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Abstract

Using a quantitative methodology designed specifically for emerging economies,

we measure the components of India’s economic growth over the period 1960-2005.

Our approach accounts for time-varying parameters, transitional dynamics and non-

linear trends. We find that increased productivity in the service sector, facilitated

by a structural shift toward services, is the principal driver of India’s economic

growth. Our measures also suggest that the allocation of inputs across sectors has

not improved over this period, and in the case of labor appears to have significantly

worsened. We further find that fluctuations in output around its trend are due pri-

marily to fluctuations in sector-specific total factor productivity, with fluctuations

in labor market distortions and labor taxes also playing important roles. In the

period 1960-1980, productivity fluctuations in the agricultural sector are the dom-

inant source of cycles. Since then, productivity fluctuations in the manufacturing

and service sectors have been more important.

∗We are grateful to Barry Bosworth and Susan Collins for sharing their data, and to Betty Daniel,
Adrian Masters, Annie Yang and seminar participants at the University at Albany for valuable comments.
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1 Introduction

The post-colonial history of the Indian economy is a study in contrasts. In the first

three decades following its independence in 1947, India’s real per capita output grew at

the anemic rate of 1.6 percent per year. This dormant period was followed by a series

of reforms, beginning in the early 1980s. Since then, the Indian economy has grown

rapidly, with per capita output increasing 6 to 7 percent per year, and services replacing

agriculture as the dominant sector.

In this paper we construct and implement a quantitative accounting procedure to mea-

sure the components of India’s economic growth. Following the business cycle accounting

(BCA) procedure developed by Chari, Kehoe and McGrattan (2007; also see Mulligan,

2005), we interpret the data through the lens of a dynamic general equilibrium model.

This allows us to calculate a series of “wedges”, which capture frictions or policies that

alter the economy’s equilibrium dynamics. Chari et al.’s (2007) equivalence results show

that many types of frictions can be expressed in terms of these wedges. Consistent with

Lahiri and Yi (2006, 2008), we use a multi-sector model to calculate three types of wedges:

sector-specific efficiency wedges, which are modelled as productivity shifters; allocation

wedges, which are modelled as sector-specific taxes on capital or labor; and fiscal policy

wedges, which are modelled as aggregate labor income taxes, aggregate capital income

taxes, or government spending shocks.

We depart from the existing literature, however, in that our accounting methodology is

tailored for emerging economies. Our approach allows for non-linear trends; it recognizes

that India’s economy is transitioning to, rather than residing on, a balanced growth path;

and it allows for time-varying parameters that capture sectoral shifts.1 These features

lead us to label our approach “transition accounting”.2

The Indian economy provides a compelling setting to apply our methodology. Prior to

the 1980s, the Indian economy was characterized by the notorious “Hindu rate of growth”.

Import-substituting industrial policies sustained state monopolies in “core sectors”. To

prevent the concentration of wealth, small-scale industries were protected by a combi-

nation of quota, licensing and permits. To encourage self-reliance, foreign capital and

foreign technology were shunned. The reallocation of labor across sectors was restricted.

1Although sectoral shifts are a feature of developed economies as well, they are considered central to
the process of development.

2In the approach most similar to ours, Lahiri and Yi (2006) find non-linear transition paths for
a deterministic, constant-parameter economy. Verma (2008) solves a constant-parameter model that
generates sectoral shifts through unbalanced growth; her analysis, however, considers only the effects of
productivity growth.
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All these policies led to low productivity, lost competitiveness and inefficient resource use.

(Williamson and Zagha, 2002.)

In late 1970s, the second oil shock caused India’s terms of trade to worsen. The con-

ditions attached to the resulting IMF loans led to the “pro-business”reforms that began

the second phase of economic growth in the 1980s. Controls over capacity utilization and

capital imports were relaxed, price controls in key industrial products like cement and

aluminium were dismantled, and investment in infrastructure doubled the growth rate

of the public sector. The central government’s fiscal deficit rose, however, reaching 8.5

percent of GDP in 1986-87 and depleting foreign reserves. These macroeconomic imbal-

ances made the economy vulnerable to shocks, and finally the high oil prices caused by

the first Gulf War in 1991, along with domestic political instabilities, pushed the country

to the verge of defaulting on its external loans. In lieu of help from IMF, in 1991 India

started “pro-market” reforms, consisting of currency devaluation, fiscal contraction and

public sector divestment, financial sector and tax system reform, and the liberalization

of domestic investment and foreign capital inflows. Ever since, per capita real GDP has

grown 6 to 7 percent per year. The resulting sectoral changes have been just as com-

pelling. Beginning in the 1980s, India transformed itself from a predominantly agrarian

economy to one that was service-sector-based. (Williamson and Zagha, 2002; Rodrik and

Subramanian, 2004.)

While it is unanimous that the right kind of policies accelerated growth in the Indian

economy, the transmission channels through which these policies affected the various sec-

tors have yet to be captured in a unified framework. Rodrik and Subramanian (2004)

and Virmani (2004) corroborate the findings of Bai and Perron (1998, 2003) that a struc-

tural break occurred in the economy around 1980 from a variety of sources. They, along

with Panagariya (2006), conclude that the policy shifts in the early 1980s induced large

productivity responses because India was far from its production frontier.

A number of studies have argued that the manufacturing sector experienced a surge in

productivity, which in turn led to a rise in aggregate productivity (Ahluwalia, 1995; and

Unel, 2003). On the other hand, the IT sector is considered to be the most prominent

channel of India’s growth since the 1990s (Singh, 2004). Conducting traditional growth

accounting exercises, Bosworth, Collins and Virmani (2007) and Bosworth and Collins

(2008) also conclude that post-1980 growth is largely due to an increase in service sector

productivity. Chakraborty (2006) uses BCA to measure the productivity, investment,

and labor supply shocks behind India’s growth since 1982. She finds that TFP shocks

were the “primary conduit” through which India’s policy reforms stimulated its economy.
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Using a multi-sector accounting framework, Lahiri and Yi (2006, 2008) identify the wedges

that explain why the state of Maharashtra grew so much more quickly than West Bengal.

Verma (2008) uses a multi-sector model to study the rapid growth of India’s service sector.

To extend these results, we use our approach to estimate the Indian economy’s long-

term, non-linear trend, and its fluctuations around this trend. We find that over the period

1960-2005, India’s trend growth is due largely to higher service sector productivity; if the

service sector had not become more productive, output in 2005 would be about half its

actual level. This increase in service productivity, however, was facilitated by a structural

shift that increased the importance of services to aggregate output. Without this shift,

output in 2005 would have been 23 percent lower. Our findings are consistent with the

argument that India’s policy reforms benefited the economy primarily by allowing it to

operate more efficiently. Nonetheless “direct” changes in fiscal policy also contributed; if

tax rates and government spending remained at their 1960 levels, output would have been

26 percent lower. In contrast, the improved intersectoral allocation of capital had very

little effect, and the intersectoral allocation of labor actually worsened over the sample

period–India’s service sector appears to be facing a shortage of labor. Although this

apparent shortage may reflect conceptual measurement problems, if real it will pose a

barrier to India’s continued economic development.

Turning to business cycles, we find that fluctuations in output around its trend are

due primarily to fluctuations in sector-specific total factor productivity, with fluctuations

in labor market distortions and labor taxes also playing important roles. In the period

1960-1980, prior to the reforms, productivity fluctuations in the agriculture sector were the

dominant source of cycles. Since then, productivity fluctuations in the manufacturing and

service sectors have been more important, with fluctuations in service-sector productivity

being the largest single source of volatility.

The rest of the paper proceeds as follows. Section 2 develops our multi-sector model.

Section 3 describes how we measure and parameterize the model’s wedges and time-

varying parameters. Section 4 discusses the solutions to the model’s trend and business

cycle components. Section 5 discusses the data we use for our analyses. Sections 6

and 7 present the analyses of the India’s trend growth and business cycle fluctuations,

respectively. Section 8 concludes.
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2 The Model

2.1 Firms

Consider a closed economy with four sectors of production–a final goods sector and

three intermediate goods sectors: agriculture (a), manufacturing (m), and services (s).

The production technologies for intermediate goods are given by the following Cobb-

Douglas production functions:

Ya = AaK
α
aL

1−α
a , (1a)

Ym = AmK
µ
mL

1−µ
m , (1b)

Ys = AsK
σ
s L

1−σ
s , (1c)

where: Yj denotes total output of good j = a,m, s; Kj (j = a,m, s) denotes capital inputs

in sector j; Lj denotes labor inputs; and Aj are exogenous and stochastic productivity

shifters. All of these variables can vary over time; in the interest of notational simplicity,

we will suppress time subscripts whenever possible.

The three intermediate goods are combined in a Cobb-Douglas aggregator to produce

a single non-traded final good, Y :

Y = AfY
ψ
a Y

η
mY

θ
s , (2)

θ = 1− ψ − η.

To account for structural change, the share parameters ψ, η and θ can vary over time.

