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Abstract

We introduce learning in a Brock–Mirman environment and study the effect of risk generated by the plan-
ner’s econometric activity on optimal consumption and investment. Here, learning introduces two sources
of risk about future payoffs: structural uncertainty and uncertainty due to the anticipation of learning. The
latter renders control and learning nonseparable. We present two sets of results in a learning environment.
First, conditions under which the introduction of learning increases or decreases optimal consumption are
provided. The effect depends on the strengths and directions of the two sources of risk, which may pull in
opposite directions. Second, the effects of the mean and riskiness of the distribution of the signal and initial
beliefs on optimal consumption are studied.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In the early literature on optimal growth, the evolution of output was deterministic, see
Cass [10] and Koopmans [30]. This was a natural place to begin the study of optimal growth
since growth had already been studied in a deterministic environment by Ramsey [40]. Brock
and Mirman [9] introduced uncertainty in outcomes in an optimal growth model, which built
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on earlier studies of stochastic positive growth, see Mirman [35,36]. Uncertainty in outcomes is
modeled by introducing a random shock in the production function.

There is, however, another aspect of uncertainty that has yet to be studied in optimal growth:
uncertainty about the structure of the economy. Unlike uncertainty in outcomes, structural un-
certainty evolves through learning. Indeed, the planner becomes an econometrician by gathering
and analyzing data in order to learn about an unknown parameter, and, thus, reducing structural
uncertainty. At the same time, the planner also makes consumption and investment decisions.
These two functions of the planner are interrelated.

We introduce learning in a Brock–Mirman environment with structural uncertainty. Here, the
planner’s econometric activity adds an element of risk to the decision making process, just as
introducing uncertainty in outcomes to the deterministic model adds an element of risk in Brock–
Mirman. We study the effect that learning has on optimal policies and extend the literature on
learning and risk to a model of economic growth.

Indeed, there is a two-way interaction between decision making and learning. On the one
hand, decision making may have an effect on learning, which is referred as experimentation.1

On the other hand, learning may have an effect on decision making, which is due to an increase
in risk of future payoffs. While the literature on learning has focused on experimentation, we
concentrate on the effect of learning on decision making, extending the literature on risk to a
dynamic learning environment. Previous literature on both risk and growth has focused only on
models in which the planner knows the distributions of stochastic variables.2

In order to study the effect of learning, we specialize the Brock–Mirman model to the Mirman
and Zilcha [38] model, with specific utility and production functions, but general distributions of
the production shock and beliefs. We provide two sets of results in this class of optimal stochastic
growth models.

First, conditions under which the introduction of learning increases or decreases optimal
consumption are provided. Here, learning introduces two sources of risk about future payoffs:
structural uncertainty and uncertainty due to the anticipation of learning.

On the one hand, the risk generated by structural uncertainty is determined by the curvature
of the mean of the production shock with respect to the unknown parameter. Specifically, as
structural uncertainty is introduced, the expected marginal utility of investment decreases with
a concave mean, inducing more consumption, while the expected marginal utility of investment
increases with convexity, inducing less consumption. On the other hand, the risk due to the an-
ticipation of learning always increases the expected marginal utility of investment, leading to a
decrease in consumption.

The total effect of learning depends on the strengths and directions of the two sources of
risks, which may pull in opposite directions. If the mean of the production shock is convex with
respect to the unknown parameter, both types of risk work in the same direction and consumption
decreases. If the mean of the production shock is concave, both types of risk pull in opposite
directions and the effect of learning depends on the strength of each risk.

1 Experimentation was initially studied in models in which the only link between periods is beliefs. See [1,3,12,16,17,
20,22,23,28,29,37,39,43,44]. Experimentation in a model with capital accumulation has also been studied. See [7,8,13,
14,18,21,25].

2 See [15,24,31,41,42] for a finite-period analysis. For an infinite-horizon setup, see [34] in a model with a single agent,
and [2] for the case of a game. Finally, see [26] for a detailed review of other issues studied in this literature.
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Second, we perform a comparative analysis of distributions on the learning planner’s opti-
mal consumption. Specifically, the effects of the mean and riskiness of the distributions of the
production shock and beliefs on optimal consumption are studied.

