
Agglomeration and Growth with Endogenous Expenditure Shares

Fabio Cerina
CRENoS and University of Cagliari

Francesco Mureddu
CRENoS and University of Cagliari

September 30, 2010

Abstract

We develop a New Economic Geography and Growth model which, by using a CES utility function in
the second-stage optimization problem, allows for expenditure shares in industrial goods to be endoge-
nously determined. The implications of our generalization are quite relevant. In particular, we obtain the
following novel results: 1) two additional non-symmetric interior steady states emerge for some interme-
diate values of trade costs. These steady-states are stable if the industrial and the traditional goods are
either good or very poor substitutes, while they are unstable for intermediate (yet lower than one) values
of the intersectoral elasticity of substitution. In the latter case, the model displays three interior steady
states - the symmetric and the core-periphery allocations - which are stable at the same time; 2) catas-
trophic agglomeration may always take place, whatever the degree of market integration, provided that
the traditional and the industrial goods are sufficiently good substitutes; 3) the regional rate of growth is
affected by the interregional allocation of economic activities even in the absence of localized spillovers, so
that geography always matters for growth and 4) the regional rate of growth is affected by the degree of
market openness: in particular, depending on whether the traditional and the industrial goods are good
or poor substitutes, economic integration may be respectively growth-enhancing or growth-detrimental.
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1 Introduction

The recent Nobel Prize assigned to Paul Krugman “for his analysis of trade patterns and location of economic
activity”witnesses the important role that the scientific community gives to the insights of the New Economic
Geography (NEG) literature. This field of economic analysis has always been particularly appealing to policy
makers, given the direct link between its results and regional policy rules. For the same reason it is useful to
deepen the analysis of its most important outputs by testing the theoretical robustness of some of its more
relevant statements. This paper tries to offer a contribution in this direction by focusing on a particular
sub-field of NEG literature, the New Economic Geography and Growth (NEGG, henceforth), which basically
adds endogenous growth to a version of Krugman’s core-periphery model (Krugman 1991).

In this paper, we develop a NEGG model whose main deviation from the standard approach is the
adoption of a Constant Elasticity Function (henceforth CES) instead of a Cobb-Douglas utility function in
the second-stage optimization problem, thereby allowing the elasticity of substitution between manufacture
and traditional good (intersectoral elasticity henceforth) to diverge from the unit value. The main effect
of these departures is that the share of expenditure on manufactures is no longer exogenously fixed (as in
the Cobb-Douglas approach) but it is endogenously determined via agents’ optimization. By endogenizing
the expenditure shares in manufacturing goods, we are able to test the robustness of several well-established
results in the NEGG literature and we show that the validity of such results, and of the associated policy
implications, crucially depends on the particular Cobb-Douglas functional form used by this class of models.

Our deviations from the standard NEGG literature act at two different levels: a) the dynamic pattern of
equilibrium allocation of economic activities and b) the equilibrium growth prospect.

As for the first level, the main result of our analysis is the emergence of a completely new multiple
equilibria pattern. In particular, our analysis shows that, for some intermediate values of the trade costs,
two new non-symmetric interior steady states emerge. These steady states turn out to be stable when the
intersectoral elasticity of substitution is either larger than 1 (and then the two kinds of commodities are
good substitutes) or very low (i.e. very poor substitution), while they are unstable otherwise, i.e., when
the traditional and the industrial goods are not-too-poor substitutes. In the latter case, a very interesting
equilibrium pattern arises: the two emerging non-symmetric equilibria remain unstable until they collapse,
for a higher value of the transport costs, to the core-periphery equilibria. The result is a a multiple equilibria
pattern with three equilibria (the symmetric and the two core-periphery allocations) stable at the same time.
In other words, if the economy starts from a non-symmetric equilibrium and trade costs are neither too low
or too high, a very small shock can give rise to a catastrophic agglomeration or to a catastrophic dispersion.
Citare Baldwin book

While the multiplicity of equilibria is due to the non-linear form of the optimal-investment relation, the
dynamic properties can be viewed as the result of a new force, which we dub as the expenditure share
effect. This force, which is a direct consequence of the dependence of the expenditure shares on the location
of economic activities, is neutralized in the standard NEGG model by the unitary intersectoral elasticity
of substitution. Our model “activates”this force which turns to be an agglomeration or a dispersion force
depending on whether the traditional and the differentiated commodities are respectively good or poor
substitutes. In the first case we show that, unlike the standard model, catastrophic agglomeration may
always take place whatever the degree of market integration, provided that such force is strong enough. This
result, which is also a novelty in the NEGG literature, has important implications in suggesting that policy
makers should be aware of the fact that policies affecting the degree of market integration can affect the
equilibrium location of economic activities only for a restricted set of values for the parameters describing
the economy. More generally, the emergence of the expenditure share effect suggests that the intersectoral
elasticity of substitution has a crucial and unexpected role in shaping the agglomeration or the dispersion
process of economic activities.
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As for the equilibrium growth prospect, results are even more striking. We show that, due to the en-
dogenous expenditure shares: 1) the regional rate of growth is affected by the interregional allocation of
economic activities even in the absence of localized spillovers, so that geography always matters for growth
and 2) the regional rate of growth is affected by the degree of market openness: in particular, according
to whether the intersectoral elasticity of substitution is larger or smaller than unity, economic integration
may be respectively growth-enhancing or growth-detrimental. These results are novel with respect to the
standard NEGG literature according to which geography matters for growth only when knowledge spillovers
are localized and, moreover, trade costs never affect the growth rate in a direct way. They can also be all
the more appreciated by viewing them as the dynamic counterparts of endogenous expenditure shares in
static models. In the static model of Murata (2008), trade costs have level effects since the mass of varieties
depends on trade costs via endogenous expenditure share generated by a Stone-Geary non-homothetic utility
function. By adding the time-dimension, our model allows to uncover the emergence of an additional growth
effect of trade costs as they also affect the rate of growth via the endogenous expenditure share. This second
set of results is characterized by even more important policy implications: first, our results suggest that
interregional allocation of economic activity can always be considered as an instrument able to affect the
rate of growth of the economy. In particular, when the average interregional expenditure share on industrial
goods are higher in the symmetric equilibrium than in the core-periphery one, then each policy aiming at
equalizing the relative size of the industrial sector in the two regions will be good for growth, and vice-versa.
Second, each policy affecting economic integration will also affect the rate of growth and the direction of such
influence is crucially linked to the value of the intersectoral elasticity of substitution.

As already anticipated, the literature we refer to is basically the New Economic Geography and Growth
(NEGG) literature, having in Baldwin and Martin (2004) and Baldwin et al. (2004) the most important
theoretical syntheses. These two surveys collect and present in an unified framework the works by Baldwin,
Martin and Ottaviano (2001) - where capital is immobile and spillovers are localized - and Martin and
Ottaviano (1999) where spillovers are global and capital is mobile. Other related papers are Baldwin (1999)
which introduces forward looking expectations in the Footloose Capital model developed by Martin and
Rogers (1995); Baldwin and Forslid (1999) which introduces endogenous growth by means of a q-theory
approach; Baldwin and Forslid (2000) where spillovers are localized, capital is immobile and migration is
allowed. Some more recent developments in the NEGG literature can be grouped in two main strands. One
takes into consideration factor price differences in order to discuss the possibility of a non-monotonic relation
between agglomeration and integration (Bellone and Maupertuis (2003) and Andres (2007)). The other
one assumes firms heterogeneity in productivity (first introduced by Eaton and Kortum (2002) and Melitz
(2003)) in order to analyse the relationship between growth and the spatial selection effect leading the most
productive firms to move to larger markets (see Baldwin and Okubo (2006) and Baldwin and Robert-Nicoud
(2008)). These recent developments are related to our paper in that they introduce some relevant departures
from the standard model.

All the aforementioned papers, however, work with exogenous expenditure shares. A first attempt to
introduce endogenous expenditure shares in a NEGG model has been carried out by Cerina and Pigliaru
(2007), who focused on the effects on the balanced growth path of introducing such assumption. The present
paper can be seen as an extension of the latter, considering that we deepen the analysis of the implications of
endogenous expenditure shares by fully assessing the dynamics of the model, the mechanisms of agglomeration
and the equilibria growth rate.

We believe that the results obtained in this paper are important because they shed light on some mech-
anism which are neglected by the literature and which might be empirically relevant. From this viewpoint,
the main message of our paper is probably that of highlighting how a more relevant effort on the empirical
assessment of the intersectoral elasticity of substitution is strongly needed. Moreover, from a purely theoret-
ical perspective, a tractable endogenous expenditure share approach, being more general than an exogenous
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one, represents a theoretical progress in the NEG literature and it can be extended to several other NEG
models in order to assess their robustness. Finally, from a policy perspective, our paper suggests that policy
makers should not trust too much on implications drawn from standard NEGG models because of their
limited robustness.

The rest of the paper is structured as follows: section 2 presents the analytical framework, section 3 deals
with the equilibrium location of economic activities, section 4 develops the analysis of the growth rate and
section 5 concludes.

2 The Analytical Framework

2.1 The Structure of the Economy

The model structure is closely related to Baldwin, Martin and Ottaviano (2001). The world is made of 2
regions, North and South, both endowed with 2 factors: labour L and capital K. 3 sectors are active in both
regions: manufacturing M, traditional good T and a capital producing sector I. Regions are symmetric in
terms of: preferences, technology, trade costs and labour endowment. Labour is assumed to be immobile
across regions but mobile across sectors within the same region. The traditional good is freely traded
between regions whilst manufacture is subject to iceberg trade costs following Samuelson (1954). For the
sake of simplicity we will focus on the northern region1.

Manufactures are produced under Dixit-Stiglitz monopolistic competition (Dixit and Stiglitz, 1975, 1977)
and enjoy increasing returns to scale: firms face a fixed cost in terms of knowledge capital2 and a variable
cost aM in terms of labour. Thereby the cost function is π +waMxi, where π is the rental rate of capital, w
is the wage rate and aM are the unit of labour necessary to produce a unit of output xi.

Each region’s K is produced by its I-sector which produces one unit of K with aI unit of labour. So the
production and marginal cost function for the I-sector are, respectively:

K̇ = QK =
LI
aI

(1)

F = waI (2)

Note that this unit of capital in equilibrium is also the fixed cost F of the manufacturing sector. As one
unit of capital is required to start a new variety, the number of varieties and of firms at the world level is
simply equal to the capital stock at the world level: K + K∗ = Kw. We denote n and n∗ as the number of
firms located in the north and south respectively. As one unit of capital is required per firm we also know
that: n + n∗ = nw = Kw. As in Baldwin, Martin and Ottaviano (2001), we assume capital immobility, so
that each firm operates, and spends its profits, in the region where the capital’s owner lives. In this case, we
also have that n = K and n∗ = K∗. Then, by defining sn = n

nw and sK = K
Kw , we also have sn = sK : the

share of firms located in one region is equal to the share of capital owned by the same region3.
To individual I-firms, the innovation cost aI is a parameter. However, following Romer (1990), endogenous

and sustained growth is provided by assuming that the marginal cost of producing new capital declines (i.e.,
aI falls) as the sector’s cumulative output rises. In the most general form, learning spillovers are assumed to
be localised. The cost of innovation can be expressed as:

aI =
1

AKw
(3)

where A ≡ sK + λ (1− sK), 0 < λ < 1 measures the degree of globalization of learning spillovers
and sK = n/nw is share of firms allocated in the north. The south’s cost function is isomorphic, that is,

1Unless differently stated, the southern expressions are isomorphic.
2It is assumed that producing a variety requires a unit of knowledge interpreted as a blueprint, an idea, a new technology, a

patent, or a machinery.
3We highlight that our results on the equilibrium growth rate holds even in the case of capital mobility.
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F ∗ = w∗/KwA∗ where A∗ = λsK + 1− sK . However, for the sake of simplicity, we focus on the case of global
spillovers, i.e., λ = 1 and A = A∗ = 14. Moreover, in the model version we examine, capital depreciation is
ignored5.

Because the number of firms, varieties and capital units is equal, the growth rate of the number of varieties,
on which we focus, is therefore:

g ≡ K̇

K
; g∗ ≡ K̇∗

K∗

Finally, traditional goods, which are assumed to be homogeneous, are produced by the T -sector under
conditions of perfect competition and constant returns. By choice of units, one unit of T is made with one
unit of L.

