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Abstract

In this paper, we formulate and estimate a dynamic auction game where toehold asymmetry is

endogenous. The seller sells multiple goods via a sequence of �rst price auctions. While bidders are

ex-ante symmetric, the �rst period winner has an informational advantage in the second period bidding

game and becomes a strong bidder. This creates an asymmetric informational "toehold" in the second

stage. This endogenous toehold creation leads to overbidding in the �rst period relative to a one period

game. We characterize the equilibrium in terms of the observed bid distribution and entry behavior.

We suggest a two step estimation procedure to estimate such a dynamic game of toehold creation. The

OCS oil tract auctions exhibit one such phenomenon. We apply our method to data on OCS oil tract

auctions. We �nd that the federal government is only recovering 23% of the �strong�buyers�willingness

to pay in the second period. Bidders perceive the value of information to be at most 12% of their �rst

period�s informational rent. A new semiparametric structural test cannot reject the hypothesis of the

strong bidder�s informational superiority in the second period and sets it at 18% relative to the weak

bidder. We use the estimates to design alternate mechanisms and empirically show that government�s

revenue increases when the asymmetry is taken into account in allocating the goods.
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1 Introduction

Design of an optimal selling strategy in auctions with toeholds (preo¤er ownership stakes in the target) has

attracted recent theoretical attentions. A bidder with a toehold may bid aggresively as he wears two hats: a

bid price for the object and an ask price for the toehold. In a common value setting, this aggressive bidding

makes the winner�s curse of winning against a high toehold bidder more severe. The low toehold bidder bids

very conservatively in such situations. Since asymmetric toehold gives the bidder some advantage it is likely

that bidder would hold an optimal amount of toehold in equilibrium. In this paper we analyze and estimate

a dynamic auction game where toehold formation is endogenous under general informational assumptions.

A seller sells multiple goods via a sequence of �rst price auctions. Bidders privately receive signals about

the value of the �rst good from the same distribution. Hence they are informationally symmetric ex ante.

However, the winner of the �rst period auction receives the signal about the following periods�auctioned

objects from a �more informative�distribution relative to other bidders. Hence bidders are informationally

asymmetric in the second period. Thus the �rst period outcome generates asymmetry in the second period

distribution of bidders�signals by generating an endogenous "informational" toehold. Thus the �rst period

auction can be seen as a game for formation of asymmetric toeholds for the second period.

The fundamental quest for the optimal selling strategies in this dynamic framework can be analyzed

empirically by using the estimates of the distributions of ex-ante valuations of bidders in both periods, the

degree of informational (toehold) asymmetry in the second period and the value of the informational toehold

in the second period as perceived in the �rst period. These are typically unobserved to the researcher. In

this paper, we estimate these from data on observable bids and entry behaviors using a three step procedure.

Speci�cally, we formulate a dynamic auction model where informational asymmetry of bidders is endogenous.

We characterize the equilibrium in terms of the observed bid distribution and entry behavior. We propose

a three step procedure to estimate the non-parametric marginal distributions of ex-ante valuations in this

dynamic model of entry and bidding by using this characterization and data on bids and entry behavior.

Many real life examples like the OCS oil tracts auctions, defence procurements, takeovers battles etc. are

examples of this kind of auctions. We apply the model to data from oil tract auctions where the winner of

the wildcat tract (�rst period auction) has more information for the drainage tracts (second period auction).

The estimation results and counterfactual experiments suggest that ignoring the dynamic bidding behavior

and inherent asymmetry can severely a¤ect seller�s revenue.

Informational asymmetry in the second period has an important role to play in the bidding behavior. Here

informationaly strong bidder may be characterized as holding a "toehold of information". However note that

unlike the standard takeover battles the actual amount of the toehold is not observed by its informationally

weak rival. Although who has more information is common knowledge. The bidders privately observe signals

about the value of the object from a¢ liated distributions. Hence the informational toehold in�uences both

the a¢ liation e¤ect and the winner�s curse e¤ect. Winning reveals that ex-post common value of the object is

not as good as it was perceived: the winner�s curse e¤ect. Winning an object against a bidder who has better

informatin makes the winner�s curse e¤ect even more severe. However even if the valuation of the object

is private, the a¢ liation of the signals creates another strategic impact in weak bidder�s bidding behavior.
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In an a¢ liated �rst price sealed bid auction, the perceived probability whether the strong bidder is bidding

or not conveys information to the weak bidder. Suppose the joint distribution of strong and weak bidder�s

signals are a¢ liated through the value of the object. Then if the strong bidder is not bidding then it conveys

to the weak bidder that the intensity of competition is less than what he had thought. This has no bearing

on the ex-post value of the object though and can occur in both private and common value environment and

termed as the a¢ liation e¤ect in Pinkse & Tan (2005). Thus winning against a more informed bidder makes

both these e¤ects more severe relative to a symmetric case, hence the informational disadvantaged bidder

bids �timidly�if he believes that the other bidder has better information.

The actual impact of informational asymmetry on bidding behaviors depends on the degree of asymmetry

and how related their information is. In this paper, we also propose a new semi-parametric technique to

estimate and test the degree of asymmetry based on copula techniques1 . From a seller�s perspective it may

not be enough to know who the strong or weak bidders are. It may be necessary to know �how much stronger�

the strong bidder is to design a better selling strategy. The estimated degree of asymmetry is used to conduct

counterfactual experiments of alternate selling strategies.

Since informational asymmetry plays a big role in the expected pro�tability and bidding behavior of

bidders in the second period, the ex-ante value of information plays an important role in the bidding behavior

in the �rst period symmetric environment too. The informational asymmetry in the second period is actually

determined by the �rst period outcome. The �rst period bidding game is like an investment game whose

returns are twofold. One part is aimed at winning the �rst period auction and the second part is aimed at

acquiring the informational toehold in the second period. The relative advantage of having more information

in the second period guides the relative strength of investing for information in the �rst period. Examples of

investments for information is prevalent in �nancial and capital investments, production under uncertainty

about marginal cost or demand elasticity, auctions, contracting under adverse selection, coordination and

search, etc. In this paper, we separately identify and estimate the investment for information behavior from

the �rst period bidding behavior. To the best of my knowledge this paper is the �rst one to estimate the

perceived value of information.

The impact of toehold on bidding behavior in both private and common value setting has been analyzed

in Bulow & Huang and Klemperer (�99), Povel & Singh (�06), Dasgupta & Tsui (�03) among others under

restrictive informational assumptions like independence for analytical tractability. However if the bidders are

bidding for the same object it is likely that a more realistic scenario is where bidders�signals are a¢ liated.

The empirical analysis of this paper works under a¢ liated signals and interdependence of valuations. A

general theoretical analysis under such broad assumptions is not tractable. Our estimation methodology

recovers the underlying fundamentals like the unobserved distribution of signals, degree of informational

asymmetry. The new equilibrium under a di¤erent selling strategy would still be functions of the same

fundamentals. We therefore construct counterfactual selling strategies and use the estimated fundamentals

1Copula is a distribution function which uniquely couples two univariate marginals to their joint distribution function. The

copula parameter measures the degree of dependence between two random variable. In a companion paper, Gupta(�04), I use

copula technique to estimate a¢ liation as a structural parameter for auction models. A¢ liation, a more general concept than

correlation, measures the association between bidders�signals and has an important role to play in auction designs.
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to compare expected revenues from di¤erent selling strategies. We describe which selling strategies could

have earned more revenue for the seller under such a general setting. To the best of our knowledge this is the

�rst paper which empirically analyzes endogenous toehold formation under broad informational assumptions.

As an empirical application, we apply the model and methodology developed in this paper to data from

oil tract auctions o¤ the coast of Louisiana and Texas2 . In these auctions, for each geographic location,

the government auctions o¤ several oil tracts via sequential �rst price sealed bid auctions. Thus there are

multiple, heterogenous goods for each location and bidders may demand one, more or none of these goods

depending on their privately observed signals about the value oil stored. There are two major kinds of oil

and gas lease sales. A wildcat sale covers tracts whose geology is not well known and on which exploration

involves searching for a new deposit. Firms can get pre bidding seismic informations but no on site drilling

is permitted. A drainage sale consists of tracts in areas where a deposit has already been discovered. On-

site drilling is not permitted but �rms owning adjacent tracts can conduct o¤-site drilling, which may be

informative about the oil deposited in the tracts to be auctioned. Thus bidders who already have won

adjacent tracts have informational advantages over other bidders for drainage tracts. This creates a clear

asymmetry among drainage tract bidders, separating them in two categories: strong and weak bidders.

Strong bidders are those who own adjacent tracts and have an informational advantage. All other bidders

are weak in the sense that their information is less accurate. Thus in the oil tract auctions, informational

asymmetry is characterized by the location of the bidders in the second period. This location is determined

by the outcome of the �rst period wildcat bidding, where bidders are informationally symmetric in the sense

that they have similar source of signal about the value of the wildcat tract. Hence bidders, while bidding for

the wildcat tracts, do not only take their evaluations of the oil storage in the wildcat tracts, but also keep in

mind the informational advantages they would get in subsequent sales in that area if they win the current

auction. The latter e¤ect generates dynamics in the bidding behavior.

Bidding in wildcat involves a substantial investment as a sunk cost3 in conducting and analyzing the

seismic survey. This sunk cost creates an �entry�stage where bidders decide whether to enter to bid for the

wildcat tract at all or not based on their initial signals about the tract. In the wildcat sales bidders receive

privately observed seismic signals from the same distribution. If the signal is not above a threshold level,

then bidding is not optimal. A puzzle so far has been, whether there has been some kind of overbidding

as 64% of wildcat tracts turn out to be dry4 . If the fault lay with the accuracy of the seismic surveys, one

would have expected them to be carried out less and less as these are quite costly to carry out. However,

that has not been seen. One possible explanation of why people bid when they apparently should not is

because bidders rationally take into account dynamic considerations. Owning an oil tract, even if it has a

high chance to turn out dry, gives the owner an advantage for future drainage sales. Thus, bidders rationally

calculate the advantages of bidding in future drainage auction in deciding on optimal bidding strategies in

a wildcat auction. These dynamics lower the threshold level of the signal for bidding for wildcat tracts and

overstates the expected valuation of the tract. This leads to more entry in the wildcat sales relative to

2Examples of similar endogenous informational asymmetry also include spectrum auctions, treasury auctions, toeholds and

takeovers, defence procurement auctions etc.
3The cost of seismic survey runs in millions of US dollars.
4Descriptive statistics as reported by Hendricks and Porter (�89).
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the static analysis of wildcat auctions. Reduced form analysis suggests that ex-post drainage tract values

conditional on ex-post wildcat tract values and competition have a signi�cant positive impact on entry and

bidding decisions for wildcat tracts.

We model this phenomena as a three stage dynamic game of mixed discrete and continuous choice. The

�rst stage is an entry game, where bidders make the discrete choice of whether to bid for the wildcat tract

or not depending on the privately received pre-bidding seismic signals received. While deciding to enter,

they keep the possibility of future asymmetry in mind. This future asymmetry is also taken into account

while deciding how much to bid in the wildcat auction in the second stage. While bidding for the third stage

drainage auction bidding game, bidders know who is a strong and weak bidder. However, no bidder knows

his valuations from the tract perfectly and only receives informative signals. We characterize the equilibrium

in each bidding stages in terms of the observed distribution of bids and entry behavior.

The equilibrium bidding functions are monotonic, hence they can be inverted to rewrite the distribution of

privately observed ex-ante values in terms of the distribution of bids. We use this to establish non-parametric

identi�cation of distribution of privately observed ex ante values (often termed as pseudo values) from the

distribution of observed bids. Under standard assumptions, the distributions of pseudo values has a unique

mapping to the distribution of privately observed signals.

The structural parameters of the model are the distributions of unobserved pseudo values and the entry

parameters (to be described later). We suggest a three step estimation procedure based on the identi�cation

results to recover the structural parameters from the data. The estimation involves �backwards induction�.

Speci�cally, the �rst order conditions of bidding decisions provide a unique mapping between the distribution

of pseudo values and a function of the distribution of observed bids. We �rst non-parametrically estimate the

distribution of pseudo values in the drainage auctions using the equilibrium conditions of drainage bidding.

Based on these estimated pseudo values and observed bids, We estimate the expected maximized pro�t from

the drainage auctions. The pseudo values in wildcat auction is characterized as a function of the distribution

of wildcat bids and expected maximum pro�ts from the drainage auction. In the second stage, We plug in

the estimated maximized pro�t from drainage auction, estimate the remaining part of this equation non-

parametrically from the distribution of observed wildcat bids and get back an estimate of the pseudo values

for the wildcat auction. The �entry�parameters are then estimated by maximizing a likelihood function in

the third stage.

The estimates indicate that the federal government is only recovering 23% of the �strong�buyers�will-

ingness to pay in the drainage sales. In the wildcat sales, We �nd that the bidders are willing to pay up

to 12% more to account for possible future informational advantage. The estimates also suggest that weak

bidders bid timidly despite having stochastically higher pseudo values and hence win less, which is consistent

with the theory and indicates the presence of winner�s curse. We use these estimated unobserved ex-ante

valuations to conduct counterfactual experiments of di¤erent selling strategies for selling such goods and

compare the government�s revenue.

The rest of the paper is organized as follows: section 2 reviews related literature, section 3 �rst describes

the model and information structure for a simple case of two bidders and characterizes the equilibrium,

identi�cation of ex-ante valuations from observed bids are then established for the general model, section 4
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describes the estimation strategy and provides some simulation results, section 5 describes the data and sum-

mary statistics, section 6 presents the structural estimation results, section 7 describes the semi-parametric

test of asymmetry based on copula, counter-factual experiments are conducted in section 8, section 9 con-

cludes. All proofs, estimation details and a brief review on copulas are relegated to the appendix.

2 Related Literature

Auctions with toehold under private and common value settings and in �rst and second price auctions has

been analyzed in Bukart (�95), Singh (�98), Bulow, Huag & Klemperer (�99), Dasgupta and Tsui (�03)

and Povel & Singh (�06). Betton and Eckbo (�00) �nds that rivals are less likely to bid if the initial

bidder has a toehold. All the theoretical analysis work under the independence of signals for analytical

tractability. However if the bidders are bidding for the same object it is likely that a more realistic scenario

is where bidders�signals are a¢ liated. The empirical analysis of this paper works under a¢ liated signals and

interdependence of valuations. Also to the best of our knowledge this is the �rst paper which empirically

analyzes endogenous toehold formation.

