many stationary solutions, in particular any probability distribution over
mixed strategies having mean that is a Nash equilibrium. Thus, equilibrium populations can be
very heterogeneous, with individuals playing any mixed strategy with positive probability, but with
population mean a Nash equilibrium. However, in contrast to the classical case, the population
mean itself is construed as a mixed strategy, not as a mixture of pure strategies. We then analyze
some simple evolutionary scenarios: negative definite symmetric games, doubly symmetric games,
generic 2×2 symmetric games, and 2×2 asymmetric games, focusing on the convergence properties
of the mean of the population state since this is the observable aggregate social state. For negative
definite symmetric games (for example, games with an interior evolutionary stable state, or ESS)
and doubly symmetric games (for example, coordination games), we show global convergence of
the mean of the population state to a Nash equilibrium, although, importantly, this need not imply
that the asymptotic population state itself is a point mass on the globally attracting mixed Nash
equilibrium. In 2 × 2 symmetric games, we find that the aggregate social state is the same pure
strategy Nash equilibrium that would result under the classical replicator dynamic, provided the
initial point in the latter case is identical to the initial aggregate state in the former case. However,
this conclusion does not hold either for n×n symmetric games with n > 2, or for 2× 2 asymmetric
games, where we provide counter-examples in which the two dynamics converge to different pure

10This formula expresses the time evolution of the probability density function as a function of the initial probability
density and the deterministic trajectories of the underlying characteristic ODE system, which describes the motion
of individual agents in the population– see, section 4 below. The classical Liouville formula describes the change in
volume along flow lines of an underlying dynamical system see, for example, Hartman (1964). Related versions are
discussed in Weibull (1995) and Hofbauer and Sigmund (1998).
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equilibria. Hence, expanding the behavioural flexibility of agents to allow use of mixed strategies
in evolutionary contexts has real consequences, in that it can lead to radically different conclusions
about the equilibrium social state.

In some ways, our paper revives some of the early work in biology (Hines, 1980; Zeeman, 1981)
concerning the evolution of mixed strategies. These papers use straightforward adaptations of dif-
ferent versions of the replicator dynamic (see footnote 24) to study the evolution of mixed strategies
using the standard biological motivation that the growth of the population share using a strategy
is proportional to the advantage of that strategy over the mean strategy. The analogous motiva-
tion in the context of human interaction and learning, that agents imitate successful strategies is,
however, not applicable to mixed strategies since such strategies are not directly observable. We
therefore cannot directly apply the functional form of the replicator dynamic to mixed strategies.
Hence the necessity to use the continuity equation approach for this purpose. Nevertheless, our
result on the convergence of the mean of the population to the Nash equilibria in negative definite
games is comparable to the results of Hines (1980) and Zeeman (1981) on convergence of the mean
to an ESS. This paper is also related, though in a more peripheral manner, to the literature on
evolutionary dynamics in games with continuous pure action space.11 However, while these papers
focus on the evolution of probability measures over pure actions, our concern is the evolution of
probability measures over mixed strategies in finite games.

The remainder of this paper is organized as follows. In section 2, we derive the general, nonlinear
continuity equations for 2 player asymmetric and symmetric games. Section 3 presents two updating
rules that generate continuity equations based on the classical replicator dynamic, and we consider
equilibrium conditions for distributions under these dynamics. In section 4, we introduce Liouville’s
formula in a general context, and use this formula to solve a generalized form of the replicator
continuity equation in section 5. In section 6, we introduce the distributional replicator dynamics, a
system of autonomous ODEs whose solutions determine the distributional solutions of the replicator
continuity equations. Section 7 shows stability in the mean for negative definite and semi-definite
games, and section 8 proves that expected payoff increases along non-equilibrium trajectories for
doubly-symmetric games. Sections 9 and 11 contain analyses of generic 2 × 2 symmetric and
asymmetric games respectively, while section 10 presents a 3×3 symmetric game for which classical
and distributional trajectories convergence to different equilibria. Section 12 contains a discussion
of the paper and concludes. Certain proofs and additional technical material are presented in the
appendix.

2 The General Continuity Equation for Population Games

We derive the continuity equations in the setting of population games. First, we consider the case
in which two players, each chosen from a separate population, are randomly matched to play an

11Some papers in this field are Cressman (2005), Cressman and Hofbauer (2005), Cressman, Hofbauer and Riedel
(2006), Hofbauer, Oechssler and Riedel (2008) and Oechssler and Riedel (2001, 2002).
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asymmetric normal form game.12 Next, we look separately at the case where two players chosen
from the same population are randomly matched to play a symmetric normal form game.

2.1 Two-population Asymmetric Games

Consider a society consisting of the set of populations P = {1, 2}. We assume both populations
are of fixed probability mass 1. Let Sl be the strategy set and nl be the number of strategies of
population l ∈ P. We denote by ∆l the simplex corresponding to population l. Thus,

∆l =

x ∈ IRnl+ :
∑
i∈Sl

xi = 1

 . (1)

A mixed strategy used by a player in population l belongs to ∆l. We will use x and y to denote a
typical mixed strategy of a player in populations 1 and 2 respectively. Then ∆ = ∆1 ×∆2 is the
set of mixed strategies of pairs of players, one from each population.

Let P be a Borel probability measure defined on the space of mixed strategies for population
1, ∆1.13 Thus, if B ⊆ ∆1 is a Borel set, then P (B) can be regarded as the proportion of agents in
population 1 playing mixed strategies in B. The mean strategy in population 1, 〈x | P 〉 ∈ ∆1, is
given by

〈x | P 〉 =
∫

∆1

xP (dx) . (2)

More generally, given a real vector-valued continuous function φ(x) on ∆1, we define its expectation
with respect to P by

〈φ | P 〉 =
∫

∆1

φ(x)P (dx). (3)

Similarly, we denote by Q the Borel probability measure over the space of mixed strategies
for population 2 characterizing proportions of agents using these strategies. The mean strategy
〈y | Q〉 ∈ ∆2 for population 2 is defined analogously to (2), and the expectation, 〈ψ | Q〉, of a
continuous function ψ(y) on ∆2, is defined analogously to (3).

We interpret the means (〈x | P 〉 , 〈y | Q〉) as the aggregate social state generated by the measures
P and Q. Even though agents are actually playing mixed strategies, the observable aggregate social
state is the proportion of agents playing different pure actions. By the law of large numbers, this
distribution over pure actions is equal to (〈x | P 〉 , 〈y | Q〉). We make use of this concept of the
aggregate social state later in our applications of the continuity equation in 2× 2 games.

Two players, one from each population, are randomly matched to play an asymmetric normal
form game. We denote by Pt and Qt the measures characterizing the two population states at time
t ≥ 0. Our objective is to track the evolution of the two measures Pt and Qt over time. We derive

12We confine ourselves to two-player asymmetric games merely for notational convenience. All the ideas involved
can be extended easily to multipopulation asymmetric games at the cost of more cumbersome notation.

13That is, P is a non-negative measure of total mass 1, defined on the σ-field of Borel sets in ∆1, the smallest
σ-field containing the closed sets of ∆1 – see, for example, Dunford and Schwatz (1964), p 137.
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the continuity equations for this purpose as follows.
Suppose the two chosen players use the mixed strategy profile (x, y) ∈ ∆. The probability that

they play the action profile (i, j) ∈ S = S1 × S2 is given by

πij(x, y) = xiyj . (4)

Of course,
∑

i,j πij(x, y) = 1 for all (x, y). After a play of the game, a player updates his mixed
strategy according to some updating protocol of the following general form. Given that the action
profile (i, j) has been played, the row player updates his strategy x ∈ ∆1 to x′ given by an updating
rule of the form:

x′ = x+ τfij (x) , (5)

where τ is a small time parameter representing the length of a round in which the game is played.
Similarly, the column player updates her strategy y ∈ ∆2 to y′ given by an updating rule of the
form:

y′ = y + τgij (y) . (6)

Thus, fij and gij are functions, fij : ∆1 → IRn1
0 and gij : ∆2 → IRn2

0 , where IRn0 = {z ∈ IRn :
∑

i zi = 0}.
We call these the forward state change functions: they specify how the players’ states change going
forward in time, and therefore are rules to update the mixed strategies x and y respectively.

The associated backward state change functions specify where current states came from, going
backward in time. Thus the backward state changes are functions bij : ∆1 → IRn1

0 and cij : ∆2 →
IRn2

0 which satisfy:

(x, y) = (u+ τfij (u) , v + τgij (v)) ⇐⇒ (u, v) = (x− τbij (x) , y − τcij (y)). (7)

Between times t and t+ τ , the two probability measures make the transition from Pt and Qt to
Pt+τ and Qt+τ respectively. Using (4), the relationships between the probability measures at the
two time periods are given by

Pt+τ (dx) =
∑
i,j∈S

∫
y∈∆2

(x− τbij(x))i yjPt (d[x− τbij(x)])Qt(dy), (8)

Qt+τ (dy) =
∑
i,j∈S

∫
x∈∆1

xi (y − τcij(y))j Qt (d[y − τcij(y)])Pt(dx). (9)

In order to derive the continuity equations, we multiply (8) and (9) by smooth, real-valued, but
otherwise arbitrary ‘test functions’ φ(x) and ψ(y) respectively, and then integrate. We obtain

〈φ | Pt+τ 〉 =
∑
i,j∈S

∫
x∈∆1

φ(x) (x− τbij(x))i Pt (d[x− τbij(x)]) 〈yj | Qt〉 (10)

〈ψ | Qt+τ 〉 =
∑
i,j∈S

∫
y∈∆2

ψ(y) (y − τcij(y))j Qt (d[y − τcij(y)]) 〈xi | Pt〉. (11)
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We now focus on (10) to obtain the continuity equation for population 1. We show in Appendix A.1
that the continuous-time limit τ → 0 leads to the following weak form of the continuity equation14:

d

dt
〈φ | Pt〉 =

∫
x∈∆1

∇φ(x) · [F(x)〈y | Qt〉]Pt(dx), (12)

where F(x) is the n1 × n2 matrix whose (i, j)-th entry is:

Fij(x) =
∑
r∈S1

xrfrj,i(x). (13)

A similar derivation gives the weak form of the continuity equation for Qt analogous to (12):

d

dt
〈ψ | Qt〉 =

∫
y∈∆2

∇ψ(y) · [G(y)〈x | Pt〉]Qt(dy), (14)

where G(y) is the n2 × n1 matrix defined analogously to (13):

Gji(y) =
∑
s∈S2

ysgis,j(y). (15)

The weak continuity equations (12) and (14) provide the dynamical equations that describe the
evolution of the probability measures Pt and Qt from specified initial measures P0 and Q0. Note
that, given Qt, the form (12) is linear in Pt, and given Pt, the form (14) is linear in Qt. However,
taken together, this pair of equations is a coupled non-linear system.

2.1.1 Absolute Continuity and Strong Forms of the Continuity Equations

If a probability measure P is absolutely continuous with respect to Lebesgue measure, then we can
write P (dx) = p(x)dx for some L1 probability density function p(x). We show in Appendix A.2
that if Pt is a solution to (12) with absolutely continuous initial measure P0, then Pt is absolutely
continuous for all t ≥ 0. Thus, if Q0 is also absolutely continuous, then the weak continuity
equations (12) and (14) can be expressed in terms of probability densities pt(x) and qt(y).

If we assume in addition that the density function pt(x) is differentiable in both x and t, then
we may obtain the strong form of the continuity equation. Thus, taking φ(x) = 0 for x ∈ ∂∆1,

14For a differentiable scalar function φ : IRn → IR, the gradient of φ, ∇φ, is the vector field on IRn defined by
∇φ(x) = (∂φ(x)/∂x1, . . . , ∂φ(x)/∂xn). For later use, we also note that the divergence of a vector field f : IRn → IRn

is the scalar function on IRn defined by ∇· f(x) =
∑n
i=1 ∂fi(x)/∂xi. See, for example, Margenau and Murphy (1962)

for a general discussion of these operators.
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using (3) and integrating by parts on the right-hand side in (12), we obtain15:∫
∆1

φ (x)
∂pt(x)
∂t

dx = −
∫

∆1

φ (x)∇ · [F(x)〈y | qt〉pt(x)]dx

That is: ∫
∆1

φ (x)
{
∂pt(x)
∂t

+∇ · [F(x)〈y | qt〉pt(x)]
}
dx = 0.