2.2 Preferences and consumers’ behaviour

The preferences structure of the infinitely-lived representative agent is given by:

Ut =
ˆ ∞
t=0

e−ρt lnQtdt; (4)

Qt =
[
δ

(
nw

1
1−σ

CM

)α
+ (1− δ)CT α

] 1
α

;α <
σ − 1
σ

(5)

CM =

[ˆ n+n∗

i=0

c
1−1/σ
i di

] 1
1−1/σ

;σ > 1. (6)

Where α is the elasticity parameter related to the elasticity of substitution between manufacture and
traditional goods and σ is the elasticity of substitution across varieties. We deviate from the standard NEGG
framework in two respects.

First, we use a more general CES second-stage utility function instead of a Cobb-Douglas one, thereby
allowing the elasticity of substitution between manufacture and traditional good (intersectoral elasticity
henceforth) to diverge from the unit value. The intersectoral elasticity is equal to 1

1−α which might be higher
or lower than unity (albeit constant) depending on whether α is respectively negative or positive. In the
intermediate case, when α = 0, the intersectoral elasticity of substitution is equal to 1 and the second-stage
utility function collapses to the Cobb-Douglas case. The main effect of this modification is that the share
of expenditure on manufacture is no longer constant but it is affected by changes in the price indexes of
manufacture. This consequence is the source of most of the result of this paper.

Second, as in Murata (2008) in the context of a NEG model and Blanchard and Kiyotaki (1987) in a
macroeconomic context, we neutralize agents’ love for variety by setting to zero its parameter. Notice that in
the canonical NEGG framework the love for variety parameter takes the positive value 1

σ−1 , being tied to the
elasticity of substitution across varieties σ (intrasectoral elasticity henceforth)6. An analytical consequence of

4Analysing the localised spillover case is possible, but it will not significantly enrich the results and it will obscure the object
of our analysis.

5See Baldwin (1999) and Baldwin et al. (2004) for similar analysis with depreciation but with exogenous expenditure shares.
6Take an utility function U (CT .CM ) where CM = Vn (c1,..., cn) is homogeneous of degree one, with n being the number of

varieties. By adopting the natural normalization V1 (q1) = q1, we can define the following function:

γ(n) =
Vn(c, ..., c)

V1(nc)
=
Vn(1, ..., 1)

n

with γ(n) representing the gain in utility derived from spreading a certain amount of expenditure across n varieties instead
of concentrating it on a single one. The degree of love for variety v is just the elasticity of the γ(n) function:

v(n) =
nγ′(n)

γ(n)

In the standard NEGG framework CM =

(´ n
0 c

σ−1
σ

i di

) σ
σ−1

hence γ(n) = 1
σ−1

.
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abstracting from the love of variety is the emergence of the term nw
1

1−σ in the second-stage utility function:
this normalization neutralizes the dependence of the price index on the number of varieties allowing us to
concentrate the analysis on the influence of firms’ location and transport costs on the expenditure shares. We
do this for several reasons: 1) by abstracting from the love of variety, we are able to focus on the effect that a
non-unitary value of the intersectoral elasticity of substitution has on the equilibrium outcomes of the model;
2) as explained in detail in Cerina and Pigliaru (2007), by eliminating the love for variety when using a second-
stage CES utility we are able to solve some analytical problems related to the existence of a balanced growth
path and the feasibility of the no-specialization condition7; 3) our assumption has some empirical support as
shown by Ardelean (2007) according to which the value of the love of variety parameter is significantly lower
than what assumed in NEG models. Allowing for a larger-than-unity intersectoral elasticity of substitution,
requires the introduction of a natural restriction on its value relative to the one of the intrasectoral elasticity
of substitution. The introduction of two distinct sectors would in fact be useless if substituting goods from
the traditional to the manufacturing sector (and vice-versa) was easier than substituting goods within the
differentiated industrial sectors. In other words, in order for the representation in terms of two distinct
sectors to be meaningful, we need goods belonging to different sectors to be poorer substitutes than varieties
coming from the same differentiated sector. The formal expression of this idea requires that the intersectoral
elasticity of substitution 1

1−α is lower than the intrasectoral elasticity of substitution σ:

1
1− α

< σ

which means that α should be lower than σ−1
σ . This assumption, which will be maintained for the rest of

the paper, states that α cannot not be too high. It is worth to note that this assumption is automatically
satisfied in the standard Cobb-Douglas approach where 1

1−α = 1 and σ > 1.
The infinitely-lived representative consumer’s optimization is carried out in three stages. In the first

stage the agent intertemporally allocates consumption between expenditure and savings. In the second stage
she allocates expenditure between manufacture and traditional goods, while in the last stage she allocates
manufacture expenditure across varieties. As a result of the intertemporal optimization program, the path
of consumption expenditure E across time is given by the standard Euler equation:

Ė

E
= r − ρ (7)

with the interest rate r satisfying the no-arbitrage-opportunity condition between investment in the safe
asset and capital accumulation:

r =
π

F
+
Ḟ

F
(8)

where π is the rental rate of capital and F its asset value which, due to perfect competition in the I-sector,
is equal to its marginal cost of production.

In the second stage the agent chooses how to allocate the expenditure between manufacture and the
traditional good according to the following optimization program:

max
CM ,CT

Qt =
[
δ

(
nw

1
1−σ

CM

)α
+ (1− δ)CαT

] 1
α

(9)

s.t. : PMCM + pTCT = E

7The role of love for variety in our model is explained in details in Cerina and Pigliaru (2007) who introduce and study the
analytical implications of the following second-stage utility function

Qt =

[
δ

(
nw

1
1−σ+v

CM

)α
+ (1− δ)CαT

] 1
α

By setting v = 0 we obtain (5)

6



As a result of the maximization we obtain the following demand for the manufactured and the traditional
goods:

PMCM = µ

(
nw,

PM
pT

)
E (10)

pTCT =
(

1− µ
(
nw,

PM
pT

))
E (11)

where pT is the price of the traditional good, PM =
[´K+K∗

i=0
p1−σ
i di

] 1
1−σ

is the Dixit-Stiglitz perfect price

index and µ(nw, PMpT ) is the share of expenditure in manufacture which, unlike the CD case, is not exogenously
fixed but it is endogenously determined via the optimization process and it is a function of the total number
of varieties and of goods’ relative prices. This feature is crucial to our analysis.

The northern share of expenditure in manufacture is given by:

µ

(
nw,

PM
pT

)
=

 1

1 +
(
PM
pT

) α
1−α ( 1−δ

δ

) 1
1−α

(
nw

1
1−σ
)− α

1−α

 (12)

while the symmetric expression for the south is:

µ

(
nw,

P ∗M
p∗T

)
=

 1

1 +
(
P∗M
p∗T

) α
1−α ( 1−δ

δ

) 1
1−α

(
nw

1
1−σ
)− α

1−α

 (13)

so that northern and southern expenditure shares only differ because of the difference between northern
and southern relative prices.

Finally, in the third stage, the amount ofM− goods expenditure µ
(
nw, PMpT

)
E is allocated across varieties

according to the a CES demand function for a typical M -variety cj =
p−σj
P 1−σ
M

µ
(
nw, PMpT

)
E, where pj is variety

j’s consumer price. Southern optimization conditions are isomorphic.

2.3 Specialization Patterns and Non-Unitary Elasticity of Substitution

Due to perfect competition in the T -sector, the price of the agricultural good must be equal to the wage of
the traditional sector’s workers: pT = wT . Moreover, as long as both regions produce some T, the assumption
of free trade in T implies that not only price, but also wages are equalized across regions. It is therefore
convenient to choose home labour as numeraire so that:

pT = p∗T = wT = w∗T = 1

As a first consequence, northern and southern expenditure shares are now only function of the respective
industrial price indexes and of the total number of varieties so that we can write:

µ

(
nw,

PM
pT

)
= µ (nw, PM )

µ

(
nw,

P ∗M
p∗T

)
= µ (nw, P ∗M )

As it is well-known, it’s not always the case that both regions produce some T . An assumption is actually
needed in order to avoid complete specialization: a single country’s labour endowment must be insufficient
to meet global demand. Formally, the CES approach version of this condition is the following:

L = L∗ < ([1− µ(nw, PM )] sE + [1− µ(nw, P ∗M )] (1− sE))Ew (14)
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where sE = E
Ew is northern expenditure share and Ew = E + E∗.

In the standard CD approach, where µ(nw, PM ) = µ(nw, P ∗M ) = µ, this condition collapses to:

L = L∗ < (1− µ)Ew.

The purpose of making this assumption, which is standard in most NEGG models8, is to maintain the
M -sector and the I-sector wages fixed at the unit value: since labour is mobile across sector, as long as the
T - sector is present in both regions, a simple arbitrage condition suggests that wages of the three sectors
cannot differ. Hence, M− sector and I-sector wages are tied to T -sector wages which, in turn, remain fixed
at the level of the unit price of a traditional good. Therefore:

wM = w∗M = wT = wT = w = 1 (15)

Finally, since wages are uniform and all varieties’ demand have the same constant elasticity σ, firms’
profit maximization yields local and export prices that are identical for all varieties no matter where they
are produced: p = waM

σ
σ−1 . Then, imposing the standard normalization which assigns the value σ−1

σ to the
marginal labor unit requirement and using (??), we finally obtain:

p = w = 1 (16)

As usual, since trade in the M−good is impeded by iceberg import barriers, prices for markets abroad
are higher:

p∗ = τp; τ ≥ 1

By labeling as pijM the price of a particular variety produced in region i and sold in region j (so that
pij = τpii) and by imposing p = 1, the M−goods price indexes might be expressed as follows:

PM =

[ˆ n

0

(pNNM )1−σdi+
ˆ n∗

0

(pSNM )1−σdi

] 1
1−σ

= (sK + (1− sK)φ)
1

1−σ nw
1

1−σ (17)

P ∗M =

[ˆ n

0

(pNSM )1−σdi+
ˆ n∗

0

(pSSM )1−σdi

] 1
1−σ

= (φsK + 1− sK)
1

1−σ nw
1

1−σ (18)

where φ = τ1−σ is the so called "phi-ness of trade" which ranges from 0 (prohibitive trade) to 1 (costless
trade).

Substituting the new expressions for the M−goods price indexes in the northern and southern M−goods
expenditure shares, yields:

µ(sK , φ) =

 1

1 +
(

1−δ
δ

) 1
1−α (sK + (1− sK)φ)

α
(1−σ)(1−α)

 (19)

µ∗(sK , φ) =

 1

1 +
(

1−δ
δ

) 1
1−α (φsK + 1− sK)

α
(1−σ)(1−α)

 . (20)

As we can see the shares of expenditure in manufactures now depends on the localization of firms sK and
the freeness of trade φ.

We can make a number of important observations from analysing these two expressions.
8See Bellone and Maupertuis (2003) and Andrés (2007) for an analysis of the implications of removing this assumption.
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First, when the elasticity of substitution between the two goods is different from 1, (i.e. α 6= 0), north
and south expenditure shares differ (µ(sK , φ) 6= µ∗(sK , φ)) in correspondence to any geographical allocation
of the manufacturing industry except for sK = 1/2 (symmetric equilibrium). In particular, we find that9

α > (<) 0⇔ ∂µ

∂sK
=

α (1− φ)µ (1− µ)
(1− α) (σ − 1) ((sK + (1− sK)φ))

> (<) 0 (21)

α > (<) 0⇔ ∂µ∗

∂sK
=

α (φ− 1)µ∗ (1− µ∗)
(1− α) (σ − 1) ((sK + (1− sK)φ))

< (>) 0 (22)

Hence, when α > 0, production shifting to the north (∂sK > 0) leads to a relative increase in the southern
price index for the M goods because southern consumers have to buy a larger fraction of M goods from the
north, which are more expensive because of trade costs. Unlike the CD case, where this phenomenon had no
consequences on the expenditure shares for manufactures which remained constant across time and space,
in the CES case expenditure shares on M goods are influenced by the geographical allocation of industries
because they depend on relative prices and relative prices change with sK .