Each sector is populated by perfectly competitive firms, which maximize profits:

Πa = paYa − waLa − rKa,

Πm = pmYm − wmLm − rKm + r
κm

1 + κm
Km,

Πs = psYs − wsLs − rKs + r
κs

1 + κs
Ks,

Π = pY − paYa − pmYm − psYs,

where wj, r and pj are real wages, rental rates and prices, respectively, in the jth sector;

final goods are the numeraire, so that p = 1. Following Lahiri and Yi (2008), we introduce

the parameters κm and κs to capture market frictions, adjustment costs, and other factors

that might alter the allocation of capital: although we formally model κm and κs as
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subsidies/taxes, we follow Chari et al. (2007) and Mulligan (2005) and interpret them as

“wedges” that can embody a wide range of frictions. We normalize κa to zero, so that

we are looking only at sectoral misallocations. In this light, positive values of κm and

κs imply that the frictions divert capital to the manufacturing and service sectors. To

capture sector-specific frictions in labor markets, we allow wages to vary across sectors,

and introduce sector-specific taxes in the consumer’s budget constraint.3

The first order conditions for the final goods sector are

pψY = paYa, (3a)

pηY = pmYm, (3b)

pθY = psYs. (3c)

Combining these conditions with the first order conditions for intermediate goods pro-

ducers (see Appendix 9.1) yields:

ψ(1− α)
Y

La
= wa, (4a)

η(1− µ)
Y

Lm
= wm, (4b)

θ(1− σ)
Y

Ls
= ws, (4c)

for labor inputs, and

αψ
Y

Ka
= r, (5a)

ηµ
Y

Km
= r

1

1 + κm
, (5b)

θσ
Y

Ks
= r

1

1 + κs
, (5c)

for capital.

2.2 Households

The representative family receives utility from consumption and leisure. The flow

3We model capital and labor frictions in different ways only to facilitate our derivations; in the end
the frictions’ algebraic (as well as economic) effects are completely symmetric.
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utility function for a family of size N is:

u(Ct, Lt, Nt) = Nt

"
ln(Ct/Nt)− χ

(Lt/Nt)
1+γ

1 + γ

#
,

where C is consumption, L is the labor supply, χ is the weight on leisure in the utility

function and γ is the inverse of the intertemporal elasticity of substitution for labor. In

contrast to the production technologies, we assume that preferences are constant over

time.

The family faces the following budget constraint

Ct + (1 + τkt)Kt+1 = (1− τat)watLat + (1− τmt)wmtLmt + (1− τ st)wstLst

+ [1 + rt − δt]Kt +Πt +Πat +Πmt +Πst + Trt,

where K is the total capital stock and δ is the depreciation rate. As above, wi is the

wage in sector i, r is the interest rate and Πt, Πat, Πmt and Πst are dividends from firms.

As with the capital frictions, the tax rates τkt, τat, τmt, τ st can be interpreted literally,

or as wedges that embody all market frictions.4 Trt denotes government transfers. As

with capital, it is useful to express the sector-specific labor tax rates as the product of

an aggregate rate and two sector-specific effects. This allows us to rewrite the budget

constraint as

Ct + (1 + τkt)Kt+1 = (1− τ lt) [watLat + (1 + mt)wmtLmt + (1 + st)wstLst]

+ [1 + rt − δt]Kt +Πt +Πat +Πmt +Πst + Trt,

1 + mt ≡ 1− τmt

1− τ lt
; 1 + st ≡ 1− τ st

1− τ lt
; at ≡ 0⇔ τ lt = τat.

Positive values of m and s imply that labor in these sectors is “taxed” less heavily, so

that frictions promote the reallocation of labor to the manufacturing and service sectors.

It also bears noting, however, that if labor is measured as raw employment, m and s will

reflect differences in skill and utilization across sectors.

In addition to the budget constraint, the family faces the time endowment constraint

Lt = Lat + Lmt + Lst,

4To facilitate our analysis of the model’s trends, our treatment of capital taxes–taxes are levied on
capital itself–differs from the canonical BCA approach (Chari et al., 2007), where taxes are levied on
investment.
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and the standard boundary conditions.

The first order conditions for the family’s problem are

Nt

Ct
= βEt

µ
Nt+1

Ct+1
[1 + rt+1 − δt+1]

¶
1

1 + τkt
, (6)

wat = wmt(1 + mt) = wst(1 + st) =
χ

1− τ lt

µ
Ct

Nt

¶µ
Lt

Nt

¶γ

. (7)

Equation (6) is the inter-temporal Euler equation determining savings, withEt(·) denoting
expectations based on time-t information. Equation (7) describes the optimal labor-leisure

allocation.

2.3 The Government

Finally, there is a government, collecting taxes and purchasing goods and services.

The government also makes lump-sum transfers, which are set to balance its budget:

τatwatLat + τmtwmtLmt + τ stwstLst + τktKt+1 = Gt + Trt + rt
κm

1 + κm
Km + rt

κs
1 + κs

Ks,

where Gt denotes government purchases. Government purchases have no effect on pro-

duction or on household utility.5

2.4 Aggregation

Let κ denote the average capital market distortion:

κ =
1

ζ
[ηµκm + θσκs] ,

ζ ≡ αψ + µη + σθ.

(Recall that we normalize κa to zero.) Similarly, let denote the average labor market

distortion:

=
1

1− ζ
[η(1− µ) m + θ(1− σ) s] .

Using these definitions, we show in Appendix 9.2 that in equilibrium equations (2)

5Any effects that government spending might have on utility or production will be captured by cor-
relations between government spending and the other wedges. Chari et al. (2007) provide several useful
examples.
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and (7) can be written as

Y = A1−ζKζL1−ζ , (8)

(1− ζ)(1 + )(1− τ l)
Y

C
= χ

µ
L

N

¶1+γ
. (9)

where

A ≡ £
AfA

ψ
aA

η
mA

θ
sΩΥ∆

¤1/(1−ζ)
, (10)

Ω ≡ (1 + κm)
ηµ (1 + κs)

θσ

(1 + κ)ζ
,

Υ ≡ (1 + m)
η(1−µ)(1 + s)

θ(1−σ)

(1 + )1−ζ
,

∆ ≡
Ã
ψ

µ
α

ζ

¶αµ
1− α

1− ζ

¶1−α!ψÃ
η

µ
µ

ζ

¶µµ
1− µ

1− ζ

¶1−µ!ηÃ
θ

µ
σ

ζ

¶σ µ
1− σ

1− ζ

¶1−σ!θ

.

As noted above, K = Ka+Km+Ks and L = La+Lm+Ls denote aggregate capital and

labor, respectively. A denotes aggregate productivity, expressed here in labor-enhancing

form. Ω measures the efficiency lost due to sectoral misallocations of capital, while Υ

measures the efficiency lost due to sectoral misallocations of labor. Note that when there

are no sectoral misallocations, κ = κm = κs = 0, = m = s = 0, and Ω = Υ = 1.

Similarly, the equilibrium Euler equation becomes:

Nt

Ct
= βEt

µ
Nt+1

Ct+1

∙
1 + ζt+1(1 + κt+1)

Yt+1
Kt+1

− δt+1

¸¶
1

1 + τkt
. (11)

Finally, we have the capital accumulation equation:

Kt+1 = (1− δt)Kt + Yt − Ct −Gt. (12)

2.5 A Stationary Transformation

The next step is to express the model in intensive quantities suitable for numerical

analysis. We assume, consistent with the data, that productivity follows a stationary

process around the trend A∗. Let lower case variables denote upper case variables divided

by population and this productivity trend, with ct ≡ Ct/ (A
∗
tNt), and so on. Labor hours

are normalized by population, so that lt = Lt/Nt. With these definitions, we can rewrite
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the Euler and capital accumulation equations as

1

ct
= β

Nt+1

Nt
Et

µ
1

ct+1
(G∗t+1)

−1
∙
1 + ζt+1(1 + κt+1)

yt+1
kt+1

− δt+1

¸¶
1

1 + τkt
, (13)

G∗t+1kt+1 = (1− δt)kt + yt − kt − gt, (14)

yt =
³
k
ζt
t a

1−ζt
t

´φt
c
1−φt
t Γ

φt−1
t . (15)

where

G∗t+1 ≡
Nt+1A

∗
t+1

NtA∗t
,

Γt ≡ 1

χ
(1− ζt)(1 + t)(1− τ lt),

at ≡ At

A∗t
, φt ≡

1 + γ

γ + ζt
= 1 +

1− ζt
γ + ζt

.

(See Appendix 9.3.) It bears emphasizing that the trend term G∗, although deterministic,

can vary over time.

3 Finding the Time-varying Parameters and theWedges

The key to the accounting procedures developed by Chari et al. (2007), Mulligan

(2005) and others is that the economy’s distortions, or “wedges” can be calculated by

rearranging the equations of the model and applying them to the data. In our variant

of the accounting methodology, we proceed in two steps. First we find the time-varying

parameters. Then we use the parameter values to calculate the wedges.

3.1 Time-Varying Parameters

To derive the sectoral shares, rewrite equations (3a)-(3c) as

ψt =
patYat
ptYt

, (16a)

ηt =
pmtYmt

ptYt
, (16b)

θt = 1− ηt − ψt =
pstYst
ptYt

, . (16c)
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In making this derivation, we are assuming that there are no distortions in the choice

of intermediate goods, so that changes in sectoral shares are due only to changes in the

aggregate production function. Lahiri and Yi (2006) take the opposite position, assuming

that η, θ, and ψ are constant, and that any variation in sectoral shares reflects distor-

tions faced by final goods producers. Although the two approaches are observationally

equivalent in terms of equations (16a) - (16c), our approach is more consistent with the

prevailing view that India has experienced major sectoral shifts.