Since this holds for all differentiable test functions φ(x) which vanish on ∂∆1, we obtain the
differential form of the continuity equation:

∂pt(x)
∂t

+∇ · [F(x)〈y | qt〉pt(x)] = 0, x ∈ int ∆1, t > 0. (16)

This is the strong form of the continuity equation, which applies to differentiable density functions.
When q(y, t) is also differentiable in y and t, we can obtain the strong form of the continuity

equation analogous to (16):

∂qt(y)
∂t

+∇ · [G(y)〈x | pt〉qt(y)] = 0, y ∈ int ∆2, t > 0. (17)

The strong continuity equations for smooth densities, (16) and (17), give the dynamical equa-
tions that describe the evolution of the probability densities pt and qt. Intuitively, F(x)〈y | qt〉
represents the adaptation ‘velocity’ of mixed strategy x.16 That is, [F(x)〈y | qt〉] τ is the expected
change in mixed strategy x in the small time interval τ in response to a play of the game. Since
the mass of x is represented by pt(x), [F(x)〈y | qt〉] pt(x) gives the probability mass flow at x. The
divergence of this vector field therefore gives the rate at which the probability mass in a small
neighbourhood of x is expanding or contracting. Since ∂pt(x)

∂t is precisely the rate of change of the
probability mass of x, we are led to the continuity equation (16).

2.2 Symmetric Games

We now consider a symmetric normal form game with players chosen from a single population.17

We denote by S = {1, 2, · · · , n} the set of actions in the game. The set of mixed strategies is the
15The formal argument has the following form. For X a vector field on the domain ∆, we use the identity
∇ · [φX] = φ∇ ·X +∇φ ·X to obtain∫

∆

∇φ ·XdV =

∫
∆

∇ · [φX] dV −
∫

∆

φ∇ ·XdV

Now use the divergence theorem (Margenau and Murphy, 1962) together with the assumption that φ = 0 on ∂∆ to
obtain: ∫

∆

∇ · [φX] dV =

∫
∂∆

(u ·X)φdA = 0.

16In the next section, we provide two strategy updating rules in which this velocity is given by the replicator
dynamic.

17To describe the symmetric case, we adopt the notation of population 1 of the asymmetric case but drop the
population subscript.
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n-simplex ∆ = {x ∈ IRn+ :
∑

i∈S xi = 1}. The microfoundations and the derivation of the continuity
equation for a one population symmetric game now proceeds analogously to the asymmetric case.
The only difference is that instead of two probability measures, we need only track the evolution
of a single measure. Players from the same population are matched in pairs at each time interval
to play the game. The event that player 1 uses mixed strategy x and player 2 uses mixed strategy
y occurs with probability Pt(dx)Pt(dy), where Pt is the probability measure for the population at
time t. Thus, given that the chosen players use strategies x, y ∈ ∆, the probability, πij(x, y), that
they play the pair of pure strategies i, j ∈ S is given by (4). As in the asymmetric case, players
update their mixed strategies using a rule of the form (5).

The updating equation corresponding to (8) is:

Pt+τ (dx) =
∑
i,j∈S

∫
y∈∆

(x− τbij(x))i yjPt (d [x− τbij(x)])Pt(dy). (18)

The difference between (8) and (18) is that the Qt(dy) term in (8) is replaced by Pt(dy). The
derivation now proceeds as in the asymmetric case to obtain the weak symmetric form corresponding
to (12):

d

dt
〈φ | Pt〉 =

∫
x∈∆
∇φ(x) · [F(x)〈x | Pt〉]Pt(dx), (19)

with φ(x) a smooth test function, and F(x) given by (13) with n2 = n1. From this, when Pt is
absolutely continuous with differentiable density function pt(x) we derive the symmetric analogue
of the strong form (16) :

∂pt(x)
∂t

+∇ · [F(x)〈x | pt〉pt(x)] = 0, x ∈ int ∆, t > 0. (20)

Note that the form (20) is non-linear in pt.

3 Replicator Continuity Equations

Equations (16) and (17) give the general form of the continuity equations for 2-population, asym-
metric games for differentiable density functions. In this section, we derive a particular form of
the continuity equations—the replicator continuity equations. We first introduce two alternative
forward state change rules fij(x) and gij(y). Both these rules are based on the idea of reinforce-
ment. We then show that these updating rules lead to the replicator continuity equations. These
updating rules therefore provide the microfoundations to the replicator continuity dynamic.

Reinforcement models have been widely studied in the learning literature. A group of players,
one in each role in the game, employ mixed strategies in each round of a game. Reinforcement
models are based on the idea that if the action currently employed obtains a high payoff, then the
probability assigned to it increases in the next round of play. Reinforcement models are therefore
extremely naive models of learning. Agents mechanically respond to stimuli from their environment
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without seeking to create any model of the situation or strategically evaluate how they are doing.
Hence, they do not seek to exploit the pattern of opponents’ past play and predict the future
behaviour of their opponents.18 In this sense, agents are boundedly rational.

The two forward state change rules we consider are described below. We assume that players
from population 1 play the role of the row player while those from population 2 are column players.
If the row player plays action i ∈ S1 and the column player plays action j ∈ S2, the payoff to the
row player is uij and to the column player is vji. The expected payoff to i ∈ S1 against mixed
strategy y ∈ ∆2 is (Uy)i, where U is the n1×n2 payoff matrix (uij). Similarly, the payoff to j ∈ S2

against mixed strategy x ∈ ∆1 is (V x)j , where V is the n2 × n1 payoff matrix (vji). Thus

(Uy)i =
∑
j∈S2

uijyj , (21)

(V x)j =
∑
i∈S1

vjixi. (22)

We consider a player in a 2-player game who employs strategy x ∈ ∆, uses action i and encounters
an opponent who uses action j in the current round. The player then updates her strategy to x′

according to an updating rule fij(x), as in (5). For brevity, we present only the rules for population
1. For population 2, the updated strategy y′ and the updating vector gij(y) take analogous forms,
as in (6).

In enumerating the two rules, we need to assume that all payoffs are positive for Rule 1 and
negative for Rule 2 in order to ensure that all probabilities x′r are less than 1.19 Since it is always
possible to rescale payoffs to make them all positive or negative without affecting incentives, we do
not consider this a severe restriction.

1. This rule is from Börgers and Sarin (1997) and is a special case of a general class of reinforce-
ment rules introduced in Börgers and Sarin (2000). Under this rule, the mixed strategy x′

and the forward state change vector take the form

x′r = δiruijτ + (1− uijτ)xr, (23)

fij,r(x) = (δir − xr)uij . (24)

For τ small enough, a sufficient condition for (23) to represent an updating rule is uij > 0,
for all i, j ∈ S.

The general class of rules in Börgers and Sarin (2000) is based on the idea of aspiration. To
explain this rule, let us momentarily set τ = 1. Suppose that at round t of play, a player aspires

18Börgers and Sarin (1997) provide some justification of why agents respond to very limited information in these
models–only their own payoffs. They argue that the acquisition or processing of new information may be too costly
relative to benefits. Hence, they say, reinforcement models may be more plausible if agents’ behaviour is habitual
rather than the result of careful reflection.

19For large τ , we would also need to assume that the payoffs are less than 1 (more than −1) for Rule 1 (Rule 2)
to ensure that the probabilities are positive. Since we are primarily concerned with the case where τ is arbitrarily
small, we dispense with this restriction.
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to a payoff of at. The probability of playing a strategy r 6= i is then x′r = xr + (at − uij)xr20.
Hence, if uij > at, then action i gets reinforced. By setting at identically equal to zero, we
obtain (23). Note that in this case, the current action i is always reinforced.

2. We now consider a revision rule which applies when all payoffs uij are negative. The updated
strategy and the state change rule we consider is

x′r = xr + τurjxr, for r 6= i, (25)

fij,r(x) = urjxr, for r 6= i, (26)

with the residual probability being alloted to i. For small τ , it is sufficient to assume that
urj is negative for x′ to be a probability distribution.

Revision rule (25) has a similar interpretation to (23). We interpret the negative payoffs as
costs that the consumer incurs. Suppose at is the maximum (non-negative) cost that the
consumer is willing to incur in period t. The probability of playing r 6= i in the next round
is given by21 x′r = xr + (urj − at)xr. Action i is therefore reinforced if urj < at, for all r 6= i.
By setting at identically equal to zero, we obtain (25) and ensure that the current action i is
always reinforced when all payoffs are negative.

Recalling the notation of (21) and (22), we introduce the following operators

R1
i (x) y = xi {(Uy)i − x · Uy} , (27)

R2
j (y)x = yj

{
(V x)j − y · V x

}
. (28)

Clearly, the vector field generated by the two operators in (27) and(28) is identical to the vector
field generated by the bimatrix replicator dynamic (Taylor, 1979) on ∆ = ∆1×∆2. Hence, we call
the n1×n2 matrix operator R1(x) and the n2×n1 matrix operator R2(y), the replicator operators
for the two populations.

We now establish that the two updating rules described above generate the replicator operators
for the two populations which arise as F(x) and G(y) in the associated continuity equations, as
defined in (13) and (15) .

Lemma 3.1 For each of the updating protocols enumerated earlier in this section, F(x) = R1(x)
and G(y) = R2(y).

Proof. We prove the result only for Rule 1 for population 1. The proof for Rule 2 is similar.
20For the moment, we are ignoring the requirement of imposing restrictions on at and uij such that the probability

x′r actually makes sense
21We once again momentarily set τ = 1 and ignore any restriction we need to put on at for x′ to be a probability

distribution. We also temporarily drop the assumption that the urj are negative.
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We show that for fij(x) given by (24), [F(x)y]r = R1
r(x)y, for r ∈ S1. ¿From (13) we have

[F (x) y]r =
∑
i,j∈S

xifij,r(x)yj

=
∑
i,j∈S

xiyj (δir − xr)uij

= xr

∑
j∈S2

urjyj −
∑
i,j∈S

xiuijyj


= xr {[Uy]r − x · Uy}

= R1
r(x)y.

The proof for population 2 and G(y) is similar. �

The following proposition is now immediate.

Proposition 3.2 Under the forward state change rules (24) and (26), the continuity equations
(12) and (14) are given by

d

dt
〈φ | Pt〉 =

∫
x∈∆1

∇φ(x) ·
[
R1(x)〈y | Qt〉

]
Pt(dx), (29)

d

dt
〈ψ | Qt〉 =

∫
y∈∆2

∇ψ(y) ·
[
R2(y)〈x | Pt〉

]
Qt(dy). (30)

We call (29) and (30) the replicator continuity equations.22

In a similar way, we obtain the replicator continuity equation for a single population, symmetric
game.23 Let fij(x) be the mixed strategy rule in a symmetric game where fij(x) can take the form
in (24) or (26). We write R = R1, as in (27), for the replicator operator in the symmetric case.24

22These are the weak forms of the replicator continuity equations. There are obvious strong forms corresponding
to (16) and (17) for measures characterized by differentiable density functions.

23For the theoretical study of continuity equations, we use simple normal form games where realized payoff is
identical to expected payoff. In the price dispersion game discussed in the Introduction, there is, however, a difference.
If the two matched sellers charge prices (p1, p2), then, for the firm charging p1, realized payoff is either p1 or 0,
depending upon whether a sale materializes or not. However, the expected payoffs are as given in footnote 9. It is,
however, not difficult to extend the theoretical framework we develop in this section to allow the sellers to exercise
reinforcement learning on the basis of their realized payoffs only. The consumer can be treated as ’Nature’ which
makes an initial random move that determines the game between sellers: there are two choices of consumer strategy
chosen with probabilities y1 and y2. Once such a choice is made, the seller payoff matrix is determined. If we
then apply, for example, the Börgers and Sarin (1997) reinforcement rule (23), the expected change in a mixed
strategy continues to be given by the replicator dynamic. Hence, the change in the population state—the probability
measure—also continues to be given by the replicator continuity equation.