Secondly, the impact of trade costs is the following:

α > (<) 0⇒ ∂µ

∂φ
=

α(1− sK)µ (1− µ)
(1− α) (σ − 1) ((sK + (1− sK)φ))

> (<) 0 (23)

α > (<) 0⇒ ∂µ∗

∂φ
=

αsKµ
∗ (1− µ∗)

(1− α) (σ − 1) ((sK + (1− sK)φ))
> (<) 0 (24)

so that, when the two kinds of commodities are good substitutes (α > 0) economic integration gives rise to
an increase in the expenditure share for manufactured goods in both regions: manufactures are now cheaper
in both regions and since they are good substitutes of the traditional goods, agents in both regions will not
only increase their total consumption, but also their shares of expenditure. Obviously, the smaller the share
of manufacturing firms already present in the north (south), the larger the increase in expenditure share for
the M good in the north (south). The opposite happens when the two kinds of goods are poor substitutes:
in this case, even if manufactures are cheaper, agents cannot easily shift consumption from the traditional
to the differentiated good. In this case, even if total consumption on manufactures may increase, the share
of expenditure will be reduced.

Third, since sK is constant in steady-state by definition and φ is a parameter, expenditure shares on
industrial goods are constant in steady state, allowing for the existence of a balance growth path and for the
feasibility of the no-specialization condition. The latter, by using (15) and (16), can be written as follows:

L < ([1− µ(sK , φ)] sE + [1− µ∗(sK , φ)] (1− sE))Ew, ∀ (sK , φ) ∈ (0, 1) ⊂ R2. (25)

Since sE has to be constant by definition and even10:

Ew(sE , sK , φ) =
(2L− LI − L∗I)σ

sE (σ − µ(sK , φ)) + (1− sE) (σ − µ∗(sK , φ))
(26)

is constant in steady state, (??) can be accepted without any particular loss of generality. However, it
is important to highlight that, in the line of Andrès (2007), our analysis can be developed even without the
no-specialisation assumption.

3 Equilibrium and stability analysis

This section analyses the effects of our departures from the standard NEGG literature on the equilibrium
dynamics of the allocation of northern and southern firms.

9For simplicity’s sake we omit the arguments of the functions µ and µ∗.
10The expression for Ew can be found by using an appropriate labour market-clearing condition.
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Following Baldwin, Martin and Ottaviano (2001), we assume that capital is immobile. Indeed, capital
mobility can be seen as a special case of capital immobility (a case where profits are always equalized across
regions and ∂sE

∂sK
= 0). Moreover, as we shall see, capital mobility does not provide any significant departure

from the standard model from the point of view of the location equilibria: even when the intersectoral
elasticity of substitution is allowed to be different from the unit value, still every initial allocation of firms
is always stable. However, it should be clear that our analysis can be carried on even in the case of capital
mobility. In particular, the results of the growth analysis developed in section 4 holds whatever the assumption
on the mobility of capital.

In models with capital immobility the reward of the accumulable factor (in this case firms’ profits) is spent
locally. Thereby an increase in the share of firms (production shiftings) leads to expenditure shiftings through
the permanent income hypothesis. Expenditure shiftings in turn foster further production shiftings because,
due to increasing returns, the incentive to invest in new firms is higher in the region where expenditure is
higher. This is the demand-linked circular causality.

This agglomeration force is counterbalanced by a dispersion force, the market-crowding force, according
to which, thanks to the less than perfect substitutability between varieties, an increase in the number of firms
located in one region will decrease firms’ profits and then will give an incentive for firms to move to the other
region. The interplay between these two opposite forces will shape the pattern of the equilibrium location of
firms as a function of the trade costs. Such pattern is well established in NEGG models (Baldwin, Martin
and Ottaviano 2001, Baldwin at al. 2004, Baldwin and Martin 2004): in the absence of localized spillovers,
there is only one interior equilibrium, the symmetric allocation where the share of firms is evenly distributed
among the two regions. Moreover, since the symmetric equilibrium is stable when trade costs are high and
unstable when trade costs are low, catastrophic agglomeration always occurs when trade between the two
countries is easy enough. That happens because, even though both forces decreases as trade costs become
lower, the demand-linked force is lower than the market crowding force (in absolute value) when trade costs
are low, while the opposite happens when trade costs are high.

By adopting the CES approach we are able to question the robustness of such conclusions. First of
all, the symmetric equilibrium may not be the only interior equilibrium: while the latter is still a global
equilibrium (i.e. for any value of the parameters), two other non-symmetric interior equilibria emerge for
some intermediate value of trade costs. It is shown that these equilibria, when they exists, are stable when
the intersectoral elasticity of substitution is either higher than 1 or sufficiently low. By contrast, the non-
symmetric interior steady states are unstable when the elasticity of substitution is not-too smaller than 1. In
particular, not-too-poor substitution between the two kind of goods gives rise to a multiple equilibria pattern
with three different steady states (the symmetric and the two core-periphery allocations) stable at the same
time. In other words, if the economy starts from a non-symmetric equilibrium and trade costs are neither
too low or too high, a very small shock can give rise to a catastrophic agglomeration or to a catastrophic
dispersion.

The reasons of these departures can be found in the non-linearity of the no-arbitrage condition and in the
associated emergence of a new force, that we call expenditure share effect. This force fosters agglomeration
or dispersion depending on whether the T and theM−commodities are respectively good or poor substitutes.
By introducing this new force, which acts through the northern and southernM -goods expenditure shares, we
also show that, depending on the different values of the intersectoral elasticity of substitution, the symmetric
equilibrium might be unstable for every value of trade costs. We will now explore the mechanism in detail.

3.1 Tobin’s q and Steady-state Allocations

Before analysing the equilibrium dynamics of firms’ allocation, it is worth reviewing the analytical approach
according to which such analysis will be carried on. As in standard NEGG models, we will make use of the
Tobin’s q approach (Baldwin and Forslid 1999 and 2000). We know that the equilibrium level of investment
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(production in the I sector) is characterized by the equality of the stock market value of a unit of capital
(denoted with the symbol V ) and the replacement cost of capital, F . With E and E∗ constant in steady
state, the Euler equation gives us r = r∗ = ρ. Moreover, in steady state, the growth rate of the world capital
stock Kw (or of the number of varieties) will be constant and will either be common (g = g∗ in the interior
case) or north’s g (in the core-periphery case)11. In either case, the steady-state values of investing in new
units of K are:

V =
π

ρ+ g
;V ∗ =

π∗

ρ+ g
.

Firms’ profit maximization and iceberg trade-costs lead to the following expression for northern and
southern firms’ profits:

π = B(sE , sK , φ)
Ew

σKw
(27)

π∗ = B∗(sE , sK , φ)
Ew

σKw
(28)

where
B(sE , sK , φ) =

[
sE

sK + (1− sK)φ
µ(sK , φ) +

φ (1− sE)
φsK + (1− sK)

µ∗(sK , φ)
]

and
B∗(sE , sK , φ) =

[
sEφ

sK + (1− sK)φ
µ(sK , φ) +

1− sE
φsK + (1− sK)

µ∗(sK , φ)
]

Notice that this expression differs from the standard NEGG in only one respect: it relies on endogenous
M−good expenditure shares which now depend on sE , sK and φ.

By using (2), the labour market condition and the expression for northern and southern profits, we obtain
the following expression for the northern and southern Tobin’s q:

q =
V

F
= B(sE , sK , φ)

Ew

(ρ+ g)σ
(29)

q∗ =
V

F
= B∗(sE , sK , φ)

Ew

(ρ+ g)σ
(30)

Where will investment in K will take place? Firms will decide to invest in the most-profitable region,
i.e., in the region where Tobin’s q is higher. Since firms are free to move and to be created in the north or in
the south (even though, with capital immobility, firm’s owners are forced to spend their profits in the region
where their firm is located), a first condition characterizing any interior equilibria (g = g∗) is the following:

q = q∗ = 1 (31)

The first equality (no-arbitrage condition) tells us that, in any interior equilibrium, there will be no
incentive for any firm to move to another region. While the second (optimal investment condition) tells us
that, in equilibrium, firms will decide to invest up to the level at which the expected discounted value of the
firm itself is equal to the replacement cost of capital. The latter is crucial in order to find the expression
for the rate of growth but it will not help us in finding the steady state level of sK . Hence, we focus on the
former. By using (??), (??), (??) and (??) in (??) we find the steady-state relation between the northern
market size sE and the northern share of firms sK which can be written as:

11By time-differentiating sK = K
Kw

, we obtain that the dynamics of the share of manufacturing firms allocated in the north
is

ṡK = sK (1− sK)

(
K̇

K
−
K̇∗

K∗

)
so that only two kinds of steady-state (ṡK = 0) are possible: 1) a steady-state in which the rate of growth of capital is

equalized across countries (g = g∗); 2) a steady-state in which the manufacturing industries are allocated and grow in only one
region (sK = 0 or sK = 1).
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sNE (sK , φ)=
µ∗(sK , φ) (sK + (1− sK)φ)

µ(sK , φ) (φsK + (1− sK)) + µ∗(sK , φ) (sK + (1− sK)φ)
(32)

The other relevant equilibrium condition is given by the definition of sE when labour markets clear. This
condition, also called permanent income condition, gives us a relation between northern market size sE and
the share of firms owned by northern entrepreneurs sK :

sPE(sK) =
E

Ew
=
L+ ρsK
2L+ ρ

(33)

By subtracting the two functions, we define a new implicit function sK whose zeros represent the interior
steady state allocations of our economy:

f (sK , φ) = sNE (sK , φ)− sPE (sK) . (34)

We define an interior steady state allocation as any value of s∗K ∈ (0, 1) such that f (s∗K , φ) = 0. It is easy
to see that the symmetric allocation sK = 1

2 is always an equilibrium, as in this case f
(

1
2 , φ
)

= 1
2 −

1
2 = 0. In

order to fully capture the role of expenditure shares, it is worth concentrating on the properties of f (sK , φ)
as it governs all the results related on the number of equilibria and their stability. While the permanent
income relation is not affected by endogenous expenditure shares - sPE (sK) is a straight line increasing in
sK both in the with unitary or non-unitary intersectoral elasticity of substitution - the main source of all
the deviations from the standard case can be traced back to the non-linearity of sNE (sK , φ) - and then of f
- induced by endogenous expenditure shares. In the standard case, where µ(sK , φ) = µ∗(sK , φ) = µ for any
(sK , φ) ∈ [0, 1]2 , sNE (sK , φ) reduces to

sNE (sK , φ)=
sK + (1− sK)φ

1 + φ

It is then linear in both sK and φ, being increasing in the former and decreasing in the latter. Such double
linearity has two main consequences: first the symmetric steady state is also the unique interior steady state;
second, trade costs only affect the slope of sNE (sK , φ) with respect to sK - and accordingly the stability of
the symmetric equilibrium - but not its second derivative which is always nil for any values of φ. Things
are much more complicated - yet readable and insightful, when expenditure shares are endogenous. In this
case sNE (sK , φ) is still increasing in sK , but it loses its linearity becoming S-shaped or inverted S-shaped
according to different values of α and all other relevant parameters. This non-linearity gives rise, for some
intermediate values of trade costs, to two new intersections with sPE(sK) on the bi-dimensional plane(sE , sK),
thereby opening the door to a multiple equilibria pattern. Moreover, as ∂sNE (sK ,φ)

∂sK
- which has a crucial

role on equilibria stability - is now affected by changes in φ, trade costs now affect both the slope and the
curvature ofsNE (sK , φ) so that both uniqueness/multiplicity and stability patterns can be analysed in their
changing behaviour as trade costs gets freer. In what follows, we perform such formal analysis in detail.
Although closed form solutions for break and sustain points of φ are not possible, a rich qualitative analysis
of uniqueness/multiplicity and stability patterns - and the linkage between the two - can nevertheless be
obtained.

3.2 Interior steady states

In the proposition contained in this section, whose long proof is confined in the appendix, we provide the
necessary and sufficient condition for the interior steady state to be unique or threefold. However, before
stating it, it will be useful to define a new function. Consider f (sK , φ) as defined in (??). By using (??) and
(??), it can also be written as

f (sK,φ) =
(sK + (1− sK)φ) + Z (sK + (1− sK)φ)x

1 + φ+ Z (sK + (1− sK)φ)x + Z (φsK + 1− sK)x
− L+ ρsK

2L+ ρ

12



where Z =
(

1−δ
δ

) 1
1−α ∈ (0,∞) and x = σ(1−α)−1

(σ−1)(1−α) ∈ (0,∞) , so that α > (<)0 ⇔ x < (>)1 (in the
standard case, x = 1 , i.e. α = 0).

Also notice that f (·) is symmetric with respect to the point
(

1
2 , f

(
1
2

))
,meaning that f (sK) = −f (1− sK).

This symmetry is very important as it allows us to limit the analysis to the interval s ∈
[
0, 1

2

)
and then extend

it to the rest of the interval sK ∈
[
1
2 , 1
]
by simply respecting the symmetry rule.