We show that, while a higher mean of the production shock decreases consumption, a riskier
distribution of the production shock has no effect on consumption. The first result is due to the
structure of the Mirman–Zilcha model, i.e., a higher mean of the production shock makes invest-
ment more profitable. The second result follows from the fact that the uncertainty in outcomes
due to the random production shock is determined solely through its mean in a Mirman–Zilcha
model, so that the variability of the production shock does not affect behavior. Hence, in this
class of models, the learning planner reacts to the anticipation of learning, independently of the
amount of learning that takes place.

We also show that more optimistic beliefs decrease consumption if the mean of the production
shock is positively related to the unknown parameter. Indeed, more optimistic beliefs increase
the expected marginal utility of investment, inducing less consumption. Finally, unlike riskier
distributions of the production shock, riskier beliefs affect consumption. A riskier distribution of
beliefs leads to an increase in uncertainty through both sources of risk. The total effect of riskier
beliefs depends on the strengths and directions of these two sources of risk.

The paper is organized as follows. In Section 2, we introduce learning in a general Brock–
Mirman environment. In Section 3, optimal policies are characterized in the class of optimal
stochastic growth models studied by Mirman–Zilcha. In Section 4, we study the effect of in-
troducing learning on optimal policies. In Section 5, we perform a comparative analysis of
distributions on the learning planner’s optimal policies. Section 6 presents some final remarks
for future research. All proofs are relegated to Appendix A.

2. Model

2.1. Brock–Mirman environment

Consider an economy in which output is determined by the production function f (k, η),
f1 > 0, f11 < 0, as introduced in Mirman [33]. Here, k is capital and η is a realization of the
random production shock η̃. The p.d.f. of η̃ is φ(η|θ∗) for η ∈ H ⊂ R, which depends on a
parameter θ∗ ∈ Θ ⊂ R

N for N ∈ N. The relationship between the distribution of η̃ and the pa-
rameter θ∗ is strictly monotonic.

Each period, a planner divides output y between consumption c and investment k = y − c.
Capital k is used for the production of output ŷ in the subsequent period, i.e.,

ŷ = f (y − c, η). (1)

The objective is to maximize the expected sum of discounted utilities, where the discount factor
is δ ∈ (0,1) and the utility function is u(c), u′ > 0, u′′ < 0. Expectations are taken with respect
to the sequence of future production shocks.

2.2. Full information planner

We first recall the full information growth model of Brock–Mirman, where the planner faces
no structural uncertainty, i.e., the planner is informed because θ∗ is known. Given θ∗, the in-
formed planner anticipates the effect of the production shock on future output. The value function
is
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VI

(
y; θ∗) = max

c∈[0,y]

{
u(c) + δ

∫
H

VI

(
f (y − c, η); θ∗)φ(

η
∣∣θ∗)dη

}
, (2)

yielding optimal consumption gI (y; θ∗).

2.3. Learning planner

We now relax the assumption of no structural uncertainty. Here, the planner faces structural
uncertainty because θ∗ is not known. Structural uncertainty is characterized by a priori beliefs
about θ∗, expressed as a prior p.d.f. ξ on Θ . That is, the probability that θ∗ ∈ S is

∫
S
ξ(θ)dθ for

any S ⊂ Θ .
Structural uncertainty leads to learning and, thus, evolves over time. Indeed, the planner ob-

serves η, which yields information, and uses Bayesian methods to learn about θ∗. Formally, given
ξ and η, the posterior ξ̂ (·|η) is

ξ̂ (θ |η) = φ(η|θ)ξ(θ)∫
Θ

φ(η|x)ξ(x)dx
(3)

for θ ∈ Θ , by Bayes’ Theorem. Bayes’ rule (3) characterizes the learning process through the
updating of beliefs in light of the information gleaned from observing η. Observing η directly,
allows us to focus on an environment with learning but no experimentation. Indeed, (3) is inde-
pendent of consumption.

The learning planner makes consumption and investment decisions, while learning about θ∗.
That is, endowed with initial output and beliefs, consumption and investment are chosen. The
production shock η is then realized and the output, in the subsequent period, is determined
from (1). Information is gleaned from observing η, which, from (3), affects beliefs about θ∗.

A learning planner’s decisions are subject to both (1) and (3). Indeed, the learning planner
anticipates the effect of the production shock on both future output and posterior beliefs. The
value function of the learning planner is

VL(y, ξ) = max
c∈[0,y]

{
u(c) + δ

∫
H

VL

(
f (y − c, η), ξ̂ (·|η)

)[∫
Θ

φ(η|θ)ξ(θ)dθ

]
dη

}
(4)

subject to (3). The optimization in (4) yields the optimal consumption gL(y, ξ).
Learning increases the uncertainty of future payoffs by introducing two sources of risk: struc-

tural uncertainty and uncertainty due to the anticipation of learning. In other words, there are two
distinct components of learning.