24Consider a symmetric game with payoff matrix U and let µt = 〈x|pt〉 be the mean. The strong form of the

replicator continuity equation is ∂pt(x)
∂t

+∇· [R(x)µtpt(x)] = 0. We note that this dynamic is very different from those
used in the early biology literature concerning the evolution of mixed strategies. For example, Zeeman (1981) uses

a straightforward adaptation of the replicator dynamic having the form ∂pt(x)
∂t

= pt(x) (x · Uµ− µ · Uµ), and Hines

(1980) uses the mean payoff adjusted replicator dynamic, ∂pt(x)
∂t

= pt(x)
µ·Uµ (x · Uµ− µ · Uµ) introduced in Maynard

Smith (1982) for pure strategies.
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Proposition 3.3 Let Pt be the probability measure over mixed strategies in a symmetric game.
Then, under each of the updating protocols (24)-(26), the weak continuity equation (19) is given by

d

dt
〈φ | Pt〉 =

∫
x∈∆
∇φ(x) · [R(x)〈x | Pt〉]Pt(dx). (31)

3.1 Example: Mean replicator dynamics

As an example of (31), it is instructive to derive a more explicit form of the dynamics for the mean
µt = 〈x | Pt〉. We focus on the symmetric case since it simplifies notation even as the ideas involved
can be readily adapted to the asymmetric case. Thus, taking φ(x) = xi in (31), we have:

d

dt
µi(t) =

∫
∆
Ri(x)µ(t)Pt(dx)

=
∫

∆
xi (ei − x) · Uµ(t)Pt(dx)

= (ei · Uµ(t))
∫

∆
xiPt(dx)−

∫
∆
xix · Uµ(t)Pt(dx)

= (ei · Uµ(t))µi(t)− (µ(t) · Uµ(t))µi(t)− Covt (xi, x) · Uµ(t)

= Ri (µ(t))µ(t)− Covt (xi, x) · Uµ(t),

where Cov(x, x) is the covariance matrix

Cov(x, x)ij = Cov(xi, xj) =
∫

∆
(xi − µi)(xj − µj)P (dx). (32)

That is, the continuity replicator dynamics for means can be written in the form

dµ

dt
= R(µ)µ− Cov(x, x)Uµ. (33)

Equation (33) makes clear that the continuity replicator dynamics of means differs from the
classical replicator dynamics applied to the population mean through a covariance term, which
cannot be reduced to a function of the mean.25

3.2 Rest points

If x∗ is a rest point of the symmetric replicator operator, i.e. R(x∗)x∗ = 0, and we take P0 = δx∗ ,26

the mass-point distribution at x∗, then the initial mean is 〈x | P0〉 = x∗, and hence from (31),
25We note that Hines (1980) derives an equation for mean dynamics from the mean-payoff adjusted replicator

dynamic (see footnote 24). His equation has the form

µ̇ =
1

µ · UµCov (x, x)Uµ.

26The mass-point, or Dirac measure at x∗ ∈ ∆ is defined by: 〈φ | δx∗〉 = φ(x∗) for any differentiable function φ
on ∆. By convention, this distribution is represented by the Dirac probability ‘density’: δx∗(dx) = δ(x− x∗)dx. We
sometimes adopt this convention.
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d
dt〈φ | Pt〉|t=0 = 0. Thus, δx∗ defines a rest point of the replicator continuity dynamics (31).

In particular, the pure strategy distributions, δei , 1 ≤ i ≤ n, are all rest points of the continuity
dynamics. More generally, it also follows easily from (31) that any distribution which is a mixture
of pure strategies:

P =
n∑
i=1

xiδei , x ∈ ∆, (34)

is a rest point of the continuity dynamics. In this case, the mean is µ = x. Intuitively, this is because
reinforcement learning (23) always reinforces the pure strategies that are played, and hence agents
who consistently play a pure strategy never have an incentive to modify their strategy. This result is
in complete contrast to the usual interpretation of the situation modelled by the classical replicator
dynamics, in which the population is always a mixture of pure strategy players. We note however,
that distributions of the form (34) are often unstable under the continuity replicator dynamics;
they are vulnerable to invasion by mixed-strategy players.

Also, any Nash equilibrium x∗ is a rest point of the classical replicator dynamics, and hence δx∗

is a rest point of the continuity dynamics (31). More generally, we show that any initial distribution
P0 with mean a Nash equilibrium is a stationary solution of the continuity dynamics, with a similar
statement in the asymmetric case.

Proposition 3.4 A: Let (x∗, y∗) be a Nash equilibrium of an asymmetric game with payoff matrix
(U, V ). Let P0 and Q0 be two measures satisfying 〈x | P0〉 = x∗ and 〈y | Q0〉 = y∗. Then
(Pt, Qt) = (P0, Q0) is a stationary solution of the continuity replicator dynamics.

B: Let x∗ be a Nash equilibrium of a symmetric game with payoff matrix U . Let P0 be a
measure satisfying 〈x | P0〉 = x∗. Then Pt = P0 is a stationary solution of the continuity replicator
dynamics.

Proof. A. First suppose that (x∗, y∗) has full support. Then Uy∗ = π∗1e
1 and V π∗2e

2, where
π∗1 = x∗ · Uy∗ and π∗2 = y∗ · V x∗ are the equilibrium payoffs to players 1 and 2, respectively, and
ek ∈ IRnk is the vector all of whose entries are 1. Observe from (27)-(28) that R1(x)y∗ = 0 and
R2(y)x∗ = 0 for any (x, y) ∈ ∆. By assumption, at t = 0, 〈x | P0〉 = x∗ and 〈y | Q0〉 = y∗. Hence,
from equations (29)-(30), d

dt〈φ | Pt〉|t=0 = d
dt〈ψ | Qt〉|t=0 = 0. That is, (P0, Q0) is a rest point of

equations (29)-(30).
Now suppose that (x∗, y∗) does not have full support. Let ∂∆1(x∗) be the lowest dimensional

face of ∆1 containing x∗. Then 〈x | P0〉 = x∗ implies that P0 is supported on ∂∆1(x∗). That
is ∆1 \ ∂∆1(x∗) has P0-measure 0. Similarly, define ∂∆2(y∗). Then (x∗, y∗) has full support on
∂∆1(x∗)× ∂∆2(y∗), and the argument above shows that (P0, Q0) is a rest point of (29)-(30).
B. The proof in the symmetric case is similar. �
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4 Solution of the General Continuity Equation: Liouville’s For-

mula

Our approach to solving the non-linear continuity equations we have constructed is to begin by
solving a different, but related problem. Thus, instead of confronting the non-linearities directly, we
first consider a linear continuity equation, but one defined by an explicitly time-dependent vector
field. We will later show how a solution of the non-linear continuity equations of interest can be
constructed from explicit solutions of linear continuity equations of this type.

4.1 Liouville’s Formula

Let X = X(x, t) ∈ IRn be a (possibly time-dependent) smooth vector field defined for x in a
neighbourhood of the state space Ω ⊂ IRn, where Ω is a compact, connected domain with non-
empty interior and piecewise smooth boundary. We assume that Ω is invariant under the flow
determined by X(x, t). Let Pt be a probability measure on Ω satisfying the linear weak continuity
equation

d

dt
〈φ | Pt〉 =

∫
Ω
∇φ(x) ·X(x, t)Pt(dx), (35)

for all smooth test functions φ(x), and for given initial measure P0. The solution to this initial-value
problem may be described as follows.

We first introduce some notation to describe the solution trajectories to the (non-autonomous)
differential equations defined by X,

dx

dt
= X(x, t). (36)

Let xt0,t(x), t ∈ IR, denote the solution trajectory to (36) that passes through the point x ∈ Ω
at time t0. Thus, the trajectory that passes through x at time t starts at the point xt,0(x) when
t = 0.27 After time s ≥ 0, this trajectory has reached the point xt,s(x) = x0,s (xt,0(x)). In
particular, xt,t(x) = x0,t (xt,0(x)) = x, and by definition xt,0 (x0,t(x)) = x.

We can now write down the solution to the initial value problem (35):

Pt(B) = P0 (xt,0(B)) . (37)

This is Liouville’s formula for measures. A proof is given in Appendix A.2.
In the case in which P0 is absolutely continuous, so that P0(dx) = p0(x)dx for an initial density

function p0(x), then it is also shown in Appendix A.2 that the solution (37) is described by a more
classical form of Liouville’s formula which determines the density function pt(x) associated to Pt:

pt(x) = p0 (xt,0(x)) exp
{
−
∫ t

0
[∇ ·X] (xt,s(x), s) ds

}
. (38)

27Note that the situation for a non-autonomous vector field is more complicated than for the more familiar au-
tonomous case. This is because the explicit time dependence of X(x, t) imposes an absolute, rather than a relative,
time-scale on the dynamics. In particular, the initial time t = 0 is exogenously determined.
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4.2 Expected Values

Liouville’s formula (37) allows us to calculate expected values of associated variables in terms of
the initial measure P0 and solutions of the characteristic system (36). Thus, for a smooth function
φ(x), define its expected value with respect to the probability density Pt satisfying (35) by:

〈φ | Pt〉 =
∫

Ω
φ(x)Pt(dx). (39)

Then we have:

Proposition 4.1 The expected value 〈φ | Pt〉 may be expressed in the form:

〈φ | Pt〉 =
∫

Ω
φ (x0,t(x))P0(dx). (40)

A proof is given in Appendix A.2.
As an example of the use of (40), the following Corollary shows that the trajectories of the

underlying characteristic dynamics (36) may be recovered as solutions of the continuity equation
(35) for initial conditions which are mass points.

Corollary 4.2 Suppose p0(x) = δ(x− x0) for some x0 ∈ Ω is an initial mass point density. Then
pt(x) = δ (x− x0,t(x0)) for all t ≥ 0, where x0,t(x0) is the solution trajectory of the characteristic
equations ẋ = X(x, t) with initial condition x0.

Proof. If p0(x) = δ(x − x0) in (35), it follows from (40) that 〈φ | pt〉 = φ (x0,t(x0)). Since this is
true for any continuous function φ(x), it follows from (39) that pt(x) = δ (x− x0,t(x0)). �

5 Application of Liouville’s Formula to the Replicator Continuity

Equation

In this section, we use Liouville’s formula (37) to lay the foundations for a solution to the pair
of coupled continuity equations (29) and (30). To do this, we first “freeze” population 2 in the
following sense. Suppose that mixed strategies are distributed over agents in population 2 by a
fixed, time dependent probability measure Qt that is independent of any process in population
1. This measure determines a mean history, y(t) = 〈y | Qt〉 ∈ ∆2, which in turn determines the
evolution of the probability measure Pt for population 1 via the continuity equation (29). In effect,
this scenario replaces the population 2 of responsive agents by a non-stationary environment with
which agents in population 1 interact, and whose behaviour is determined by the fixed, but now
non-stationary process Qt.

The outcome of this “freezing” process is that we can consider the population 1 continuity
equation (29) as decoupled from (30). In the next section, we shall recover this coupling by
considering a simultaneous “freezing” procedure for both populations.

18



We have defined the replicator operators R1(x) : ∆2 → IRn1 in (27). Suppose given a specified
history y(t) ∈ ∆2, as described above. We associate a pseudo replicator dynamic to this trajectory,
whose solutions specify the time-development of row-player responses to this history. This takes
the form of the explicitly time-dependent dynamical system

ẋi = R1
i (x)y(t) = xi(e1

i − x) · Uy(t), (41)

where e1
i ∈ IRn1 is the i-th standard basis vector. This is an explicitly time-dependent dynamical

system, which we consider as the characteristic ODE (36) for a general continuity equation (35).
To solve this continuity equation, we begin by solving the characteristic system (41). We can then
find the solution of any associated initial value problem of the form (35) by means of Liouville’s
formula (37).

5.1 Solution of the pseudo Replicator Dynamics

Write c(t) = Uy(t) ∈ IRn1 , a time-dependent vector-payoff stream to row players. Then the pseudo-
replicator equations (41) can be written as:

dxi
dt

= xi
(
e1
i − x

)
· c(t). (42)

Write

C(t) =
∫ t

0
c(s)ds. (43)

Then we can express the solutions of (42) as follows.

Proposition 5.1 The solution trajectory of the pseudo-replicator dynamics (42) passing through
x ∈ ∆1 at time t = t0 is:

xt0,t(x)i =
xie

Ci(t)−Ci(t0)

x · eC(t)−Ci(t0)
. (44)

In particular:

x0,t(x)i =
xie

Ci(t)

x · eC(t)
, and xt,0(x)i =

xie
−Ci(t)

x · e−C(t)
. (45)

Proof. With xt0,t(x) given by (44), a direct calculation gives

d

dt
[xt0,t(x)i] = xt0,t(x)i {ei − xt0,t(x)} · c(t),

which shows that xt0,t(x) is a solution of (42). It also follows from (44) that xt0,t0(x) = x, as
required. �

5.2 Solution of the Replicator Continuity Equation

In the case in which P0 is absolutely continuous, we may use Liouville’s formula (38), together with
Proposition 5.1, to compute the solution to the replicator continuity equation associated with a
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pseudo-replicator vector field of the form (42). This is given in the following proposition, proved
in Appendix A.3.