Similarly, we can estimate a series of depreciation rates from equation (12):

δt =
1

Kt
[It +Kt −Kt+1] .

3.2 Fixed Parameters

Calculating the wedges also requires several other parameters, which we assume are

fixed throughout our time period.

Parameter Description Value
α agriculture capital share 0.375

µ manufacturing capital share 0.4

σ services capital share 0.4

β time discount factor 0.96

γ 1/IESlabor 1

Table 1. Calibrated Parameters

The capital shares are taken from Bosworth et al. (2007).6 The value for β, the rate of

time preference, is standard. The value for γ implies an intertemporal supply elasticity

for labor of 1. Although this value is lower than the value taken in many macro studies,

it is consistent with more recent micro-level studies: Hall (2008) concludes that recent

estimates imply an elasticity of 0.9.

6Bosworth et al.’s (2007) factor shares for agriculture include a component for land (0.25), which we
divided evenly between capital and labor.
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3.3 Wedges

The sectoral productivity levels can be computed from equations (1a)-(1b), as

Aat =
Yat

Kα
t L

1−α
at

,

Amt =
Ymt

Kµ
t L

1−µ
mt

,

Ast =
Yst

Kσ
t L

1−σ
st

,

while the aggregate productivity shifter Af can be computed from equation (2), as

Aft =
Yt

Y
ψt
a Y

ηt
mtY

θt
st

.

In addition, when pat = pmt = pst = pt, it follows from equations (16a)-(16c) that

Yt = Aft (ψtYt)
ψt (ηtYt)

ηt (θtYt)
θt ⇒ Aft =

h
ψ
ψt
t η

ηt
t θ

θt
t

i−1
. (18)

Because India’s price data show no pronounced trends in relative prices, we assume that

pmt, pst and pt are constant, and employ this simplifying approximation, both here and

in calculating the sectoral shares.

Equations (5a)-(5c) show that the capital distortions κm and κs solve:

1 + κmt =
ψtα

ηtµ

Kmt

Kat
=

MPKat

MPKmt
,

1 + κst =
ψtα

θtσ

Kst

Kat
=

MPKat

MPKst
.

Finding the aggregate distortion κt is straightforward. The labor distortions are found in

a similar manner:7

1 + mt =
ψt(1− α)

ηt (1− µ)

Lmt

Lat
=

MPLat

MPLmt
,

1 + st =
ψt(1− α)

θt(1− σ)

Lst

Lat
=

MPLat

MPLst
.

It bears repeating that if labor is measured as raw employment, mt and st could reflect

differences in skill–which affect the marginal product of raw employment–as well as

7Lahiri and Yi (2006, 2008) calculate the same labor distortions under the names ωl,am and ωl,as.
They also calculate capital distortions, under the names ωk,am and ωk,as.
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misallocation. Let qat, qmt and qst denote skill measures. We can then decompose mt

and st into

1 + mt = (1 + 1mt)(1 + 2mt),

1 + 2mt =
qat
qmt
; 1 + 1mt =

1 + mt

1 + 2mt
,

1 + st = (1 + 1st)(1 + 2st),

1 + 2st =
qat
qst
; 1 + 1st =

1 + st

1 + 2st
.

If qat, qmt and qst are accurate, 1mt and 1st provide “true” measures of misallocation.

The parameter χ and the series {τ lt} solve the following version of equation (9):

χl1+γt = (1− ζt)(1 + t)(1− τ lt)
Yt
Ct

.

Because this approach provides T equations to identify T + 1 parameters, additional

information must be imposed. We utilize Poirson (2006, Table 2), who calculates India’s

effective tax rate on labor income, τ lt, to be about 16% over the period 1993-2000. Taking

averages over the same period, we find that χ = 0.90825, and with χ in hand, we can

back out {τ lt}.
Government spending can be inferred as

Gt = Yt + (1− δt)Kt − Ct −Kt+1.

Because we model the Indian economy as closed, these “government spending” shocks

will reflect any changes in net exports.

The capital tax τkt can be calculated by rearranging the Euler equation. Because

of the expectation on the right-hand side of the Euler equation, finding τkt is tricky

(Chakraborty, 2006; Chari et al., 2006, 2007; Bäurle and Burren, 2007.) We use the

approximation adopted by Kobayashi and Inaba (2006), and replace expectations with

realized values. We therefore estimate the approximate tax eτk,t+1:
eτk,t+1 = β

Nt+1

Nt

µ
Ct

Ct+1

∙
1 + ζt+1(1 + κt+1)

Yt+1
Kt+1

− δt+1

¸¶
− 1,

τkt = Et (eτk,t+1) .
Because {eτk,t+1} differs from {τkt} only by a sequence of uncorrelated forecast errors, it
should provide a reasonable basis for estimating the trend {τ ∗kt}. The measurement of the
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deviation τkt − τ ∗kt is more involved; we discuss this point in section 7.1 below.

4 Solving the Model

Once we have calculated the wedges, we can solve the model numerically to assess

their importance. This is the “accounting” part of the BCA methodology.

The full model has 10 stochastic state variables, as well as capital, and four time-

varying parameters. Moreover, the model cannot be expressed as the solution to a social

planner’s problem. We therefore adopt the common practice of separating the model

into “trend” and “cycle” components, and solving the model in steps. The first step

is to solve the perfect foresight “trend” model. In particular, we estimate the trends

{G∗t ,Γ∗t , κ∗t , τ ∗kt, g∗t , ζ∗t , δ∗t}, set a∗t = 1, and solve a deterministic version of the model using
these series. The second step is to use the trend series {k∗t , c∗t} generated in the first step,
along with the exogenous trends, as the base points for a time-varying linearization.

4.1 Finding the Trend

We find the trend series by using equations (13) - (15) to produce the sequence

{k∗t , c∗t}2094t=1960. Because {G∗t ,Γ∗t , κ∗t , τ ∗kt, g∗t , ζ∗t , δ∗t} are treated as known, there are no ex-
pectations involved, and the recursion is simple.8 This leaves the problem of finding the

initial pair (k∗60, c
∗
60). To find c60, we assume that for t ≥ 2035, {G∗t ,Γ∗t , κ∗t , τ ∗kt, g∗t , ζ∗t , δ∗t}

are constant. (For the period 2006-2035, we extrapolate from the data trends shown be-

low.) Because our model has the usual stability properties, it follows that by 2094 the

deterministic economy will have converged to a steady state (in intensive quantities), and

that for any initial capital stock k60 there is a unique initial consumption level c60 that

takes the economy to this steady state. The stable value c∗60 = c∗(k60) is straightforward to

find. To find k∗60, we find the value of k60 that minimizes the total squared log deviations

between the trend series {k∗t , c∗t , l∗t } and their data counterparts.

4.2 Finding Deviations from Trend

We model the effects of “non-trend” movements in {Gt,Γt, κt, τkt, gt, ζt, δt} on the
model’s endogenous variables by linearizing the model around the trend values described

8The only wrinkle is that with endogenous labor supply, the choice of ct+1 in equation (13) also affects
yt+1, so that even when ct, kt, and kt+1 are known, there is no closed form solution for ct+1. However,
it follows from equation (15) that yt+1 is decreasing in ct+1, so that given kt+1, the right-hand-side of
equation (13) is monotonically decreasing in ct+1, and a numerical search is straightforward.
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immediately above. This is an extension of the approach used by King et al. (1988, 2002)

and many others.9 The only substantive difference is that the matrices that describe our

solution vary over time; the standard approach, which linearizes around a steady state,

yields time-invariant matrices. Given that the parameters of the Indian economy appear

to have changed significantly over the past 45 years, we view this time variation as a

valuable feature.10 Appendix 9.4 provides the log-linearized equations, and Appendix 9.5

describes our solution method.

5 Data

The data for the Indian economy that we use are annual observations from 1960

through 2005 (or 2006). The data include: real output by expenditure; real output and

capital by sector; employment and worker quality by sector; and population.

Almost all these data were compiled and constructed by Bosworth et al. (2007), who

provide a detailed description. With the exception of employment, their data are largely

standard. Bosworth et al. derive sectoral employment by combining population data

from the census and total workforce data from quinquennial household surveys. The

same surveys also allow Bosworth et al. to calculate the average years of schooling for

workers in each sector. Assuming that each year of schooling increases earnings by 7

percent, Bosworth et al. convert the schooling data into indices of worker quality.

Two data series come from other sources. Our measure of consumption is the one in

the national accounts, rescaled to be consistent with Bosworth et al.’s measures of total

output and investment. We define population, N , to be the number of people between

ages 15 and 70. Our historical population measures are found by combining data from

the United Nations (Population Division, 2008) and national accounts data. To solve

our model, we also need population projections, for which we use the United Nations’

(Population Division, 2008) “medium variant” forecast.