Asymmetry in auctions has received increased attention recently. McAdams (�06a) characterized equilib-

ria in asymmetric �rst price auctions under interdependence and a¢ liated valuations5 . Under the priority

tie breaking rule he established that all equilibria are monotone. Lizzeri & Persico (�00) established exis-

tence and uniqueness in asymmetric auctions with interdependent values where there are only two types

of asymmetries. McAdams (�06b) proved uniqueness and existence in a symmetric �rst price auction with

interdependent values. These three papers will be the backbone of our empirical model as identi�cation

of unobserved ex-ante valuation from bid data requires monotonic mapping from functions of bid data to

ex-ante values. Uniqueness is crucial: if other equilibria exist, then we run the risk of selecting the wrong

equilibrium while estimating and hence the policy prescriptions would not be reliable. Other similar works

on existence and monotonicity of equilibrium includes Maskin & Riley (�96 & �00), Athey(�00), Lebrun

(�99), Reni & Zamir (�03). Jofre-Bonet & Pesendorfer (�03)(JBP) empirically analyzed asymmetry origi-

nating from capacity constraints. In their paper, previously won uncompleted contracts (inventory) reduce

the probability of winning further contracts. They quanti�ed the e¢ ciency loss due to these intertemporal

e¤ects. Asymmetry originating from size di¤erence (La¤ont, Oscard, Vuoung (�95), geographic locations

(Bajari(�99)), among others have also been studied in the literature. However except for JBP no paper has

analyzed asymmetry in a dynamic context. Also to the best of my knowledge no paper has analyzed the

process of endogenous asymmetry starting from a symmetric environment in a multiple object framework as

in this paper. This endogenous asymmetry also endogenizes entry in our model. Endogenous entry, although

prevalent in procurement auctions, has received increased theoretical attention recently in Mca¤ee(�87) and

Levin & Smith (�94) among others. The empirical modelling of entry in this paper is di¤erent from theirs

and is more related to Berry�s (�92) model of entry in the standard industrial organization literature. The

5Formal de�nitions are given in later sections. Intuitively, interdependence of valuations arises in cases when one bidder�s

signal if known to the other bidder also a¤ects his valuation. A¢ lliation is a broader but similar concept as correlation to depict

association between random variables. See later sections and appendix.
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entry in this paper is driven by the possibility of endogenous asymmetry and value of information.

Guerre, Perrigne & Vuong (�00) (GPV) made an important breakthrough in structural non-parametric

analysis of auctions. They used the simple and powerful observation that at equilibrium, each bidder is acting

optimally against the distribution of his opponents. When bids are observable then both the distribution of

the opponent�s behavior and the equilibrium (optimal) choice of each bidder is observable. The necessary

conditions of monotonic equilibrium in �rst price auctions characterizes the bidder�s unobserved signals

in terms of a function of the distribution of observable bids. Under monotonicity these distributions can

be inverted to get back the distribution of �pseudo values�which under assumptions is the distribution of

unobserved signals. A non-parametric estimate of this function thus is an estimate of the distribution of

unobserved signals or �pseudo values�. GPV and their coauthors (Li, Perrigne & Vuong �02) (LPV) in a

series of papers established consistency and other properties of this estimate. The semi-parametric analysis

in this paper uses their idea and extends it to a dynamic auction setting. Speci�cally, We add the discrete

choice of entry in the decision making process besides the continuous bidding choices. The additional entry

stage helps identify and estimate the sunk cost of entry and the pseudo value to the bidder when he expects

no other bidder is bidding. These two parameters could not be estimated in the GPV framework as they

cancel out in the �rst order conditions associated with the continuous bidding decision.

The presence of possible asymmetry in drainage tract sales has been widely documented by Hendricks

& Porter (�88;�89;�95) (HP) among others. In their seminal paper (HP�89), they empirically analyzed the

case where the strong bidder has perfect information about the value of oil stored in drainage tracts while

the weak bidder only receives a public signal. Wilson (�69), Milgrom & Weber (�83) and HP showed that in

such a framework, in equilibrium, the strong bidder plays a pure strategy and makes positive pro�t while

the weak bidder randomizes and makes zero pro�t. HP�s static parametric maximum likelihood analysis

does not recover the distributions of unobserved ex-ante values of bidders. The possibility of dynamics in

the bidding behavior was also ignored in HP. Clearly, who is strong or weak in drainage auction is actually

determined by the outcome of the wildcat auction and rational bidders take this into account while bidding

for wildcat tracts. In analyzing the drainage tracts auctions, this paper builds on HP�s work and extends it

to non-parametrically identify and estimate the distributions of pseudo values of strong and weak bidders

non-parametrically under more general assumptions. In this paper, both bidders in drainage auction receive

privately observed signals, but the strong bidder is expected to receive a �more accurate�signal6 . Since the

government knows who the strong and weak bidders are, it may adopt an asymmetric auction mechanism7 .

The counterfactual experiments described in this paper takes this asymmetry into account.

6Although this assumption will not be imposed while estimating the distributions and would be tested. All I assume is that

bidders; whether strong or weak, have some private information which gurantees pure strategy equilibrium.
7One such mechanism is giving the weak bidder some advantage in bidding, like if they win they pay only a fraction of their

bids.
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3 Model

3.1 Description and Information Structure

For simplicity of exposition, We present the model here for two bidders and two periods. However a gener-

alization to the N bidder case in a multi-period framework is straightforward and will be sketched in the

identi�cation and estimation section.

This is a multi-stage game of incomplete information. There is a non-strategic seller (government) who

has two indivisible units of the good and sells o¤ each unit of the good in sequential �rst price auctions.

There are two potential buyers 1 and 2: All players are risk neutral. The �rst period auction is called

wildcat auction and the second period is called drainage auctions for reasons described earlier. Bidders

receive private signals sw and sd about their valuations of wildcat and drainage auction and bids bw(sw)

and bd(sd) respectively. Throughout this paper, We will restrict attention to monotonic bidding equilibrium

in their signals8 . The inverse of the equilibrium bidding strategies will be denoted by � = b�1(b(s)): We

assume that the expected value of oil stored in a tract of type t to a bidder i; U ti can be expressed as a

function of all bidder�s signals, U ti (s
t
1; s

t
2) = E(u

t
ijSt1 = st1; St2 = st2); where t = fwildcat; drainageg and uti is

bidder i0s valuation and is assumed to be non-decreasing in all its arguments, strictly increasing in sti and

twice continuously di¤erentiable. Throughout this paper, the random variables Y ti and B
t
i ;will denote the

maximum of bidder i�s rival�s signal and bid.

This is an interdependent valuation model, as other bidder may posses information that would, if known

to a particular bidder, a¤ect the value he assigns to the tract. When bidder�s valuation only depend on his

signal, E(utijst1; st2) = E(uijsti); then it is called a pure private value model. On the other hand, if E(utijst1; st2)
is increasing in sj for all j 6= i, then it is an interdependent value model. Although bidder would like to know
his opponents signal in both private and interdependent value framework. The knowledge of opponent�s signal

a¤ects the expected valuation of the bidder in the interdependent valuation setting whereas the expected

valuation remains unchanged in a private value setting even if bidder has private information about his

opponent�s signal. This e¤ect is generally termed the �winner�s curse�. Roughly speaking, winning the object

in an interdependent value setting means that bidder�s signal was more optimistic than his opponent�s.

Rational bidders anticipate this when forming expectation about the value conditional on winning. When

the ex-post value is identical for all the bidders then it is called a pure common value model. Since wildcat

tract is the �rst tract to be sold in a speci�c location, bidders are assumed to have a pure common value for

the wildcat tract. However, in drainage tract sales, there is already an informational asymmetry amongst

bidders, hence drainage tracts are assumed to have two interdependent values. One value for the strong

bidder (v1) and another value for the weak bidder (v0). Note that both these values depend on the signal of

the other bidder.

The distribution of signals for auction of type t, Ft(:) are a¢ liated, in the sense de�ned9 in Milgrom&

Weber (MW)(�82). By a¢ liation, high value of one signal leads to a higher value of the other signal. Note

8As will be clear later, under assumptions monotonic equilibrium will be unique.
9The concept of a¢ liation as coined by Milgrom & Weber (�82), is what is known as Total Positivity (TP) in statistical

literature. For two variables, s01 � s1; s02 � s2; A¢ liation is equivalent to f(s01; s2)f(s1; s02) � f(s1; s2)f(s01; s02);
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that, independence is a special case of a¢ liation.

3.1.1 Information in the Wildcat Auction (First Period)

Let the value of oil stored in wildcat tract, drawn from Fu; be denoted by u. Bidders are typically symmetric

for wildcat auctions in the sense that they privately observe conditionally independent, but a¢ liated signals

sw about u from the same distribution FW (swju)10 :
To economize on notations, let the expected common value of oil stored in an wildcat auction when

bidder i with a signal swi ; bidding b
w
i (s

w
i ) and rival�s bid b

w
�i, be given by, E[uijSwi = swi ; bw�i � bwi ] where

the expectation is taken over the distribution of u: Let E[uijSwi = swi ; bw�i = bwi (eswi )] be the �pivotal�expected
value in the sense that a small change of bidder i�s bid will change the winner of the game. Since bidding

function is monotonic, it can be rewritten as,

E[uijSwi = swi ; bw�i = bwi (eswi )] = Uwi (swi ; eswi ) = Ui(swi ; eswi )
Let U0(swi ) be the expected common value when the bidder does not have any rival. Note that, since

wildcat auction is a pure CV auction, due to the presence of �winner�s curse�, U(:) and U0(:) need not be the

same and ordered11 .

The winner of the wildcat auction becomes a strong bidder in the drainage auction. The relative strong-

ness of bidders�are determined by his location state variable. The location of bidder i evolves according

to

Di =

8<: i is strong, if i won the wildcat auction in the same location

i is weak, if i did not win wildcat auction in the same location

The dynamics of the model is represented by the evolution of the state variable D. When bidders

are bidding for wildcat tracts they are also choosing their future locations D; which a¤ects their marginal

distribution of valuations for drainage tracts. Note that, the state variable can also be a continuous distance

variable, leading to a continuous type space instead of discrete one as described above.

3.1.2 Information in the Drainage Auction (Second Period)

Bidders in drainage auctions are divided into two groups: strong bidder (denoted by 1); who has won the

wildcat tract in the �rst period, and weak bidders (denoted by 0); who did not win in the �rst period. They

equivalently,
f(s02js1)
f(s2js1)

�
f(s02js01)
f(s1js01)

i.e., f(:
0js01)

f(:js1)
is increasing in s1 : which is the monotone likelihood ratio property:Thus higher values of s1 )higher values of

s2 more likely It is easy to verify that f is a¢ liated if and only if, for all i 6= j;

@2

@si@sj
ln f � 0

For more details see the appendix and MW .
10Thus, each of the random variables sw1 and s

w
2 are a¢ liated with the common component u; but conditioned on the common

component u they are indepedent.
11As noted above, it was not possible to estimate the parameter U0 before. The discrepancy between U and U0 is an important

extreme measure of winner�s curse. As will be outlined in later section, I estimate this as a parameter.
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draw their private signals about the value of the drainage tract, Vi from di¤erent marginal distributions,

F1(s
d
1jV1) and F0(sd0jV0) respectively. Thus sd1 is the realization of the random variable sd drawn from the

distribution F1(:jV1): Signals sdi 2 <; about the unknown value of oil stored in drainage tracts Vi are a¢ liated
in the sense de�ned before. We assume that all the distributions are continuous. The ex-ante value of the

strong bidder is thus given by v1(s1; s0); and that of the weak bidder be v0(s1; s0):

Strong bidders evaluate the value of the tract �better�, in the sense that their signals about the value of

the tract is more �accurate�than that of the weak bidder. Thus, if the realization of v1 is low then strong

bidder�s signal sd1 is low and vice versa. We do not impose any assumption on the relative ranking of the

distributions while deriving the equilibrium �rst order conditions which will be used for estimation. All We

assume is that each bidder has some private informations for the equilibrium to be in pure strategies. The

relative ranking of the distributions can be tested using data on ex-post value of the tract and the estimated

ex-ante pseudo values.

3.2 Timeline of Events

The sequence of moves, for each location, are as follows:

1) Number of potential bidders is common knowledge. Bidders �rst receive some information; swi ; about

the value of oil stored in the tract, u; swi � Fw(:) of the wildcat tract from a seismic survey.

2) There are 2 potential bidders for any location. They simultaneously decide whether to bid for the

wildcat auction or not. Bidders receive action speci�c shocks � associated with actions of whether to enter

or not, drawn independently from Logistic distribution12 . If they decide to bid they pay a stochastic bid

preparation cost K+ � in the current period: The error � is independent of the seismic survey signals and

they are not errors associated with the analysis of seismic surveys. Hence they do not a¤ect the actual

amount of bids submitted. These errors are like bidders�action speci�c shocks, shocks received while going

to bid, or following the arguments of Bajari & Hortacsu (�03) and Mckelvey & Palfrey (�95); errors made

while deciding to bid. Note that no bidder knows his rival�s � or sw while deciding to enter to bid. Let the

actual number of bidders be A:

3) When bidders submit bids, they do not know whether his rival has decided to submit the bid or not.

He also does not know his rival�s signal sw�i: � is independent of s
w
i and also does not a¤ect the decision of

how much to bid. Any bidder submitting a bid bwi ; wins the auction with probability Pr(b
w
i ; B

w); where Bw

is the rival bid13 .

4) In the following period, bidders decide how much to bid for the neighboring drainage tracts :bd:

Bidders draw their signals about the valuations of the drainage tract vi(swi ; s
w
�i); from continuous asymmetric

distributions Fi(sdjv): They win the drainage tract with a probability Pr(bdi ; Bdi ; D); where D is the state

(location) variable of bidder and Bdi being the rivals�bid.