Proposition 5.2 The solution of the initial value problem (35) with initial density p0(x), associ-
ated to the characteristic vector field (42) is:

pt(x) = p0

(
xe−C(t)

x · e−C(t)

)(
1

x · e−C(t)

)n1

exp
{
−e1 · C(t)

}
, (46)

where C(t) ∈ IRn1 is given by (43) and e1 ∈ Rn1 is the vector all of whose entries are 1.

More generally, we may obtain the expected value of a continuous function φ(x) from (40) and
(45):

〈φ | Pt〉 =
∫

∆1

φ

(
ξeC(t)

ξ · eC(t)

)
P0(dξ). (47)

We now present two immediate implications of (47) giving conditions under which a row-player
pure strategy is eventually eliminated.

Proposition 5.3 Suppose there exists an i such that [Ci(t) − Cj(t)] → ∞ as t → ∞ for some
j 6= i, and the i-th face, ∂∆(i)

1 = {x ∈ ∆1 : xi = 0}, has P0-measure zero. Then 〈xj | Pt〉 → 0 as
t→∞.

Proof. For ξ ∈ ∆1 \ ∂∆(i)
1 , we have ξi > 0. Thus:

ξje
Cj(t)

ξ · eC(t)
=

ξje
Cj(t)

ξieCi(t) +
∑

k 6=i ξke
Ck(t)

=
ξje
−[Ci(t)−Cj(t)]

ξi +
∑

k 6=i ξke
−[Ci(t)−Ck(t)]

→ 0 as t→∞,

since the denominator is never zero. Hence, from (47),

〈xj | Pt〉 =
∫

∆1\∂∆
(i)
1

(
ξje

Cj(t)

ξ · eC(t)

)
P0(dξ)→ 0 as t→∞. �

We may translate Proposition 5.3 into a game-theoretic context as follows. Suppose a population
of row players plays a game with n1 × n2 payoff matrix U against ‘Nature’, characterized by a
column-player strategy profile y : IR+ → ∆2. If s is a column-player pure strategy, we say that s is
persistent if Ys(T ) =

∫ T
0 ys(t)dt→∞ as T →∞. Then we have:

Corollary 5.4 Suppose the row-player strategy j is weakly dominated by the row-player strategy i,
and that the i-th face ∂∆(i)

1 has P0-measure zero. Suppose also that there is a persistent column-
player strategy s for which uis > ujs. Then 〈xj | Pt〉 → 0 as t → ∞. That is, j is eventually
eliminated with probability 1.
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Proof. That j is weakly dominated by i implies that uir ≥ ujr for all column-player strategies r.
Thus, ci(t) = [Uy(t)]i =

∑
r uiryr(t) ≥

∑
r ujryr(t) = cj(t) for all t ≥ 0, with this inequality strict

for any t for which ys(t) 6= 0. Thus, [Ci(t)− Cj(t)] =
∑

r (uir − ujr)Yr(t) ≥ (uis − ujs)Ys(t)→∞
as t→∞, since s is persistent. The result therefore follows from Proposition 5.3. �

6 Distributional Replicator Dynamics

In this section we show how, in the asymmetric case, a solution to the pair of coupled continuity
equations (29) and (30), or, in the symmetric case, to the corresponding single continuity equation
(31), can be obtained from the “frozen” solution (47) for population 1, and an analogous frozen
solution for population 2. The coupling of these solutions is then tracked by solutions of an
associated ODE system, which we term the distributional replicator dynamics.

6.1 Asymmetric Games

Consider solutions to equations (29) and (30). From (42) and (43), these equations can be con-
strued in the first instance as independent (“frozen”) continuity equations associated with the
time-dependent vectors (one for each population):

c(t) =
dC(t)
dt

= U〈y | Qt〉 ∈ IRn1 , (48)

d(t) =
dD(t)
dt

= V 〈x | Pt〉 ∈ IRn2 . (49)

Thus, (47) gives:

〈x | Pt〉 =
∫

∆1

(
ξeC(t)

ξ · eC(t)

)
P0(dξ), (50)

〈y | Qt〉 =
∫

∆2

(
ζeD(t)

ζ · eD(t)

)
Q0(dζ). (51)

We therefore obtain the system of n1 + n2 differential equations in the variables C1, . . . , Cn1 and
D1, . . . , Dn2 :

dCi
dt

=
m∑
k=1

uik

∫
∆2

(
ζke

Dk

ζ · eD

)
Q0(dζ), Ci(0) = 0, 1 ≤ i ≤ n1, (52)

dDj

dt
=

n∑
l=1

vjl

∫
∆1

(
ξle

Cl

ξ · eC

)
P0(dξ), Dj(0) = 0, 1 ≤ j ≤ n2. (53)

We call these equations the asymmetric distributional replicator Dynamics associated with the
pair of initial probability measures P0 and Q0. The solutions of these equations with the given
initial conditions define trajectories C(t) and D(t), in terms of which the continuity dynamics can
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be completely specified as in (47), or (46) if measures are absolutely continuous, with analogous
formulae for population 2.

Note that at most n1 − 1 of the Ci’s and at most n2 − 1 of the Dj ’s are independent.28 For
example, setting Ai = Ci − Cn1 and Bj = Dj −Dn2 , equations (52) and (53) can be reduced to:

dAi
dt

=
m∑
k=1

(uik − un1k)
∫

Ω2

(
ζke

Bk

ζ · eB

)
Q0(dζ), Ai(0) = 0, 1 ≤ i ≤ n1 − 1, (54)

dBj
dt

=
n∑
l=1

(vjl − vn2l)
∫

Ω1

(
ξle

Al

ξ · eA

)
P0(dξ), Bj(0) = 0, 1 ≤ j ≤ n2 − 1, (55)

where Ω1 and Ω2 are the projections of ∆1 and ∆2 onto IRn1−1 and IRn2−1, respectively, given
by xn1 = 1 −

∑n1−1
i=1 xi and yn2 = 1 −

∑n2−1
j=1 yj (see definition (96) of Appendix A.3). Of course,

An1 = Bn2 = 0.

6.2 Symmetric Games

We consider the continuity equation (31) associated with a 2-player, n-strategy symmetric game
having n × n payoff matrix U . In terms of the theory of section 5, this is the continuity equation
associated to the time-dependent mixed strategy profile y : IR→ ∆ given by y(t) = 〈x | Pt〉. That
is, c(t) = U〈x | Pt〉. Thus, from (43) we have

c(t) =
dC(t)
dt

= U〈x | Pt〉, (56)

and using (47) we therefore obtain a system of n differential equations in the variables C1, . . . , Cn:

dCi
dt

=
n∑
j=1

uij

∫
∆

(
ξje

Cj

ξ · eC

)
P0(dξ), Ci(0) = 0, 1 ≤ i ≤ n. (57)

Following section 6.1, we call equations (57) the symmetric distributional replicator dynamics asso-
ciated with the initial measure P0. The solutions of these equations with the given initial conditions
define trajectories C(t), in terms of which the continuity dynamics can be completely specified as
in (47), or (46) in the absolutely continuous case.

Again, at most n − 1 of equations (57) are independent. For example, setting Ai = Ci − Cn,
equations (57) can be reduced to

dAi
dt

=
n∑
j=1

(uij − unj)
∫

Ω

(
ξje

Aj

ξ · eA

)
P0(dξ), Ai(0) = 0, 1 ≤ i ≤ n− 1, (58)

where Ω ⊂ IRn−1 is the projection of ∆ onto IRn−1 obtained by setting xn = 1 −
∑n−1

i=1 xi. Of
course An = 0. Note that the formulae (46) and (47) can be expressed in terms of the Ai’s.

28Because of the constraints
∑
j〈yj | Qt〉 =

∑
i〈xi | Pt〉 = 1.
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6.3 The modified replicator formulation

We now write the distributional dynamics (52-53) for the asymmetric game with payoff matrix
(U, V ) in the form

dC

dt
= UF

(
eD | Q0

)
, C(0) = 0, (59)

dD

dt
= V F

(
eC | P0

)
, D(0) = 0, (60)

where F (· | P0) : IRn1
+ → ∆1 is the function

Fi(ξ | P0) =
∫

∆1

(
ξixi
ξ · x

)
P0(dx). (61)

Clearly 0 ≤ Fi ≤ 1 and e1 ·F = 1, and hence F ∈ ∆1. Note also that F (αξ | P0) = F (ξ | P0) for any
positive scaler α. In addition, if int ∆1 has non-zero P0-measure, then Fi(ξ | P0) is monotonically
increasing in ξi, with limξi→0 Fi(ξ | P0) = 0 and limξi→∞ Fi(ξ | P0) = 1. On the other hand,
Fi(ξ | P0) is monotonically decreasing in ξj for j 6= i, with limξj→∞ Fi(ξ | P0) = 0. Also F (e1 |
P0) = 〈x | P0〉. Clearly, F (· | Q0) : IRn2

+ → ∆2 can be defined analogously.
Now define new variables ξ = eC/(e1 · eC) ∈ ∆1 and ζ = eD/(e2 · eD) ∈ ∆2. Then a straightfor-

ward calculation shows that the distributional replicator equations (59)-(60) can be written in the
form

dξ

dt
= R1(ξ)F (ζ | Q0), ξ(0) =

1
n1
e1, (62)

dζ

dt
= R2(ζ)F (ξ | P0), ζ(0) =

1
n2
e2, (63)

where R1(ξ) and R2(ζ) are the replicator operators (27) and (28).
Similarly in the symmetric case, using the variables ξ = eC/(e · eC) ∈ ∆, we have

dξ

dt
= R(ξ)F (ξ | P0), ξ(0) =

1
n
e. (64)

These versions express the distributional replicator dynamics as dynamical systems which are re-
stricted to simplex phase spaces.

7 Stability Analysis for Negative Definite Games

We have observed in Proposition 3.4 that any probability measure whose mean is a Nash equilib-
rium is a stationary solution of the replicator continuity equation. In this section, we study the
convergence of trajectories of this dynamic to such stationary points in the class of negative definite
and negative semi-definite games. These results are of interest since this class of games encompass
a wide variety of well known games. For example, games with an interior ESS are negative definite
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games whereas two player zero-sum games are negative semi-definite games The stability proper-
ties of Nash equilibria in such games have been established under a wide range of evolutionary
dynamics.29 Our interest is in seeing whether such stability results can be extended to our case
in which agents are assumed to operate in a far more parsimonious information structure than is
conventionally assumed.

We first consider the convergence of the mean of the social state to a Nash equilibrium. We say
a symmetric game with n× n payoff matrix U is negative semi-definite on IRn0 if

z · Uz ≤ 0 for all z ∈ IRn0 ,

and is negative definite if this inequality is strict. An attractive feature of negative definite games
is that they have a unique Nash equilibrium (Sandholm, 2009; Theorem 3.3.16.) For a negative
semi-definite game, the set of Nash equilibria is convex. Zero-sum games are the most prominent
examples of negative semi-definite games.

We can now prove our stability result for negative definite games. We show that in negative
definite games, the mean social state always converges towards the Nash equilibrium under the
replicator continuity dynamics.

First we state the following key lemmas, which are proved in Appendix A.5. To do this we
require some notation. Let S ⊆ {1, 2, . . . , n} be a non-empty set of pure strategies. Define eS =∑

i∈S ei ∈ IRn and the subspace IRnS = {x ∈ IRn | xj = 0 for j /∈ S}. Then we note that IRnS may
be decomposed as IRnS = [eS ]

⊕
IRnS0, where [eS ] is the 1-dimensional subspace generated by eS ,

and IRnS0 = {x ∈ IRnS |
∑

i xi = 0}.

Lemma 7.1 Suppose int ∆ has positive P -measure. Then the Jacobian derivative DF (ξ | P ) =(
∂Fi(ξ | P )

/
∂Cj

)
is symmetric. Let S = supp(ξ). Then the j-th row and j-th column of DF (ξ)

are zero for j /∈ S, and eS ·DF (ξ) = DF (ξ)eS = 0. Further, DF (ξ) is positive-definite on IRnS0.

Lemma 7.2 Suppose int ∆ has positive P -measure, and let u ∈ ∆. Then there is a unique ξ∗ =
ξ∗(u) ∈ ∆ such that F (ξ∗ | P ) = u. Further, supp(ξ∗) = supp(u).