9Our approach most closely follows that of Klein (2000) and Blanchard and Kahn (1980). We also
incorporate elements of the approaches used by Broze, Gourieroux and Szafarz (1985, 1995), Farmer
(1993), Farmer and Guo (1994), and Sims (2002).
10Allowing time variation introduces a small amount of imprecision into our solution; Appendix 9.5 pro-

vides a detailed discussion. Ignoring time variation, however, would arguably introduce more inaccuracy.
For example, the parameter θ, the share of services, rises 27 percentage points over the sample period.
In contrast, the magnitude of the solution errors appears to be less than 1 percent of the consumption
deviations.
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6 Trend Results

6.1 Trends in wedges

To find the trends for the time-varying parameters and wedges, we utilize a flexible

curve-fitting approach. With relatively little theoretical guidance, the specifications were

chosen to fit the data well and make reasonable projections.11
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Figure 1. Sectoral Shares: Data and Trends

Figure 1 shows the estimated sectoral shares (ψt, ηt and θt) and their trends, which

are estimated as logistic functions of time, with a trend break in 1990. The share of

agricultural output declines through the whole sample period, falling from 55 to 18 per-

cent. Offsetting this is a rapid increase in the service sector share, from 26 to 53 percent.

Manufacturing, the smallest of the three sectors at the beginning of 1960, also surpassed

agriculture, in the mid-nineties. The structural shifts appear to have accelerated since

1990, suggesting that the “pro-market” reforms beginning at that time have facilitated

the economy’s transformation.

11In general, we assume that the trends follow our estimated trend equations until 2035, and then stay
stable. The two exceptions are fiscal policies and depreciation, for which we did not feel comfortable
making extended projections. We simply assume these variables stay at their 2005 (or 2006) trend values
for the foreseeable future. Appendix 9.6 shows the projected trends. Our results do not appear sensitive
to these assumptions.
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Figure 2. Sector-Specific Total Factor Productivity: Data and Trends

The three sectoral productivity wedges (Aat,Amt and Ast) are estimated as logarithmic

functions of a time trend, with a trend break around 1982;12 most observers conclude that

the Indian economy experienced a structural shift around that time (Bai and Perron,1998,

2003; Williamson and Zagha, 2002; Virmani, 2004; Rodrik and Subramanian, 2004).

Figure 2 shows the productivity wedges and their trends. The trends all slope more

steeply after 1980, with the most pronounced increase in the service sector.13 This change

in trend is consistent with the argument that reforms begun in the early 1980s were at

least in part responsible for the higher growth rates of the past 25 years.

Figure 3 shows the capital market distortions, (κmt and κst), the labor market dis-

tortions ( mt and st), and their respective trends. Both capital distortions are positive,

implying that India’s capital-related policies favor the service and especially the manufac-

turing sectors over agriculture. While the capital distortion in the manufacturing sector,

κmt, has grown over the sample period, the service sector distortion, κst, has shrunk.

Both labor market distortions are negative, implying that not enough labor is supplied to

12We are assuming that the productivity trends shifted slowly over the course of 6 years, rather than
in a 1-period break. In all other respects, however, we treat the trend break as known in advance; our
ability to divide the data into trend and deviations relies on this assumption. In contrast, Aguiar and
Gopinath (2007) argue that trend breaks are the primary source of business cycles in emerging economies.
13Bosworth et al. (2007, p. 39) find the amount of growth in India’s service sector productivity to be

“quite puzzling”, and perhaps exaggerated by measurement error.
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the manufacturing and service sectors, and the shortage appears to be getting worse over

time. Lahiri and Yi (2006, 2008) find similar trends in their labor distortion measures.
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Figure 3. Capital and Labor Market Distortions: Data and Trends

Because mt and st reflect ratios of the marginal product of raw labor hours, it is possible

that these negative values arise because non-agricultural labor is more skilled. To account

for this possibility, we use the education measure constructed by Bosworth, et al. (2007)

to construct the quality-adjusted distortions described in Section 3, 1mt and 1st. These

measures are somewhat less extreme than the measures shown in Figure 2, but they are

nonetheless negative, large and growing larger. As Lahiri and Yi (2006, p. 17) point

out, large negative values of m and s “reflect a well known characteristic of developing

countries, the concentration of the workforce in agriculture, a sector with low productiv-

ity.” They are also consistent with the belief that India’s markets face many barriers,

both regulatory (Besley and Burgess, 2004) and social (Verma, 2008, section 3), to labor

mobility. The growth in these distortions is perhaps more surprising, but is consistent

with Bosworth et al. (2007, p. 4), who “find evidence of shortages among the group of

highly-educated workers (university graduates) who have done so well in recent years.”

Figures 4 and 5 show the fiscal policy wedges and the estimated depreciation rates.

The capital tax rate (τkt) has shrunk over the sample period, while intensive government
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spending (g2t) has risen. Neither the labor tax rate (τ lt) nor the depreciation rate (δt)

show any pronounced trends.
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Figure 4. Capital and Labor Taxes: Data and Trends

0

0.05

0.1

0.15

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Govt expenditure Govt expenditure_trend

Depreciation rate Depreciation rate_trend

Figure 5. Government Spending and Depreciation Rate: Data and Trends
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6.2 Benchmark model and counterfactuals

The benchmark model uses the wedge trends estimated in the preceding section to

generate time paths for the endogenous variables; transitional dynamics aside, any trends

in the endogenous variables are attributable to trends in the wedges. Figure 6 compares

the model-generated trends in logged per-capita capital, consumption and output to their

data counterparts. Figure 7 makes the same comparison for employment rate. In general

the fits are good.
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Figure 6. Data and Model-Generated Trends in Capital, Consumption and Output

To determine which wedges had the biggest impacts on the Indian economy’s trend

path, we do several counterfactual exercises. For instance, we allow no growth in the trend

wedges, both individually and collectively, and measure how output and employment

change from their benchmark trends. Table 2 summarizes fifteen such counterfactual

experiments. Figures 8 and 9 show per capita output and employment rates for the data,

the baseline model, and all the counterfactual experiments.

The increase in total factor productivity (TFP) in the service sector is arguably the

single most important trend. When TFP in this sector is locked at its 1960 value for rest

of the period, output in 2005 falls from 21.35 (thousand rupees) in the benchmark case to
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10.88. The annual growth rate declines from 2.31% to 0.70%. Given that our flow utility

function is separable and logarithmic in consumption, persistent changes in TFP have

relatively little effect on employment: the employment rate in 2005 declines from 0.61 to

0.58. Collectively, when there is no growth in any of the TFP trends, output in 2005 falls

even further, to 8.79, and output growth declines to 0.23% per year.
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Figure 7. Data and Model-Generated Trend in the Employment Rate

The aggregate effect of improved service sector productivity would have been much

smaller, however, had the Indian economy not been willing to accept more services, either

as final goods, or as tradable exports. If the sectoral shares in the aggregate production

function had not changed, output in 2005 would have been 16.45, 20% less than its actual

value. Our results suggest that without sectoral shifts, India’s annual output growth rate

would have been about 0.3 percentage points lower over the period 1960-1980, and about

0.8 percentage points lower over the period 1980-2005. Adapting the standard growth

accounting approach, Bosworth et al. (2007) estimate that “reallocation effects” increase

annual output growth by 0.4 and 1.0 percentage points over the periods 1960-1980 and

1980-2004, respectively.

The effects of holding the quality-adjusted labor market distortions, 1mt and 1st, at

their 1960 values are also significant. If the distortions are held fixed, output in 2005

rises from 21.35 to 29.37, while the employment rate rises from 0.61 to 0.72. If the labor

market distortion in the service sector alone could be restrained at its 1960 value, then the
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annual growth rate would have increased to 2.68%, and employment in 2005 would have

increased to 0.68. Conversely, if the sectoral shares had remained at their 1960 values,

the labor shortage in the manufacturing and service sectors would have been much less

important to the overall economy. With the service share held fixed, employment in 2005

rises from 0.61 in the benchmark model to 0.77.

Per Capita Output Employment Rate
(1000s of 1993-94 Rs) CAGR†

1960 1980 2005 1960-05 1960 1980 2005

Data 7.93 9.65 22.64 2.31% 0.75 0.71 0.65

Benchmark Model 7.90 9.73 21.35 2.18% 0.76 0.70 0.61

No TFP growth
All sectors 7.91 9.13 8.79 0.23% 0.77 0.70 0.58

Service sector 7.91 9.08 10.88 0.70% 0.77 0.70 0.58

Manufacturing sector 7.90 10.08 19.10 1.94% 0.76 0.70 0.60

Agricultural sector 7.90 9.46 19.26 1.96% 0.77 0.70 0.61

Labor distortions at 1960 values‡

All sectors 7.88 10.78 29.37 2.90% 0.76 0.72 0.72

Service sector 7.89 10.36 26.60 2.68% 0.76 0.71 0.68

Manufacturing sector 7.89 10.12 23.20 2.37% 0.77 0.70 0.64

Capital distortions at 1960 values
All sectors 7.84 8.76 20.59 2.12% 0.76 0.68 0.60

Service sector 7.88 9.66 24.40 2.49% 0.76 0.70 0.63

Manufacturing sector 7.86 8.84 18.19 1.84% 0.76 0.68 0.59

Fiscal policies at 1960 values
All policies 7.77 8.42 15.73 1.54% 0.75 0.68 0.54

Capital tax 7.82 8.45 17.05 1.71% 0.75 0.68 0.58

Labor tax 7.90 9.95 21.91 2.24% 0.76 0.72 0.62

Government expenditures 7.85 9.49 19.44 1.99% 0.76 0.68 0.56

Sectoral shares at
1960 values 7.88 9.12 16.45 1.61% 0.76 0.73 0.77
†Annual growth rates
‡Labor distortions adjusted for education level

Table 2. Per Capita Output: Data and Model-Generated Trends
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Figure 8. Data and Model-Generated Trends in Per Capita Output

Although we have adjusted our labor distortion measures for education levels, using the

index constructed by Bosworth et al. (2007), it is possible that we have not adequately

controlled for skill or effort. Our findings are consistent, however, with Bosworth and

Collins’ (2008, p. 63) claim that “India faces serious deficiencies in the education of the

bulk of its youth population,” and the widespread belief that India’s labor markets operate

inefficiently (Verma, 2008). The long-run effects of the labor distortions are potentially

quite large: if the distortions are held at their 1960 values, rather than our projections,

output in 2035 will be nearly two and a half times as large. Such a long-range prediction

is of course speculative, but even over the sample period the worsening of the labor

distortions has reduced output by over 27%.