We assume that the auctioneer (government), does not act strategically and always sells the objects to the

12The assumption of logistic distribution is not necessary. However, we adopt this as it will lead to a closed form of the choice

probability of whether to enter or not (to be de�ned later). This will be very handy for the empirical analysis.
13 In later seections for general case, where we have more than two bidders, Bw will be the maximum of his rivals�bid.
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highest bidder via two independent �rst price auctions. We also abstract away from reserve price issues14 .

In this game bidders have three kinds of choices : a discrete choice of whether or not to bid in an wildcat

tract, and a continuous choice of how much to bid for the wild cat tract a second continuous choice of how

much to bid for the drainage tract. Thus the number of bidders in an wildcat tract is endogenous. However

all the potential bidders bid for a drainage tracts15 . Thus there is no endogeneity of number of bidders in a

drainage tract. Some of them may bid zero though depending on their signals received.

3.3 Value Function

The value of the wildcat tract, to the ith bidder, Vi, can be written as follows:

Vi(s
w
i ; �) = max

�i2f0;1g
fQ0;i(swi ); Q1;i(swi )� �ig; i = f1; 2g (1)

where �i = 0 represents not bidding and �i = 1 represents bidding, Q0 is the expected value to the bidder

if he decided not to bid for the wild cat auction, and Q1 � � is the expected value of bidding for the wildcat
tract. He receives an action speci�c shock �. We assume that � �s are independently drawn from a logistic

distribution16 .

Integrating over the �0ks; we get the smoothed value function, V
�
i ; the value function before the bidder

observes his action speci�c shocks �k (i:e; before incurring the cost �k),

V �i (s
w
i ) =

Z
Vi(s

w
i ; �)d�(�)

If a bidder decides to bid bwi (s
w) for the wildcat tract, he wins the tract with probability Pr(bwi ; B

w
i );

when the maximum of his rival�s bid Bw: His next period state will be D: Next period he will then bid for

the drainage tract in the same location. Let the expected value from bidding for the drainage tract be Ti(D);

and � is the common discount factor.

Now when he is bidding for the wildcat tract he does not know whether his rival is bidding or not.

Hence his expected valuations should be weighted by the probability whether he has a rival or not. Let this

probability be denoted by Pr(��i = 1jswi ); i.e., Pr(��i = 1jswi ) is the probability that the rival decides to
bid, given bidder has received a signal swi : Observe that,

Pr(��i = 1jswi ) =
R R

I(��i = 1jsw�i; ��igd�(��i)dF (sw�ijswi )
=
R
Pr(��i = 1jsw�igdF (sw�ijswi )

14For the application of OCS auctions in this paper, the average reserve price was US$15 per acre the average bid being

around US$600 per acre, the reserve price being not binding it may be safe to assume that there was no reserve price. The

estimated ex-ante valuations will be used to formulate an optimum reserve price.
15This model is extendable to allow entry in drainage auction too. However, for simplicity I abstract away from entry in

drainage tracts.
16 Integrating over the �0ks; we get the smoothed value function, V

�
i ; the value function before the bidder observes his action

speci�c shocks �k (i:e; before incurring the cost for more �in�ll�),

V �i (s
w
i ) =

Z
Vi(s

w
i ; �)d�(�)
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Pr(��i = 1jsw�i) is the probability that bidder i perceive that his rival decides to bid, given rival�s privately
received signal sw�i: This is then integrated over ��i and s

w
�i;given that the i

th bidder received a signal swi ;

the relevant distribution function being Fw(sw�ijswi ); which gives us the probability that bidder i assigns that
his rival enters, given that the ith bidder received a signal17 swi : The bidder, conditional on receiving a

signals swi ;bids b
w
i (s

w
i ) to solve the following maximization problem,

Q1;i(s
w
i ) = maxbwi �0[fPr(��i = 1js

w
i )f(U(swi ; eswi )� bwi )� Pr(bw�i < bwi jswi )�K

+�
P2

j=1 Pr(j winsWA)
R
Ti(D)dF (s

d; D)g
+Pr(��i = 0jswi )f(U0(swi )� bwi ) + �

R
Ti(1)dF (s

d; D = 1)g]

(2)

The terms within the �rst curly parentheses represents bidders�expected valuations when he has a rival.

The terms within the second curly parentheses represents bidders i0s expected valuation when he does not

have a rival. Both terms being weighted by the probability of whether he has a rival or not.

f(U(:) � bwi ) � Pr(bw�i < bwi jswi ) � K }represents bidder i�s expected value from bidding in the wildcat

tract, and Ti(D) is his expected value from bidding the drainage tract discounted by �,
R
Ti(D)dF (s

djv;D) is
the ex-ante value from the drainage auction, before bidders receive their signals about the drainage tracts18 .

If the bidder decides not to bid for the wildcat tract, he will receive his discounted expected valuation

from the drainage tract where for sure he will be a weak bidder if his rival enters this period and otherwise

would face the same problem and value V �i (s
w0
i ) again next period

19 . Hence

Q0;i(s
w
i ) = f� Pr(��i = 1jswi )�

Z
Ti(0)dF0(s

djv) + � Pr(��i = 0jswi )�
Z
V �i (s

w0
i )dFw(s

w0
i )g (3)

The expected value from the drainage tract can be written as

Ti(D) = max
bdi�0

f(vi(sdi ; sd�i)� bdi )� Pr(bd�i < bdi jsdi ; D)g

From the bidder�s perspective, the drainage tract being auctioned next period. Hence its expected value

depends on the next period�s state D: This in turn depends on bidders choices and outcomes in the wildcat

auction this period.

Note that we can write the value function as a mapping into itself.

V �i = �(V
�
i ) (4)

Using standard arguments in the literature (see Bhattacharya & Majumdar (�89), Theorem 3.2,), it can

be shown that the mapping � is a contraction; and a unique solution to the value function exists.

17Note that using a¢ liation of sw�s it can be easily shown that, Pr(��i = 2jswi ) �rst order stochastically dominates Pr(��i =
2jsw0i ) for swi > sw0i :
18Note that

F (sdjV d1 ; D = i is strong) = F1(:jV d1 ); and F (sdjV d0 ; D = i is weak) = F0(:jV d0 )

19 If the wildcat tract is not sold today then it may be up for sale again in some later date. I assume that if it is up for sale

again then it is up for sale as a wildcat tract only.
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3.4 Equilibrium

We solve for symmetric perfect Bayesian equilibrium in monotone strategies for each stage game. Solution

method involves backward induction. We �rst solve the drainage tract auction as a function of bidders state

variable next period D. This solution is substituted in the wildcat bidding problem which solves the wildcat

auction and determines D.

3.4.1 Last Stage Decision: Analysis of Drainage Tracts

The distribution of valuations of strong and weak bidders are given by F1(s1) and F0(s0) respectively. Note

that strong bidder receive more �accurate�signal as de�ned before. Let v1(sd1; s
d
0) = E[V1jSd1 = sd1; Sd0 = sd0]

be the expected value of the tract to bidder 1, when he received a signal sd1 and his rival received a signal s
d
0:

v0(s
d
1; s

d
0) is de�ned analogously. Hence E[V1jSd1 = sd1; bd0 = bd1(esd1)] = v1(sd1; esd1) be the pivotal value to bidder

1. v0(sd0; esd0) is de�ned analogously. Bidder�s valuations are interdependent. i.e., vi(sdi ; sdj ) is non-decreasing
in sdi ; s

d
j ; fi; jg 2 f0; 1g: Moreover we assume vi is strictly increasing in sdi and vi(0; 0) = 0: The distribution

of bidders�signals are a¢ liated as de�ned before.

Let the bids by two bidders be bd1 and b
d
0 respectively. Let each bidder adopt a monotone bidding strategy

bdi (si) with an inverse �i(b
d
i ) = (b

d
i )
�1(bdi (si)): Thus by bidding b, the strong bidder wins the auction with

probability Pr(bd0 � b) = Gd0(b) = Pr(�0(bd0) � �0(b)) = F0(�0(b)); similarly the weak bidder wins the auction
with probability Gd1(b): Let the common support of the distributions of signals be [s; s].

Proposition 1 a) With zero probability of ties, there exists a pure strategy equilibrium of the drainage

auction in monotonic strategies. It is characterized by the following conditions

F 00
F0
�00(b

d
1) =

1

v1(sd1; �1(s
d
1))� bd1

(5)

and
F 01
F1
�01(b

d
0) =

1

v0(�0(sd0); s
d
0)� bd0

(6)

in the common support of signals, i.e., for all s0; s1 2 [s; s]; satisfying the boundary conditions, b0( s) =
b1(s) = b

d
; b0(s0) = b1(s1) = b

d; The equilibrium pair of inverse bid function is given by, �i(bd) = b
�1
i (bd);

i 2 f0; 1g; where sdi = �i(b); is the inverse bid function. �i(sdi ) = �j(b
d
i (s

d
i )); fi; jg 2 f0; 1g; i 6= j; is a

monotonic function of sdi :

Proof. Details are given in the appendix. Here is a sketch, �rst note that the utility function satis�es

the single crossing property and a¢ liation of signals guarantees that the distribution of valuations is log-

supermodular. Moreover, it is assumed that there are zero probabilities of ties. Hence the assumptions

of McAdams (�04) is satis�ed and a pure strategy equilibrium in monotone strategies exists. The exact

characterization of the equilibrium in terms of the di¤erential equations given above then can be found by

taking the �rst order conditions with appropriate boundary conditions20 .

We call v1(sd1; �1(s
d
1)) as the pseudo value of bidder 1: Let the underlying distribution of v1(s

d
1; �1(s

d
1)) be

F d1 : As �i is a monotonic function of s
d
i ; v1(s

d
1; �1(s

d
1)) is distributionally equivalent to v1(s

d
1; s

d
1): Since the

20 It is easy to verify that second order condition is also satis�ed.
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parameter of interest is the distribution, henceforth with an abuse of notation, We shall write v1(sd1; �1(s
d
1))

as v1(sd1; s
d
1): Similar arguments holds for v0(�0(s

d
0); s

d
0):

3.4.2 First Stage Decision: Analysis of Wildcat Auction

Note that, we have endogenized entry in the wildcat bidding decision by giving each bidder two signals21 :

swi and �i: However the random shock �i is independent of swi and does not a¤ect the decision of how much

to bid. �i only appears in the decision of whether to bid at all or not. The decision of how much to bid

is only a¤ected by the signal of the tract swi : Since �i is appearing additively in the entering decision, for

a given swi there will be a threshold level of �i; above which not entering is optimal. Similarly it can be

shown that, for each �i; there will be a threshold level of swi : s
w�
i below which not bidding is optimal22 .

Thus the equilibrium of the entry stage will be characterized by these two thresholds. No bidder observes

other bidder�s signal in both the entry and bidding stages of the game. Hence they take an expectation

of other bidder�s signal conditional on his signals. �i�s are independent across all the bidders, but swi �s are

coming from an a¢ liated joint distribution of signals for all i: The decision to bid for bidder i�s rival f�ig
as conjectured by i, conditioned on the signal received by bidder i, swi and �i; be given by,

Pr(��i = 1jswi ) =
R R

I(��i = 1jsw�i; ��igd�(��i)dF (sw�ijswi )
=
R
Pr(��i = 1jsw�igdF (sw�ijswi )

where �i is the optimum decision of bidder i and swi is the vector of signals received by bidder i. Similarly,

the bidder i�s rivals�perception about his entry decision can also be characterized by Pr(�i = 1jsw�i):
Let Y w be the signal of the rivals bid in the wildcat auction if there is a rival and zero otherwise, then

the probability of bidder i wins the auction is the probability that his bid is higher than Y w. Let each bidder

adopts the monotone bidding strategy b(sw) with an inverse �(bw):

Then,

Pr(i wins WA) = GwBw
i jbwi

(yjbwi ) = Pr(bwi > Bwi = max bwj ; for j 6= ij 3 A bidders)

= Pr(Y wi � �(bwi ); for j 6= ij 3 A bidders)

= Pr(��i = 1jswi )Fw(�(bwi )) + Pr(��i = 0jswi )

where the �rst line states that the bidder wins the auction if his bid is higher than the maximum of his actual

rivals�(A) bid (Bw). The second line uses monotonicity of the bidding strategy23 of actual bidders to express

distribution of valuations signals in terms of equilibrium bid distribution of the rival bidder (GwBw(bwi )). The

third line weights these probabilities by the probability of entry of potential bidders. The �rst term is the

probability that the rival enters, in that case bidder i wins with probability Fw(�(bw�i)). The second term is

the case when the rival does not enter, in that case, conditional on bidding, bidder i wins with probability

one.
21Biddes decision to enter is a mapping from his signals [swi ; �i] to whether to bid or not, �i = f0; 1g:
22A proof is available from the author.
23Note that, when we have endogeneous bidders, as in the wildcat auction, a¢ lation (supermodularity) is not su¢ cient to

ensure the existence of an increasing bid function. Mca¤ee, Quan, and Vincent (�02) have analyzed this case and gave a

su¢ cient condition in terms of log-supermodularity. We assume that holds here. We shall come back to it later.
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Let MY wjsw = Pr(��i = 1jswi )Fw(�(bwi )); be the distribution of maximum signal of bidder�s rival when

his rival enters. Let the associated density function be mY wjsw : Then,

GwBwjbw(yjbwi ) =MY wjsw(Y
w
i jswi ) + Pr(��i = 0jswi )

=MY wjsw(�(B
w
i )j�(bwi )) + Pr(��i = 0j�(bwi )) (7)

Let gw be the density function associated with Gw:

Lemma 2 The equilibrium bidding rule of the wildcat bidding game can be characterized by the following

equations:

bwi = U(s
w
i ; s

w
i )�[MY wjsw(s

w
i jswi )+Pr(��i = 0jswi )]�

b0(swi )

mY wjsw(s
w
i jswi )

+�

Z
[T (1 is strong)�T (1 is weak)]dF (sd; D)

(8)

with the terminal condition, bwi (s
w�) = 0; and writing in terms of the distribution of bids,

bwi = U(s
w
i ; s

w
i )�

GwBwjsw(b
w
i jbwi )

gwBwjsw(b
w
i jbwi )

+ �

Z
[T (1 is strong)� T (1 is weak)]dF (sd; D) (9)

Proof. In the appendix.