The first is about beliefs. While the informed planner’s beliefs about θ∗ are degenerate, the
learning planner’s are nondegenerate. There is an increase in uncertainty of future payoffs when
knowledge of the distribution of the production shock, φ(η|θ∗) in (2), is replaced by the expected
p.d.f. of η̃ with respect to beliefs ξ ,

∫
Θ

φ(η|θ)ξ(θ)dθ in (4).
The second component concerns anticipation, i.e., learning is anticipated using Bayesian up-

dating. In a dynamic context, rational expectations imply that the information contained in the
future production shock is anticipated. The anticipation of learning is integrated into (4) by an-
ticipating the updated beliefs from ξ to ξ̂ (·|η) using (3).

The anticipation of learning is related to the nonseparability of control and learning since the
dynamics given in (1) and (3) are entwined through the production shock. If the only link between
periods were beliefs, i.e., no capital accumulation, then the anticipation of learning would have
no effect on optimization.
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2.4. Adaptive learning planner

In order to study the effect of introducing learning, we introduce the intermediate case of an
adaptive learner.3 As with the learning planner, the adaptive learning planner does not know θ∗,
and has beliefs about it expressed as a p.d.f. ξ on Θ . However, unlike the learning planner, the
adaptive learning planner does not anticipate learning.

Given beliefs, the adaptive learning planner anticipates the effect of the production shock
solely on future output, while beliefs are assumed to remain constant in his objective function.
Therefore, the value function of the adaptive learning planner is

VAL(y; ξ) = max
c∈[0,y]

{
u(c) + δ

∫
H

VAL
(
f (y − c, η); ξ)[∫

Θ

φ(η|θ)ξ(θ)dθ

]
dη

}
, (5)

yielding optimal consumption gAL(y; ξ). The adaptive learning planner does, however, update
beliefs in each period. Once information arrives, the adaptive learning planner adapts and updates
beliefs, subject to (3). Therefore, the adaptive learning planner reacts to, but does not anticipate
new information.

Note that the informed and adaptive learning planners differ solely in the distribution of the
production shock. Indeed, knowledge of the distribution of the production shock, φ(η|θ∗) in (2),
is replaced by the expected p.d.f. of η̃ with respect to beliefs ξ ,

∫
Θ

φ(η|θ)ξ(θ)dθ in (5). Thus,
the adaptive learning planner faces a more variable distribution of the production shock than the
informed planner.

2.5. Comparisons

While comparing informed and learning planners captures the overall effect of introducing
learning in growth, the introduction of the intermediate case of an adaptive learning planner
allows us to study the beliefs and anticipation components independently. First, comparing (2)
and (5) captures the beliefs component, i.e., the risk generated from not knowing θ∗. Second,
comparing (4) and (5) captures the anticipation component, i.e., the risk generated from uncertain
posterior beliefs.

2.6. Remarks

In general, dynamic programs with learning such as (4) are intractable, i.e., they are not solv-
able either analytically or numerically, when there is no separability of control and learning.4

The problem is not only whether a solution exists, but if a solution can be characterized and its
properties studied. Two aspects of dynamic programming with learning should be noted.

First, (4) depends on the variable y and the prior p.d.f. ξ on Θ . Unless the space Θ contains
a finite number of elements, the state space (y, ξ) is infinite-dimensional, leading to the curse of
dimensionality.

Second, the evolution of beliefs, according to Bayes’ law, does not prevent the prior and
posterior p.d.f.’s ξ and ξ̂ (·|η) from belonging to different families. This makes the solution of an

3 See [19] for a detailed exposition of adaptive learning. See also [32].
4 When there is separability, the dynamic program becomes a standard growth problem, so that the learning planner is

identical to the adaptive learning planner.
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infinite-horizon dynamic programming problem with Bayesian dynamics generally intractable.
Indeed, the learning planner makes consumption and investment decisions, anticipating updating
beliefs every period. In other words, V (f (y − c, η), ξ̂ (·|η)) in (4) encompasses beliefs that have
been updated infinitely many times.

3. Optimal policies

In order to deal with the complexities of learning in growth, we focus on the class of optimal
stochastic growth models studied in Mirman–Zilcha with the following assumptions.