The effects of the capital market distortions are more modest. Recall that positive

values of κmt and κst imply that capital in the manufacturing and service sectors is being

subsidized. As a result, setting κmt at its 1960 value, which is the lowest observed, reduces

capital accumulation and output growth. Conversely, setting κst at its 1960 value, which
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is among the highest observed, stimulates growth. When both distortions are set to

their 1960 values, their effects offset and output and employment both stay near their

benchmark values.
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Figure 9. Data and Model-Generated Trends in the Employment Rate

The aggregate effect of direct fiscal policies–labor taxes, capital taxes and government

expenditures–is mixed. Capital taxes have fallen over the sample period, so that keeping

them at their 1960 value lowers output in 2005. Government expenditures have grown over

the sample period. Because the wealth effect of government expenditures is to increase

labor supply, if g2t is set to its 1960 value, the year-2005 employment rate falls from 0.61 to

0.56, and output falls as well. Labor taxes, on the other hand, have risen over the sample

period, so that setting these taxes at their 1960 values would raise both employment and

output. Collectively, when the three fiscal wedges are held at their respective 1960 values,

output in 2005 falls from 21.35 to 15.73, a 26% decrease, while the employment rate falls

from 0.61 to 0.54.
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Put together, the “direct ”effect of India’s fiscal policy changes is higher output. Taken

as a whole, however, the counterfactual trend experiments indicate that growth in service

sector productivity is most important source of output growth in the Indian economy

over the last four decades. Bosworth et al. (2007) and Bosworth and Collins (2008),

using standard growth accounting, reach a similar conclusion. Like Chakraborty (2006),

we conclude that the main contribution of India’s policy reforms has almost surely been

through indirect channels, as changes in the regulatory environment manifested themselves

as changes in TFP or sectoral composition.

7 Business Cycle Results

7.1 VAR estimation of wedge deviations

We model the trend deviations of the wedges and the time-varying parameters as a

first-order vector autoregression:

wt+1 = Pwt + ²t+1, (22)

²t+1 = Qξt+1,

wt =
h baat bamt bast bκmt bκst b

mt
b
st
beτkt bτ lt bgt bδt bψt

bθt i0 .
where the elements of ξt are unit-variance and uncorrelated, and Q is the lower triangu-

lar Cholesky decomposition of the covariance matrix of ²t+1. The coefficient matrix P is

restricted to be diagonal, but Q is unrestricted, so that the wedges are not independent.

We found that this parsimonious specification did a good job of capturing the correla-

tions observed in the data. Table 3 presents the coefficient matrix P. In general, the

wedge deviations are weakly correlated across time; service sector TFP has the largest

autocorrelation, at 0.78. Table 4 presents the Cholesky decomposition Q.

Recall from Section 3.3 that the measurement of the capital tax τkt is complicated

by the expectation in the Euler equation. We work instead with the realized tax eτk,t+1,
where τkt = Et (eτk,t+1), which allows us to calculate the trend series τ ∗kt. By assuming thateτk,t+1 follows an exogenous univariate AR(1) process around this trend, we can estimatebτkt. In particular, if eτk,t+1 − τ ∗kt follows a univariate AR(1) process, then

bτkt = τkt − τ ∗kt = Et (eτk,t+1 − τ ∗kt) = ρτk
¡eτkt − τ ∗k,t−1

¢
, (23)

where ρτk is the autoregressive coefficient. Given that ρτk = −0.03 (Table 3), the end
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result is that capital taxes play no meaningful role in our cycle analyses.

baa bam bas bκm bκs b
m

b
s bτk bτ l bg bδ bψ bθbaa 0.23bam 0.65bas 0.78bκm 0.55bκs 0.36b

m 0.01b
s 0.11bτk −0.03bτ l 0.54bg 0.49bδ 0.36bψ 0.27bθ 0.39

Table 3. Vector AR(1) Coefficients

baa 4.8bam 0.9 2.4bas 0.7 0.3 1.6bκm 7.9 −6.3 1.5 5.5bκs 5.6 0.4 −2.6 1.7 3.6b
m 0.9 −0.3 −0.2 −0.2 0.5 0.6b
s 1.1 0.1 −0.2 0.2 0.4 0.1 0.7bτk −0.8 −0.5 0.1 0.0 −0.1 −0.1 0.0 2.1bτ l 3.1 −0.7 −0.1 0.6 0.5 0.4 −0.3 0.3 1.1bg 12.7 11.1 1.5 −2.5 13.3 2.2 −4.9 8.7 6.6 31.5bδ 0.0 0.0 −0.1 0.0 0.1 0.1 −0.1 0.0 −0.1 −0.1 0.4bψ 0.8 −0.2 −0.1 0.1 0.3 0.2 0.5 0.0 0.2 0.0 0.0 0.3bθ −0.6 −0.1 0.2 −0.2 −0.2 0.1 −0.2 0.0 −0.1 0.0 0.0 −0.1 0.1

Table 4. Cholesky Decomposition for AR(1) Innovations (in percent)
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7.2 Benchmark model and counterfactuals

Combining the wedge deviations estimated in the preceding section with the log-

linearized model described in section 4.2, we simulate the fluctuations of the model’s

endogenous variables, and compare them to the data.

Figure 10 compares the model-generated output series with its data counterpart.
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Figure 10. Output Fluctuations: Data and Model with All Wedges

The first row of Table 5 shows the standard deviation of the output fluctuations observed

in the data. To allow for the possibility that India’s reforms have changed the nature

of its business cycles, we consider results both for the entire sample, 1960-2005, and

for the subperiods 1960-1980 and 1981-2005. The first row of Table 5 shows that the

standard deviation drops about 31%, from 2.93% to 2.01%, between the two subsamples.

In contrast to Chari et al. (2007), who capture capital distortions in a “investment wedge”

that makes the model fit the data, our model is not guaranteed to reproduce the data.

Nonetheless, the fit is good, especially during the first half of the sample period. The

second (“All wedges”) row of Table 5 shows that during the 1960-1980 subsample, the fit

between the observed output series and its model-generated counterpart is almost perfect:

the correlation between the two series is about 98%. Although the correlation during the

second subsample drops to 80%, the overall fit of the model for the entire sample period

is reasonably good at about 87%. The model is also able to generate as much volatility
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as observed in the data; in fact, the model generates too much volatility.

Standard deviation Correlation with data
(percent) (percent)

1960- 1981- 1960- 1960- 1981- 1960-
1980 2005 2005 1980 2005 2005

Data 2.93 2.01 2.52

Model: All Wedges 3.63 2.17 2.86 97.6 79.7 87.1

Model: TFP Wedges Only
All sectors 3.67 3.21 3.37 94.5 48.1 71.1

Service sector 0.61 1.93 1.50 43.8 28.2 22.4

Manufacturing sector 0.82 1.42 1.20 44.9 28.9 26.3

Agricultural sector 3.37 1.80 2.59 84.1 32.4 67.2

Model: Labor Distortion Wedges Only
All sectors 1.42 1.15 1.26 83.0 12.8 50.2

Service sector 0.82 0.96 0.89 89.7 12.3 45.7

Manufacturing sector 0.66 0.50 0.57 67.7 5.7 38.6

Model: Capital Distortion Wedges Only
All sectors 0.14 0.49 0.37 −50.7 7.0 −6.2
Service sector 0.12 0.30 0.24 −45.4 10.6 −4.3
Manufacturing sector 0.08 0.35 0.27 −19.2 0.8 −6.6
Model: Fiscal Policy Wedges Only
All policies 1.62 1.92 1.78 −51.4 −2.2 −25.2
Capital tax 0.06 0.02 0.05 20.7 29.3 9.7

Labor tax 1.94 1.93 1.92 −60.1 −4.0 −32.5
Government expenditures 0.71 0.72 0.71 46.1 3.8 22.5

Model: Depreciation
Wedges Only 0.07 0.29 0.22 −12.5 3.4 −2.4
Model: Sectoral Share Wedges Only
All sectors 0.52 0.55 0.54 −31.0 6.7 −15.1
Service sector 0.51 0.30 0.40 79.3 20.6 53.1

Agricultural sector 0.94 0.76 0.83 −59.9 −3.3 −35.9
Table 5. Output Deviations from Trend: Data and Model
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Next we conduct a number of counterfactual experiments to determine which wedges

can best account for India’s output fluctuations. Following standard BCA practice, we

set various wedge series to zero, individually or jointly, and re-solve the model. Table 5

summarizes eighteen such counterfactual exercises; row headings show which wedges have

not been shut down.14

The three sector-specific TFP shocks are the most significant wedges. Figure 11 com-

pares the data to the output series generated by the model with all three TFP wedges in

action.
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Figure 11. Output Fluctuations: Data and Model with All TFP Wedges

Table 5 shows that the TFP-only output series correlate with the data at 95% and 48%

in the first and second sub-periods, respectively. Table 5 also shows that the TFP-only

model generates by far the most volatility. Figures 12 and 13 illustrate the effects of the

sector-specific TFP shocks. During the first subsample, TFP shocks in the agricultural

sector generated 93% as much volatility as all the TFP wedges combined. Moreover, the

correlation between agricultural-TFP-only output and observed output was 84%. The

prominent role of agricultural TFP shocks may in part reflect the Green Revolution,

consisting mainly of the spread of high-yield rice and wheat varieties, which started in

1967/68. In the second subsample, on the other hand, agricultural TFP shocks generate

14It bears noting that because the wedge series are not orthogonal, these experiments do not produce
a true variance decomposition.
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much less volatility; service sector TFP shocks appear to be more important. Much of

the shift is simply due to the shift from agriculture to services in the overall economy.