Theorem 7.3 Consider a symmetric n × n game with payoff matrix U , and suppose that U is
negative definite on IRn0 , with unique Nash equilibrium x∗ ∈ ∆. Let P0 be a probability distribution
on ∆ for which int ∆ has positive P0-measure, and let Pt be the solution of the continuity replicator
dynamics with initial condition P0. Then the mean population state µt = 〈x | Pt〉 → x∗. In partic-
ular, the Nash equilibrium is globally asymptotically stable under the mean replicator dynamics.

If the game U is negative semi-definite, then the convex set of Nash equilibria is Lyapunov
stable.

Proof. Let ξ∗ = ξ∗(x∗) ∈ ∆ be the unique point satisfying F (ξ∗ | P0) = x∗ (Lemma 7.2). We show
the global dynamic stability of the equilibrium ξ∗ under the dynamics (64) using the Lyapunov

29See Sandholm (2009) for a discussion of these results. Sandholm (2009) refers to negative semi- definite games
as stable games and negative definite games as strictly stable games.
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function
K (ξ | P0) = −x∗ · ln ξ +

∫
∆

ln (ξ · x)P0(dx). (65)

This is well-defined on the subset {ξ ∈ ∆ | S(x∗) ⊆ S(ξ)}. One checks that x∗ is a global minimum
of K on ∆ (cf. Appendix A.5, proof of lemma 7.2). Then, for ξ 6= ξ∗,

dK

dt
=

n∑
i=1

1
ξi
{−x∗i + Fi(ξ | P0)} ξ̇i

=
n∑
i=1

{−x∗i + Fi(ξ | P0)} (e1
i − ξ) · UF (ξ) using (64)

= − (x∗ − F (ξ)) · UF (ξ)

= (x∗ − F (ξ)) · U (x∗ − F (ξ))− (x∗ − F (ξ)) · Ux∗.

The second term is non-negative since x∗ is a Nash equilibrium, and the first term is negative if
U is negative-definite, since x∗ − F (ξ) ∈ IRn0 . Clearly K̇(ξ∗) = 0. Thus, K(ξ) −K(ξ∗) is a global
Lyapunov function, and the result follows.

If U is negative semi-definite, then K̇(ξ) ≤ 0, and the Lypunov stability of any Nash equilibrium
x∗ follows. �

7.0.1 Asymmetric games

Asymmetric games cannot be negative-definite, but can be negative semi-definite in the following
sense. An asymmetric game (U, V ) is negative semi-definite if(

z1

z2

)
·

(
0 U

V 0

)(
z1

z2

)
= 0 for all (z1, z2) ∈ IRn1

0 × IR
n2
0 .

For example, asymmetric zero-sum games are negative semi-definite. The set of Nash equilibria
(x∗, y∗) for such a game forms a convex subset of ∆ = ∆1 ×∆2. A similar proof to that given for
Theorem 7.3, using the Lyapunov function K(ξ | P0) +K(ζ | Q0), shows that this set is Lyapunov
stable under analogous assumptions on (P0, Q0).

7.1 Limiting distributions

Theorem 7.3 shows that the asymptotics of the mean are essentially independent of the initial
distribution. However, this does not mean that the asymptotic distribution itself is independent
of the initial distribution. As is evident from Proposition 3.4, there are many such stationary
distributions, and in particular Pt need not converge to a mass-point distribution at x∗.

This is very important. Although on average, the equilibrium population plays the Nash equi-
librium, at the individual level the population can be very heterogeneous.
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To see this, we consider a n× n symmetric negative definite game with interior equilibrium x∗,
as in Theorem 7.3. Consider the solution of the distributional replicator equations given by (58).
From the global stability of the equilibrium A∗,30 we have

x0,t(x)i =
xie

Ci(t)∑n−1
j=1 xje

Cj(t) + xneCn(t)
=

xie
Ai(t)∑n−1

j=1 xje
Aj(t) + xn

−→ xie
A∗i∑n−1

j=1 xje
A∗j + xn

= x∗i (x | P0) as t→∞. (66)

Hence,

〈φ | Pt〉 −→ 〈φ | P∞〉 = lim
t→∞

∫
∆
φ (x0,t(x))P0(dx) =

∫
∆
φ (x∗(x | P0))P0(dx). (67)

This defines the limiting probability distribution P∞.

7.1.1 Example

Consider a generic 2× 2 symmetric game with invertible payoff matrix U . Then U has eigenvalue
λ on IR2

0 = {(ξ,−ξ) ∈ IR2 | ξ ∈ IR} and equilibrium (x∗, 1− x∗) where

λ = (u11 − u21) + (u22 − u12), and x∗ =
u22 − u12

(u11 − u21) + (u22 − u12)
. (68)

Then x∗ ∈ (0, 1) and U is negative-definite on IR2
0 if and only if the payoff differences u11−u21 and

u22 − u12 are both negative.
Suppose P0 is represented by a probability density function on [0, 1], P0(dx) = p0(x)dx. Then

we can use the formula (46) in Proposition 5.2 to obtain the limiting density:

p∞(x) = p0

(
xe−A

∗

1− x+ xe−A∗

)
e−A

∗

(1− x+ xe−A∗)2 , (69)

where A∗ is the unique solution of
∫ 1

0
xeA

1−x+xeA
p0(x)dx = x∗.

For example, for the uniform distribution, P0(dx) = dx, A∗ is the solution of∫ 1

0

xeA

1− x+ xeA
dx =

eA
(
eA −A− 1

)
(eA − 1)2 = x∗. (70)

This is illustrated in Figure 1.
30Recall that Ai = Ci − Cn, and hence eAi = ξi/ξn. Thus, A∗ is defined by A∗i = ln(ξ∗i ) − ln(ξ∗n), where

ξ∗ = ξ∗(x∗) ∈ int ∆, is as in Lemma 7.2.
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Figure 1: The limiting density p∞(x) defined by equation (69) for the uniform distribution p0(x) =
1. In this example, x∗ = 0.2, and A∗ = −2.0491. This density has mean x∗ and variance 0.04875.

8 Doubly symmetric games and mean payoff

A symmetric population game is called doubly symmetric if the payoff matrix U itself is symmetric,
so that uij = uji (e.g. a coordination game with positive diagonal elements and zero non diagonal
elements). Define the mean payoff with respect to the distribution P to be w̄(µ) = µ · Uµ, where
µ = 〈x | P 〉 is the population mean. We first show that w̄(µ) increases along non-equilibrium
trajectories.31 We then use this result to establish convergence of the population mean to the set
of Nash equilibria.

Theorem 8.1 Let U be the payoff matrix of a symmetric game, and suppose that U is a symmetric
matrix. Suppose that int ∆ has positive P0-measure. Then w̄(µt) increases along non-equilibrium
trajectories of the continuity replicator dynamics, and the mean µt converges to a level set (with
respect to w̄) of Nash equilibria.

31The biological interpretation of this result is the well known Fundamental Theorem of Natural Selection in
classical population genetics, in which the entries of U are genotype fitnesses. We also note that the alternative
definition of mean payoff given by w̄ = 〈x · Ux〉 need not increase along non-equlibrium trajectories.
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Proof. Since U is symmetric we have

1
2

˙̄w(µ) = µ · Uµ̇

= F (eC | P0) · UḞ (eC | P0)

= F (eC) · UDF (eC)Ċ

= F (eC) · UDF (eC)UF (eC) from the symmetric form of (59)

= [(UF ) ·DF (UF )] (ξ).

This is positive by Lemma 7.1, provided UF (ξ) has a non-zero component in IRnS0, where S =
supp(ξ). This is not the case if and only if UF (ξ) = π∗eS + v for some constant π∗ and v ∈ IRn

with vi = 0 for i ∈ S, in which case ˙̄w(µ) = 0. If ξ∗ is such a point, then R(ξ∗)F (ξ∗) = 0, and
hence ξ∗ is an equilibrium of the distributional dynamics (64). If x∗ = F (ξ∗), this implies that x∗

is a rest point of the standard replicator dynamic, R(x∗)x∗ = 0, since supp(x∗) = supp(ξ∗).
Hence, ˙̄w(µ) ≥ 0, for all µ with the equality holding only if µ is a rest point of the classical

replicator dynamic. However, it is known that any local maximum of the mean payoff function of
a doubly symmetric game is a Nash equilibrium (see Sandholm, 2009; Theorem 3.1.7). Hence, the
mean population state converges to a level set of Nash equilibria along non-equilibrium trajectories.
�

9 Generic 2× 2 Symmetric Games

For a generic symmetric 2 × 2 game with payoff matrix U , the classical replicator dynamics can
be expressed in terms of the two characteristic parameters λ and x∗ defined in (68). Thus, for
x ∈ [0, 1] there is a single replicator dynamic equation

ẋ = λx(1− x)(x− x∗). (71)

This may be compared to the continuity replicator dynamics for means given by equation (33),
which in this case reduces to the single equation

µ̇ = λ {µ(1− µ)− V } (µ− x∗), (72)

where V is the variance:

Vt =
∫ 1

0
(x− µt)2Pt(dx). (73)

As observed in section 3.2, any distribution of the form P0 = (1 − α)δ0 + αδ1 with α ∈ [0, 1]
defines a rest point of the symmetric continuity equation (31), with mean µ = α and variance
V = α(1 − α). In particular δ0 and δ1 are rest points. However, in contrast to the classical case
(71), the sense in which these are (if they are) locally stable rest points of the continuity dynamics
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is not immediately clear.
To address this question, we consider the distributional replicator dynamics in the form (58)

which, for the 2× 2 case, reduces to the single equation

Ȧ = λ
{
−x∗ + F (eA | P0)

}
, F (eA | P0) =

∫ 1

0

xeA

1− x+ xeA
P0(dx), (74)

with initial condition A(0) = 0. The case of most interest is when x∗ defines an interior equilibrium,
0 < x∗ < 1, and λ > 0; i.e. both payoff differences u11 − u21 and u22 − u12 are positive. For the
replicator dynamic (71), the equilibria x = 0 and x = 1 are both locally asymptotically stable, with
basins of attraction 0 ≤ x < x∗ and x∗ < x ≤ 1, respectively. For the distributional dynamic (74),
the following lemma relates the asymptotic behaviour of A(t) to the initial density function.

Lemma 9.1 Suppose λ > 0 and x∗ ∈ (0, 1), and that the initial distribution P0 has no mass point
at x = 0 or x = 1. Let µ0 = 〈x | P0〉 be the associated mean mixed strategy.

1. If µ0 < x∗, then A(t) is monotonically decreasing in t, and A(t)→ −∞ as t→∞.

2. If µ0 > x∗, then A(t) is monotonically increasing in t, and A(t)→∞ as t→∞.

Proof. From (74), we have Ȧ(0) = λ (−x∗ + µ0). Since λ > 0, Ȧ(0) > 0 if µ0 > x∗ and Ȧ(0) < 0
if µ0 < x∗. Moreover, the monotonicity properties of F

(
eA | P0

)
imply that the initial conditions

are self-reinforcing as t increases. Hence, if µ0 > x∗, then Ȧ(t) > 0, and if µ0 < x∗, then Ȧ(t) < 0,
for all t ≥ 0. �

We now use Proposition 5.3 and Lemma 9.1 to derive the following proposition.

Proposition 9.2 Consider a generic 2 × 2 symmetric game with λ > 0 and 0 < x∗ < 1. Let
µt = 〈x | Pt〉 be the mean with respect to the solution measure Pt. If P0 has no mass point at x = 0
or x = 1, then Pt → δ1 if µ0 > x∗, and hence µt → 1, and Pt → δ0 if µ0 < x∗, and hence µt → 0
as t→∞.

9.1 Further remarks

Earlier, we interpreted the mean µt = 〈x | Pt〉 as the aggregate social state generated by Pt.
Proposition 9.2 implies in the type of 2 × 2 symmetric games we are considering, and for suitable
initial distributions, there is no difference in the long-run aggregate social state under the replicator
continuity equation and the classical replicator dynamic. In the long run either all agents play action
1 or all play action 2. Nevertheless, the time-course trajectories of the aggregate state under the
two dynamics generally differ, as we show with an example in Figure 2A. In principle, therefore, it
would be possible to distinguish whether agents are playing pure or mixed strategies by observing
the solution trajectories.

This coincident asymptotic behavior is not, however, a general result, and does not hold for
n×n symmetric games with n > 2. We give an example for n = 3 below. In section 11.3 we present
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an example of a 2 × 2 asymmetric game in which the long run social state differs radically under
the classical replicator dynamic and the replicator continuity equations.