The �rst order condition states that bid equals expected valuation plus a mark down and plus a markup.

The markdown accounts for the level of competition in the wildcat sale. The mark up accounts for the

discounted future rent from winning the wildcat today, expressed as the relative advantage of being a strong

bidder. We refer this as the perceived value of information of being a strong bidder in the drainage tract.

Now note that if we plug the equilibrium bidding decisions in the choice speci�c value functions Q1 and

Q0; we get the equilibrium values of these. The presence of the future rent in wildcat values thus increases

the attractiveness of the wildcat tract. In the entry stage of deciding to bid there is a threshold level of signal

below which not bidding is optimal. The presence of positive future rent would thus reduce this threshold

level of signal relative to the scenario when there is not drainage tract. It is thus obvious to say that there

will be more entry in the wildcat tract bidding when there is drainage auctions relative to the fact when

there is no drainage auction.

3.5 Identi�cation

3.5.1 Identi�cation of Valuations in the Drainage Auctions

In this section we establish the identi�cation of the distribution of signals from the observed bidding behavior

of bidders for the drainage and wildcat auctions respectively. Note that, for simplicity of exposition, in our

theoretical analysis we have so far assumed that there are only two bidders. For the identi�cation and

estimation of the OCS auction data we generalize the �rst order conditions to more than two bidders below.

We assume that there are two types of bidders in the drainage auctions. There are 1 strong bidder24 (type

1) and n0d weak bidders (type 0). Note that the set n0d is endogenous. It is determined by who did not win

24Note that, by our formulation there is only one strong bidder in any drainage tract. However it may be possible to have

more than one strong bidder. For example, in general there are eight drainage tracts, and if the winner of the �rst and second
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in the wildcat auction. However, before bidding for the drainage auctions, bidders (and the econometrician)

can observe who are strong and weak bidders25 :

Let

v1(s
d
1; y

d
1i; y

d
0i; n) = E[V

d
1ijSd1 = sd1; Y d0 = max

j2Weak
sd0j = y

d
0i; n = 1 + n0d]

be the expected value to bidder i of type 1 when he received a signal sd1i and the maximum signal of his rival

of type 0 be yd0i; where the expectation is taken over the distribution of V1i:

Similarly, let

v0i(s
d
0i; y

d
1i; y

d
0i; n) = E[V

d
0ijSd0i = sd0i; Y d1 = sd1 = yd1 ; Y d0 = max

j2Weak;i 6=j
sd0j = y

d
0i; n]

be the expected value to bidder i of type 0 when he received a signal sd0i and the maximum signal of his

rival of type 0 be yd0i; and that of the strong bidder be y
d
1 :

This is thus a interdependent valuations model. Both type of bidders may bene�t from learning the

signals of the other type. There is only one strong bidder in this model. However the number of weak

bidders can be more than one depending on the set of potential bidders of the wildcat auction.

Note that bidders are asymmetric across the groups but symmetric within each group. Hence v0i(sd0i; y
d
1i; y

d
0i; n) =

v0(s
d
0i; y

d
1i; y

d
0i; n); for all i 2 Type 0: We assume vk(sdik; ydki; ydji; n) is non-decreasing in sdik; ydki; ydji; for all i;

and j 6= k; fj; kg 2 f0; 1g: Moreover we assume that vk is strictly increasing in sdik and vk(0; 0; 0; :) = 0: For
notational simplicity we will suppress the argument n below.

The �strong� bidder receives a private signal26 sd1i about his unknown valuation v
d
1 and chooses b

d
1i

to maximize E[(v1i � bd1i)I(Bd�i � bd1i)js1i]; where Bd�i is the maximum of his rivals� bid. Thus Bd�i =

maxifbd0i(s0i)g; and y0i = maxj sd0j : and bd1i(:) and bd0i(:) are the equilibrium strategies of �strong�and �weak�

bidders respectively. I restrict our attention to symmetric, strictly increasing and di¤erentiable equilibrium

strategies27 . By �symmetry�we mean symmetry within each sub-group of weak bidders. Let Bd1 = b
d
1; and

Bd0 = maxi b
d
0i; let GBd

1 ;B
d
0 jbd0 (X;Xjx) and GBd

0 jbd1 be the distribution of bids. Then,

Lemma 3 The �rst order conditions associated with bidder�s optimization problems can be written as; for

the strong bidders

vd1(s
d
1i; y0i = s

d
1) = b

d
1 +

GBd
0 jbd1 (b

d
1; b

d
1jbd1)

dGBd
0 jbd1 (b

d
1; b

d
1jbd1)=dX

= �d1(b
d
1; G) (10)

Similarly for the weak bidders,

vd0(s
d
0i; s

d
0i; s

d
0i) = b

d
0 +

GBd
1 ;B

d
0 jbd1 (b

d
0; b

d
0jbd0)

dGBd
1 ;B

d
0 jbd1 (b

d
0; b

d
0jbd0)=dX

= �d0(b
d
0; G) (11)

drainage tract auctions are di¤erent then in the third drainage tract auction there are 2 strong bidders. However, for this

paper by assumption all the drainage tract are sold on the same date which rules out such a possibility. Selling of all drainage

tracts on the same date does not literally means they are sold on the same day. All it requires that there is not enough time in

between two drainage sales for information transmission to the winner of the earlier sale.
25The econometrician can observe the latitude and longtitude of the wildcat and drainage tracts, the saledate of the tracts

and the identity of the bidders. A strong bidder is someone who has one the nearest (de�ned by latitude and logitude) wildcat

tract, sold before the drainage tract.
26Note that, the signals are a¢ liated and hence so are sdik; y

d
ki and y

d
ji:

27The existence and uniqueness issue of such equilibrium has been discussed in McAdams (�04) and Lizzeri & Persico (�00).
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with the boundary conditions bd0(s
d
0) = b

d
1(s

d
1) = 0:

Proof. In the appendix.

Note that, for �xed number of bidders, since vd1(s
d
1i; s

d
1) and v

d
0(s

d
0i; s

d
0i; s

d
0i) are monotonic functions of its

arguments, the distributions of v1(:) and v0(:) will be the distribution of s1(:) and s0(:). However, it should

be noted that, v1(:) and v0(:) depends on the number of bidders due to the presence of interdependence of

valuation and the winner�s curse, and the above generalization cannot be imposed if the number of bidders

varies. Also even if the number of bidders remains �xed, then as has been shown in Athey & Haile (�02)

and others, the joint distribution of signals s1(:) and s0(:) and values v1(:) and v0(:) are not identi�ed28 .

These can be identi�ed if additional structures are imposed as in Li, Perrigne and Vuong (�00) or ex-post

values are available as in Hendricks, Pinkse and Porter (�03). For the oil tract dataset analyzed in this paper,

we have ex-post values available and identi�cation would follow. Since the parameters of interests are the

distributions of the ex-ante values, we abstract away from these issues and without loss of generality refer

the distribution of ex-ante values v1(:) and v0(:) as F d1 (:) and F
d
0 (:) respectively. Similar arguments hold

for the wildcat signals. Readers are referred to the above references for more discussions.

The following lemma establishes the identi�cation of distribution of interdependent values v1 and v0;

F d(v1; v0) from bid distribution.

Lemma 4 The a¢ liated distribution of interdependent values for the drainage auction are non-parametrically

identi�ed from the observed bids.

Proof. In the Appendix.

3.5.2 Identi�cation of Valuations in the Wildcat Auctions

The �rst order conditions associated with the Bayesian equilibrium strategies for the bidders who have

already entered to bid in the wildcat auction is given by

U(swi ; s
w
i ) = b

w
i +

GwBwjsw(b
w
i jbwi )

gwBwjsw(b
w
i jbwi )

� �
Z
[T (1 is strong)� T (1 is weak)]dF (sd; D) (12)

where U(swi ; s
w
i ) is the expected common value of the tract to bidder i when he received a signal s

w
i ; and

the maximum of his rival�s signal29 is also swi :

Lemma 5 Given �; the distribution of U from the common value model for wildcat auction is identi�ed for

the bidders who submitted bids, from the observed distribution of bids and the data on actual and potential

number of bidders.

Proof. In the Appendix.
28The intuition is very simple, there are only n bid equations and the number of variables to be identi�ed are n+ 2:
29Since there could be more than two bidders, the maximum of the rival�s signal is what is important to the bidder to account

for the winner�s curse in equilibrium.
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4 Estimation Strategy

The structural parameters of interest are the distributions of ex-ante values Fw; F d1 ; F
d
0 ; and the entry

parameters K; and U0: The observables of the model are the distribution of bids of wildcat and drainage

auctions and the identity of bidders. The estimation of our model will follow the three stage backward

induction procedure used to establish the equilibrium. In the �rst stage, using the �rst order conditions and

the distribution of bids from the drainage auctions, we estimate F d1 ; F
d
0 non-parametrically. In the second

stage, using the estimated distributions in the �rst stage and �rst order conditions and the distribution of

bids from the wildcat auctions we estimate Fw non-parametrically. In the third stage, the �entry parameters�

K and U0 can be estimated30 using the estimates of the previous two stages and the observed entry behaviors

of potential bidders in each location.

First Stage : In the �rst step, we estimate the bid distributions from the drainage auctions for a

particular location and recover the �pseudo�values using the equations (10) and (11). Note that the right

hand side of both these equations are represented in terms of the distributions of observed bids. we �rst

estimate
G
Bd0 jb

d
1
(bd1 jb

d
1)

dG
Bd0 jb

d
1
(bd1 jbd1)=dX

and
G
Bd1 ;B

d
0 jb

d
0
(bd0 ;b

d
0 jb

d
0)

dG
Bd1 ;B

d
0 jb

d
0
(bd0 ;b

d
0 jbd0)=dX

: Note that, the ratio in (11) can be interpreted as

Pr(Bd � b0; Bd0 � b0; b0 = b0)
Pr(Bd = b0; Bd0 � b0; b0 = b0) + Pr(Bd � b0; Bd0 = b0; b0 = b0)

The standard procedure for estimation as developed in GPV(�00) or LPV(�02) does not apply here as

when there is a strong bidder and nd0 is strictly positive then the terms above involves a trivariate distribution

and a total derivative, see Campo, Perrigne and Vuoung (�03) for more details.

Denoting the non-parametrically estimated numerator by bGBd
1 ;B

d
0 ;b

d
0
(bd0; b

d
0; b

d
0) and the denominator bybD01(bd0; bd0; bd0) + bD02(bd0; bd0; bd0); the interdependent values for the weak bidder in the drainage auctions can

be estimated as,

bvd0(:) = bd0 + bGBd;Bd
0 ;b

d
0
(bd0; b

d
0; b

d
0)bD01(bd0; bd0; bd0) + bD02(bd0; bd0; bd0) = b�d0(bd0; G) (13)

Similarly that of the strong bidder can be estimated as,

bvd1(:) = bd1 + bGBd
1 ;B

d
0 ;b

d
1
(bd1; b

d
1)bD11(bd1; bd1) = b�d1(bd1; G) (14)

Plugging in these values in the objective function we get upper bound of the expected maximum values

of strong and weak bidders T1 and T0 respectively. (Details are given in the appendix.) The integration is

evaluated numerically.

Second Stage

In the second stage we �rst non parametrically estimate the bid distributions for each wildcat sales Gw

and gw respectively: These and upper bounds of T1� T0 are then plugged in the following �rst order equation
characterizing the equilibrium, to get the upper bound of �pseudo�values,

30The analysis and testing in this paper requires only the distributions of ex-ante values Fw; F d1 ; F
d
0 : I donot estimate the

entry paremeters in this paper. Under the assumptions of a¢ liated private values drainage auctions, I estimated the entry

parameters in Gupta(�03).
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bU(swi ; swi ) = bwi + GwBwjsw(b
w
i jbwi )

gwBwjsw(b
w
1 jbw1 )

� �
Z
[T (D = 1 )� T (D = 0)]dF (sd; D) (15)

Third Stage

The �rst two stages estimates the major structural parameters: (the distribution of pseudo values of

drainage and wildcat tracts bidders), relevant for the analysis of this paper. The two unknowns of the model

are now the entry parameters K and U0: Although we do not report the estimates here31 , but outline a

procedure to estimate these based on the data from entry behavior. Note that, the estimated distribution

of pseudo values from the drainage and wildcat auctions help us calculate the choice speci�c value functions

Q2;i(s
w
i ;K;U0); and Q1;i(s

w
i ):Since the distributions of the pseudo values are estimated, the problem to the

econometrician is the problem faced by the rival bidder if he had also observed the signals received by bidder

i and the only uncertainty is the unknown �i: Since ��s follow iid logistic distribution, the choice probability

of entering by bidder i, is given by

Pr(�i = 1jswi ) = Pr(Q1;i(swi )� �i � Q0;i(swi )jswi )

=
exp(Q1;i(s

w
i )=�)P2

k=1 exp(Qk;i(s
w
i )=�)

(16)

The choice probabilities of entry can be used to form the likelihood function

Lik(K;U0j:) =
LY
l=1

nY
i=1

p�l (s
w
i ;K;U0)

where L is the number of wildcat auctions. Maximization of these likelihood function can be matched to the

observed entry behavior32 to give estimates of the parameters33 (K;U0):

4.1 Practical Issues

The observed distribution of bids is in general highly skewed with a large number of observations in the

lower end. We therefore apply log- transformation to the distribution of bids. The logarithm transformation

to the distribution of bids translates equations (23) and (24) to

vd1 = exp(c
d
1)(1 +

GCd
0 jcd1 (c

d
1jcd1)

dGCd
0 jcd1 (c

d
1jcd1)=dX

)� 1 = �d1 (cd1)

vd0 = exp(c
d
0)(1 +

GCd
1 ;C

d�d
0 jcd0 (c

d
0; c

d
0jcd0)

dGCd
1 ;C

d�d
0 jcd0 (c

d
0; c

d
0jcd0)=dX

)� 1 = �d0 (cd0)

31Estimation results can be found in Gupta(03), where I also estimated the entry stage parameters under the assumption

that the drainage auctions are a¢ liated private value auctions.
32The observed entry behavior requires a knowledge of the potential bidders to the researcher. The standard de�nition of

potential as de�ned by HP can be used to get a rough estimate.
33We assume that the expected value of the tract if there are no rival bidder is constant across auctions, i.e., U0 is constant

across L:
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where c = log(1 + b); GCd
1 ;C

d
0 jcd1 (c

d
1; c

d
1jcd1) is the conditional density of (Cd1 ; Cd0 ) = (maxi 6=1 log(1 +

bd1i);maxi log(1+b
d
0i)) given log(1+b

d
1); c1 being chosen arbitrarily among n1 values, and dGCd

1 ;C
d
0 jcd1 (c

d
1; c

d
1jcd1)=dX

is the appropriate total derivative.