With our time-varying linearization, changes in sectoral shares translate immediately into

changed effects.
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Figure 12. Output Fluctuations: Data and Model with Agricultural TFP Wedge

Labor market distortions appear significant during both periods of our analysis (Fig-

ure 14). When combined, labor market distortions can account for 48% of the output

volatility observed in the first subsample and 57% of the volatility observed in the second.

Like their associated trends, many fluctuations in the labor market distortions probably

reflect changes in skill or effort that affect the marginal product of labor. A striking re-

sult is that that while the labor market distortions have a strong positive correlation with

output in the first subsample (83%), they have virtually no correlation in the second. It

is possible that this difference reflects changes in India’s labor market institutions.
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Figure 13. Output Fluctuations: Data and Model with Manufacturing and Service TFP Wedges
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Figure 14. Output Fluctuations: Data and Model with All Labor Market Distortions

Capital market distortions (Figure 15) and our measure of aggregate capital taxes play
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a very small role in accounting for India’s business cycles. This does not necessarily mean

that capital market frictions are unimportant in explaining India’s business cycles. As

Chakraborty (2006) points out, because we do not set the investment wedge to make the

model fit the data, any residual movements in the data not captured by our model can be

interpreted as reflecting investment wedges of the type envisioned by Chari et al. (2007).

These residual movements–the gaps between the data and complete-model-generated

output shown in Figure 10 and Table 5–imply that the effects of such investment wedges,

although small, are not completely negligible.
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Figure 15. Output Fluctuations: Data and Model with All Capital Market Distortions

Labor taxes play a major role. In both subsamples, the model with fiscal policy shocks

is the second most volatile, and in both subsamples labor taxes are the dominant fiscal

policy shock. As Figure 16 and Table 5 show, labor taxes often move in the opposite

direction of output, especially during the first subsample, where the correlation between

labor taxes-only output and the data is -60.1%. Given that an increase in labor taxes

depresses labor supply, this is not surprising. A second, subtler reason for a negative

correlation is that the labor tax wedge embodies aggregate labor market frictions. (See

the extensive discussion in Mulligan, 2005.) India has stringent labor laws (Besley and

Burgess, 2004), as well as social barriers to job mobility (Verma, 2008). One implication

of such labor market frictions is that when a shock to TFP or another wedge occurs, the
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response of the labor market is smaller than predicted by a frictionless model. To fit the

data, a shock that moves output will have to be accompanied by a “labor tax” shock of

the opposite direction that dampens the labor response; the end result is that the taxes

are negatively correlated with output (Jones, 2002).

-6%

-4%

-2%

0%

2%

4%

6%

8%

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

Y_data Y_model: Labor taxes

Figure 16: Output Fluctuations: Data and Model with Aggregate Labor Tax Wedge

Fluctuations in government expenditures, depreciation rates, and sectoral shares all

have very modest effects. One interesting feature is that fluctuations in the service sector

share are positively correlated with output, while fluctuations in the agricultural share

are negatively correlated. This reinforces our finding from the trend model that India’s

transition from agriculture to services was an important contributor to its recent growth.

In short, our BCA exercises suggest that just as changes in sector-specific TFP are the

principal driver of India’s trend growth, they are the principal driver of its business cycles.

In the period 1960-1980, TFP shocks in the agricultural sector were the dominant source

of fluctuations. As the economy transitioned away from agriculture, output volatility fell

and TFP shocks to manufacturing and services became more important. Labor market

distortions and aggregate labor taxes are both significant as well, suggesting that labor

market frictions are an important component of India’s business cycle dynamics.
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8 Conclusion

This paper develops a quantitative methodology specifically designed for analyzing

the economic dynamics of developing economies. Our approach accounts for time-varying

parameters, transitional dynamics and non-linear trends. We apply this methodology to

the Indian economy over the period 1960-2005 to study both its long-run trends and its

fluctuations around these trends.

Our findings indicate that increased total factor productivity in the service sector,

facilitated by a structural shift toward services, has been the principal driver of India’s

growth. We also find that the apparent misallocation of labor has hindered output growth

for several decades, and is growing worse. Although it is possible that these distortions

reflect unmeasured differences in skill and/or effort, they suggest large inefficiencies. If the

distortions continue their current trend, future growth will be significantly constrained.

Our analysis also suggests that short-run fluctuations in the Indian economy have

been caused mainly by fluctuations in sector-specific productivity. During the period

1960-1980, fluctuations in agricultural productivity dominated India’s business cycles.

Over time, however, India has shifted from an agricultural economy to a service economy.

Since 1980, total output volatility has been lower, and manufacturing and service sector

productivity shocks have been the leading source of output fluctuations. Labor market

distortions, both between sectors and collectively, have also had a significant effect on

output fluctuations.

Despite its reliance on a formal model, our approach is an accounting methodology

that does not provide structural interpretations. Our results instead identify areas where

structural analysis should be most productive. Three topics appear especially promising:

(i) Is the rapid growth of service sector productivity due to the removal of technology

barriers, a la Parente and Prescott (2000), or improved input allocation across existing

technologies? (ii) What are the mechanisms that allow rapid productivity growth in the

service sector to translate into a higher share of output: substitution away from goods or

trade?15 and (iii) Do the large sectoral differences in labor productivity reflect frictions

or differences in skill? Investigations into any of these questions should be quite useful.

15Verma (2008) considers this issue, and concludes (p. 30) “an export-led growth hypothesis of service
sector growth is difficult to support.”
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9 Appendix: Background Calculations

9.1 Input Prices

Assuming interiority, the first-order conditions for intermediate goods producers are

(1− µ)
pmYm
Lm

= wm, (24a)

(1− σ)
psYs
Ls

= ws, (24b)

(1− α)
paYa
La

= wa, (24c)

α
paYa
Ka

= µ
pmYm
Km

(1 + κm) = σ
psYs
Ks

(1 + κs). (24d)
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Under perfect competition and constant returns, the average cost of the final good will

equal its price, and it follows from equations (3a) to (3c) that

p =
1

Y
[paYa + pmYm + psYs]

=
1

Y
[pψY + pηY + pθY ] = 1. (25)

Combining these results with equations (3a) to (3c) produces equations (4a)-(5c).

9.2 Input Aggregation

Combining equations (1a)-(2), and inserting equations (5a)-(5c) produces

Ka =
αψ

ζ(1 + κ)
K, (26)

Km =
ηµ(1 + κm)

ζ(1 + κ)
K,

Ks =
θσ(1 + κs)

ζ(1 + κ)
K,

κ ≡ 1

ζ
[ηµκm + θσκs] ,

ζ ≡ αψ + ηµ+ θσ.

and we can rewrite equation (2) as:

Y = bAΩKζLψ(1−α)
a Lη(1−µ)

m Lθ(1−σ)
s , (27)

where

bA ≡ AfA
ψ
aA

η
mA

θ
sζ
−ζ (αψ)αψ (ηµ)ηµ (θσ)θσ ,

Ω ≡ (1 + κm)
ηµ (1 + κs)

θσ

(1 + κ)ζ
.

Combining equations (4a) to (4c) with equation (7) produces

ψ(1− α)
Y

La
= η(1− µ)

Y

Lm
(1 + m) = θ(1− σ)

Y

Ls
(1 + s).
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Letting denote the average labor market “distortion”,

=
1

1− ζ
[η(1− µ) m + θ(1− σ) s] ,

we can rewrite the preceding equations as

La =
ψ(1− α)

(1− ζ)(1 + )
L, (28)

Lm =
η (1− µ) (1 + m)

(1− ζ)(1 + )
L,

Ls =
θ(1− σ)(1 + s)

(1− ζ)(1 + )
L.

Inserting these results into equation (27) and rearranging to find equation (8):

Y = A1−ζKζL1−ζ ,

with the term A defined as in the main text.

Combining equations (4a), (7) and (28), we can rewrite the labor-leisure allocation

condition as

χ
CLγ

N1+γ
= ψ(1− α)

Y

La

= (1− ζ)(1 + )(1− τ l)
Y

L
.

This is equation (9) in the main text.