Assumption 3.1. The utility function is u(c) = ln c.

Assumption 3.2. The production function is Cobb–Douglas, f (k, η) = kη.

Assumption 3.3. The support of η̃ is H = [0,1] and η is observable.

Assumptions 3.1, 3.2, and 3.3 hold for the remainder of the paper. The model with log utility,
Cobb–Douglas production, and general distributions of the production shock and beliefs about θ∗
yields closed-form solutions for optimal consumption in the cases of full information, adaptive
learning, and learning.

The combination of log utility and Cobb–Douglas production is needed to obtain a tractable
characterization of optimal consumption and investment in a learning context. The Mirman–
Zilcha class of models has three features that makes the analysis possible.

First, Assumptions 3.1 and 3.2 imply that optimal consumption and investment are linear in
output in the full information case. The linearity property remains under learning, although the
fraction of output consumed now depends on beliefs and evolves with new information.

Second, from Assumptions 3.1 and 3.2, the uncertainty in outcomes, i.e., the random produc-
tion shock, enters the optimization problem through its mean. In other words, the Mirman–Zilcha
class of models displays certainty equivalence. This feature is exploited in the learning case since
the uncertainty in outcomes is mapped to its mean, implying that the unknown parameter affects
optimal consumption solely through μ(θ) = ∫ 1

0 ηφ(η|θ)dη, the mean of η̃ given θ ∈ Θ . The re-
lationship between the mean of the production shock and the unknown parameter is the key in
determining the effect of learning on the optimal consumption function and comparative analysis.

Third, Assumptions 3.1 and 3.2 imply that no assumption is needed on the production shock,
as well as on the distribution of prior beliefs. The Mirman–Zilcha class of models does away
with all the difficulties inherent in Bayesian analysis. In particular, the prior need not belong to
the conjugate family of the distribution of the production shock. In other words, solutions for
optimal consumption and investment are valid for a wide range of priors, even those that are
outside of families of distributions that are closed under sampling.

To illustrate the importance of our assumptions, consider an alternative, in which the shock

affects the level of production, i.e., f (k, η) = ηk. If the utility is u(c) = (1−1/γ )−1c
1− 1

γ , γ �= 1,
then, formally, gL(y, ξ) = κ1(ξ)−γ y, where κ1 is implicitly defined by

κ1(ξ) =
(

1 + δγ

( 1∫
η

1− 1
γ κ1

(
ξ̂ (·|η)

)[∫
φ(η|θ)ξ(θ)dθ

]
dη

)γ ) 1
γ

. (6)
0 Θ
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However, κ1 might not exist. If it does exist, its properties cannot generally be studied. Here,
although optimal consumption is linear in output, the distribution of the shock is no longer char-
acterized by a statistic, such as the mean as in Mirman–Zilcha. Therefore, results with general
distribution functions cannot be obtained.

We first state the optimal consumption of both the informed and adaptive learning planners.
We then present and illustrate the optimal consumption of the learning planner.

3.1. Benchmark models

From Mirman–Zilcha, the optimal consumption of the informed planner, corresponding to (2),
is

gI

(
y; θ∗) = (

1 − δμ
(
θ∗))y, (7)

while the optimal consumption of the adaptive learning planner, corresponding to (5), is

gAL(y, ξ) =
(

1 − δ

∫
Θ

μ(θ)ξ(θ)dθ

)
y. (8)

The presence of structural uncertainty does not affect the optimal consumption function since the
true expectation of η̃, E[η̃|θ∗] = μ(θ∗) in (7), is replaced by the expectation of η̃ given beliefs,
E[η̃|ξ ] = ∫

Θ
μ(θ)ξ(θ)dθ in (8).

3.2. Learning planner

In Appendix A, we show that the value function of the learning planner is of the form,

VL(y, ξ) = κ1(ξ) lny + κ2(ξ), (9)

where κ1(ξ) = ∫
Θ

(1 − δμ(θ))−1ξ(θ)dθ and κ2(ξ) depends on ξ .

Proposition 3.4. The optimal consumption of the learning planner is

gL(y, ξ) =
(∫

Θ

ξ(θ)dθ

1 − δμ(θ)

)−1

y. (10)

Despite the fact that this class of growth models displays certainty equivalence, certainty
equivalence does not imply the separation of control and learning. Indeed, the anticipation of
learning changes the optimal consumption function for the learning planner.