10 A 3× 3 symmetric example

Consider a symmetric 3× 3 game with diagonal payoff matrix U = diag{λ1, λ2, λ3}. The classical
replicator dynamics are

ẋ1 = x1

{
λ1x1(1− x1)− λ2x

2
2 − λ3x

2
3

}
, (75)

ẋ2 = x2

{
−λ1x

2
1 + λ2x2(1− x2)− λ3x

2
3

}
, (76)

with x3 = 1 − x1 − x2. If λ1, λ2, λ3 are positive, then the pure strategy equilibria e1, e2, e3 are all
asymptotically stable, and there is an interior equilibrium x∗ with x∗i ∝ λ

−1
i , which is unstable.

Consider an initial probability distribution of the form P0 = α1δa1 + α2δa2 + α3δa3 , with α =
(α1, α2, α3), a1, a2, a3 ∈ int ∆. That is, the population initially consists of a mixture three types
of player, playing mixed strategies a1, a2 and a3, respectively. The mean for this distribution is
µ0 = α1a1 + α2a2 + α3a3. The associated distributional replicator dynamics (58) are

dA1

dt
=

3∑
k=1

αk
λ1ak1e

A1 − λ3ak3

ak1eA1 + ak2eA2 + ak3
, (77)

dA2

dt
=

3∑
k=1

αk
λ2ak2e

A2 − λ3ak3

ak1eA1 + ak2eA2 + ak3
, (78)

with initial conditions A1(0) = A2(0) = 0. If (A1(t), A2(t)) is the solution trajectory of these
equations, then the associated trajectory of the mean µt = 〈x | Pt〉 is

µt,i =
3∑

k=1

αk
akie

Ai(t)

ak1eA1(t) + ak2eA2(t) + ak3
, i = 1, 2. (79)

We compare this trajectory with the trajectory of the replicator dynamics (75)-(76) with initial
condition x0 = µ0, and show that parameters can be chosen so that these two trajectories converge
to different pure-strategy equilibria.

An example is illustrated in Figure 2B. The basin of attraction of the equilibrium e2 = (0, 1)
for classical replicator trajectories is the region satisfying e2 ·Ux > x ·Ux. This is shaded in Figure
2B. However, the distributional replicator trajector does not stay within this region, but moves
into the basin of attraction of the equilibrium e3 = (0, 0). 32

32A standard proof of stability of ESS equilibria for the classical replicator dynamics uses the entropy function
(e.g. Hofbauer and Sigmund, 1998, Chapter 7). For a Nash equilibrium of a symmetric game, x∗, this is defined on
the subset {x ∈ ∆ | S(x∗) ⊆ S(x)} by

L(x) = −
∑
i

x∗i ln(xi).
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Figure 2: A: Trajectories of the classical replicator dynamic (71) (thin curve) starting from initial
condition x0, and of the mean µt = 〈x〉t = 〈x | pt〉 under the dynamic (74) (thick curve), starting
from an initial condition with mean, µ0 = 〈x〉0 = x0. These trajectories converge to the Nash
equilibrium x = 1, but with different time lines. In this example, the distributional replicator
dynamics has uniform initial density p0(x) = 1. Other parameters are x∗ = 0.4 and λ = 1. B:
Trajectories of the replicator dynamics (75)-(76) (thin curve) and the mean (79) associated with
the distributional replicator dynamics (77)-(78). The shaded region is the basin of attraction of
e2 = (0, 1) for classical replicator trajectories. Initial conditions for both trajectories are the same:
(x1, x2) = (µ1,0, µ2,0). The parameters are: (λ1, λ2, λ3) = (0.5, 1.12, 1.3); (α1, α2, α3) = (1

3 ,
1
3 ,

1
3);

(a11, a12, a13) = (0.9, 0.05, 0.05); (a21, a22, a23) = (0.05, 0.9, 0.05); (a31, a32, a33) = (0.1, 0.1, 0.8).
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11 Generic 2× 2 Asymmetric Games

11.1 The Replicator Dynamic

We use the distributional replicator dynamics for asymmetric games to analyze the dynamics of
the probability measures over mixed strategies for 2 × 2 asymmetric games. The payoff matrices
to the row and column players are U and V .

Since each player has only two strategies, we denote a mixed strategy for population 1 by
(x, 1− x) ∈ ∆1, and a mixed strategy for population 2 by (y, 1− y) ∈ ∆2. The standard replicator
dynamics is then

ẋ = λUx(1− x)(y − y∗), (80)

ẏ = λV y(1− y)(x− x∗), (81)

where

λU = (u11 − u21) + (u22 − u12), y∗ =
u22 − u12

(u11 − u21) + (u22 − u12)
, (82)

λV = (v11 − v21) + (v22 − v12), x∗ =
v22 − v12

(v11 − v21) + (v22 − v12)
. (83)

The dynamics (80), (81) have equilibria at (x, y) = (0, 0), (0, 1), (1, 1), (1, 0) and (x∗, y∗). The
latter lies in the interior the state space 0 ≤ x, y ≤ 1 provided the payoff differences (u11−u21) and
(u22 − u12) are non-zero and have the same sign, and similarly for (v11 − v21) and (v22 − v12). In
particular, if these signs are all positive, then λU and λV are both positive, and in this case (0, 0) and
(1, 1) are locally asymptotically stable Nash Equilibria, with all other equilibria unstable. There is
therefore an equilibrium selection problem in this case. Which of the two stable Nash equilibria is
the asymptotic outcome of a replicator dynamic trajectory depends on the initial condition.

In the distributional case, consider the mean entropy: L̄t = 〈L | Pt〉. Then using (47), we obtain

L̄t = −
∑
i

x∗i

∫
∆

ln

(
eCixi
eC · x

)
P0(dx) = −

∑
i

x∗i

∫
∆

ln

(
ξixi
ξ · x

)
P0(dx)

= 〈L | P0〉 − x∗ · ln(ξ) +

∫
∆

ln(ξ · x)P0(dx).

This provides a relationship between mean entropy and the Lyapunov function (65) used in the proof of theorem 7.3,
namely:

L̄t = L̄0 +K(ξ | P0).

In particular, it follows from the proof of Theorem 7.3 that if U is negative definite on IRn0 , with unique equilibrium x∗,
then mean entropy decreases along trajectories of the distributional replicator dynamics (64). However, for the 3× 3
symmetric game discussed here, with equilibrium x∗ = e2, entropy L(x) decreases along a trajectory of the classical
replicator dynamic, but mean entropy L̄ does not decrease along the corresponding trajectory of the distributional
replicator dynamic. The latter decreases only as long as the distributional replicator trajectory stays within the
shaded region in Figure 2B, but then increases after leaving this region.

We note also that neither is it the case that entropy of the mean, L (〈x | Pt〉), necessarily decreases along trajectories.
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11.2 The Distributional Replicator Dynamics

The reduced distributional replicator dynamics (55) and (55) is 2-dimensional, with variables A =
A1 and B = A2. We can therefore write these dynamics as

Ȧ = λU
{
−y∗ + F

(
eB | Q0

)}
, F

(
eB | Q0

)
=
∫ 1

0

(
ζeB

1− ζ + ζeB

)
Q0 (dζ) , (84)

Ḃ = λV
{
−x∗ + F

(
eA | P0

)}
, F

(
eA | P0

)
=
∫ 1

0

(
ξeA

1− ξ + ξeA

)
P0 (dξ) , (85)

with initial condition A(0) = B(0) = 0.
Equations (84) and (85) therefore constitute an ODE system in IR2. We claim that, as t→∞,

either |A(t)|, |B(t)| → ∞ or the solution trajectories exhibit periodic orbits. These properties are
summarized in the following proposition. We omit a detailed proof.

Proposition 11.1 Let P0 and Q0 be the initial distributions for populations 1 and 2 respectively,
which have no mass points at x = 0 or 1 and y = 0 or 1. Then,

1. Either: Both Pt and Qt converge to mass points on 0 or 1 as t→∞. That is, Pt → δ0 or δ1,
and Qt → δ0 or δ1.

2. Or: The trajectories of Pt and Qt are periodic.

Proof. We show that under the dynamics (84), (85), (|A(t)| , |B(t)|)→ (∞,∞), or the trajectories
A(t) and B(t) describe a closed orbit in the (A,B)-plane33. By Proposition 5.3, if A(t) → ∞,
Pt → δ1 and if A(t)→ −∞, Pt → δ0. Similarly, Qt → δ1 if B(t)→∞ or δ0 if B(t)→ −∞.

On the other hand, if A(t) and B(t) exhibit periodic motion, it follows from (47) that the
trajectories of Pt and Qt are periodic. �

Proposition 11.1 implies that Pt and Qt never converge to probability measures whose aggregate
state is the mixed strategy Nash equilibrium. This conclusion evokes the well known result that in
2 × 2 asymmetric games, a mixed strategy Nash equilibrium is never asymptotically stable under
the replicator dynamic (Selten, 1980; Schuster and Sigmund, 1981; Hofbauer and Sigmund, 1981).
However, unlike in 2× 2 symmetric games, the convergence behaviour of the aggregate state under
the replicator continuity equation does not necessarily replicate the convergence behaviour of the
state variable under the replicator dynamic (80), (81). We present an example that establishes
this fact. Thus, we shall construct a game in which the replicator dynamic converges to the Nash
equilibrium (1, 1) from given initial conditions (x0, y0). However, under the replicator continuity
equation, and with appropriate initial distributions satisfying (〈x | P0〉, 〈y | Q0〉) = (x0, y0), the
density functions over mixed strategies, (Pt, Qt), converge to (δ0, δ0). Hence, for the aggregate
state, (〈x | Pt〉, 〈y | Qt〉)→ (0, 0).

33These assertions are proved by exploiting the Hamiltonian structure of the distributional dynamics (84), (85).
In particular, this allows us to find linear asymptotes for (A(t), B(t)) in the case where these are not periodic. The
details are lengthy but essentially straightforward.
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11.3 A 2× 2 asymmetric example

We aim to show that there are situations in which the means of the distributions determined by the
classical replicator dynamics and the distributional replicator dynamics exhibit radically different
asymptotic behaviours (cf section 10). As discussed in section 11.1, we assume that all payoff
differences are positive, so that 0 < x∗, y∗ < 1 and λU and λV are both positive.

First consider the replicator equations (80) and (81) with initial conditions (x0, y0) satisfying
0 < x0 < x∗ and y∗ < y0 < 1. Make the time change t → t′ = λU t. Then (80) and (81) can be
written as

ẋ = x(1− x)(y − y∗), (86)

ẏ = λy(1− y)(x− x∗). (87)

Regarded as a distributional dynamics, these equations are associated with the initial probability
distributions P0 = δx0 and Q0 = δy0 (Corolloary 4.2).

Now consider a distributional dynamics as follows. Assume that population 2 is initially ho-
mogeneous, in the sense that all agents use a common mixed strategy y0. However, population 1
consists initially of two types, agents who use a mixed strategy a0, with 0 < a0 < x∗, and agents
who use a mixed strategy a1, with x∗ < a1 < 1. The population proportions of these agents
are 1 − α and α, with 0 < α < 1. Thus, the initial distributions of the two populations are
P0 = (1−α)δa0 +αδa1 for population 1, and Q0 = δy0 for population 2. We assume that the initial
means of the two populations are

x0 = 〈x | P0〉 = (1− α)a0 + αa1, y0 = 〈y | Q0〉. (88)

The distributional replicator dynamics (84)-(85) associated to these initial densities are:

Ȧ =
{
−y∗ +

y0e
B

1− y0 + y0eB

}
, A(0) = 0, (89)

Ḃ = λ

{
−x∗ + (1− α)

a0e
A

1− a0 + a0eA
+ α

a1e
A

1− a1 + a1eA

}
, B(0) = 0. (90)

We wish to compare these dynamics to those associated with the replicator dynamics (86)-(87)
having initial conditions (x0, y0). We show that parameters can be chosen so that the replicator
trajectory satisfies (xt, yt)→ (1, 1), whereas the trajectory of means with the same initial conditions
(88) satisfies (〈x | Pt〉, 〈y | Qt〉)→ (0, 0) as t→∞. A numerical example illustrated in Figure 3.