Combining equations (3a) and (26) produces

ζ (1 + κ)
Y

K
= r. (29)

Combining equations (6) and (29) produces equation (11) in the main text.

9.3 Normalized Production

Let lower case variables denote upper case variables divided by population and trend

productivity, with ct = Ct/ (A
∗
tNt), and so on. The one exception is labor hours, where

lt = Lt/Nt. Inserting these definitions into equations (8) and (9), we get equation (15) in
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the main text:

yt = k
ζt
t (atlt)

1−ζt,

=
χctl

1+γ
t

(1− ζt)(1 + t)(1− τ lt)
,

=
³
k
ζt
t a

1−ζt
t

´φt
c
1−φt
t

µ
1

χ
(1− ζt)(1 + t)(1− τ lt)

¶φt−1
,

with at and φt defined as in the main text.

9.4 Linearization

Let hats (“b”) denote deviations around the transition path. The tax rates, the

allocation wedges (the κ’s and the ’s), the production parameters (ζ and φ), and the

depreciation rate (δ) are expressed as level deviations; in these cases bxt = xt − x∗t . All

other variables are expressed as log deviations; in these cases, bxt = ln (xt/x∗t ).
Consider the Euler equation

1

ct
= β

Nt+1

Nt
Et

µ
1

ct+1
(G∗t+1)

−1
∙
1 + ζt+1(1 + κt+1)

yt+1
kt+1

− δt+1

¸¶
1

1 + τkt
,

We can rewrite this expression as

1

c∗t
exp (−bct) = 1

1 + τ ∗kt + bτkt × βEt

µ
1

c∗t+1
exp (−bct+1) ¡G∗A,t+1¢−1×h

1 + (ζ∗t+1 + bζt+1)(1 + κ∗t+1 + bκt+1)y∗t+1k∗t+1
exp

³byt+1 − bkt+1´− ³δ∗t+1 + bδt+1´ i¶,
where G∗A,t+1 = A∗t+1/A

∗
t . Logging both sides, and assuming the deviations are small, one

gets

−bct ≈ ln (λ2,t+1)− ln (1 + τ ∗kt + bτkt)− Et

nbct+1o
+Et

½
ln
³
1 + (ζ∗t+1 + bζt+1)(1 + κ∗t+1 + bκt+1)λ1,t+1 exp³byt+1 − bkt+1´− ³δ∗t+1 + bδt+1´´¾,

λ1t ≡ y∗t
k∗t
; λ2t ≡ β

c∗t−1
c∗t

¡
G∗A,t

¢−1
.

Implicitly differentiating around trend values (“stars”, with “hats” set equal to zero), and
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noting that 1/
£
1 + ζt+1(1 + κ∗t+1)λ1,t+1 − δt+1

¤
= λ2,t+1/(1 + τ ∗kt), we get

bct ≈ Et

µbct+1 − λ3,t+1

µ
1

ζ∗t+1
bζt+1 + byt+1 − bkt+1 + 1

1 + κ∗t+1
bκt+1¶− λ2,t+1

1 + τ ∗kt
bδt+1¶+ 1

1 + τ ∗kt
bτkt,

λ3t ≡ ζ∗t+1λ1,t+1λ2,t+1(1 + κ∗t+1)
1 + τ ∗kt

.

Following equation (23), we replace bτkt with ρk
beτk,t−1.

Next, consider the capital accumulation equation

G∗t+1kt+1 = (1− δt) kt + yt − ct − gt,

which can be rewritten as

G∗t+1k
∗
t+1 exp

³bkt+1´ = ³1− ³δ∗t + bδt´´ k∗t exp³bkt´+y∗t exp (byt) = −c∗t exp (bct)−g∗t exp (bgt) .
Implicit differentiation yields

G∗t+1k
∗
t+1
bkt+1 = k∗t (1− δ∗t )bkt − k∗tbδt + y∗t byt − c∗tbct − g∗t bgt,

or

λ4,t+1bkt+1 = (1− δ∗t )bkt + λ1tbyt − λ5tbct − λ6tbgt − bδt,
λ4t ≡ k∗t

k∗t+1
G∗t ; λ5t ≡ c∗t

k∗t
; λ6t ≡ g∗t

k∗t
.

To fill out these two difference equations, we substitute for output, using

yt =

µ
1

χ
(1− ζt) (1− τ lt) (1 + t)

¶φt−1 ³
k
ζt
t a

1−ζt
t

´φt
c
1−φt
t . (30)

Linearizing this equation requires us to consider the effects of the exponent deviationsbφt and bζt. To see how this works, consider another expression for output:
yt = k

ζt
t (atlt)

1−ζt.

41



This equality can be rewritten as

yt
y∗t
=

k
ζ∗t+ζt
t (atlt)

1−(ζ∗t+ζt)

(k∗t )
ζ∗t (a∗t l∗t )1−ζ

∗
t

=

µ
kt
k∗t

¶ζ∗t µ atlt
a∗t l∗t

¶1−ζ∗t
k
ζt
t (atlt)

−ζt,

and taking logs yields

byt = ζ∗tbkt + (1− ζ∗t )(bat + blt) + bζt ln (kt)− bζt (ln(lt) + ln(at))
≈ ζ∗tbkt + (1− ζ∗t )(bat + blt) + [ln (k∗t )− ln(l∗t )]bζt,

as ln(a∗t ) = 0.

To apply this approach to equation (30), we log both sides and implicitly differentiate:

byt = φ∗t ζ
∗
t
bkt + φ∗t (1− ζ∗t )bat + (1− φ∗t )

µbct + 1

1− ζ∗t
bζt + 1

1− τ∗lt
bτ lt − 1

1 + ∗
t

b
t

¶
+φ∗t ln

µ
k∗t
a∗t

¶bζt + ∙ζ∗t ln(k∗t ) + (1− ζ∗t ) ln(a
∗
t ) + ln

µ
1

χc∗t
(1− ζ∗t ) (1− τ ∗lt) (1 +

∗
t )

¶¸bφt
= φ∗t ζ

∗
t
bkt + φ∗t (1− ζ∗t )bat + (1− φ∗t )

µbct + 1

1− τ ∗lt
bτ lt − 1

1 + ∗
t

b
t

¶
+

∙
1− φ∗t
1− ζ∗t

+ φ∗t ln (k
∗
t )

¸bζt + ∙ζ∗t ln(k∗t ) + lnµ 1

χc∗t
(1− ζ∗t ) (1− τ ∗lt) (1 +

∗
t )

¶¸bφt.
Next, we substitute for the components of bat, bκt, bt, bζt and bφt. Consider first the

expression for total factor productivity, bat. It follows from equation (10) that

A
1−(ζ∗t+ζt)
t

(A∗t )
1−ζ∗t ≡

AftA
ψ∗t+ψt
at A

η∗t+ηt
mt A

θ∗t+θt
st ΩtΥt∆t

A∗ft (A
∗
at)

ψ∗t (A∗mt)
η∗t (A∗st)

θ∗t Ω∗tΥ∗t∆∗t
.

Taking logs yields

(1− ζ∗t )bat − bζt ln (At) = ψ∗tbaat + η∗tbamt + θ∗tbast + bψt ln (Aat) + bηt ln (Amt) + bθt ln (Ast)

+baft + bΩt + bΥt + b∆t,

or

bat ≈ 1

1− ζ∗t

µ
ψ∗tbaat + η∗tbamt + θ∗tbast + ln (A∗at) bψt + ln (A

∗
mt)bηt + ln (A∗st)bθt + ln (A∗t )bζt

+baft + bΩt + bΥt + b∆t

¶
.
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Continuing, it follows from the definition of Ωt that:

Ωt

Ω∗t
≡ (1 + κ∗mt + bκmt)

(η∗t+ηt)µ (1 + κ∗st + bκst)(θ∗t+θt)σ
(1 + κ∗t + bκt)ζ∗t+ζt · (1 + κ∗t )

ζ∗t

(1 + κ∗mt)
η∗tµ (1 + κ∗st)

θ∗tσ
.

Taking logs, and then implicitly differentiating, yields

bΩt = η∗tµ ln
µ
1 + κ∗mt + bκmt

1 + κ∗mt

¶
+ θ∗tσ ln

µ
1 + κ∗st + bκst
1 + κ∗st

¶
− ζ∗t ln

µ
1 + κ∗t + bκt
1 + κ∗t

¶
+bηtµ ln (1 + κ∗mt + bκmt) + bθtσ ln (1 + κ∗st + bκst)− bζt ln (1 + κ∗t + bκt)

≈ η∗tµ
1 + κ∗mt

bκmt +
θ∗tσ
1 + κ∗st

bκst − ζ∗t
1 + κ∗t

bκt
+µ ln (1 + κ∗mt)bηt + σ ln (1 + κ∗st)bθt − ln (1 + κ∗t )bζt.

Similarly,

bΥt ≈ η∗t (1− µ)

1 + ∗
mt

b
mt +

θ∗t (1− σ)

1 + ∗
st

b
st − 1− ζ∗t

1 + ∗
t

b
t

+(1− µ) ln (1 + ∗
mt)bηt + (1− σ) ln (1 + ∗

st)
bθt + ln (1 + ∗

t )
bζt.