Since Kernel density estimators are not well estimated close to the boundaries of their support (�boundary

e¤ect�), we use trimming as used in GPV and LPV. Speci�cally, for each ni;

bvdil = �i(cil) if hi � cil � bmax � hi

=1 otherwise

for i = f0; 1g; l = 1; 2; :::L:
Similar log-transformations and trimming is applied to data on wildcat bids too.

The marginal densities of bvdi is estimated by
bf(bvd�il ) = 1

h2gin
d
iL

LX
l=1

K(
x� bvd�il
hg1

)

4.2 Choice of Bandwidths and Kernels

Uniform consistency of the estimation of the �pseudo values�requires compact kernels and speci�c bandwidth

rates (see GPV). We use triweight Kernels as has been used in the literature (see GPV, LPV). The choice

of bandwidths requires more attention. We follow the literature (GPV,LPV) in choosing the bandwidths:

h = c(nL)�1=5; and c = 2:978� 1:06b�d; where b� is the standard deviation of bids.
4.3 Standard Errors and Design of Dependent Bootstrap Sample

The estimation methodology outlined above is complex and non trivial. The �rst and second stages of

the estimation of the distibution of signals is nonparametric.. However the signals are unobserved and is

estimated using the equilibirum conditions. The standard asymptotic distribution theory of nonparametric

estimation need not go through here. The estimation errors of the �rst ad second stage should also a¤ect

the entry probabilities in the third stage and hence the standard error of the parameters. In the absense of

an theretical asymtototic distributions we use bootstrap to compute the standard errors of the parameters.

The standard iid bootstrap procedure also is not applicable here. Note that the drainage tracts are following

a particular wildcat tracts and one bidder in one auction should not be coupled with any bidder of another

auctions as the strategies in di¤erent auctions could be di¤erent. Thus there is two types of dependen-

cies: within auction bidder dependency and wildcat and drainage auction dependency. We therefore apply

dependent bootstrap. The bootstrap procedure works as follow:

1. choose di¤erent draniage auctions independently for boot1 times

� choose all the bidders in the same drainage auction as a block

2. for each boot1 sample perform �rst stage estimation and get the distribution of signals for drainage

bidders
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3. choose the same wildcat auction that these drainage tracts were originally associatecd with

� perform the second stage estimation and the distribution of signals for wildcat bidders

4. choose the same potentian bidders for the entry stage:

� perform the likelihood based estimation of entry parameters (sunk cost K and U0)

5. perform steps 1 through 4 boot1 times

6. compute the bootstrap standard errors of K and U0 based on the above procedure

4.4 Monte Carlo Simulation

4.4.1 Simulation of Drainage Auction

The analytical solution of asymmetric model is available only for very special cases. We adopt the solution

presented in Krishna (�02) to generate distribution of bids and recover the pseudo values from there. We

perform this simulation for two bidders assuming that vi(si; si) = si: This is an asymmetric private value

model and is a special case of a¢ liated interdependent value. However, the estimation methodology is same

for both. We assume that strong bidder�s pseudo valuation v1 is distributed uniformly in [0; w1] and that

of weak bidder be distributed uniformly [0; w2]: Note that, here the strong bidder�s valuation stochastically

dominates that of the weak bidder, which is a special case of the assumption of strongness used in this paper.

Krishna has shown that in this case the closed form solution for the bidding rule is,

bdi (vi) =
1

kivi
(1�

q
1� kiv2i )

where ki = 1
w2i
� 1

w2j
; i = f1; 2g:

We set w1 = 4
3 and w2 =

4
5 ; and generate L =100 draws from the respective uniform distributions to

generate the bid data using the above equation. We then estimate the �pseudo values� by the methods

described above for the drainage auction. We use a triweight kernel and bandwidths used in Campo,

Perrigne & Vuoung (�03). We present the estimated distribution of �pseudo values� in the graph. More

speci�cally, we used the following bandwidth h1 = c1(n1L)�1=5; and h2 = c2(n0L)�1=6; c1 = 2:978�1:06b�d1 ;
c2 = 2:978� 1:06b�d2 :
The estimated bid distribution function is plotted in �gure 1 and compared with the actual distribution.

Insert Figure 1 About Here

The smoothed densities are plotted in �gure 2. Except for some wiggles towards the end both the densities

match each other quite well and fall within the bootstrap band. A Kolmogorov Smirnov test of equality of

densities cannot be rejected with a p�value 0:47: The corresponding bootstrap p�value was 0:43:

Insert Figure 2 About Here
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The summary statistics of the true value, estimated value and errors are presented below.

Table1 : Descriptive Statistics of Simulation

True Value Estimated Value

Minimum 0:01 0:01

1st Quantile 0:33 0:28

Median 0:67 0:55

Mean 0:66 0:62

3rd Quantile 0:95 0:94

Maximum 1:31 1:48

5 Data and Summary Statistics

We apply the model to data34 on sales of wildcat and drainage tracts o¤the coasts of Texas and Louisiana held

since 1954. The government sells o¤ these tracts to the highest bidder via a sealed bid auction and charges

his bid (�rst price auction). Bidder for these tracts are oil companies. Before �rms conduct tract speci�c

seismic surveys, a set of tracts are nominated based on some area wide pre-sale exploration. Government

constructs a �nal list based on the nominations. Many more tracts are nominated than receive bids, and

the nomination process probably contains no information. Nominated tracts are then sold in a �rst price

sealed bid auction. The winning bidder has �ve years to explore a tract. If no exploration is done in 5 years

then the lease reverts back to the government and the tract may subsequently be reo¤ered. If oil or gas is

discovered in su¢ cient quantities then the lease is automatically renewed as long as production occurs.

For each tract the data set contains the date of sale; acreage; location (Latitude and Longitude); the

identity of all bidders and the amounts they bid; whether the government accepted the high bid; the number,

date and depth of any wells that were drilled; monthly production of oil, condensate, natural gas and other

hydrocarbons through 1991. The dataset also have information on drilling costs of wildcat and production

wells obtained from annual surveys by the American Petroleum Institute. Typically an wildcat tract consists

of 5000 to 5760 acres and covers on an average 0:0463 degrees of longitude and 0:0405 degrees of latitude.

There are generally eight drainage tracts surrounding an wildcat tract and each one covers around 2500 acres.

The strong and weak bidders are identi�ed using their �rm code and the latitude and longitude information

of the tracts. Speci�cally, a strong bidder for a drainage tract is a bidder who has owned the nearest wildcat

tract in the neighborhood before the drainage tract is up for sale.

A detailed description of the dataset can be found in Hendricks and Porter (�89) and Porter (�95). We

present here only salient features of the data relevant for my model. A descriptive statistics of the tracts

o¤ered for sales are presented below, where bids are in millions of nominal US $.

Table 2 : Descriptive Statistics of Tracts O¤ered for Sale: 1954� 1990
34 I am grateful to Prof. Ken Hendricks and Prof. Joris Pinkse for sharing the data.
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Period # of Tracts Tracts Receiving Bids Bids Per Tract Sold

1954� 1960 950 454 2:94 419

1961� 1967 1460 841 2:95 801

1968� 1974 2041 1269 4:04 1103

1975� 1982 6811 2753 2:59 2383

1983� 1990 136952 8011 1:38 7582

5.1 Working Data

Data of oil tracts auctioned between 1954 and 1969 are used for the estimation, since during this period the

price of oil was more or less constant and hence can be assumed to not a¤ect bidders�ex-ante pro�tability

expectations. Possibility of joint bidding is not modelled in this paper and was not prevalent �n 1954� 69.
Hence, we ignore joint bidding and work with the subset of the data with no joint bidding. The maximum

number of bidders in any tract was 18, the median being 4. We therefore work only with tracts receiving

at most 4 bids. Note that the estimation procedure for drainage auctions have to be carried out for each

set of bidders separately. Also, suppose there are 3 bidders in a drainage tract, then there can be 1 strong

and 2 weak or 3 symmetric (weak) bidders. The reserve price of oil �eld tracts were US $15 per acre which

is much lower than the average bid. Also there is less than 0:25% of the bids in the interval [15; 20]. We

therefore assume, as in the theoretical model that the reserve price is non-binding. Sometimes the federal

government rejected bids above the reserve price too. This accounted for around 2% of the bids. Hence the

random reserve price issue is also ignored. Also we regress, as in Porter (�95), log of tract bids on possible

tract speci�c dummies to analyze possible heterogeneity issue. The F-test rejects the tract heterogeneity

when controlled for the number of bidders. Since our econometric methodology is for a given number of

bidders we ignore tract heterogeneity issues.

Selected Statistics on wildcat and drainage tracts for 1954-1969 are given below35

Table 3 : Summary Statistics on Wildcat and Drainage Tracts: 1954-1969

Wildcat Drainage

Number of Tracts 1056 144

Number of Tracts Drilled 748 124

Number of Productive Tracts 385 86

Average Winning Bid 2:67 5:76

Average Net Pro�ts 1:22 4:63

Average Tract Value 5:27 13:51

Average Number of Bidders 3:46 2:73

The following table describes the major features of the drainage tracts sold for the period36 1954� 69.

Table 4 : Role of Information in Drainage Tracts

35Source: Hendricks, Porter and Boudreau (�87). Dollar Figures are in millions of 1972 US$.
36Source: Hendricks, Porter and Boudreau (�87). Dollar Figures are in millions of 1972 US$.
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Wins by Neighbor Firms Wins by Non-Neighbor Firms

Number of Tracts 59 55

Number of Tracts Drilled 47 51

Number of Productive Tracts 36 31

Average Winning Bid (�72 US$m) 6:04 4:87

Average Gross Pro�ts (�72 US$m) 12:75 4:45

Average Net Pro�ts (�72 US$m) 6:71 �0:42

The gross pro�t was calculated as the value of oil recovered minus the drilling cost. Net pro�t was

measured as ex post revenue minus the drilling costs minus the bid.

The above tables suggest the following major points:

1) Strong bidder has informational advantage: Both social rents and net pro�ts are much higher

on tracts won by a strong bidder. Discounted social value as measured by ex post revenue minus drilling

costs was on an average US $12:75 million for tracts won by strong bidders and US $4:45 million for tracts

won by weak bidders.

Net pro�t measured as ex post revenue minus the drilling costs minus the bid was on an average US$

6:71 million for tracts won by strong bidders and only US $ � 0:42 million for tracts won by weak bidders.
This suggests that information however noisy has some role to play in deciding how much to bid for the

drainage tracts, and considering the fact that most of the drainage tracts were won by strong bidders, it

suggests evidence that the drainage tracts were under priced and reserve prices should be increased.

2) Higher gross pro�t per acre from drainage tracts than wildcat tracts: Average gross

pro�t per acre measured as ex post revenue minus cost for wildcat tracts was US$793:7 million and that for

drainage tracts was US$4863:8 million.

3) Number of Bidders is endogenous: All �rms submit bids in less than half of the tracts o¤ered

for sale. Thus pre-bidding seismic signals may play a role in determining whether to bid or not.

4) �Excessive Entry�in wildcat tracts: Out of the wildcat tracts sold oil was found only in 36% of

them whereas in more than 60% of the cases oil was found in drainage tracts.

5.2 Reduced Form Prediction

In this section, we analyze whether the bidders were also taking the potential pro�tability of the drainage

tracts into account while deciding to bid for the wildcat tracts. A researcher only observe the decision to bid

and the amount of bid for the wildcat tracts. However the data set also have ex-post informations on tracts�

value of oil, drilling cost, acerage of the drainage tracts and whether the tracts were dry or not. Although

these ex-post information are also unavailable to the �rm while entering and bidding for the wildcat tracts,

we use them as a reasonable proxy about bidder�s information level.

In the theoretical model it was argued that there will be excessive entry in the wildcat auctions and

bidders also bid higher in the wildcat auction depending on the informational advantage he will foresee as a

strong bidder over the weak bidder. We take ex-post gross pro�t of the drainage tracts as a proxy for the
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pro�tability of the drainage tracts. Below we explore whether these predictions were true at the reduced

form level for both entry and bidding stage of the wildcat tracts.

5.2.1 Entry in Wildcat Auction

In this section we report evidence of the presence of e¤ects of drainage tracts on the decision to bid for the

wildcat tracts controlling for the competition and pro�tability of wildcat tracts. In the following table we

report he estimated elasticity on the basis of the median level based on OLS regression results for entering

the wildcat auction (no. of bidders in wildcat: wn) regressed on the ex-post value of drainage tracts (D�)

conditional on the ex-post values of wildcat tracts (w�). The base equation of regression was

wn = �0:w� + �1w�
2 + �2:D� + �3:D�

2

Table 5a : Elasticity Calculation for Entry Based on Median Value

Independent Variables Elasticity Standard Error

w� 0:038 0:003

D� 0:036 0:002

Dependent Variable Number of Bidders

Thus conditional on the wildcat values the entering decision is signi�cantly a¤ected by the value of the

drainage tracts. The elasticity is almost same for wildcat and drainage values.

Table 5b: Poisson Regression; Incidence rates on Entry

Independent Variables No of Bidder in Wildcat Standard Error

w� 1:001 3:95� 06
w�2 1 3:22� 11
D� 1:002 3:68� 06
D�2 1:001 1:87� 11

Dependent Variable Number of Bidders

Thus, increase in the drainage tract values increases the number of bidders by 0:2%.