In fact, it can be shown that this example belongs to a larger class of examples. Thus, for any
initial distributions of the form P0 = (1 − α)δa0 + αδa1 and Q0 = δy0 with fixed (x∗, y∗) ∈ (0, 1),
0 < a0 < x∗ < a1 < 1, y0 ∈ (y∗, 1) and any α > 0 for which x0 < x∗, a positive constant λ = λV /λU

can be chosen so that the means of the trajectories of the two dynamics converge to different Nash
equilibria. In particular, a0, x0 and a1 can be arbitrarily close together.
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Figure 3: Trajectories of the means (〈x | Pt〉, 〈y | Qt〉), starting from a common initial condition,
(〈x | P0〉, 〈y | Q0〉) = (x0, y0), for the two dynamics (89)-(90) (thick curve) and (86)-(87) (thin
curve). These trajectories converge to the Nash equilibria (0, 0) and (1, 1), respectively. Parameters
are: (x∗, y∗) = (0.6, 0.3), a0 = 0.2, a1 = 0.8, y0 = 0.5, α = 1

2α
∗ = 0.33, with x0 = (1−α)a0 +αa1 =

0.4, and λ = 5/6.
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12 Discussion and Conclusion

The motivation behind this paper was to provide more meaningful economic foundations to evolu-
tionary game theory by allowing agents in large populations to practice a wider range of behaviors
based upon their individual histories and experience. We have constructed a general theoretical
framework that allows the incorporation of behavioral rules from the boundedly rational learning
literature. A byproduct of this approach is that it allows a wide range of possible agent behaviors
even in an environment where they may not have any knowledge of wider social characteristics such
as the current social state. This is in contrast to the classical approach to evolutionary game theory
where imitation of a random agent is the least informationally demanding behavior (that generates
the replicator dynamics). To apply such learning procedures, we have assumed that individual
agents are primed to play mixed strategies. The evolution of the probability measure over mixed
strategies – the social state in our model – is determined by the general continuity equation, derived
in Section 2, and defined for a large class of mixed strategy updating rules. We have analyzed one
specific behavioral procedure – reinforcement learning – in great detail and derived the associated
replicator continuity equation in Section 3. Although this equation cannot be solved explicitly
(any more than can the classical replicator dynamic), we have proposed a general solution method
using Liouville’s formula and an associated finite-dimensional, autonomous ODE system that we
call ‘distributional dynamics’, which can be applied to any finite normal form game.

We have shown that the replicator continuity dynamics admits a large class of stationary solu-
tions; in particular, any probability distribution (or pair of distributions in the asymmetric case)
whose mean over the space of mixed strategies is a Nash equilibrium. This implies that equilibrium
populations can be very heterogeneous, in that different players can play different mixed strategies.
However, the population is a ‘mixture’ of mixed strategy players, rather than of pure strategy
players, as in the classical case. This constitutes a much richer behavioral structure than is usually
considered. In particular, ‘rationality’ exists only at the aggregate mean level, with individual
agents possibly exhibiting inconsistent choices even at equilibrium. We have shown that such a
rich equilibrium arises for negative-definite symmetric games (Section 7), and that the unique Nash
equilibrium for such a game is globally attracting for the population mean. However, although
the equilibrium population mean is fixed, the equilibrium distribution depends on the initial dis-
tribution, and thus is a function of ‘history’ – in particular, on the initial distribution of agents’
behavioral dispositions (mixed strategies). We have also shown that the population mean converges
globally to a set of Nash equilibria in doubly symmetric games. Such results on convergence in
negative definite games and doubly symmetric games are, of course, standard in both learning
and evolutionary game theory. It is, however, significant that such results are obtained even when
we have integrated the two approaches here. This raises the interesting possibility that other well
known results from the learning literature may also be obtained in the context of population games.
For example, it would be interesting to examine whether, under the Hart and Mas-Colell (2000)
regret matching rule, regrets would be eliminated for all agents in the population as they are in
learning in finite player games
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By allowing agents to employ different mixed strategies, we have also been able to analyze the
effect of heterogeneity of agent behavior in the population. In the classical approach to evolutionary
game theory, agent behavior is homogeneous since all agents play the same mixed strategy at any
given time (equivalently, agents play only pure strategies so that there is a given mixture of pure
strategies in the population). We have focused on situations in which results from our distributional
theory differ markedly from corresponding results for the standard replicator dynamics. We have
constructed examples of 3 × 3 symmetric, and 2 × 2 asymmetric games in which the replicator
continuity equations lead to very different predictions about the observed social state from those of
the classical replicator dynamic (Sections 10 and 11.3). This shows that local stability properties
of (in these cases, pure) ESS equilibria can be quite different in the distributional context.

These examples illustrate the impact of agent heterogeneity on the long run social state. It is
possible to imagine an economic scenario which can be interpreted in this context. For example,
consider the 2 × 2 asymmetric game discussed in Section 11.3. Suppose the heterogeneous pop-
ulation (population 1) consists of two types of consumer: either ‘socially responsive’ (say, more
environmentally conscious), or ‘indifferent’ (concerned mostly with value-for-money). The homo-
geneous population (population 2) consists of producers having the choice of being responsive to
the consumers’ concerns (at additional cost) or not being so responsive. Suppose payoffs are struc-
tured so that there are two alternative pure equilibria: a ‘value/profit maximizing’ equilibrium,
and a ‘socially preferred’ equilibrium (that mitigates harmful externalities). Figure 3 illustrates a
situation where homogeneous behavior by indifferent consumers leads to the ‘value/profit maximiz-
ing’ equilibrium (the classical replicator trajectory). However, by replacing a fraction of indifferent
consumers by more socially responsive consumers (leaving the initial population mean strategy
unchanged), the very different ‘socially preferred’ equilibrium is attained.

These examples therefore illustrate that the behavioral flexibility inherent in allowing agents to
play mixed strategies does have observational consequences. Even when agents play mixed strate-
gies, it may be argued that it is only the mean of the distribution that would be observed, and by
the law of large numbers, this mean would be identical to the proportion of agents playing different
pure strategies. Despite this, the final observed social state can be quite different depending upon
whether agents are playing mixed strategies or pure strategies. In order, therefore, to decide which
particular approach—pure or mixed strategy— would be more relevant to model any particular
situation, it is necessary to make appropriate assumptions about the nature of behavioural flex-
ibility that agents may exhibit in that situation. The conventional practice of confining agents
to playing pure strategies has its origins in biological models of evolution. Such an assumption
may be perfectly justified in biological contexts, but seems excessively naive in models of human
interaction.

Nevertheless, that agents play mixed strategies does not necessarily assume a high degree of
cognitive sophistication. In particular, we do not suppose that agents consciously use randomizing
devices as part of a rational calculation. We can assume instead that agents make their decisions
within a largely subconscious, but stochastic internal environment (which is modulated by infor-
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mation from the external environment) that offers them ‘cues’ that they use to condition their
choice of action in the game. How this conditioning takes place depends on the agent’s behavioural
disposition, conceived simply as a function that converts the subconscious cues into actions. Thus,
it is the internal stochastic environment that acts as a randomizing device, and this, together with
the agent’s disposition, generates a (pre-play) mixed strategy that characterizes her response when
she is called upon to play. It is this disposition that is updated by reinforcement in response to
payoff information (see Section 3). Though in this interpretation, as in the classical case, agents
are of very limited cognitive capacity, with many (probably most) of the cues that condition the
agent’s action processed subconsciously, she may of course tell herself elaborate stories about why
her action is the ‘rational’ response to the situation with which she is faced – and even convince
herself that she has chosen her action on this basis.34

It should be possible to use the continuity equation approach to analyze mixed strategy evolution
in other types of player-matching schemes than the simple pairwise-matching scheme discussed here.
In this paper, a player interacts with a potentially different partner in each round of the game.
However, the theory has a straightforward extension to the case in which some fixed proportion of
agents are matched in each round. Alternatively, one may fix the population into matched pairs of
players at the beginning, and allow these pairs to interact repeatedly using some learning protocol.
The change in the distribution of mixed strategies in the populations can then be studied using a
continuity equation.35 Or one can consider a more realistic scenario of a combination of the two
matching schemes—where players play with a fixed partner for a certain number of periods and
then change partners. Such problems can form a substantial research agenda for the future.

Finally, we return to the pricing game used as a motivational example in the Introduction. It
is easy to verify that the game is a positive definite game.36 If we consider the case with a unique
interior equilibrium and apply the classical replicator dynamic, we can argue using the intuition of
the bad Rock-Paper-Scissor game that solution trajectories in the pricing game will diverge away
from the equilibrium and become asymptotic to the boundary of the simplex.37 An evolutionary
analysis of the price dispersion model is credible because (a) there is a large number of sellers in such
a model so that it can be analyzed as a population game; and (b) sellers can be expected to behave
in a myopic fashion since in the presence of a large number of competitors, it would be unrealistic to
assume that they would possess the level of rationality and knowledge required to coordinate on the
exact mixed equilibrium prediction. It is therefore reasonable to expect dispersed price equilibria
to be unstable. However, even this calculation is predicated on the caveat that sellers would have
the knowledge of the social state; an assumption which, we have argued, is highly improbable. Our

34Of course, the analysis and conclusions of this paper are not predicated on any particular view of the mechanics of
decision making. All that is required is that, somehow, such decision making can be represented by mixed strategies.

35In fact, for a two population, 2 × 2 asymmetric game in which one member of each pair is chosen from each
population, the associated continuity equation is of classical, linear form.

36Analogous to negative definite games, a positive-definite game is defined as follows. Let U be the payoff matrix
of a two player symmetric n× n game. The game is positive definite if z · Uz > 0, for all z ∈ IRn0 , z 6= 0.

37Lahkar (2009) analyzes this model using the logit dynamic. Under this dynamic, trajectories converge to a limit
cycle in the interior of the simplex. As an explanation of observed price dispersion, the limit cycle prediction has
greater empirical (Lach, 2002) and experimental support (Cason et. al., 2005).
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analysis in this paper allows us to apply the continuity dynamics driven by reinforcement learning
to this problem. Although we do not give a rigorous proof here, the analysis of Section 7 suggests
that the mean solution trajectories would diverge from the mixed equilibrium under the replicator
continuity dynamic. The instability of dispersed equilibria therefore holds in this new scenario even
if sellers cannot observe the behaviour of rivals and needs to rely to his personal history of pricing
strategies.

A Appendix

A.1 The weak form of continuity equations

We work with probability measures defined on the Borel sets in ∆. Let Pt be a probability measure
at time t ≥ 0 for population 1, and Qt be the corresponding probability measure for population
2. In the notation of section 2, set βij(x) = x − τbij(x) : ∆ → ∆. Then the updated probability
measure at time t+ τ for population 1 is given by equation (8), namely:

Pt+τ (B) =
∑
i,j∈S

βij(x)iPt (βij(B)) 〈yj | Qt〉,

for any Borel set B. Thus, if φ(x) is a smooth, real-valued test function, then:

〈φ | Pt+τ 〉 =
∑
i,j∈S

∫
x∈∆1

φ(x)βij(x)iPt (dβij(x)) 〈yj | Qt〉.

Making the change of notation βij(x)→ x (for each i and j) and using (7), we obtain

〈φ | Pt+τ 〉 =
∑
i,j∈S

∫
x∈∆1

φ(x+ τfij(x))xiPt (dx) 〈yj | Qt〉.

Now Taylor expand the φ(·) term up to terms of order τ :

〈φ | Pt+τ 〉 =
∑
i,j∈S

∫
x∈∆1

{φ(x) + τ∇φ(x) · fij(x))}xiPt (dx) 〈yj | Qt〉.
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Noting that
∑

i,j xi〈yj | Qt〉 = 1, and using (4), this can be written in the form:

1
τ

{∫
x∈∆1

φ(x)Pt+τ (dx)−
∫
x∈∆1

φ(x)Pt (dx)
}

=
∑
i,j∈S

∫
x∈∆1

∇φ(x) · fij(x)xiPt (dx) 〈yj | Qt〉

=
∫
x∈∆1

∇φ(x) ·

∑
i,j∈S

xifij(x)〈yj | Qt〉

Pt (dx)

=
∫
x∈∆1

∇φ(x) · [F(x)〈y | Qt〉]Pt (dx) .