Now, define the function

h (sK , φ) = f (sK , φ) k (sK , φ) (35)

= (2sK − 1) (L− φ (L+ ρ)) +
(L+ ρ (1− sK))Z

(sK + (1− sK)φ)−x
− (L+ ρsK)Z

(φsK + 1− sK)−x
(36)

Where k (sK , φ) = [1 + φ+ Z (sK + (1− sK)φ)x + Z (φsK + 1− sK)x] (2L+ ρ) is simply the product of
the two denominators in f.

Since k (sK , φ) > 0 for every sK ∈ [0, 1], we have that f (sK , φ) = 0⇔ h (sK .φ) = 0: every zero of h (·) is
also an interior steady state and vice-versa. In particular, it is easy to see that h

(
1
2 , φ
)

= 0. Also notice that

∂h(sK , φ)
∂sK

=
∂f(sK , φ)
∂sK

k (sK , φ) +
∂k(sK , φ)
∂sK

f (sK , φ)

but since f
(

1
2 , φ
)

= 0 we also have

∂h( 1
2 , φ)

∂sK
=
∂f( 1

2 , φ)
∂sK

k

(
1
2
, φ

)
(37)

so that sign
[
∂h( 1

2 ,φ)

∂sK

]
= sign

[
∂f( 1

2 ,φ)

∂sK

]
. Given, these properties we prefer to concentrate on h (sK .φ) as

it is much easier to deal with from the mathematical point of view. We are now ready to state our first
proposition.

Proposition 1 (Number of interior steady states) The system displays one or three interior steady state
allocations: the symmetric allocation sK = 1

2 (which is a “global” interior steady state) and two non-symmetric
allocations: s∗K (L, x, ρ, φ, Z) and s∗∗K (L, x, ρ, φ, Z) = 1 − s∗K (L, x, ρ, φ, Z) which may emerge only for some

values of the parameters. The interior steady state is unique and equal to 1
2 when f (0, φ)

∂f( 1
2 ,φ)

∂sK
≤ 0, while

there are 3 interior steady states when f (0, φ)
∂f( 1

2 ,φ)
∂sK

> 0.

Proof. See the appendix.
This proposition provides a necessary and sufficient condition for the uniqueness/multiplicity of steady

states. It states that, given the monotonicity of ∂f(sK ,φ)
∂sK

in the interval
[
0, 1

2

)
and the symmetry of f ,

uniqueness is guaranteed when f (0, φ), (i.e. the intercept of f in sK = 0) and
∂f( 1

2 ,φ)
∂sK

(i.e. the slope of f in
the symmetric equilibrium) have opposite sign.

Despite its importance, proposition 1 is not particularly informative as long as we don’t provide an

analysis concerning the way f (0, φ)
∂f( 1

2 ,φ)
∂sK

changes sign as trade costs decline. As figure ?? suggests, as
trade costs affect both the intercept and the slope of h in terms of sK , uniqueness/multiplicity patterns are
highly sensitive to market integration. Moreover, as we will see, there is always a feasible value of φ such that
the economy switches from a regime of unique steady state to a regime of multiple steady state, whatever
the degree of substitutability between goods.

Because of the crucial linkages with the stability issues, such analysis will be performed in the section 3.4
together with the stability map.
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Figure 1: How trade costs affect the number of interior steady states (x = 0.5)

3.3 Core-periphery steady states

As for core-periphery equilibria, things are much simpler. As already anticipated, interior steady states are
not the only allocations where the regional share of industrial firm is constant: sK is constant (ṡK = 0) even
when it is equal to either 1 or 0, i.e., when the whole industrial sector is located in only one region. Since
the two core-periphery allocations are perfectly symmetric, we just focus on the first where the North gets
the core. By following Baldwin and Martin (2004), we consider for sK = 1 to be an equilibrium, it must be
that q = V/F = 1 and q∗ = V ∗/F ∗ < 1 for this distribution of capital ownership: continuous accumulation
is profitable in the north since V = F , but V ∗ < F so no southern agent would choose to setup a new firm.
Defining the core-periphery equilibrium this way, it implies that it is stable whenever it exists.

3.4 Stability map of equilibria

In this section we provide a complete stability map for the equilibria of our economy. As we will see, this
analysis is intimately linked to the issue of the number of interior steady states. At the end of this section
we will be able to state, for any value of the trade costs, the existence and stability of any kind of steady
state (symmetric, non-symmetric or core-periphery) Following Baldwin and Martin (2004)12 we consider the
ratio of northern and southern Tobin’s q:

q

q∗
=

B(sE , sK , φ)
B∗(sE , sK , φ)

=

[
sE

sK+(1−sK)φµ(sK , φ) + φ(1−sE)
φsK+(1−sK)µ

∗(sK , φ)
]

[
sEφ

sK+(1−sK)φµ(sK , φ) + 1−sE
φsK+(1−sK)µ

∗(sK , φ)
] = γ (sE , sK , φ) (38)

Starting from any interior steady-state allocation where γ (sE , sK , φ) = 1, any increase (decrease) in
γ (sE , sK , φ) will make investments in the North (South) more profitable and thus will lead to a production
shifting to the North (South). Hence any allocation will be stable if a production shifting, say, to the north
(∂sK > 0) will reduce γ (sE , sK , φ). By contrast, if γ (sE , sK , φ) will increase following an increase in sK ,

then the equilibrium is unstable and agglomeration or dispersion processes might be activated.
We remind that this method is the same employed by standard NEGG models. The only and crucial

difference is that, in our framework, the northern and southern expenditure shares µ (sK , φ) and µ∗ (sK , φ)

12A more formal stability analysis, involving the study of the sign of the Jacobian associated to dynamic system in E, E∗ and
sK , has been carried out and its results are identical to those reported in this section. Such calculations are available at request.
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play a crucial role because their value is not fixed but depends on geography and trade costs.
Taking the derivative of γ (sE , sK , φ) with respect sK and then using the no-arbitrage condition (which

must be true in every interior steady state) we find

∂γ (sE (sK) , sK , φ)
∂sK

= A (sK , φ)−B (sK , φ) + C (sK , φ) (39)

where

A (sK , φ) =
(
dµ

dsK
/µ− dµ∗

dsK
/µ∗
)

(1− φ)
(1 + φ)

: expenditure share effect

B (sK , φ) = − (1− φ)2

(sK + (1− sK)φ) (φsK + (1− sK))
: market crowding effect

C (sK , φ) =
(1− φ)
(1 + φ)

dsE (sK)
dsK

(µ (φsK + (1− sK)) + µ∗ (sK + (1− sK)φ))2

µµ∗ (sK + (1− sK)φ) (φsK + (1− sK))
: demand effect

The last two forces are the same we encounter in the standard NEGG model and they are the formal
representation of, respectively, the market-crowding effect and the demand-linked effect. In the standard
model, the stability of the equilibrium is the result of the relative strength of just these two forces. The first
force represents the novelty of our model. In the standard case, where µ∗ (sK , φ) = µ (sK , φ) = µ and then
∂µ
∂sK

= ∂µ∗

∂sK
= 0, this force simply does not exist. We dub this force as the expenditure share effect in

order to highlight the link between the existence of this force and the fact that the expenditure shares are
endogenous (thanks to a non-unitary value of the intersectoral elasticity of substitution). As we will see in
detail below, the expenditure share effect might be a stabilizing (when negative) or destabilizing one (when
positive) depending on whether the manufactured and the traditional good are respectively poor (α < 0) or
good (α > 0) substitutes.

But what is the economic intuition behind this force? Imagine a firm moving from south to north
(∂sK ≥ 0). For a given value of φ, this production shifting reduces the manufactured good price index in the
North and increases the one in the South. In the standard case, where the manufactured and the traditional
goods are neither good nor poor substitutes, this relative change in the price levels has no effect on the
respective expenditure shares. By contrast when the intersectoral elasticity of substitution is allowed to vary
from the unitary value, the shares of expenditure change with the M−price index and hence with sK . In
particular, when the manufactured and the traditional goods are good substitutes (α > 0), a reduction in
the relative price level in the North leads to an increase

(
∂µ
∂sK
≥ 0
)
in the northern expenditure shares and a

decrease
(
∂µ∗

∂sK
≤ 0
)
in the southern expenditure shares, then increasing the relative market size in the north

and providing an (additional) incentive to the southern firms to relocate in the north. The opposite ( ∂µ∂sK ≤ 0
and ∂µ∗

∂sK
≥ 0) happens when the manufactured and the traditional goods are poor substitutes (α < 0): in

this case, southern relative market size increases and this gives an incentive for the moving firm to come back
home. This is why, when the M and the T goods are good substitutes the expenditure share effect acts as
an destabilizing force, while the opposite happens when the M and the T goods are poor substitutes. In the
existing literature the expenditure share effect is not activated since dµ

dsK
/µ = dµ∗

dsK
/µ∗ = 0.

More formally, any interior equilibria is stable (unstable) when

∂γ (sE , sK , φ)
∂sK

≤ (>) 0.

By (??) and (??) that happens when

dsPE (sK)
dsK

=
ρ

2L+ ρ
≤ (>)

µµ∗
(
1− φ2

)
−
(
dµ
dsK

µ∗ − dµ∗

dsK
µ
)

(sK + (1− sK)φ) (φsK + (1− sK))

(µ (φsK + (1− sK)) + µ∗ (sK + (1− sK)φ))2
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By computation we find that

∂sNE (sK , φ)
∂sK

=
µµ∗

(
1− φ2

)
−
(
dµ
dsK

µ∗ − dµ∗

dsK
µ
)

(sK + (1− sK)φ) (φsK + (1− sK))

(µ (φsK + (1− sK)) + µ∗ (sK + (1− sK)φ))2

This proves the following proposition

Proposition 2 In any interior equilibrium we have sign∂γ(sE ,s
∗
K ,φ)

∂sK
= −sign∂f(s∗K ,φ)

∂sK
. Therefore each inte-

rior steady state s∗K allocation is stable (unstable) whenever

∂f(s∗K , φ)
∂sK

=
µµ∗ (1− φ) [(1 + φ)− (1− x) (2− µ− µ∗) (φsK + (1− sK))]

(µ (φsK + (1− sK)) + µ∗ (sK + (1− sK)φ))2
− ρ

2L+ ρ
≥ (<) 0

.

In other words, any interior equilibria is stable (unstable) if the graph of f in the plane (sK , f (sK , φ))
crosses the horizontal axis with positive (negative) inclination.

Proposition 2 has several very important implications.
The first implication concerns the fact that the particular shape of the function f (and then h) allows

us to focus only on the value of this derivative in sK = 1
2 in order to deduce the stability properties of each

(interior or core-periphery) steady state. It is in fact straightforward, by proposition 1 and by continuity and
symmetry of f (and then h) that the sign of ∂f(s∗K ,φ)

∂sK
in the symmetric equilibrium must be opposite to the

sign of the same derivative in the two interior non-symmetric equilibria
More formally, if s∗K ∈

(
0, 1

2

)
is a non-symmetric steady state for some φ, then we have(

∂f(s∗K , φ)
∂sK

)(
∂f( 1

2 , φ)
∂sK

)
=
(
∂f(1− s∗K , φ)

∂sK

)(
∂f( 1

2 , φ)
∂sK

)
< 0. (40)

As a consequence, by proposition 2, the non-symmetric equilibria (when they exists) are unstable when
the symmetric equilibrium is stable and vice versa. By applying a similar reasoning we can conclude that
sK = 0 and sK = 1 are (local) attractors, and therefore the two core-periphery equilibria exists, only when
the non-symmetric interior steady states exist and are unstable or when the symmetric steady state is unique
and unstable.

The second implication is that the sign of ∂f(
1
2 ,φ)

∂sK
is not only informative on the stability of any kind of

equilibria, but it is also a determinant of the uniqueness or multiplicity regime. It is therefore necessary to
study how the sign of this derivative changes with the trade costs in order to gain simultaneous informations
on the number of equilibria and on their stability as trade costs decline.