Finally, it follows from equations (10) and (18) that

∆tAft ≡
¡
αα (1− α)1−α

¢ψt ¡µµ (1− µ)1−µ
¢ηt ¡σσ (1− σ)1−σ

¢θt
ζ
−ζt
t (1− ζt)

ζt−1,

so that

baft + b∆t ≈ ln
¡
αα (1− α)1−α

¢ bψt + ln
¡
µµ (1− µ)1−µ

¢bηt + ln ¡σσ (1− σ)1−σ
¢bηt

−ζ∗t
1

ζ∗t
bζt − bζt ln (ζ∗t ) + (ζ∗t − 1) 1

1− ζ∗t

³
−bζt´+ bζt ln (1− ζ∗t )

= ln
¡
αα (1− α)1−α

¢ bψt + ln
¡
µµ (1− µ)1−µ

¢bηt + ln ¡σσ (1− σ)1−σ
¢bηt

+ ln

µ
1− ζ∗t
ζ∗t

¶bζt.
Next, we consider the sectoral distortions, κt and t. Recall the capital distortion:

κt =
1

ζt
[ηtµκmt + θtσκst] .
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Implicit differentiation yields

bκt ≈ 1

ζ∗t

h
µκ∗mtbηt + η∗tµbκmt + σκ∗stbθt + θ∗tσbκsti− 1

(ζ∗t )
2 [η

∗
tµκ

∗
mt + θ∗tσκ

∗
st]
bζt

=
1

ζ∗t

h
µκ∗mtbηt + η∗tµbκmt + σκ∗stbθt + θ∗tσbκst − κ∗tbζti .

Similarly

b
t ≈ 1

1− ζ∗t

h
(1− µ) ∗mtbηt + η∗t (1− µ)bmt + (1− σ) ∗stbθt + θ∗t (1− σ)bst + ∗

t
bζti .

Finally, we express the composite parameters ζt and φt as functions of the share

parameters ψt, ηt and θt. Recall that

ζt ≡ αψt + µηt + σθt,

φt ≡
1 + γ

γ + ζt
,

1 = ψt + ηt + θt,

yielding

bζt ≡ αbψt + µbηt + σbθt,bφt ≡ − 1 + γ

(γ + ζ∗t )
2
bζt,

bηt = −bψt − bθt.
9.5 Solving Time-Varying Linear Expectational Difference Equa-

tions

Our approach most closely follows that of Klein (2000) (and to a lesser extent Sims,

2002), although we use the eigenvalue-eigenvector decomposition introduced by Blanchard

and Kahn (1980) (as well as their notation), rather than the generalized Schur decompo-

sition. We also incorporate elements of the MDS approaches used by Broze, Gourieroux

and Szafarz (1985, 1995), Farmer (1993) and Farmer and Guo (1994), as well as insights

from King, Plosser and Rebelo (2002).
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9.5.1 The basic solution

Consider the following system:

Et (vt+1) = Atvt, t = 0, 1, 2..., (31)

where vt is an (n × 1) vector, At is an (n × n) time-dependent matrix, and Et (.) is

the usual conditional expectations operator. The vector vt can be decomposed into the

(n1 × 1) control vector xt and the (n2 × 1) state vector pt. In particular, pt is restricted
by

dt+1 ≡ pt+1 −Et(pt+1) given, t = 0, 1, 2..., (32)

p0 given,

where {dt+1}∞t=0 is a covariance stationary Martingale difference sequence. In contrast,
xt needs only to obey some standard boundedness conditions; gt+1 ≡ xt+1 − Et (xt+1) is

otherwise unrestricted. Using these definitions, we can rewrite equation (31) asÃ
xt+1

pt+1

!
= At

Ã
xt

pt

!
+

Ã
gt+1

dt+1

!
, t = 0, 1, 2..., (33)

subject to the restrictions in equation (32). In our case, the control vector xt has one

variable, the consumption deviation (bct), so that n1 = 1. The remaining variables, the

capital and wedge deviations, are elements of pt.

The next step is to diagonalize At:

At = BtJtCt,

where: the matrix Bt contains the eigenvectors of At; the matrix Jt is a diagonal matrix

holding the associated eigenvalues; and Ct = B
−1
t . (In our case, a simple diagonalization

always works.) Assume that the eigenvalues are sorted by size in descending order, and

let m1 denote the number of eigenvalues of magnitude greater than 1. In the standard

saddle-path case, m1 = n1. We will hold this assumption throughout our analysis; readers

interested in other configurations can consult the references listed above. With saddle-
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path stability, we can partition Bt, Jt, and Ct, as:

Bt =

∙
B1t
(n×n1)

B2t
(n×n2)

¸
≡

⎡⎢⎣ B11t
(n1×n1)

B12t
(n1×n2)

B21t
(n2×n1)

B22t
(n2×n2)

⎤⎥⎦ ,
Jt =

⎡⎢⎣ J1t
(n1×n1)

0
(n1×n2)

0
(n2×n1)

J2t
(n2×n2)

⎤⎥⎦ ,
Ct =

⎡⎢⎣ C1t
(n1×n)
C2t
(n2×n)

⎤⎥⎦ .
Premultiplying equation (33) by Ct yields the transformed system

ewt+1 ≡
Ã eyt+1eqt+1

!
=

"
J1t 0

0 J2t

#Ã
yt

qt

!
+

Ã eht+1eet+1
!
, t = 0, 1, 2..., (34)

yt = C1tvt; qt = C2tvt,eyt+1 = C1tvt+1; eqt = C2tvt+1,
eht+1 = C1tÃ gt+1

dt+1

!
; eet+1 = C2tÃ gt+1

dt+1

!
.

Because the timing of the transformation is important, we use tildes to denote transformed

variables with time “mismatches”.

Because the elements of J1t are bigger than 1 in magnitude, the non-explosive solution

to the first row of equation (34) is to set

yt = eht+1 = eyt+1 = 0.
It immediately follows that

vt = Btwt = B2twt,

vt+1 = B2t ewt+1,Ã
ft+1

dt+1

!
= B2teet+1 = " B12t

B22t

#eet+1.

46



But because dt+1 is given, it must be the case that

B22teet+1 = dt+1,eet+1 = B−122tdt+1,

and Ã
ft+1

dt+1

!
= Htdt+1, (35)

Ht ≡
"
B12tB

−1
22t

In2

#
,

where In2 is an identity matrix of size n2.

9.5.2 The effects of time variation

Equation (35) implies that the innovation to the control variable xt is a linear function

of the innovations to the state variable pt. The same logic, however, applies to the

variables xt and pt themselves. The fact that pt is pre-determined at time t, along with

the non-explosiveness restriction yt = 0, implies thatÃ
xt

pt

!
= Htpt. (36)

Comparing equations (35) and (36) reveals a timing inconsistency: time-t innovations

are “stabilized” using time-t− 1 coefficients, while the variables themselves are stabilized
using time-t coefficients. To see how this plays out, consider the system:Ã

xt+1

pt+1

!
= At

Ã
xt

pt

!
+Htdt+1. (37)

Suppose further that: v0 = 0; dt = 0, ∀t 6= 1; and d1 6= 0. This yields:

v0 = 0,

v1 = H0d1,

v2 = A1v1 = A1H0d1,

v3 = A2A1H0d1
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But it should also be the case that

v2 = A1H1p1 = A1H1d1.

Following Klein (2000), we can show that equation (36) generates a bounded solution.

In particular,

AtHt =
h
B1t B2t

i " J1t 0

0 J2t

#"
C1t

C2t

#
Ht

= (B1tJ1tC1t +B2tJ2tC2t)Ht.

Moreover,

Ht =

"
B12tB

−1
22t

In2

#
=

"
B12t

B22t

#
B−122t = B2tB

−1
22t.

As a result,

AtHt = (B1tJ1tC1t +B2tJ2tC2t)B2tB
−1
22t

= (B1tJ1t0+B2tJ2tIn2)B
−1
22t

= B2tJ2tB
−1
22t,

because, as noted by Klein (2000, p. 1418), CtBt = I.

Note that

AtHt = A
∗
tHt,

where the “stabilized” transition matrix A∗t has been purged of its explosive eigenvalues:

A∗t =
h
B1t B2t

i " 0 0

0 J2t

#"
C1t

C2t

#
= B2tJ2tC2t.

In short, applying equation (36) is equivalent to updating equation (33) with a non-

explosive transition matrix. This result does not hold if we use Ht−1 from equation (35),

as At contains C1t, while Ht−1 contains B2,t−1. On the other hand, using equation (35)

bests captures the transition dynamics in effect at time t. Our solution is this:

1. Given pt, use equation (36) to find xt.

2. Given (x0t,p
0
t)
0, use the bottom n2 rows of equation (33) or (37) to find pt+1. Return

48



to step 1.

Using this approach means that xt+1 is not entirely consistent with the dynamics

implied by equations (33) or (37). In our context, this means that consumption does not

perfectly satisfy the linearized Euler equation. The error appears to be less than 1 percent

of consumption, however, which is small relative to some observed parameter changes.

9.6 Estimated and Projected Trends
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Figure 17. Estimated and Projected Trends: Sectoral Shares
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Figure 18. Estimated and Projected Trends: Sector-Specific Total Factor Productivity
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Figure 19. Estimated and Projected Trends: Capital and Labor Market Distortions
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Figure 20. Estimated and Projected Trends: Fiscal Policies and Depreciation Rate

51