Taking the limit as τ → 0 therefore gives:

d

dt
〈φ | Pt〉 =

∫
x∈∆1

∇φ(x) · [F(x)〈y | Qt〉]Pt (dx) . (91)

This is the weak form of the continuity equation for Borel probability measures, which exists pro-
vided the integral on the right exists for all t ≥ 0. This is the case if, for example, the forward
state change vectors, fij(x), are continuous in x, since then F(x), given by (13), is also continuous,
and hence bounded on ∆1. Since ∇φ(x) is continuous, and hence bounded, and Pt is a probability
measure, it follows that the integral always exists. This shows that 〈φ | Pt〉 is differentiable in t,
with time-derivative given by (91).

Clearly, an analogous equation holds for population 2.

A.2 Proof of Liouville’s formula

We are required to solve a weak continuity equation of the form

d

dt
〈φ | Pt〉 =

∫
x∈Ω
∇φ(x) ·X(x, t)Pt (dx) , (92)

where X(x, t) is a smooth, time-dependent vector field on a compact, regular domain Ω ⊂ IRn,
a domain which is invariant under the flow defined by X, and we are give an initial probability
measure P0 at time t = 0.

Consider the generalized function γt defined by:

γt(φ) =
∫

Ω
φ (x0,t(x))P0 (dx) .
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Then

dγt
dt

(φ) =
d

dt

∫
Ω
φ (x0,t(x))P0 (dx)

=
∫

Ω
∇φ(x0,t(x)) · ẋ0,t(x)P0 (dx)

=
∫

Ω
∇φ(x0,t(x)) ·X (x0,t(x), t)P0 (dx) .

Now apply the smooth change of variables ξ = x0,t(x), which has inverse x = xt,0(ξ). Then:

dγt
dt

(φ) =
∫

Ω
∇φ(ξ) ·X (ξ, t)Pt (dξ) ,

where Pt is the measure defined by38

Pt(B) = P0 (xt,0(B)) . (93)

We also have:
γt(φ) =

∫
Ω
φ(ξ)Pt(dξ) = 〈φ | Pt〉.

This shows that Pt given by (93) is the solution of the weak form of the continuity equation (92)
with the given initial measure P0. Equation (93) is a measure-theoretic form of Liouville’s formula.
We also obtain expected values of smooth test functions:

〈φ | Pt〉 =
∫

Ω
φ(ξ)Pt(dξ) =

∫
Ω
φ (x0,t(x))P0 (dx) . (94)

This yields the formula (40), and hence proves Proposition 4.1.

A.2.1 Absolute continuity

Now suppose that P0 is absolutely continuous with respect to Lebesgue measure. That is, there
is a Lebesgue-integrable density function p0(x) such that P0(dx) = p0(x)dx. Then it follows from
(93) that Pt(dξ) = P0 (xt,0(dξ)) = p0 (xt,0(ξ)) dxt,0(ξ). We also have dx = dxt,0(ξ) = |Jt(x; ξ)|dξ,
where Jt(x; ξ) is the Jacobian matrix:

Jt(x; ξ) = det
(
∂xi
∂ξj

)
.

To compute this Jacobian, consider the generalized Jacobian

Jt,s(ξ) = det
(
∂xt,s(ξ)i
∂ξj

)
.

Then Jt(x; ξ) = Jt,0(ξ), and Jt,t(ξ) = 1. Next, observe that, by definition of the trajectories xt,s(ξ),

38See Dunford and Schwartz (1964), Lemma 8, p 182.
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we have

d

ds

[
∂xt,s(ξ)i
∂ξj

]
=

∂

∂ξj

[
dxt,s(ξ)i
ds

]
=

∂

∂ξj
[Xi (xt,s(ξ), s)] =

n∑
k=1

∂Xi

∂xk
(xt,s(ξ), s)

∂xt,s(ξ)k
∂ξj

. (95)

Let J (i)
t,s (ξ) be the determinant of the matrix obtained from Jt,s(ξ) by taking the time derivatives

with respect to s of the entries in the i-th row, as in (95), but leaving the other rows unchanged.
Let [Jt,s(ξ)]i,j be the ij-th minor of Jt,s(ξ).39 Then:

dJt,s(ξ)
ds

=
n∑
i=1

J
(i)
t,s (ξ)

=
n∑
i=1

n∑
j=1

(−1)i+j
d

ds

[
∂xt,s(ξ)i
∂ξj

]
[Jt,s(ξ)]i,j expanding J (i)

t,s (ξ) by the i-th row

=
n∑
i=1

n∑
j=1

n∑
k=1

(−1)i+j
∂Xi

∂xk
(xt,s(ξ), s)

∂xt,s(ξ)k
∂ξj

[Jt,s(ξ)]i,j using (95)

=
n∑
i=1

n∑
k=1

(−1)i+k
∂Xi

∂xk
(xt,s(ξ), s)


n∑
j=1

(−1)k+j ∂xt,s(ξ)k
∂ξj

[Jt,s(ξ)]i,j


=

n∑
i=1

n∑
k=1

(−1)i+k
∂Xi

∂xk
(xt,s(ξ), s) δikJt,s(ξ).

The last equality holds because, for k 6= i, the expression in {} is the determinant of an n × n
matrix whose i-th and k-th rows are identical, and hence this determinant is zero. We therefore
have:

dJt,s(ξ)
ds

= Jt,s(ξ)
n∑
i=1

∂Xi

∂xi
(xt,s(ξ), s) = Jt,s(ξ) [∇ ·X] (xt,s(ξ), s) .

Integrating this from s = 0 to s = t and recalling that Jt,t(ξ) = 1 and Jt,0(ξ) = Jt(x; ξ), gives:

|Jt(x; ξ)| = exp
{
−
∫ t

0
[∇ ·X] (xt,s(ξ), s) ds

}
.

It now follows that Pt is absolutely continuous with respect to Lebesgue measure, with associated
density function pt(ξ) = p0 (xt,0(ξ)) |Jt(x; ξ)|. That is:

pt(ξ) = p0 (xt,0(ξ)) exp
{
−
∫ t

0
[∇ ·X] (xt,s(ξ), s) ds

}
.

This yields the probability-density function form of Liouville’s formula (38).
39That is, the determinant of the (n− 1)× (n− 1)-matrix obtained from Jt,s(ξ) by deleting the i-th row and the

j-th column.
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A.3 Proof of Proposition 5.2

For the pseudo-replicator vector field X(x, t) = R1(x)y(t) on the simplex ∆1 ⊂ IRn1 , we have∑n1
i=1 xi = 1 and

∑n1
i=1Xi = 0. Hence, the independent components are xi and Xi for 1 ≤ i ≤ n1−1.

We therefore take the state space to be the projection of ∆1 into IRn1−1 defined by:

Ω1 =

{
(x1, . . . , xn1−1) ∈ IRn1−1 : 0 ≤ xi ≤

n1−1∑
i=1

xi ≤ 1

}
. (96)

Then, if (x1, . . . , xn1−1) ∈ Ω1, the associated point x ∈ ∆1 is x = (x1, . . . , xn1−1, xn1) with xn1 =
1 −

∑n1−1
i=1 xi. Generally x denotes a point in ∆1, but relevant operations often involve only the

independent components, i.e. the associated point in Ω1.
Let Lij(x) = xi(δij − xj). Then, from (42) we can write the divergence of X on Ω1 as:

∇ ·X(x, t) =
n1−1∑
i=1

{
∂

∂xi
− ∂

∂xn1

}
Xi(x, t) =

n1−1∑
i=1

n1∑
j=1

{
∂

∂xi
− ∂

∂xn1

}
Lij(x)cj(t),

for x ∈ ∆1. Also, for 1 ≤ i, j ≤ n1 − 1:

∂

∂xi
[Lij(x)] = (1− xi)δij − xj ,

∂

∂xi
[Lin1(x)] = −xn1 ,

∂

∂xn1

[Lij(x)] = 0,
∂

∂xn1

[Lin1(x)] = −xi.

Hence,

∇ ·X(x, t) =
n1−1∑
i,j=1

{(1− xi)δij − xj} cj(t) +
n1−1∑
i=1

(xi − xn1)cn1(t)

=
n1∑
i=1

ci(t)− n1

n1∑
i=1

xici(t)

=
{
e1 − n1x

}
· c(t),

where e1 =
∑n1

i=1 e
1
i ∈ IRn1 is the vector all of whose entries are 1.

It now follows that, if xt,s(x) are the solution trajectories of the pseudo-replicator equations
(44), then we obtain

[∇ ·X] (xt,s(x), s) =
{
e1 − n1xt,s(x)

}
· c(s) = e1 · c(s)− n1

n1∑
i=1

xici(s)eCi(s,t)

x · eC(s,t)
,
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where C(s, t) = C(s)− C(t). Thus

∫ t

0
[∇ ·X] (xt,s(x), s) ds = e1 ·

∫ t

0
c(s)ds− n1

n1∑
i=1

∫ t

0

xie
Ci(s,t)

x · eC(s,t)
ci(s)ds

= e1 · C(t)− n1

∫ t

0

d

ds

[
ln
(
x · eC(s,t)

)]
ds

= e1 · C(t) + n1 ln
[
x · e−C(t)

]
,

because C(t, t) = 0, C(0, t) = −C(t) and e1 · x = 1. We therefore have:

exp
{
−
∫ t

0
[∇ ·X] (xt,s(x), s) ds

}
=
(

1
x · e−C(t)

)n1

exp
{
−e1 · C(t)

}
.

Substituting in Liouville’s formula (38), it now follows that the solution of the weak continuity
equation for density functions associated to a pseudo-replicator vector field (42) is given by (46).
�

A.4 Proof of Lemma 7.1

By definition, ξ = eC
/

(e · eC), and DF (ξ) =
(
∂Fi(ξ)
∂Cj

)
. A calculation from (61) shows that

∂Fi(ξ)
∂Cj

=
∫

∆

(
ξixi
ξ · x

){
δij −

(
ξjxj
ξ · x

)}
P (dx). (97)

Clearly DF is symmetric. Also, if S = supp(ξ), then Fj(ξ) = 0 and the j-th row and j-th column
of DF are zero for j /∈ S. However, since int ∆ has positive P -measure, DF has positive diagonal
entries and negative off-diagonal entries for row and column indices i, j ∈ S. Further, from (97),
we have DFeS = eS ·DF = 0. Hence, DF maps IRn onto IRnS0. A straightforward calculation from
(97) now shows that, for z ∈ IRnS0,

z ·DF (ξ)z =
∑
i∈S

Fi(ξ)(zi − z̄)2, where z̄ = z · F (ξ),

and hence DF (ξ) is positive-definite on IRnS0. �

A.5 Proof of Lemma 7.2

For ξ ∈ ∆, consider the dynamical system

ξ̇ = u− F (ξ | P ) ∈ IRn0 , (98)

because u, F ∈ ∆. Also,
ξ̇i

∣∣∣
ξi=0

= ui − Fi(ξ | P )|ξi=0 = ui ≥ 0,
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from which it follows that ∆ is forward-invariant under the flow of the system (98). It now follows
from standard results that ∆ contains at least one equilibrium ξ∗ = ξ∗(u) of (98).40 Further, it is
clear from the definition of F in (61) that supp(ξ∗) = supp(u).

It remains to show that ξ∗ is unique. Suppose that u, and hence ξ∗ has full support. For
ξ ∈ IRn+, let ζ = ln ξ, and consider the potential function

K(ζ | P ) = −u · ζ +
∫

∆
ln(eζ · x)P (dx).

Then ∇K = −u+ F , and hence ∇K(ζ∗) = 0, where ζ∗ = ln ξ∗. Further

[∇2K]ij =
∂2K

∂ζi∂ζj
=
∂Fi
∂ζj

. (99)

That is ∇2K = DF , which is positive definite on IRn0 by Lemma 7.1. Hence, ζ∗ is the unique
global minimum of K subject to the constraint e · eζ = e · ξ = 1. Since (98) can be written as
ζ̇ = −e−ζ∇K(ζ), it follows that any equilibria must satisfy ∇K(ζ) = 0, and hence ξ∗ = eζ

∗
is the

unique equilibrium satisfying the constraint ξ∗ ∈ ∆.
Now suppose that u does not have full support. If u = ei, then it is clear from the definition

(61) that ξ∗ = ei is the unique solution of F = ei. So, we may suppose that the support of u
contains at least two elements. If S = supp(u), then (99) defines an |S| × |S| symmetric matrix,
∇2KS , by taking i, j ∈ S. The argument of lemma 7.1 (see Appendix A.4), shows that this matrix
is positive definite on IRnS0 (which has dimension at least 1), and hence ξ∗S = eζ

∗
S ∈ ∆S ⊂ IRnS is the

unique solution of F = u. �
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