3.4.1 The sign of ∂f( 1
2 ,φ)

∂sK

Such derivative can be written as

∂f
(

1
2 , φ
)

∂sK
= (x− 1)

(
1− µ

(
1
2
, φ

))
(1− φ)
(1 + φ)︷ ︸︸ ︷

Expenditure share

+
(1− φ)
(1 + φ)︷ ︸︸ ︷

Market-crowding

− ρ

2L+ ρ︷ ︸︸ ︷
Demand-linked

where, we remind, x = σ(1−α)−1
(σ−1)(1−α) ∈ (0,∞) , so that α > (<)0⇔ x < (>)1. Again, it is easy to see that

when x < 1 the expenditure share effect is an agglomeration force. In this case, in fact, it will contribute

to reduce the value
∂f( 1

2 ,φ)
∂sK

being negative as the demand-linked force. The opposite happens when x > 1:
in this case the expenditure share effect has the same sign of the market-crowding effect and it acts as a
dispersion force. Needless to say, when x = 1, the expenditure share effect just vanishes and the model
collapses to the standard one.
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A second implication that can be drawn from this expression is that, as long as 1
1−α < σ, and therefore

x > 0, we always have

(x− 1)
(

1− µ
(

1
2
, φ

))
(1− φ)
(1 + φ)

Expenditure share effect

+
(1− φ)
(1 + φ)

Market-crowding effect

≥ 0 for any φ ∈ [0, 1] (41)

so that the expenditure share effect will never offset the market-crowding effect. From this result, we can
derive a corollary for the capital mobility case. In this case, sn should not equal sK , profits are equalized
among regions (so that f is always zero) and, above all, there is no permanent income condition so that
∂sE
∂sK

= 0. Hence the stability condition reduces to (??) and, just as in the standard case, the symmetric
steady-state is always stable when capital is mobile.

But our main interest is to find the set of values of the freeness of trade such that
∂f( 1

2 ,φ)
∂sK

is positive
(negative) and then the symmetric steady state is stable (unstable). In other words, we aim to investigate the
existence of a break-point, that is the value of φ above which the stability of the interior equilibria is broken,
and then an infinitesimal production shifting in the North (South) will trigger a self-reinforcing mechanism
which will lead to a non-symmetric outcome. In the standard CD case, since α = 0, we have that:

∂f
(

1
2 , φ
)

∂sK
< 0⇔ φ > φCDB

where φCDB = L
L+ρ is the break-point level of the trade costs. Since φCDB ∈ (0, 1) , there is always a

feasible value of the trade costs above which the interior equilibrium turns from stable to unstable and then
agglomeration will take place. Moreover, such value is always unique as both forces (market crowding and
demand-linked) are decreasing in φ in absolute value. In our model, it is not possible to calculate an explicit
value for the break-point. That’s because φ enters the expression for µ (1/2, φ) as a non-integer power.
Nonetheless, we can perform a qualitative analysis and draw several implications from the existence of the
expenditure share effect. Actually, the presence of our additional force will introduce the possibility of some
additional outcomes which was excluded from the standard CD case.

First notice that, when φ = 1 we surely have

∂f
(

1
2 , 1
)

∂sK
< 0

so that, by continuity of
∂f( 1

2 ,φ)
∂sK

with respect to φ, there is always an interval of the kind
(
φ
′

B , 1
]
such

that the symmetric equilibrium is always unstable for any φ ∈
(
φ
′

B , 1
]
. From this perspective, the prediction

of the standard model are robust: when trade costs are low enough the symmetric equilibrium is always
unstable and (as we will see) the core-periphery equilibrium is stable as no other interior equilibria exist.

What happens when trade costs are very high? In this case, for φ = 0, we have

∂f
(

1
2 , 0
)

∂sK
≥ (<) 0⇐⇒ x− 1 ≥ (<)− 2L

2L+ ρ

1
1− µ

(
1
2 , 0
)

.
While this inequality always holds in the CD case (since x = 1 and the RHS is negative) - meaning

that the symmetric equilibrium is always stable when trade costs are high enough, it might not hold in our
general approach when x is sufficiently lower than 1 and the RHS is sufficiently small in absolute value. As

a consequence, when
∂f( 1

2 ,φ)
∂sK

is always decreasing in φ, and we’ll see this is always the case when x < 1,
we have that the break point φB is unique and negative, meaning that agglomeration occur for any level of
trade costs and the symmetric equilibrium is never stable. By contrast, when x is not too low, and then the
agglomeration force induced by the expenditure share effect is not too strong or it is actually a dispersion
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force, then
∂f( 1

2 ,0)
∂sK

> 0 and, by continuity arguments, there is always an interval of the kind
[
0, φ

′′

B

]
such

that the symmetric steady state is always stable for any φ ∈
[
0, φ

′′

B

]
.

Is it always the case that φ
′

B = φ
′′

B? Or, in words, is there always a unique value of φ above which the
symmetric equilibrium switch from stable to unstable and then the break point is unique with non-unitary
elasticity of substitution as well? Unfortunately we cannot give a positive answer to this question. Indeed the

answer would have been positive if we could guarantee that
∂f( 1

2 ,φ)
∂sK

is always decreasing in φ The latter is in
fact a sufficient (but not necessary) condition for a single break-point to exist. However, when x is very high,
the expenditure share effect may not be monotonically decreasing in φ and, in some cases, this non-linearity

in φ might give rise to a double break-point! A careful look at the partial derivative of
∂f( 1

2 ,φ)
∂sK

with respect
to φ will convince us

∂2f
(

1
2 , φ
)

∂sK∂φ
< 0⇔ (1− x)2 (1− φ)2 µ (1− µ) < x (1− µ) + µ (42)

Even though
∂2f( 1

2 ,φ)
∂sK∂φ

is always negative when φ is sufficiently close to 1, the term (1− x)2 on the LHS can
be very large when x is big and it can prevent condition (??) to be satisfied. Hence, as figure ?? illustrates

Figure 2: The possibility of double break point (L=2, ρ = 0.5, Z=1)

there can be an interval of φ, call it
(
φS , φ

′

B

)
, where the symmetric equilibrium gains stability back before

losing it once again when φ reaches
(
φ
′

B , 1
]
. Such highly complex behaviour, which is nevertheless a feasible

outcome of the model, is ruled out when x is low enough. Unfortunately it is not possible to express the
maximum value of x, call it x̂, as a function of the remaining parameters. In order to avoid any additional
complexity, the equilibrium analysis is intended to be limited to a range of x belonging to the interval (0, x̂).
We believe this is not a significantly loss of generality as x̂ is surely larger than 2 and tends to infinity as φ
tends to 1.13 In any case, the appendix will provide a sketch of the highly complex behaviour of the model
in case x > x̂.

13By exploting the relationship between f and h and the fact that their partial derivative with respect to sK evaluated in
sK = 1

2
must have the same sign, it is possible to show that

x̂ > 1 +
2 (L+ ρ) (1 + φ)

(2L+ ρ) (1− φ)
> 2
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When x ∈ (0, x̂) then it is guaranteed that φ
′

B = φ
′′

B = φB and φB is the unique break-point of our model

∂f
(

1
2 , φ
)

∂sK
≤ (>)0⇐⇒ φ ≤ (>)φB . (43)

Once we have ruled out the possibility of double break-points, we can compare φB with the break-point

of the CD case. By straightforward computation, we find that
∂f( 1

2 ,φ)
∂sK

= 0 implies

(1− x) =
2 (L+ ρ)

(1− µ (1/2, φ)) (1− φ) (2L+ ρ)
(
φCDB − φ

)
(44)

Since 2(L+ρ)
(1−µ(1/2,φ))(1−φ)(2L+ρ) is always positive, (1− x) and

(
φCDB − φ

)
must have the same sign, meaning

that the break-point in our model may be higher or lower than φCDB depending on whether the intersectoral
elasticity of substitution is larger or smaller than 1. Formally:

φB < φCDB ⇔ α > 0

φB > φCDB ⇔ α < 0

In other words, and quite intuitively, the presence of an additional agglomeration force (the expenditure
share effect when α > 0), shifts the break-point to a lower level so that catastrophic agglomeration is more
likely and it occurs for a larger set of values of φ. By contrast, when the expenditure share effect acts as a
dispersion force (α < 0), the break-point shifts to an upper level so that catastrophic agglomeration is less
likely as it occurs for a smaller set of values of φ.

Summing up, we have shown that, when x < x̂, there is always a value of freeness of trade, φB < 1, above
which the symmetric steady state looses stability. This is the break-point of our economy. φB can be larger
or smaller than φCDB according to whether the traditional and the industrial goods are respectively good or
poor substitutes. Finally, when the two commodities are very good substitutes, it might be that φB < 0: if
this is the case the symmetric equilibrium is always unstable.

As already anticipated, the way
∂f( 1

2 ,φ)
∂sK

changes sign with φ does not only matter for stability but, as
proposition 1 shows, it is also a determinant for the number of interior steady state of the model. In order
to see how the number of equilibria changes with φ we also need to know the behaviour of h (0, φ). This will
be the topic of the next section.

3.4.2 The sign of f (0, φ) and the way trade costs affect the number of equilibria

As for f (0, φ), things are much much easier:

f (0, φ) ≤ (>)0⇐⇒ φ+ Zφx

1 + Z
≤ (>)

L

L+ ρ

as φ+Zφx is always decreasing in φ, and f (0, 0) f (0, 1) < 0, there is always a unique and positive value
of φ, call it φ̂, such that f (0, φ) = 0:

f (0, φ) ≤ (>)0⇐⇒ φ ≤ (>)φ̂. (45)

Once we are sure that there f (0, φ) and
∂f( 1

2 ,φ)
∂sK

change sign for only one value of φ, respectively φ̂ and
φB , we are ready to state the following proposition, which provide the necessary and sufficient conditions for
the interior steady state to be unique or threefold in terms of φ.

Proposition 3 The interior steady state is unique when φ ∈
[
0,min

(
φ̂, φB

)]
∩
[
max

(
φ̂, φB

)
, 1
]
while there

are three interior steady states when φ ∈
(
min

(
φ̂, φB

)
,max

(
φ̂, φB

))
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Proof. Using (??) and (??) and recalling that sign [h (0, φ)] = sign [f (0, φ)] and sign
[
∂h( 1

2 ,φ)
∂sK

]
= sign

[
∂f( 1

2 ,φ)
∂sK

]
we conclude that

h (0, φ)
∂h
(

1
2 , φ
)

∂sK
≤ 0⇐⇒ φ ∈

[
0,min

(
φ̂, φB

)]
∩
[
max

(
φ̂, φB

)
, 1
]

(46)

while

h (0, φ)
∂h
(

1
2 , φ
)

∂sK
> 0⇐⇒ φ ∈

(
min

(
φ̂, φB

)
,max

(
φ̂, φB

))
(47)

and the proposition is proven
This proposition basically states that multiple interior steady states always appear for some (intermediate)

values of trade costs. When φ is lower than the minimum between φ̂ and φB , f (0, φ)
∂f( 1

2 ,φ)
∂sK

is not positive
and the same happens when φ is larger than the maximum between φ̂ and φB . As a consequence of the

previous analysis on the sign of both f (0, φ) and
∂f( 1

2 ,φ)
∂sK

the symmetric equilibrium is the unique interior
equilibrium. By contrast, when φ is between φ̂ and φB , being the former larger than the latter or vice versa,

then f (0, φ)
∂f( 1

2 ,φ)
∂sK

is positive and two additional non-symmetric interior equilibria appear. It is worth

noting that the condition φ ∈
(
min

(
φ̂, φB

)
,max

(
φ̂, φB

))
also encompasses the case when φB < 0.

We are finally ready to join the uniqueness and the stability analysis and to see how the stability and the
number of equilibria are simultaneously affected by trade costs.

3.4.3 Trade costs, the number of equilibria and their stability

Since the number of interior equilibria is decided by the sign of f (0, φ)
∂f( 1

2 ,φ)
∂sK

, when φ becomes larger than
φB we have simultaneous consequences on both the stability pattern and on the number of interior equilibria.
What is really crucial in this respect is the comparison between φB and φ̂. We can then distinguish among
three different cases:

• φB < 0 < φ̂ : in this case we distinguish between two regions within the set of feasible values of
φ:
[
0, φ̂
)
and

[
φ̂, 1
)
. In both regions the symmetric equilibrium is always unstable (we are in the

case where x is very low and the two commodities are very close substitutes). Hence, we always

have ∂f( 1
2 ,φ)

∂sK
< 0. When φ belongs to the region

[
0, φ̂
)
, f (0, φ) is negative so that f (0, φ)

∂f( 1
2 ,φ)

∂sK

is positive. As a consequence, when this is the case, for high trade costs there are two stable non-
symmetric interior equilibria. As φ increases and reaches the region

[
φ̂, 1
)
, f (0, φ) becomes positive

so that f (0, φ)
∂f( 1

2 ,φ)
∂sK

switches to negative and the two non-symmetric interior equilibria collapse to
the core-periphery equilibria while the symmetric equilibrium remains unstable (see fig. ??).