5.2.2 Bidding in Wildcat Auction

Conditional on entry the estimated elasticity on bidding decision (wbid) based on OLS regression of bidding

of wildcat tracts is regressed on ex-post wildcat and drainage values.

wbid = �0:w� + �1w�
2 + �2:D� + �3:D�

2 + �4:wn

Table 5c: Elasticity Calculation Based on Median Value
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Independent Variable Elasticity Standard Error

w� 0:02 0:003

D� 0:01 0:003

wn 0:59 0:012

Dependent Variable log of winning bid

Thus all the reduced form variables have expected signs. Although the estimated e¤ects are low, but in

general bids are in millions of dollars hence their absolute e¤ects are not small.

6 Structural Estimation Results

In this section, we present the structural estimation results. Major structural elements of our model are the

distributions of pre-bidding pseudo values of the drainage tracts to the strong and weak bidders and the

distribution of pseudo values of the wildcat tracts.

We �rst report the estimates from the drainage auctions. Let us investigate the interesting case of where

there are only two bidders. Note that the fact that there are only two bidders is an indication that bidders

perceive the value of the tract is not possibly very high. In this extreme case, even though the weak bidder

has a higher pseudo value he shed his bid more against a strong bidder. The structural estimates supports

this fact. In �gures 3 and 4 we represent the estimated functions of b�1 and b�0 which is the inverse of the
equilibrium strategy as given by equations (23 ) and (24) when there are only two bidders. The estimated

densities of bv1 and bv0 are depicted in �gures 5. The mean, median and variance of the strong and weak

bidders�estimated valuations are reported in the table (all values are in US1982 $ in millions) below.

Table 6: Summary Statistics of Estimated Valuation

Strong Bidder Weak Bidder

Mean 1:03 1:16

Median 1:18 1:43

3rd Quantile 1:09 1:67

Variance 0:12 0:25

Wins 0:57% 0:43%

Insert Figure 3� 6 About Here

It appears that the density of the strong bidder has less mean median and variance than that of the

weak bidders. The smoothed densities of the strong and weak bidders are plotted in �gure 5: It is apparent

that the weak bidder�s distribution of pseudo values are higher than that of the strong bidder. However the

weak bidder won only in 43% of auctions where there are two bidders. This suggests that the weak bidder

sheds his valuations more than the strong bidder and bids timidly. This is consistent with the informational

superiority of the strong bidder. The smoothed densities of two bidders are compared in �gure 6: A

Kolmogorv-Smirnov test and a bootstrap test based on 3000 bootstrap samples cannot reject the hypothesis
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of di¤erent distributions of pseudo values for strong and weak bidders. The test statistics are reported in

the following table.

Table 6a : Test of Equality of Distributions of Pseudo Values

Null Hypothesis : Strong and Weak bidder�s Distributions are Equal p� value
Kolmogorov- Smirnov Test 0:02

Bootstrap Test ( Sample size 3000) 0:03

The bootstrap con�dence band and the densities are depicted in �gure 5: It appears that although the

strong bidder had lower pseudo values, the density of the strong bidder was more concentrated than that

of the weak bidder. This may suggest that the strong bidder had a more informative signal. The picture

and the statistical test depicted above only says that the distributions of the strong and weak bidders are

di¤erent. A formal test of whether the strong bidder was more informed or not is given in next section.

The estimated densities of the strong and weak bidders when there were one strong and two weak bidders

are given in �gure 6: A bootstrap test also cannot accept the hypothesis whether the densities are equal

(p � value = 0:00). The results are reported below. However as the graph suggests, there is no conclusive
evidence that either of the bidder�s pseudo values were higher.

Table 6b : Test of Equality of Distributions of Pseudo Values

Null Hypothesis : Strong and First Weak bidder�s Distributions are Equal p� value
Kolmogorov- Smirnov Test 0:03

Bootstrap Test ( Sample size 3000) 0:04

In �gures 6 we depict bU as estimated by equation (15) which also takes into account the possible dynamics.
The estimated density of bU is represented in �gure 7:

Insert Figure 7� 8 About Here

An important measure of the mark-up is given by the winner�s informational rent as measured by bv�bbv ;
where bv is the estimated pseudo values. We report below the winner�s informational rents for drainage and
wildcat auctions in the following table.

Table 7a : Summary Statistics of Winner�s Informational Rent

Auction Type Mean Median 3rd Quantile

Wildcat Auction (no Dynamics) 0:65 0:7 0:81

Wildcat Auction (with Dynamics) 0:54 0:59 0:7

Drainage Auction: Strong Bidder 0:71 0:77 0:87

Drainage Auction: Weak Bidder 0:63 0:62 0:73

Thus on an average the winner�s informational rent is 77% for strong bidders and 62% for weak bidders

in the drainage auctions. Thus on an average the government is capturing only 38% from the weak bidders
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willingness to pay and 23% from the strong bidder�s willingness to pay. These numbers are consistent

but slightly di¤erent and higher from the analysis of Campo, Perrigne Vuong(�03) where they analyzed

asymmetry originating due to the presence of joint bidding. As evident from the theoretical analysis, our

model of asymmetry is di¤erent from theirs. The informational rent in the wildcat auctions are quite high

too. In the wildcat auctions, the bidders are willing to pay 10% more to take possible future informational

advantage.

Table 7b : Value of Information

Drainage Auction Type Value of Information�

Asymmetric Interdependent Value 12% (upper bound)

Asymmetric Private Value 10% (exact)

�: As a percentage of wildcat informational rent

This is the value of information bidders perceive about the drainage tract while bidding for the wildcat tract.

There are several possible limitations. For example, we ignored the issue of joint bidding and only

analyzed the cases for which there were no joint bidding for our sample. Joint bidding although very low

for the sample period of the data used37 , the absence of joint bidding, however, could be an equilibrium

phenomenon. Allowing for joint bidding, in a dynamic setting, would complicate the analysis by introducing

dynamic information sharing, punishments etc.

Table 7c : Entry Parameters

Drainage Auction Type Values Bootstrap Standard Errors

Sunk Cost of Estimation K

Value of the wildcat tract with only one bidder: U0

7 Semi-parametric Test of Asymmetry

A major assumption of our model is that bidders in the drainage auctions can be divided into two categories:

strong and weak. A strong bidder is the bidder who receives a �better� signal of the value of oil stored

relative to the weak bidder. Note that this assumption was not imposed while estimating the distributions

of equilibrium ex ante values. It was only assumed that both bidders receive private signals and they are

asymmetric. We present below a semi-parametric test of the assumption that strong bidder knows more

about his ex post valuation while bidding based on copula methods. More details and a general estimation

procedure for �rst price auctions using copulas can be found in Gupta38 (�04). The basic idea of the test

is as follows: We estimate the �pseudo values�for di¤erent bidders bvd1 and bvd0 ; for the interdependent value
drainage auction model. We also have ex-post value of oil using the production and drilling cost data bV d1
and bV d0 for the strong and weak bidder respectively: Let the underlying joint distribution of the values with
the signals be F1(vd1 ; V1) and F0(v

d
0 ; V0) for the strong and weak bidders respectively. A simple test of

37Joint bidding was very low and a¤ected only less than 20% of the data for the sample period.
38 see �Copula as a Measure of A¢ liation: A Semiparametric Estimation of First Price Auctions", Gupta(04).
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�strongness�would be that strong bidder�s ex-ante signal v1 is more �a¢ liated�with ex-post realization V1

relative to that of the weak bidder�s v0 with V0. One test can be a test of simple correlation, however

correlation is only a linear concept and may not capture the possible non-linearity of the relations. We

present below a new test procedure using copula methods.

7.1 Copulas

In this section, we brie�y review the concept of copula originated in the statistics literature. The word

�copula�came from the word couple. Copulas are functions that �couples�or joins multivariate distribution

function to their one dimensional marginal distribution functions in such a way that it captures the entire

dependence structure in the multivariate distribution.

Let X and Y be two random variables with joint distribution F (X;Y ) and continuous marginal distri-

bution functions FX and FY respectively. Then according to Sklar�s theorem there exists a unique copula

function C(v1; v2) such that C(v1; v2) = F (F
�1
X (v1); F

�1
Y (v2)) that connects F (X;Y ) to FX and FY respec-

tively. More discussion and speci�c examples on copulas can be found in Joe (�97) and Nelson (�99). It is easy

to see that copula is a map from [0; 1]n to [0; 1]: C can be parametrized by a parameter �, to have a speci�c

functional form and be denoted by C(v1; v2;�):The most simple copula is the independent copula, given by

C(v1; v2) = v1v2: Thus if bidders�ex-ante valuations are independent then the probability that strong and

weak bidder�s ex-ante valuations are below their 50th percentile be given by, C(v1; v0) = 0:5 � 0:5 = 0:25:

A popular measure of dependence is simple correlation which may fail to capture the inherent non-linearity

in the relationship. For example, we reproduce the �gures from Embrechts et al in �gure 9 where they have

shown two entirely di¤erent dependence structures can have the same correlation. Copula on the other hand

captures the inherent non-linear dependence structure.

Gaussian copula, Frank copula, Gumbel copula, Clayton copula are examples of parametric families of

copulas39 . The parameter � measures the degree of dependence between the random variables v1 and v2:

The copula parameter can also be interpreted as a measure of a¢ liation as shown in Gupta (�04). A semi-

parametric procedure to estimate �rst price auction model and their statistical properties are derived in that

paper.

Now by de�nition copula is a unique distribution function C1(F1(sd1); FV (V1); �1) such that F1(s
d
1; V )

= C1(F1(v
d
1); FV (V1); �1) , similarly C0(F0(v

d
0); FV (V0); �0) = F0(v

d
0 ; V0); where �1 is the copula parameters

measuring the dependence (concordance) between vd1 and V1, �0 is de�ned similarly. A test that s
d
1 is more

related with V1 than relative to vd0 with V0 would be equivalent to test that �1 > �0: To test this we need

to estimate �0s. Estimation of � follows the following two step simple procedure.

Step 1: Estimate the marginal distribution of bvdi ; i 2 f1; 0g and that of bVi non-parametrically.
Step 2: Using the estimated bv0; and bv1; estimate the copula40 parameter �i by maximizing the likelihood

function

max
�
L(�) =

TX
k=1

log[cf bFi(bvi); bFV (bVi); �g]; i = f1; 2g
39Some details about the properties of copulas are given in the appendix.
40There are many well known copula functions to chose from, like Frank copula, Clayton copula, Gumbel copula etc.
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We present below preliminary results of such a test for drainage auctions where only two bidders were

present using Frank copula, given as

C(v1; v2) = log�[1 +
(�v1 � 1)(�v2 � 1)

(�� 1) ]

with an associated density function

c(v1; v2) = log(�
�1)

�v1�v2

1� � [1�
(1� �v1)(1� �v2)

(1� �) ]�2; if � > 0; � 6= 1

= 1 if � = 1

We report the estimates, bootstrap standard errors and con�dence intervals below.

Table 8 : Test of Asymmetry Based on Copula

Copula �i Bootstrap t�statistic Bootstrap Standard Error 95% Con�dence Interval

Strong Bidder 0:84 14 :06 [:63; :95]

Weak Bidder 0:69 7:6 :09 [:55; :81]

Both the strong and weak bidders�ex-ante pseudo values are signi�cantly related to their ex-post values.

This supports the assumption that both bidders�signals are related to their ex-post valuation. Based on the

bootstrap t� statistic of 1:65; we also cannot reject the hypothesis that strong bidder�s ex-ante pseudo value
is better associated to its ex-post values relative to the weak bidder.

Copula is a more general measure of dependences between two random variables than simple correlation,

which measures only linear association. There is a unique mapping between copulas and the rank correlation

measure Kendall�s �; which measures whether the pairs of two random variables are concordant or discordant.

For a more detailed discussion and some useful properties of copulas see the appendix.

8 Counterfactual Experiments of Choosing Di¤erent Mechanisms

In this section we perform counterfactual policy experiment of adopting di¤erent selling mechanisms and

compare government�s revenue. we have estimated the distributions of ex-ante valuations of bidders in wildcat

and drainage auctions. We use them to compute the bidding strategies under di¤erent selling strategies. We

do not know what the optimal mechanism is in selling such kind of auctions. In the following subsections

we only explore what revenues some other popular mechanisms would have yielded.

8.1 Experiment 1: Asymmetric Drainage Auctions

Note that the we know that bidders in drainage auctions are asymmetric in terms of their level of information.

In previous section we used copula methods to quantify the degree of asymmetry in terms of the copula

parameters. The weak bidder is obviously in a disadvantageous position, which is common knowledge before

bidding and this may reduce competition. There are many mechanisms proposed in the theoretical literature

to promote competition in such an environment. One such is called bidding credits. In such mechanisms
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weak bidder must pay only a fraction of his bids if he wins. Now what fractions should be a pertinent

question. We use the degree of asymmetry measured as the copula parameters as the fraction. Hence here

are the mechanisms: Let � = �0
�1
be the degree of asymmetry where �1 is the degree of association of strong

bidder�s ex-ante and ex-post valuations and �0 be the same for the weak bidder: arguably � < 1; we consider

the following two mechanisms of bidding credits.

Mechanism 1 : Strong bidder bids b1, weak bidder bids b0;

If b1 > 1
�b0 )Strong bidder wins and pays b1 else weak bidder wins and pays b0:

Mechanism 2: Strong bidder bids b1, weak bidder bids b0;

If b1 > b0 )Strong bidder wins and pays b1 else weak bidder wins and pays �b0:
Mechanism 3: Strong bidder bids b1, weak bidder bids b0;

If b1 > 1
�b0 )Strong bidder wins and pays b1 else weak bidder wins and pays �b0:

It is easy to see that the equilibrium bidding strategies under two mechanisms are given by,

Table 9 : Counterfactual Experiments: Equilibrium Strategies

Mechanisms Strong Bidder Weak Bidder

Mechanism 1 b1 = v1 � 1
� � haz1;� b0 = v0 � �� haz0;�

Mechanism 2 b1 = v1 � haz1 b0 =
1
� � (v0 � �� haz0)

Mechanism 3 b1 = v1 � 1
�haz1;� b0 =

1
� � (v0 � �� haz0;�)

where hazi;� is the inverse of the hazard of bid distribution faced by the ith bidder when bidder 1 bids

b1 and bidder 0 bids �b0. hazi is inverse of the hazard of bid distribution faced by the ith bidder when

bidder 1 bids b1 and bidder 0 bids b0: This counterfactual experiment led to the weak bidder winning more

of the auctions and also generating approximately 5 times more revenue than the current format. Below we

present the summary statistics of winner�s informational rent for these mechanisms.

Table 10 : Comparisons of Informational Rents in Counterfactual Experiments

Mechanisms
Strong Bidder

1stQ Median 3rdQ

Weak Bidder

1stQ Median 3rdQ

Mechanism 1 0.62 0.77 0.84 0.62 0..60 0.85

Mechanism 2 0.71 0.78 0.86 0.59 0.66 0.77

Mechanism 3 0.61 0.75 0.82 0.64 0.73 0.77

Auction Format 0.71 0.78 0.86 0.54 0.63 0.75

Note that the informational rents go down for strong bidders and it is higher for the weak bidder. Also

the weak bidder is winning more auctions.

The above analysis only considers the drainage auctions and ignores the impact of drainage sales mech-

anism on wildcat auctions. Intuitively if a wildcat bidder knows that he is going to be treated di¤erently

in drainage auctions depending on whether he is strong or weak, the option value of being a strong bidder

may go down. This would lead to reduction of the overbidding and excessive entry component in the wildcat
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sales. We consider the impact of di¤erent selling strategies of drainage tracts on wildcat bidding behaviors

below.

8.2 Impact of Asymmetric Drainage Auction on Wildcat Bidding

Asymmetric Drainage auction like bidding credit as described above is aimed at giving the weak bidder some

advantage and reduce the degree of asymmetry. This reduces the advantage of being a strong bidder and

the attractiveness of being a strong goes down relatively. Looking at the equilibrium bidding equation in 12

this reduces the future rent or the value of information by reducing the gap between the strong and weak

bidder�s expected pro�ts from drainage auction. This in turn reduces the overbidding amount in the wildcat

tracts. Thus although government�s revenue goes up in the drainage auction, it goes down in the wildcat

bidding and the overall impact on government�s revenue depends on the relative strengths of the two. We

present below the impact of asymmetric drainage bidding on wildcat bidding.

Table 11 : Impact of Asymmetric Drainage Auction on Wildcat Bidding

Mechanisms Winner�s Informational Rent

Mechanism 1 0:61

Mechanism 2 0:66

Mechanism 3 0:67

Current Auction Format 0:59

However the overall impact was still positive and preliminary numbers suggests that the overall revenue of

the government could go up by about 30% more if they had followed the asymmetric drainage auction. Note

that this computation depends crucially by estimating the degree of asymmetry. A higher (lower) � may

increase (decrease) the overall revenue via its impact on the value of information in the wildcat bidding.

9 Conclusion and Ongoing Work

In this paper, we have formulated and estimated a dynamic auction model where toehold informational

asymmetry is endogenous. The winner from the symmetric bidders in the �rst period auction gains superior

informational toehold for the second period auction, making the second period a contest among asymmetric

bidders. This makes the toehold asymmetry for the second unit endogenous and the �rst unit more valuable

re�ecting the option value of having more information for the second unit. Bidders therefore overbid for

the �rst unit for this option value. We separately identi�ed the premium paid for this option value of

this information from the willingness to pay for the �rst unit. We structurally estimated the unobserved

distribution of valuations for both the auctions, the degree of informational asymmetry and the option value

of acquiring costly information. We used copula techniques from statistics literature to quantify and semi-

parametrically test the degree of asymmetry amongst bidders. Finally we conduct counterfactual experiment

to �nd better selling strategies.

We apply this model to data from OCS oil tract auctions, where the �rst period (wildcat tract auction)

winner has better information about the tract being sold next period (drainage tract auction) and becomes a
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strong bidder. The possibility of future asymmetry a¤ects bidders�bidding behavior in the �rst period. We

estimate this dynamic model using a two step procedure. The estimates indicate that the federal government

is only recovering 23% of the �strong�buyers�willingness to pay in the drainage sales. In the wildcat sales,

we �nd that the bidders are willing to pay up to 12% more as an option premium to account for possible

future informational advantage. The estimates also suggest that weak bidders bid timidly despite having

stochastically higher pseudo values and hence win less, which is consistent with the theory and indicates the

presence of winner�s curse. We use these estimated unobserved ex-ante valuations to conduct counterfactual

experiments of di¤erent selling strategies for selling such goods and compare the government�s revenue.

We cannot reject the hypothesis that strong bidder in drainage auctions knows �more�about his ex-post

valuation than the weak bidder. As a �rst paper, we quantify this degree of asymmetry as a structural element

of the model and found that the strong bidder knows 18%more than the weak bidder. The estimated marginal

valuations are then used to �rst time conduct counterfactual experiment of alternate selling strategies in

asymmetric drainage auctions. Since bidders are asymmetric, an asymmetric auction may yield higher

revenue. We use the estimated degree of asymmetry to treat strong and weak bidders and compare three

alternate mechanisms of �bidding credits�where weak bidder is given some advantage in bidding according

to this degree of asymmetry. The results suggests that the government could have earned on an average 2

times more in drainage auctions following these mechanisms. Asymmetric treatments of bidders in drainage

auctions should a¤ect the bidding behavior in wildcat auctions too as being a strong bidder may not be as

attractive as before. When the asymmetric drainage auctions are taken into account in the bidding behavior

in wildcat auctions the total revenue earned goes down but is still higher than the current mechanism. Tthe

empirical methodology developed in this paper is easily applicable to analyze many other hitherto unexplored

dynamic auction settings like defence procurements, optimal toeholds and takeovers etc. where informational

asymmetry is endogenous.

10 Appendix

10.1 Proofs of the Theoretical Model

Proof. of Lemma 1 :First note that the utility function has the single crossing property and a¢ liation of

signals guarantees that the distribution of valuations is log-supermodular and we assume that the assumptions

required by McAdams(�04) are satis�ed for a pure strategy equilibrium to exist. Note that, bidder i solves

the following problem,

Ti(D) = max
bdi�0

f(vi(sdi ; sdj )� bdi )� Pr(bj(sdj ) < bi(sdi )); i; j = f0; 1g; i 6= j

setting inverse of bdi (si) to �i(b
d
i );

Ti(D) = max
bdi�0

f(vi(sdi ; sdj )� bdi )� Pr(�j(bdj ) < �j(bdi (sdi )); i; j = f0; 1g; i 6= j

Ti(D) = max
bdi�0

f(vi(si; sj)� bdi )� Fj(sj < �j(bdi (sdi )); i; j = f0; 1g; i 6= j
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Taking logarithm and di¤erentiating with respect to bdi ; and since in equilibrium it is optimal to set

vi(si; sj) = vi(si; �j(b
d
i (s

d
i )) = vi(si; �i(s

d
i )); where �i(s

d
i ) = �j(b

d
i (s

d
i ) is a monotonic function of s

d
i : we get

the �rst order conditions,
F 00
F0
�00(b

d
1) =

1

v1(s1; �1(sd1))� bd1
Similarly,

F 01
F1
�01(b

d
0) =

1

v0(�0(sd0); s0)� bd0
satisfying the relevant boundary conditions as described below. Hence the proof of the lemma.

Proof. of Lemma 2 Suppose bidder i decides to bids for the wildcat auction, in the simple case of two

bidders he is solving the following

Q1;i(s
w
i ) = maxbwi �0[fPr(��i = 1js

w
i )f(U(swi ; eswi )� bwi )� Pr(bw�i < bwi jswi )�K

+�
P2

j=1 Pr(j winsWA)
R
Ti(D)dF (s

d; D)g
+Pr(��i = 0jswi )f(U0(swi )� bwi ) + �

R
Ti(1)dF (s

d; D = 1)g]

(17)

where T (X 0; 1 is strong); T (X 0; 1 is weak) are as de�ned before. Equivalently, using the de�nitions of

MY wjsw = Pr(��i = 1jswi )Fw(�(bwi )), and di¤erentiating with respect to bwi we get the �rst order condition,

f(U � bwi )
mYwjswi (s

w
1 js

w
1 )

b0(sw)
�MYwijsi(s

w
1 jsw1 ) + �

mYwjswi (s
w
1 js

w
1 )

b0(sw)
[
R
T (D = 1)dF (sd; D = 1)]

��[mYwjsw (s
w
1 js

w
1 )

b0(sw)
][
R
T (D = 0)dF (sd; D = 0)]g � Pr(��i = 0jswi ) = 0

(18)

with the terminal condition, bW (sw
�
) = 0:Equivalently,

(U � bwi )
mYwjsw (s

w
1 js

w
1 )

b0(sw1 )
�MYwjswi(s

w
1 jsw1 ) + �[

mYwjsw (s
w
1 js

w
1 )

b0(sw1 )
]
R
[T (D = 1)� T (D = 0]dF (sd; D)

= f(U � bwi ) + �
R
[T (D = 1)� T (D = 0)]dF (sd; D)gmYwjsw (s

w
1 js

w
1 )

b0(sw1 )

�M
wjsi(s

w
1 jsw1 )� Pr(��i = 0jswi ) = 0

(19)

Equivalently,

f(U � bwi ) + �
R
[T (D = 1)� T (D = 0)]dF (sd; D)gmYwjsw (s

w
1 js

w
1 )

b0w(s
w
1 )

�MYwjsw(s
w
1 jsw1 )� Pr(��i = 0jswi ) = 0

)

bwi = U�fMYwjsw(s
w
1 jsw1 )+Pr(��i = 0jswi )g�

b0(sw1 )

mYwjsw(s
w
1 jsw1 )

+�

Z
[T (D = 1)�T (D = 0)]dF (sd; D) (20)

Note that, under the assumption of monotonic bidding strategies, we expressed the bid distribution function,

GwBwjbwi
(yjbwi ) =MYwjsw(�(Bw)j�(bwi )) + Pr(��i = 0j�(bwi ))

with the density function,

gwBwjbwi
=

Pr(��i=2jsw1 )F
w0 (sw1 js

w
1 )

b0(sw1 )

= m(:)
b0(sw1 )

Substituting in the �rst order conditions, we get,

bwi = U �
GwBwjbwi

(bwi jbwi )
gwBwjbwi

(bwi jbwi )
+ �

Z
[T (1 is strong)� T (1 is weak)]dF (sd; D) (21)
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10.2 Derivation of Equilibrium Equations in Drainage Auctions

Proof. of 3 Each of �strong�bidders receives a private signal41 sd1i about his unknown valuation v
d
1 and

chooses bd1i to maximize E[(v1i � bd1i)I(Bd�i � bd1i)js1i]; where Bd�i is the maximum of his rivals�bid. Bd�i =

maxifbd0i(s0i)g; and yd0i = maxj sd0j : and bd1i(:) and bd0i(:) are the equilibrium strategies of �strong�and �weak�

bidders respectively. We restrict our attention to symmetric, strictly increasing and di¤erentiable equilibrium

strategies42 . By �symmetry�we mean symmetry within each sub-group of strong and weak bidders. The

problem of a �weak�bidder is thus

maxbd1i(v
d
0i(s

d
1i; y0i; s

d
0i)� bd0i) Pr(y1i � �d1(bd0i) and y0i � �d0(bd0i)jsd0i)

= maxbd1i(v
d
0i � bd0i)Fy�1 ;y0js0(y1i � �

d
1(:), y0i � �d0(:)jsd0i)

The equilibrium conditions are given below for the common support of signals. Di¤erentiating with respect

to bd0i, we get the �rst order di¤erential equation,

�Fy1;y0js0 (�
d
1(b

d
0i); �

d
0(b

d
0)jsd0i) + (vd0i(:)� bd0i)[

@Fy1;y0js1 (�
d
1(b

d
0i);�

d
0(b

d
0i)js

d
1i)

@y1
� 1

bd01 (�1(b0i))

+
@Fy1;y0js0 (�

d
1(b

d
0i);�

d
0(b

d
0)js

d
0i)

@y0
� 1

bd00 (�0(b0i))
] = 0

where �d1(:) and �
d
0(:) are the inverse of the equilibrium strategy bd: Similarly, di¤erentiating with respect to

bd1i, we get the �rst order di¤erential equation for the strong bidder,

�Fy0js1(�d0(bd1)jsd1i) + (vd1i(:)� bd1i)[
@Fyd1 ;yd0 jsd1 (�

d
0(b

d
1)jsd1i)

@y0
� 1

bd00 (�0(b1i))
] = 0

for all s0i 2 [sd; sd]; where bd0i = bd0i(s
d
0i); with the boundary conditions b

d
0(s

d
0) = bd1(s

d
1) = 0: To establish

identi�cation of distribution of private signals we need to uniquely express the distribution of observed bids

in terms of the distribution of signals assuming that the bidders follow equilibrium strategies. Let B�1 = b1;

and B�0 = maxi b0i; observe that the conditional distribution of bids are given by

GBd
1 ;B

d
0 jbd0 (X;Xjx) = Pr(B

d
1 � X;B0 � Xjbd0 = x)

= Pr(yd1 � �d1(X); yd0 � �d0(X)jsd0 = �d0(x))

= Fy1;y0js0(�
d
1(X); �

d
0(X)j�d0i(x))

Di¤erentiating we get,
dG

Bd1 ;B
d
0 jb

d
0
(X;Xjx)

dX =
@Fy1;y0js0 (�

d
1(X);�

d
0(X)j�

d
0i(x))

@yd1
� 1

bd
0
1 (�

d
1(X))

+
@Fy1;y0js0 (�

d
1(X);�

d
0(X)j�

d
1i(x))

@yd0
� 1

bd
0
0 (�

d
0(X))

Using the above the �rst order conditions for the weak bidders can be rewritten as

vd0(s
d
0i; s

d
0i; s

d
0i) = b

d
0 +

GBd
1 ;B

d
0 jbd1 (b

d
0; b

d
0jbd0)

dGBd
1 ;B

d
0 jbd1 (b

d
0; b

d
0jbd0)=dX

= �d0(b
d
0; G)

Similarly for the strong bidders,

vd1(s
d
1i; y

d
0i = s

d
1) = b

d
1 +

GBd
0 jbd1 (b

d
1jbd1)

dGBd
0 jbd1 (b

d
1jbd1)=dX

= �d1(b
d
1; G)

41Note that, the signals are a¢ liated and hence so are sdik; y
d
ki and y

d
ji:

42The existence and uniqueness issue of such equilibrium has been discussed in McAdams (�04) and Lizzeri & Persico (�00).
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10.3 Identi�cation Proofs

Proof. of Lemma 4

a) The proof is very similar to the proof of Campo, Perrigne & Vuoung (�02). The only di¤erence is that

we are identifying the expected ex-ante interdependent values here and not the private values. Let the joint

distribution of bids from the asymmetric drainage auction be G(:) with the support [b; b]n: Let there be two

distributions of private values Fd(:) and eFd(:) leading to the same joint distribution of bids. Let bd1(:; F )
and bd0(:; F ) and ebd1(:; F ); ebd0(:; F ) be the strictly increasing Bayesian equilibrium strategies corresponding to

Fd(:) and eFd(:) respectively. Therefore they satisfy the �rst order di¤erential equations. Hence
F (vd1 ; v

d
0) = Pr(�

d
1(b

d
1; G) � vd1 ; �d0(bd0; G) � vd0) = G(�d

�1

1 (sd1; G); �
d�1

0 (sd0; G))

eF (vd1 ; vd0) = Pr(�d1(bd1; G) � vd1 ; �d0(bd0; G) � vd0) = G(�d�11 (sd1; G); �
d�1

0 (sd0; G))

Hence F (vd1 ; v
d
0) =

eF (vd1 ; vd0) on their common support [vd1; vd0]n :
= [�d0(b

d; G); �d1(b
d
; G)]n: Hence the

asymmetric a¢ liated interdependent values of the drainage auction is identi�ed.