• 0 < φB < φ̂ : In this case we distinguish the following regions within the set of feasible values of
φ: [0, φB),

[
φB , φ̂

)
and

[
φ̂, 1
)
. In the first region, when φ ∈ [0, φB), ∂f( 1

2 ,φ)

∂sK
is positive and f (0, φ)

is negative so that f (0, φ)
∂f( 1

2 ,φ)
∂sK

is negative. As a consequence, the symmetric equilibrium is stable

and unique. As φ increases and reaches the second region
[
φB , φ̂

)
, ∂f( 1

2 ,φ)

∂sK
becomes negative when

f (0, φ) is still negative. Hence f (0, φ)
∂f( 1

2 ,φ)
∂sK

turns from negative to positive. Therefore in this region
of intermediate trade costs the symmetric equilibrium looses its stability and two new stable non-
symmetric interior equilibria emerge. When φ reaches the third region and becomes larger than φ̂, then

f (0, φ) becomes positive and, while
∂f( 1

2 ,φ)
∂sK

remains negative, f (0, φ)
∂f( 1

2 ,φ)
∂sK

turns negative again. As
a consequence, in this third region of trade costs the symmetric equilibrium turns to be unique still
being unstable and two core-periphery equilibria emerge (see fig. ??). 14
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Figure 3: Stability map when φB < 0 < φ̂

Figure 4: Stability map when 0 < φB < φ̂

• 0 < φ̂ < φB : in this case the regions of trade costs are the following
[
0, φ̂
)
,
[
φ̂, φB

)
and [φB , 1). In the

first region, when φ ∈
[
0, φ̂
)
, things are identical to the previous case:∂f(

1
2 ,φ)

∂sK
is positive and f (0, φ)

is negative so that f (0, φ)
∂f( 1

2 ,φ)
∂sK

is negative. As a consequence, again, the symmetric equilibrium is

stable and unique. As φ increases and reaches the second region
[
φ̂, φB

)
, f (0, φ) becomes positive when

∂f( 1
2 ,φ)

∂sK
is still positive. Again f (0, φ)

∂f( 1
2 ,φ)

∂sK
turns from negative to positive, leading to the emergence

of multiple interior equilibria but now the new emerging non-symmetric interior steady states are
unstable because the symmetric equilibrium is still stable being φ ∈

[
φ̂, φB

)
. As a consequence, in

this region of intermediate trade costs we have a new and very interesting multiple equilibria regime
with the symmetric equilibrium and two core-periphery equilibria which are stable at the same time.
That means that, when φ ∈

[
φ̂, φB

)
, starting from an (unstable) interior non-symmetric equilibrium,

a small shock in either direction may lead to catastrophic agglomeration or to catastrophic dispersion.

When φ reaches the third region and becomes larger than φB , then
∂f( 1

2 ,φ)
∂sK

becomes positive and

f (0, φ)
∂f( 1

2 ,φ)
∂sK

, while f (0, φ) remains negative, turns negative again. As a consequence, exactly as in

14From this viewpoint φ̂ can be assimilated to the sustain point introduced by Baldwin et al. (2001), i.e. the value of trade
costs such that the core-periphery equilibria emerge. Even in their model, in fact, the symmetric equilibrium looses its stability
before the emergence of the core-periphery equilibria. As a consequence, the break-point smaller than the sustain point and
catastrophic agglomeration is ruled out.
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the previous case, in this third region of trade costs the symmetric equilibrium turns to be unique and
unstable and two core-periphery equilibria emerge (see fig. ??).

Figure 5: Stability map when 0 < φ̂ < φB

Leaving aside the first case (which might be considered as a sub-case of the second one), from the
viewpoint of the qualitative dynamics, the last two cases only differs for the dynamic behaviour in the
region of intermediate trade costs. In both cases, when trade costs are high - φ ∈

[
0,min

(
φ̂, φB

)]
- the

symmetric equilibrium is the unique interior equilibrium and it is stable, while when trade costs are low
- φ ∈

[
max

(
φ̂, φB

)
, 1
]
, the symmetric equilibrium is still the unique interior equilibrium but it is now

unstable and two core-periphery equilibria emerge. Things are substantially different for intermediate values
of trade costs: in both cases two new non-symmetric interior equilibria emerge but while they are stable
in the second case -φB < φ̂ - they are unstable in the third - φB < φ̂ - leading to the possibility of both
catastrophic agglomeration and catastrophic dispersion. This result is similar to the one obtained in NEGG
models with labour mobility and forward looking expectations (Baldwin and Forslid 2000) but, to the best
of our knowledge, it is the first time this result is an outcome of footloose capital model with labour and
capital immobility.

Is there any chance to distinguish between the three cases? In other words, can we, by looking at the value
of the parameters, say something more about which regime apply? Unfortunately, the quite complicated
mathematical form of the function f prevents us from finding a closed-form solution for both φB and φ̂.
However, by looking at the curvature of the function h we are able to perform some kind of qualitative
comparison between φB and φ̂ as the following proposition shows.

Proposition 4 The two non-symmetric interior equilibria are stable (φB < φ̂) when x < 1 and when
x > max

(
2, 1 + 2ρ

(L+ρsK)(1−φ)

)
. They are unstable (φB > φ̂) when 1 ≤ x ≤

(
2, 1 + 2ρ

(L+ρsK)(1−φ)

)
.

Proof. We know that, by definition, f
(

0, φ̂
)

= h
(

0, φ̂
)

= 0 and f
(

1
2 , φ
)

= h
(

1
2 , φ
)

= h
(

1
2 , φ̂
)

= 0.

Hence, when for any sK ∈
[
0, 1

2

)
we have ∂2h(sK ,φ)

∂s2k
< 0, that means that

∂h( 1
2 ,φ̂)

∂sk
< 0 <

∂h(0,φ̂)
∂sk

and then
∂f( 1

2 ,φ̂)
∂sk

< 0 <
∂f(0,φ̂)
∂sk

. Since, by definition
∂f( 1

2 ,φB)
∂sk

= 0 and
∂f( 1

2 ,φ)
∂sK

is decreasing in φ (provided that

x < x̂), then it must be φB < φ̂. Applying the same reasoning to the case when ∂2h(sK ,φ)
∂s2k

> 0 and then
∂f(0,φ̂)
∂sk

< 0 <
∂f( 1

2 ,φ̂)
∂sk

, we conclude that ∂2h(sK ,φ)
∂s2k

> 0 implies φB > φ̂. To conclude the proof it is sufficient
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(a) x = 1.5 (Refer to fig. ?? for stability map) (b) x = 50 (Refer to fig. ?? for stability map)

Figure 6: Trade costs, number of interior steady states and their stability

to recall, from the proof of proposition 1, that, for any sK ∈
[
0, 1

2

)
∂2h (sK , φ)

∂s2k
< 0⇔ x ∈ (0, 1)

∂2h (sK , φ)
∂s2k

> 0⇔ x ∈
(

1,max
(

2, 1 +
2ρ

(L+ ρsK) (1− φ)

)]
∂2h (sK , φ)

∂s2k
< 0⇔ x ∈

(
max

(
2, 1 +

2ρ
(L+ ρsK) (1− φ)

)
,∞
)

where, by the symmetry rule, the signs of the second derivative is opposite for sK ∈
(

1
2 , 1
]
.

Proposition 4, together with proposition 3, provides the complete characterization of the qualitative
dynamics of our economy as trade costs declines and for different degree of substitutability between the two
kinds of goods. As we can see, the impact of non-unitary intersectoral elasticity of substitution is quite
dramatic on the dynamic behaviour of the economy (as illustrated in figures ??, ?? and ??).

The non-linearity of the optimal investment relation is the main responsible for this complex behaviour.
Such non-linearity simply disappears with unitary elasticity so that the well-behaved dynamics of the standard
NEGG model is just a knife-edge case. Our model shows that things are much more complicated, but still
readable and useful for policy purposes, when a more general approach is adopted.

4 Geography and Integration always matter for Growth

A well-established result in the NEGG literature (Baldwin Martin and Ottaviano 2001, Baldwin and Martin
2004, Baldwin et al. 2004) is that geography matters for growth only when spillovers are localized. In
particular, with localized spillovers, the cost of innovation is minimized when the whole manufacturing sector
is located in only one region. If this is the case, innovating firms have a higher incentive to invest in new units
of knowledge capital with respect to a situation in which manufacturing firms are dispersed in the two regions.
Thereby the rate of growth of new units of knowledge capital g is maximized in the core-periphery equilibrium
and "agglomeration is good for growth". When spillovers are global, this is not the case: innovation costs
are unaffected by the geographical allocation of firms and the aggregate rate of growth is identical in the two
equilibria being common in the symmetric one (g = g∗) or north’s g in the core-periphery one. Moreover, in
the standard case, market integration have no direct influence on the rate of growth which is not dependent
on φ. When spillovers are localized, trade costs may have an indirect influence on the rate of growth by
affecting the geographical allocation of firms: when trade costs are reduced below the break point level, the
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symmetric equilibrium becomes unstable and the resulting agglomeration process, by lowering the innovation
cost, is growth-enhancing. But even this indirect influence will not exist when spillovers are global.

In what follows, we will question these conclusions. We will show that in our more general context (i.e.
when the intersectoral elasticity of substitution is not necessarily unitary), geography and integration always
matters for growth, even in the case when spillovers are global. In particular we show that

1. Market integration has always a direct effect on growth: when the intersectoral elasticity of substitution
is larger than 1, then market integration (by increasing the share of expenditures in manufactures) is
always good for growth. Otherwise, when goods are poor substitutes, integration is bad for growth.

2. The geographical allocation of firms always matters for growth: the rate of growth in the symmetric
equilibrium differs from the rate of growth in the core-periphery one. In particular, growth is faster
(slower) in symmetry if the share of global expenditure dedicated to manufactures is higher (lower) in
symmetry than in the core-periphery. If this is the case, then agglomeration is bad (good) for growth

4.1 Growth and economic integration

We now look for the general expression of the growth rate in both the interior and the core-periphery
equilibria. Labour market-clearing condition requires that

2L = E

(
σ − µ (sK , φ)

σ

)
+ E∗

(
σ − µ∗ (sK , φ)

σ

)
+ gsK + g∗ (1− sK)

It is easy to see that, both in the interior or in the core periphery equilibria (with core in the North), we
have gsK + g∗ (1− sK) = g. In the first case this equality holds because g = g∗, while in the second it holds
because sK = 1. Hence, by recalling that E = L+ ρsK and E∗ = L+ ρ (1− sK) we find that

g (sK , φ) =
L (µ (sK , φ) + µ∗ (sK , φ))− ρ (σ − sKµ (sK , φ)− (1− sK)µ∗ (sK , φ))

σ
. (48)

This expression is then valid for any steady state allocation, included the core-periphery one. A simple
derivative then will tell us the way growth is affected by trade costs

∂g

∂φ
=

1
σ

(
L

(
∂µ

∂φ
+
∂µ∗

∂φ

)
+ ρ

(
∂µ

∂φ
sK +

∂µ∗

∂φ
(1− sK)

))
(49)

and by (??) and (??) we conclude that:

∂g

∂φ
> 0⇔ α > 0

∂g

∂φ
< 0⇔ α < 0

∂g

∂φ
= 0⇔ α = 0

so that integration is good for growth if and only if the traditional and the manufacturing goods are good
substitutes. In the standard approach, the special case when α = 0, integration has no effect on growth.
From the policy perspective, when α is positive, so that the intersectoral elasticity of substitution is larger
than unity, the policy maker should promote policies towards market integration in order to maximize the
(common) growth rate. By contrast, if we accept that the two kinds of goods are poor substitutes, then
policies favoring economic integration are growth-detrimental and if the policy-maker is growth oriented then
he should avoid them. What is the economic intuition behind this result? We should first consider that,
as (??) clearly highlights, growth is positively affected by both northern and southern expenditure share in
manufacturing goods: an increase in this variable would increase manufacturing profits, raising Tobin’s q and
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then incentives to invest. As a result, growth would be higher. Then, any policy instrument able to increase
total expenditure on manufacturing goods at the world level will accelerate economic growth. The issue is
then: what are the determinants of the total expenditure share on manufactures at the world level? From our
previous analysis we know that, with CES intermediate utility function, northern and southern expenditure
shares depend on the geographical location of firms (sK) and on the degree of economic integration φ. We
leave the first determinant aside for a moment and we concentrate on the second. A reduction in the cost of
trade will always bring to a reduction in the price index for the manufacturing goods in both regions. However,
this reduction will have opposite effect on µ (·)+µ∗ (·) depending on whether the intersectoral elasticity of
substitution is larger or smaller than 1. In the first case, since the traditional good (which is now relatively
more expensive) can be easily replaced by the industrial goods, the expenditure shares on the latter will
increase in both regions, and this will also increase the growth rate. By contrast, when the traditional good
cannot be easily replaced by the industrial goods, a reduction in the price index of industrial goods may
increase total expenditure but it will decrease their share of expenditure in both regions. As a result, any
integration-oriented policy will also reduce growth.

To conclude, in order to better appreciate our results, it is worth comparing them with the impacts that
endogenous expenditure shares have in static NEG models. In Murata (2008), where growth is inhibited, trade
costs have positive level effects since the mass of varieties depends on trade costs via endogenous expenditure
share generated by a Stone-Geary non-homothetic utility function. Hence, the degree of industrialization
rises side by side with the expenditure share of manufactured goods according to a decline in transport costs.
By adding the possibility of growth, our model allows to uncover the emergence of an additional growth
effects of trade costs as they also affect the rate of growth via the endogenous expenditure share. Such effect
is negative when freer trade reduces the expenditure share in manufacturing goods while it is positive when,
as in Murata (2008) expenditure shares in manufacturing goods are positively affected by a reduction of
transport costs.

4.2 Growth and agglomeration

Using (??) we can also compute the effect of an increase in the degree of agglomeration on the growth rate.
As we already know, this effect is nil in the standard model with unitary intersectoral elasticity of substitution
and global technological spillovers. By contrast, when intersectoral elasticity of substitution is allowed to
vary we have

∂g (sK , φ)
∂sK

=
1
σ

(
ρ (µ− µ∗) +

(1− x) (1− φ)
(sK + (1− sK)φ)

[(L+ ρsK)µ (1− µ)− (L+ ρ (1− sK))µ∗ (1− µ∗)]
)

(50)

where, again, x = σ(1−α)−1
(σ−1)(1−α) , so that α > (<)0 ⇔ x < (>)1 and, for simplicity, we have omitted the

arguments for the functions µ∗ and µ. We observe that this derivative is generally different from zero,
meaning that, with non-unitary intersectoral elasticity of substitution, the growth rate is always affected by
firms’ location, even in the absence of localized spillovers. As expected, the growth effect of agglomeration
disappears when α = 0 as in the standard case. But is it agglomeration good or bad for growth when
expenditure shares are endogenous because of non-unitary intersectoral elasticity of substitution? By further
analysing equation (??), we find that

∂g
(

1
2 , φ
)

∂sK
= 0

so that the symmetric equilibrium always represents an maximum or a minimum for the growth rate accord-
ing to whether the second derivative of g with respect to sK , computed in the symmetric equilibrium, is
respectively negative or positive. By inspection we find that the growth rate is maximized in the symmetric
equilibrium when

g

(
1
2
, φ

)
≥ g (sK , φ) ,∀sK ∈ [0, 1]⇐⇒> (1− x)2

(1− φ)
(1 + φ)

(2L+ ρ) (1− 2µ) + (1− x) 2ρ < 0 (51)
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Hence, the expenditure shares on industrial goods should be large enough in the symmetric equilibrium
in order for growth to be maximized in the symmetric equilibrium (and then for agglomeration to be bad
for growth). This conclusion is quite intuitive, given the positive impact that the expenditure share on
industrial goods has on growth. In particular, when x < 1, and then the two kinds of commodity are
good substitutes, µ needs to be sufficiently larger than 1

2 , while when the industrial and the traditional
goods are poor substitutes, then a µ lower but sufficiently close to 1

2 might be enough for growth to be
maximized when industry is dispersed among regions. Condition (??) has two main merits: the first, as
already anticipated, is to shed light on a new trasmission mechanism between agglomeration and growth,
given that such mechanism was hidden in the CD approach by the knife-edge case x = 1. The second merit
is that, unlike standard NEGG models with localized knowledge spillovers, it states that the sign of the
relationship between agglomeration and growth can be either positive (i.e. agglomeration is good for growth,
as in Baldwin et al. (2001)), or negative (i.e. dispersion is good for growth). From this viewpoint, our model
provides a mechanism (alternative to the one proposed by Cerina and Mureddu (2009) 15) to reconcile theory
with the recent empirical evidence according to which the positive relationship between agglomeration and
growth is limited to early stages of development (Bruhlart and Sbergami, 2009)

Such mechanism can be more appreciated if we consider that, when ∂g(sK ,φ)
∂sK

is monotone in sK , condition
(??) implies that g

(
1
2 , φ
)
is bigger than g (1, φ). This latter condition is slightly more interesting from the

point of view of the economic intuition:

g

(
1
2
, φ

)
> g (1, φ)⇔ µ

(
1
2
, φ

)
> scpE µ (1, φ) + (1− scpE )µ∗ (1, φ) (52)

where scpE = L+ρ
2L+ρ is the market size of the north when the whole industry is concentrated in this region (sK =

1). In other words, growth in the symmetric equilibrium will be faster than in the core-periphery equilibrium
if and only if the industrial-goods’ expenditure share in manufactures in the symmetric equilibrium (which
is common in the two regions), is larger than a weighted average of the industrial goods’ expenditure share
in the core-periphery equilibrium in the two regions, where the weights are given by the reciprocal regional
market sizes. What is significant in this case is then the relative importance of the industrial goods in the
consumption bundle at the world level. If at the world level the industrial good is relatively more important
in the symmetric equilibrium than in the core-periphery one, then agglomeration is bad for growth and a
growth-oriented policy-maker should promote policies which favor dispersion of economic activities. It is
worth noting that this condition is not trivial at all since we have:

α > 0⇔ µ (1, φ) > µ

(
1
2
, φ

)
> µ∗ (1, φ)

α < 0⇔ µ∗ (1, φ) > µ

(
1
2
, φ

)
> µ (1, φ)

A further analysis of condition (??) will not provide any significant insight. The validity of condition (??)
is highly dependent on the curvature of µ (·) and µ∗ (·) with respect to sK .

5 Conclusions

This paper is a first attempt to introduce endogenous expenditure shares in a New Economic Geography and
Growth model. We do this by allowing the intersectoral elasticity of substitution to be different from the unit
value and we show how this slight generalization of the model leads to different and unexpected outcomes in

15In this paper, the authors proposes a NEGG model with non-tradable goods and intersectoral spillovers between the
cumulative output of the innovating sector and the non-tradable sector to show that agglomeration might be bad for aggregate
real growth when: 1) the spatial range of the intrasectoral technological spillovers within the innovating sector; 2) the intensity
of the positive externality from the innovating sector to the non-tradable sector; 3) the expenditure share on non-tradable goods
are all large enough.
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terms of dynamics of the allocation of economic activities, the equilibrium growth prospect and the policy
insights.

Concerning the dynamics of the allocation of economic activities, the main result is the emergence of
multiple interior steady states. We have shown that two additional non-symmetric steady states always
emerge sooner or later during the process of economic integration - i.e. - for some feasible values of the
freeness of trade. Moreover, we have shown that these additional non-symmetric interior steady states are
stable - thereby leading to a stability map similar to that of Baldwin e al. (2001) - when the traditional and
the industrial goods are either close or very poor substitutes. By contrast, the two additional steady states are
unstable for intermediate values of the elasticity of substitution, but in any case lower than unity. In the latter
case, the model displays multiple stable steady states (the symmetric and the two core-periphery allocations)
so that if the economy starts from a non-symmetric steady states, a small shock in either direction may lead
to catastrophic agglomeration or catastrophic dispersion. This result, which is similar to that obtained in
model with labor mobility and forward-looking expectations (Baldwin and Forslid 2000), is to the best our
knowledge new when obtained by a footlose capital model where capital is immobile. This complex and
unexpected behaviour is due to the non-linearity of the optimal investment relation and to the associated
emergence of a new force which we call “expenditure share effect”. This force acts as a dispersion force, so that
the agglomeration process is activated for level of trade openness which are higher than the standard case,
when the modern and the traditional goods are poor substitutes. By contrast, it acts as an agglomeration
force - and agglomeration is reached for lower degrees of market openness - when the traditional and the
industrial goods are good substitutes. In the latter case, when the expenditure share effect is strong enough
and the two kinds of commodities are very close substitutes, agglomeration processes are activated whatever
the degree of market openness since the symmetric equilibrium is unstable for any level of trade costs.

From the growth perspective, results are not less relevant: 1) unlike the standard NEGG models, the
growth rate is influenced by the allocation of economic activities even in absence of localized knowledge
spillovers and 2) the degree of economic integration always affects the rate of growth, being growth-detrimental
if the intersectoral elasticity of substitution is lower than unity and being growth-enhancing in the opposite
case. We are then able to provide a rationale for the rather counterintuitive conclusion according to which
an integration-oriented policy rule is bad for growth: this could happen when the two kinds of commodities
are poor substitutes and trade integration, by reducing the price of manufacturing goods, induce a reduction
in their expenditure shares thereby leading to slower growth because of the diminished size of the increasing
return sector.

Albeit more complex than the existing literature, the outcomes of our model are still quite readable and
relevant policy implications can be drawn from our conclusions. In particular, our model suggests that a
better empirical investigation of the magnitude of the intersectoral elasticity of substitution in the context of
a NEG model is strongly needed in order to implement the right policy recommendations. A typical example
is the well-established result stating that policy makers should not try to avoid the agglomeration of economic
activities because the concentration of the innovative and the increasing returns sectors will increase growth
at a global level when spillovers are localized. This conclusion does not take into account the fact that
the incentive to invest in new units of capital (and thereby the growth rate) depends on the Dixit-Stiglitz
operating profits of manufacturing firms, that in our model are influenced by the share of expenditure in the
modern goods. If the average regional expenditure share in this sector is higher in the symmetric equilibrium
than in the case of agglomeration, then firms’ profits are higher when the economic activities are dispersed
among the two regions and concentrating them in only one region will reduce economic growth.

A second message of our paper is that policies should take into account the crucial role of the intersec-
toral elasticity of substitution. To our knowledge, there are no empirical studies assessing the value of this
parameter in the context of a NEG model. An empirical analysis of the intersectoral elasticity of substitution
would be an expected follow-up of our analysis and would be highly needed in order to assess the relative
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empirical relevance of the theoretical results we have obtained.
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Appendix

Proof of proposition 1

(Number of interior steady states) The system displays one or three interior steady state allocations: the
symmetric allocation sK = 1

2 (which is a “global” interior steady state) and two non-symmetric allocations:
s∗K (L, x, ρ, φ, Z) and s∗∗K (L, x, ρ, φ, Z) = 1− s∗K (L, x, ρ, φ, Z) which may emerge only for some values of the

parameters. The interior steady state is unique and equal to 1
2 when f (0, φ)

∂f( 1
2 ,φ)

∂sK
≤ 0, while there are 3

interior steady states when f (0, φ)
∂f( 1

2 ,φ)
∂sK

> 0
Proof.