Proof. of Lemma 5

First note that by lemma (b) on the identi�cation of the drainage auction, the third term is identi�ed

from data on drainage auctions. Now recall that for the two bidder case, we had,

GwBwjbwi
(yjbwi ) =MYwjsw(Ywjswi ) + Pr(��i = 0jswi )

=MYwjsw(�(Bw)j�(bwi )) + Pr(��i = 0j�(bwi ))

= Pr(��i = 1jswi )Fw(�(bw�i)) + Pr(��i = 0j�(bwi )) (22)

A straightforward generalization of the above for the N bidder case is

GwBwjbwi
(yjbwi ) =

X
j 6=i

Pr(�j = 1jswi )Fw(�(bw�i)) + Pr(�j = 0j�(bwi ); for all j)

Since GwBwjbwi
(yjbwi ) and Pr(�j = 2jswi ) and Pr(�j = 1jswi ) are observable from the observed data on bids

and entry behavior, Fw(�(bw�i)) is identi�ed. Hence the expected common value component U is identi�ed

using the �rst order condition.

10.4 Estimation Strategy

First Stage

Note that, the inverse hazard rate (haz0) ratio in 11 can be interpreted as,

haz0 =
Pr(Bd1 � b0; Bd0 � b0; b0 = b0)

Pr(Bd1 = b0; B
d
0 � b0; b0 = b0) + Pr(Bd1 � b0; Bd0 = b0; b0 = b0)

=
GBd;Bd

0 ;b
d
0
(bd0; b

d
0; b

d
0)

D01(bd0; b
d
0; b

d
0) +D02(b

d
0; b

d
0; b

d
0)
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Let L be the number of auctions and K(:) be a kernel. Note that the term GBd
1 ;B

d
0 ;b

d
0
(x; y; z) can be

estimated as

GBd
1 ;B

d
0 ;b

d
0
(x; y; z) =

1

hg1L

LX
l=1

1

nd0

nd1X
i=1

1(Bd0il � x)1(Bd0l � y)KG(
z � b0il
hg1

)

Similarly GBd
0 ;b

d
0
(bd1; b

d
1) can be estimated as,

GBd
0 ;b

d
0
(x; z) =

1

hg0L

LX
l=1

1(Bd0l � y)K(
z � b1il
hg0

)

The denominators of 11 can be estimated as,

bD01(x; y; z) = 1

h2g01L

LX
l=1

1

nd0

nd0X
i=1

K(
x�Bd1il
hg1

)1(Bd0l � y)K(
z � b0il
hg1

)

bD02(x; y; z) = 1

h2g0L

LX
l=1

1

nd0

nd0X
i=1

1(Bd1il � x)K(
y �Bd�0il
hg0

)K(
z � b0il
hg0

)

Similarly for 10;we have

bD11(x; y) = 1

h2g01L

LX
l=1

K(
x� b1il
hg1

)K(
y � b1il
hg1

)

Therefore the pseudo values from the drainage auctions are estimated as,

bvd1(sd1; sd1) = bd1 + bGBd
0 ;b

d
1
(bd1; b

d
1)bD11(bd1; bd1) = b�d1(bd1; G) (23)

= bd1 + haz
d
1

bvd0(sd0; sd0) = bd0 + bGBd;Bd
0 ;b

d
0
(bd0; b

d
0; b

d
0)bD01(bd0; bd0; bd0) + bD02(bd0; bd0; bd0) = b�d0(bd0; G) (24)

= bd0 + haz
d
0

We plug these pseudo values into the objective function to get back the equilibrium value function for

the strong and weak bidders respectively. More speci�cally, we need to estimate

T1(1 is strong) =
Z
max
bD�0

f(v1(sd1; sd0)� b1)� Pr(b0 � b1)gdF (sd1; D = 1)

�
Z
f(v1(sd1; sd1)� b�1)� Pr(b0 � b1)gdF (sd1; D = 1)

where b�1 is the optimum bid and the inequality follows from the assumption that v1(x; y) � v(x; x); for
all y � x:
Now,

(v1(s
d
1; s

d
1)� b1)� Pr(bd0 � bd1) =

GBd
1 ;B

d
0 jbd1 (X;Xjx)

dGBd
1 ;B

d
0 jbd1 (X;Xjx)=dX

�GBd
1 ;B

d
0 jbd1 (X;Xjx)
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)
T1(1 is strong) �

Z
GBd;Bd

0 jbd1 (X;Xjx)
dGBd

1 ;B
d
0 jbd1 (X;Xjx)=dX

�GBd
1 ;B

d
0 jbd1 (X;Xjx)f1(s

d
1)ds

d
1

Now,

f1(:)
@b�1(b)

@b
= g1(b)

and
@b�1(b)

@b
=

1
@b(s)
@s

By substituting, we get

T1(1 is strong) �
Z

GBd
1 ;B

d
0 jbd1 (X;Xjx)

dGBd
1 ;B

d
0 jbd1 (X;Xjx)=dX

�GBd
1 ;B

d
0 jbd1 (X;Xjx)g1(b1)db1

= bT1
where g(b1) is the density of b1:

Similarly,

T0(1 is weak) �
Z

GBd
1 ;B

d
0 jbd1 (b

d
1; b

d
1jbd1)

dGBd
1 ;B

d
0 jbd1 (b

d
0; b

d
0jbd0)=dX

�GBd
1 ;B

d
0 jbd1 (b

d
1; b

d
1jbd1)g0(b0)db0

= bT0
The bid distributions functions are estimated non-parametrically as described above and the integration

is evaluated numerically.

Note that, the bidders must make nonzero expected pro�ts, otherwise they can always bid zero and make

zero pro�t. Hence T1(:) � 0 and T0(:) � 0: Therefore, T1(:)�T0(:) � T1(:): Since T1(:) � bT1; as shown above,
an upper bound of the value of information: T1(:)� T0(:) is bT1 (as T1(:)� T0(:) � T1(:) � bT1 ): Hence bT1 is
the upper bound of the value of information. Note that, in case of private values, the value of information

is exactly bT1 � bT0:
Second Stage

In the second stage we �rst non parametrically estimate the bid distributions for each wildcat sales Gw

and gw respectively: We then plug these and bounds of T1 and T0 in the following �rst order equation

characterizing the equilibrium, to get the lower bound of the �pseudo�values,

U = bwi +
GwBwjsw(b

w
i jbwi )

gwBwjsw(b
w
i jbwi )

� �[T1 � T0] (25)

� bwi +
GwBwjsw(b

w
i jbwi )

gwBwjsw(b
w
i jbwi )

� � bT1
= bU

The value of information as a proportion of the common value U can be written as,
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�[T1 � T0]
U

� � bT1
U

� � bT1bU
Thus, the estimated right hand side gives us an estimate of the upper bound of the value of information,

as a proportion of �rst period�s value in the wildcat auction.

10.5 A¢ liation (Total Positivity)

The concept of a¢ liation as coined by Milgrom & Weber (�82), is what is known as Total Positivity (TP)

in statistical literature. More speci�cally the variables s = (s1; s2; ::sn) are said to be a¢ liated if for all

s0; s00 2 S;

f(s0^s00)f(s0_s00) � f(s0)f(s00)

where (s0_s00) = (max(s01; s001);max(s02; s002); :::;max(s0n; s00n)); and (s0^s00) = (min(s01; s001);min(s02; s002); :::;min(s0n; s00n))
are the component wise maximum and minimum of s0 and s00:

For two variables, s01 � s1; s02 � s2;)the above condition boils down to f(s01; s2)f(s1; s02) � f(s1; s2)f(s01; s02);equivalently,

f(s02js1)
f(s2js1)

� f(s02js01)
f(s1js01)

i.e., f(:
0js01)

f(:js1) is increasing in s1 : which is called the monotone likelihood ratio property:Thus higher values

of s1 )higher values of s2 more likely
Taking logarithms to the a¢ liation inequality f(s01; s2)f(s1; s

0
2) � f(s1; s2)f(s

0
1; s

0
2) and setting log0 !

�1; we get, log(f(s1; s2) + log f(s01; s02) � log f(s01; s2) + log f(s1; s
0
2): This property of f(.) is called log-

supermodularity. The proof of the following simple characterization of log supermodularity can be found in

Topkis (�98).

Theorem 6 If f is positive and twice continuously di¤erentiable, then f is log supermodular if and only if
@2

@si@sj
ln f � 0:

Hence random variables si and sj with density function f(:)are a¢ liated if and only if @2

@si@sj
ln f � 0:

For more details see MW.

10.6 Copulas

De�nition 7 A copula is the distribution function of a random vector in <n with uniform (0; 1)� marginals.
Alternatively a copula is a function C : [0; 1]n ! [0; 1] which has these properties:

1. C(v1; v2; :::; vn) is increasing in each component vi:

2: C(1; 1; :vi; ::; 1) = vi for all i 2 f1; :::; ng; vi 2 [0; 1]:

Below, for simplicity, we discuss properties for n = 2 .
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Theorem 8 (Sklar�s ) Let F be a joint distribution function with marginals F1 and F2: Then there exists a

copula C such that for all x; y 2 <,

F (v1; v2) = C(F1(v1); F2(v2))

If F1 and F2 are continuous then C is unique; otherwise C is uniquely determined on RanF1 � RanF2:
Conversely, if C is a copula and F1 and F2 are distribution functions, then the function F (:; :) de�ned above

is a joint distribution function with margins F1 and F2:

Theorem 9 If (v1; v2) has copula C and T1 and T2 are increasing continuous functions, then (T1(v1); T2(v2))

also has copula C:

Below the order in copulas is de�ned.

De�nition 10 Let C1 and C2 be copulas, we say that C1 is smaller than C2 (C2 � C1); if C1(v1; v2) �
C2(v1; v2):

Below we present a special group of copulas called Archimedean copulas. Archimedean copulas are those

distribution functions F (v1; v2); such that F (v1; v2) = ��1[�(v1)+�(v2)] for some convex, decreasing function

�:

Copulas can thus be thought of as a form of the utility function. A bivariate copula depicts the rela-

tionships between two random variables, same as an utility function expresses the dependence between two

goods, parametrically represented by the marginal rate of substitution. For example, consider the following

two copulas, C(v1; v2) = v1 + v2 � 1 = W (v1; v2) and C(v1; v2) = min(v1; v2) = M(v1; v2): It can be shown
that for every copula C and every (v1; v2) 2 [0; 1]2; W (v1; v2) � C(v1; v2) �M(v1; v2)
If we are thinking copulas as utility functions thenW (v1; v2) represents perfect substitutes andM(v1; v2)

represents perfect complements and all relationships between two goods falls in between these two. The

bounds above is called the Frechet-Hoe¤ding bounds in copula literature (see Nelson(�99)). Since we have

drawn the analogy of copulas to utility functions here is one nice property of Archimedean copulas.

Theorem 11 The level curves of an Archimedean copula are convex.

We give below some Archimedean copulas and their major properties

Copula C(v1; v2) �(v) Range of � Total Positivity

Frank log�[1 +
(�v1�1)(�v2�1)

(��1) ] log�(
1��
1��s ) [0;1) Yes

Clayton (v��1 + v��2 � 1) 1� v���1
� [0;1) Yes

Gumbel-Hugard exp(�[(� log v1)� + (� log v2)�)]1=�) [� log(v)]� [1;1) Yes

It is easy to verify that for the above Archimedean copulas, @2

@v1@v2
ln c � 0 hence they are a¢ liated by

Theorem (6) above,where c is the density of the copula function C: There is a unique mapping between

copulas and Kendall�s �; given by
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�XY =

Z Z
4C(u; v)dC(u; v)� 1

For example, for Clayton copulas, the above equality reduces to �� = �
�+2 : A goodness of �t test of which

copula family to be used can be constructed using the above characterization. The idea is simple, since for

Archimedean copulas the copula function and hence the copula family has a unique representation in terms

of Kendall�s � ; the copula function which minimizes the distance between the observed � from actual data

and � driven by the above relationship should be used. For more analysis see Gupta (�04).

10.7 Graphs
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Figure 2 : Actual vs Estimated Densities
Solid Line: Actual, Dotted Line: Estimated,

Grey Region: 95% Con�dence Band
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Figure: 3
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Figure: 4
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Figure 5: Strong vs Weak Bidder�s Densities
2 Bidders, Solid Line: Strong Bidder, Dotted Line: Weak Bidder,

Grey Region: 95% Con�dence Band
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Figure: 6 Strong vs Weak Bidder Densities: 3 Bidders
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Figure: 7
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Figure: 8 Wildcat Auction Bidder Densities
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