The first step is to limit the number of the interior steady states - i.e. - the zeros of the function f . As
the latter, also h is symmetric so that

h (sK , φ) = −h (1− sK , φ) (53)

As a consequence, since sK = 1
2 is a global equilibrium and for any possible interior steady state s∗K ∈

(
0, 1

2

)
there is another interior steady state s∗∗K = 1 − s∗K ∈

(
1
2 , 1
)
, the total number of interior steady states is

odd. Moreover, by applying the symmetry rule, we can conclude that
∂2h( 1

2 ,φ)
∂s2k

=
∂2f( 1

2 ,φ)
∂s2k

= 0. In fact, by
twice-differentiating (??) we find

∂h (sK , φ)
∂sK

=
∂h (1− sK , φ)

∂sK
∂2h (sK , φ)

∂s2k
= −∂

2h (1− sK , φ)
∂s2k

when sK = 1
2 , the latter can be true only if

∂2h
(

1
2 , φ
)

∂s2k
= −

∂2h
(

1
2 , φ
)

∂s2k
= 0
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Now assume ∂2h(sK ,φ)
∂s2k

6= 0 for every sK ∈
[
0, 1

2

)
. If this is the case, then ∂h(sK ,φ)

∂sK
is monotone (increasing

or decreasing) in the two intervals
[
0, 1

2

)
and

(
1
2 , 1
]
. Then, by the Bolzano theorem, we know that ∂h(sK ,φ)

∂sK

can have at most one zero in sK ∈
[
0, 1

2

)
. In other words

if
∂2h (sK , φ)

∂s2k
6= 0, ∀sK ∈

[
0,

1
2

)
⇒ ∃!s̄K ∈

[
0,

1
2

)
:
∂h (s̄K , φ)
∂sK

= 0

But if this is the case, then h can have at most 1 maximum (if ∂2h(sK ,φ)
∂s2k

< 0 =) or one minimum (if
∂2h(sK ,φ)

∂s2k
> 0 =) in

[
0, 1

2

)
. Together with the fact that h

(
1
2 , φ
)

= 0, this avoids that h can cross the
horizontal axis more than once in

[
0, 1

2

)
.

if
∂2h (sK , φ)

∂s2k
6= 0, ∀sK ∈

[
0,

1
2

)
⇒ ∃!s∗K ∈

[
0,

1
2

)
: h (s∗K .φ) = 0 =

Therefore, recalling the symmetry rule and the fact that f
(

1
2 , φ
)

= h
(

1
2 , φ
)

= 0, by showing that h′′ (sK , φ) 6=
0, ∀sK ∈

[
0, 1

2

)
, we are also showing that there can be at most 3 interior steady state allocations in sK ∈ (0, 1) .

We now show that this is the case. By computation we find that

∂h (sK , φ)
∂sK

= 2 (L (1− φ)− ρφ)− ρZ [(sK + (1− sK)φ)x + (φsK + 1− sK)x]

+xZ (1− φ)
[
(L+ ρ (1− sK)) (sK + (1− sK)φ)x−1 + (L+ ρsK) (φsK + 1− sK)x−1

]
∂2h (sK , φ)

∂s2k
= 2x (1− φ) ρZ

[
(φsK + 1− sK)x−1 − (sK + (1− sK)φ)x−1

]
+x (x− 1) (1− φ)2 Z

[
(L+ ρ (1− sK)) (sK + (1− sK)φ)x−2 − (L+ ρsK) (φsK + 1− sK)x−2

]
So that ∂2h(sK ,φ)

∂s2k
can be written as the sum of two members:

2x (1− φ) ρZ
[
(φsK + 1− sK)x−1 − (sK + (1− sK)φ)x−1

]
and x (x− 1) (1− φ)2 Z

[
(L+ ρ (1− sK)) (sK + (1− sK)φ)x−2 − (L+ ρsK) (φsK + 1− sK)x−2

]
By neglect-

ing the knife-edge case x = 1 (where the equilibrium analysis collapses to the standard case and therefore the
steady state is always unique and equal to sK = 1

2 being h (sK) a straight line), we can distinguish several
cases:

1. x ∈ (0, 1) : in this case, for sK ∈[0, 1
2 ), 2x (1− φ) ρZ

[
(φsK + 1− sK)x−1 − (sK + (1− sK)φ)x−1

]
< 0

because (φsK + 1− sK)− (sK + (1− sK)φ) > 0. and φ ∈ (0, 1) and x, ρ, Z > 0. Moreover
x (x− 1) (1− φ)2 Z

[
(L+ ρ (1− sK)) (sK + (1− sK)φ)x−2 − (L+ ρsK) (φsK + 1− sK)x−2

]
< 0 because[

(L+ ρ (1− sK)) (sK + (1− sK)φ)x−2 − (L+ ρsK) (φsK + 1− sK)x−2
]
> 0 for x < 1 and sK ∈

[
0, 1

2

)
while x (x− 1) (1− φ)2 Z < 0. As a consequence, when x < 1, ∂

2h(sK ,φ)
∂s2k

= is given by the sum of two

negative function and therefore ∂2h(sK ,φ)
∂s2k

< 0 = ∀sK ∈
[
0, 1

2

)
2. x ∈ (1, 2] : in this case, for sK ∈

[
0, 1

2

)
, 2x (1− φ) ρZ

[
(φsK + 1− sK)x−1 − (sK + (1− sK)φ)x−1

]
>

0 because (φsK + 1− sK) − (sK + (1− sK)φ) > 0 and the common exponent is positive. Analo-
gously x (x− 1) (1− φ)2 Z

[
(L+ ρ (1− sK)) (sK + (1− sK)φ)x−2 − (L+ ρsK) (φsK + 1− sK)x−2

]
>

0 because x > 1 and
[
(L+ ρ (1− sK)) (sK + (1− sK)φ)x−2 − (L+ ρsK) (φsK + 1− sK)x−2

]
is still

positive. As a consequence ∂2h(sK ,φ)
∂s2k

> 0 = ∀sK ∈
[
0, 1

2

)
3. x > 2 : in this case the two members might have different sign so that we need to write ∂2h(sK ,φ)

∂s2k
= in

a different way

∂2h (sK , φ)
∂s2k

= x (1− φ)Z
{

(φsK + 1− sK)x−2
M (sK)− (sK + (1− sK)φ)x−2

N (sK)
}

=
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whereM (sK) = ρ (2 + sK (1− φ))−L (x− 1) (1− φ)−xρsK (1− φ) andN (sK) = ρ (1 + φ+ sK (1− φ))−
L (x− 1) (1− φ)− x (1− φ) ρ (1− sK) are two linear functions in sK Notice that

M (sK) ≥ 0⇔ x ≤ 1 +
2ρ

(L+ ρsK) (1− φ)

N (sK) ≥ 0⇔ x ≤ (1 + φ) ρ+ (L+ ρsK) (1− φ)
(1− φ) (L+ ρ (1− sK))

we also have
M (sK) > N (sK) ,∀sK ∈

[
0,

1
2

)
By assuming - without any loss of generality - that 2 < (1+φ)ρ+(L+ρsK)(1−φ)

(1−φ)(L+ρ(1−sK)) < 1 + 2ρ
(L+ρsK)(1−φ) (if

this is not the case, we can just refer to the previous three cases) we can distinguish three different sub
cases:

(a) 2 < x < (1+φ)ρ+(L+ρsK)(1−φ)
(1−φ)(L+ρ(1−sK)) : in this case both M (sK) > 0 and N (sK) > 0. Hence we have

∂2h (sK , φ)
∂s2k

> 0⇔ (φsK + 1− sK)x−2

(sK + (1− sK)φ)x−2 >
N (sK)
M (sK)

=

which is always true for any sK ∈
[
0, 1

2

)
because (φsK+1−sK)x−2

(sK+(1−sK)φ)x−2 > 1 while N(sK)
M(sK) < 1. Hence,

for 2 < x < (1+φ)ρ+(L+ρsK)(1−φ)
(1−φ)(L+ρ(1−sK)) , h′′ (sK) is always strictly positive.

(b) 2 < (1+φ)ρ+(L+ρsK)(1−φ)
(1−φ)(L+ρ(1−sK)) < x < 1 + 2ρ

(L+ρsK)(1−φ) : in this case M (sK) > 0 while N (sK) < 0.
But then h′′ (sK) is simply the sum of two strictly positive functions. Therefore, even in this case,
h′′ (sK) is strictly positive for any value of sK belonging to

[
0, 1

2

)
(c) 2 < 1 + 2ρ

(L+ρsK)(1−φ) < x : in this case both M (sK) and N (sK) are negative. Hence, in this case

∂2h (sK , φ)
∂s2k

> 0⇔ (φsK + 1− sK)x−2

(sK + (1− sK)φ)x−2 <
N (sK)
M (sK)

=

which is never true because, as seen before, for every sK ∈
[
0, 1

2

)
, we have (φsK+1−sK)x−2

(sK+(1−sK)φ)x−2 > 1

and N(sK)
M(sK) < 1. Hence, when x > 1 + 2ρ

(L+ρsK)(1−φ) , h
′′ (s) < 0 for every sK ∈

[
0, 1

2

)
.

Summing up, we have that, for any sK ∈
[
0, 1

2

)
∂2h (sK , φ)

∂s2k
=< 0⇔ x ∈ (0, 1)

∂2h (sK , φ)
∂s2k

=> 0⇔ x ∈
(

1,max
(

2, 1 +
2ρ

(L+ ρsK) (1− φ)

)]
∂2h (sK , φ)

∂s2k
=< 0⇔ x ∈

(
max

(
2, 1 +

2ρ
(L+ ρsK) (1− φ)

)
,∞
)

where, by the symmetry rule, the signs of the second derivative is opposite for sK ∈
(

1
2 , 1
]
. Hence, for a

given value of x, ∂h(sK ,φ)
∂sk

is always monotone in
[
0, 1

2

)
.Therefore h can have at most 1 zero in

[
0, 1

2

)
and,

by the symmetry rule and since h
(

1
2 , φ
)

= 0, h can have at most 3 zeros in [0, 1] . And since h (s∗K , φ) = 0⇔
f (s∗K , φ) = 0, we have shown that the interior steady state allocations (i.e. the values of sK ∈ (0, 1) such
that f (sK , φ) = 0) can be 1 or at most 3.

Once we have limited the number of equilibria, we are almost ready to provide the necessary and sufficient
condition for uniqueness and multiplicity. A necessary and sufficient condition for the existence of three
distinct interior steady states is the following

h (0, φ)
∂h
(

1
2 , φ
)

∂sK
> 0
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We first show that the condition is sufficient. If h (0, φ)
∂h( 1

2 ,φ)
∂sK

> 0 then h (0, φ) > 0 (< 0) when
∂h( 1

2 ,φ)
∂sK

>

0 (< 0) . Since h
(

1
2 , φ
)

= 0 and h is continuous, h must cross the horizontal axis at least one and thus there
must be at least one s∗K ∈

[
0, 1

2

)
such that h (s∗K , φ) = 0. By proposition 1 we know that such value is unique. Hence, by the symmetry

rule (??) and by (??), h (0, φ)
∂h( 1

2 ,φ)
∂sK

> 0 is a sufficient condition for the existence of three interior steady
state allocations in the whole interval [0, 1]. As for necessity, assume that there are three points s∗K ∈

[
0, 1

2

)
,

s̄K = 1
2 and s∗∗K = 1 − s∗K such that h (s∗K , φ) = h

(
1
2 , φ
)

= f (1− s∗K , φ) = 0. When
∂h( 1

2 ,φ)
∂sK

> 0 (< 0) ,
since h

(
1
2 , φ
)

= 0 and h crosses the horizontal axis only once in
[
0, 1

2

)
, then it must be h (0, φ) > 0 (< 0) . By

contrast, when h (0, φ)
∂h( 1

2 ,φ)
∂sK

≤ 0, the interior steady state allocation is unique and equal to the symmetric

allocation sK = 1
2 . As for h (0, φ)

∂h( 1
2 ,φ)

∂sK
< 0, it is sufficient to notice that, since the necessary condition

for 3 interior steady states does not apply and since there cannot be more than 3 interior steady states,
hence there are only one interior steady state, the symmetric allocation s̄K = 1

2 . As for the knife-edge case

h (0, φ)
∂h( 1

2 ,φ)
∂sK

= 0, again the interior steady-state is unique because of the following reasoning. We have
three possible cases:

1. h (0, φ) = 0 and
∂h( 1

2 ,φ)
∂sK

6= 0. In this case, since we already know there there is only one s∗K ∈
[
0, 1

2

)
such that h (s∗K , φ) = 0, then it should be s∗K = 0 which does not satisfy the definition of interior steady
state 16.

2. h (0, φ) 6= 0 and
∂h( 1

2 ,φ)
∂sK

= 0. Since ∂h(sK ,φ)
∂sK

is monotone in sK ∈
[
0, 1

2

]
there cannot be other sK ∈

(
0, 1

2

)
such that ∂h(sK ,φ)

∂sK
= 0. Hence h cannot cross the horizontal axis in

(
0, 1

2

)
and the symmetric equilibrium

is unique in sK ∈ [0, 1] .

3. h (0, φ) = 0 and
∂h( 1

2 ,φ)
∂sK

= 0 : this case is ruled out by the strict monotonicity of
∂h( 1

2 ,φ)
∂sK

.

16Actually in this case s∗K = 0 is a core-periphery equilibrium which also satisfies the interior equilibrium property, i.e., it is
such that f

(
s∗K
)

= 0. By contrast, the core-periphery outcome need not satisfy this condition.
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