The dynamics of optimal consumption is changed as well. Indeed, a realization of a production
shock has two effects on optimal consumption in the next period. First, the realization affects
future output through the production function. Second, it affects the fraction of output consumed
through Bayesian updating.

We present three examples that show the applicability of our model, not only in terms of
distributions, but also in terms of general unknown structures. For instance, normal distributions
are not needed to get analytic results. In Example 3.5, the case of learning about two unknown
parameters is presented. Example 3.6 deals with a uniform distribution for η̃ with unknown
support. Finally, Example 3.7 illustrates the case in which the learning planner does not know to
which family η̃ belongs, as well as not knowing the parameters characterizing each family.
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Example 3.5. Let η̃ have a beta distribution with unknown parameters θ = (α,β), and beliefs
ξ(α,β), α,β > 0. Then, μ(θ) = α/(α + β) and

gL(y, ξ) =
( ∫

R
2++

ξ(α,β)dα dβ

1 − δα/(α + β)

)−1

y. (11)

Example 3.6. Let η̃ have a uniform distribution with unknown support [0, θ ], and beliefs ξ(θ),
θ ∈ [0,1]. Then, μ(θ) = θ/2 and

gL(y, ξ) =
( 1∫

0

ξ(θ)dθ

1 − δθ/2

)−1

y. (12)

Example 3.7. Let Θ = {θ1, θ2}, where θ1 represents a beta distribution with unknown parameters
(α,β), and beliefs ξB(α,β), α,β > 0, while θ2 represents a truncated normal distribution with
support [0,1], unknown parameters (m,σ 2), and beliefs ξN(m,σ 2), m > 0, σ 2 ∈ R++. If 0 �
ρ � 1 is the prior probability that the production shock is beta distributed, then

gL(y,ρ, ξB, ξN)

=
(

ρ

∫
R

2++

ξB(α,β)dα dβ

1 − δμ1(α,β)
+ (1 − ρ)

∫
R++

∫
R

ξN(m,σ 2)dmdσ 2

1 − δμ2(m,σ 2)

)−1

y, (13)

where μ1(α,β) is the mean of a beta random variable with parameters (α,β) and μ2(m,σ 2) is
the mean of a truncated normal random variable with parameters (m,σ 2).

4. The effect of learning on optimal policies

In this section, conditions under which the introduction of learning increases or decreases
optimal consumption are provided. Here, the effect depends on the strengths and directions of
the beliefs and the anticipation components of learning. Formally, the effect depends upon the
curvature of the marginal utility of investment with respect to the random variable.5

To see this, consider the first-order conditions of the informed planner,

1

c
= δR(μ(θ∗))

y − c
, (14)

the adaptive learning planner,

1

c
= δR(

∫
Θ

μ(θ)ξ(θ)dθ)

y − c
, (15)

and the learning planner,

1

c
= δ

∫
Θ

R(μ(θ))ξ(θ)dθ

y − c
. (16)

5 Consider a two-period model in which the planner maximizes u(c)+ δE[u(f (y − c, η̃))] over c. If ŷ = f (y − c)+η,
then the convexity of the marginal utility of consumption leads to less consumption as risk increases. If ŷ = ηf (y − c),
then the convexity of ηf ′(y − c)u′(ηf (y − c)) with respect to η leads to less consumption as risk increases.
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Here, R(x) = x(1 − δx)−1, R′,R′′ > 0, for x ∈ [0,1] characterizes the effect of uncertainty in
outcomes due to the random production shock η̃ on the expected marginal utility of investment.

From (14) and (15), structural uncertainty affects the expected marginal utility of investment.
Here, it is the second derivative of the mean of the production shock, with respect to the unknown
parameter, that determines the effect of an increase in risk due to structural uncertainty.

Moreover, from (15) and (16), the anticipation of learning affects the expected marginal utility
of investment. Here, it is the convexity of R with respect to μ that determines the effect of an
increase in risk due to the anticipation of learning.

Finally, from (14) and (16), the overall effect of learning on optimal consumption is character-
ized by the expectation of R with respect to beliefs ξ . Here, it is the second derivative of R with
respect to the unknown parameter θ that determines the overall effect of introducing learning
through both its beliefs and anticipation components.

The impact of the anticipation component of learning is revealed by comparing (15) and (16).
Proposition 4.1 states that the anticipation of learning always decreases optimal consumption.
Formally,

Proposition 4.1. gAL(y; ξ) > gL(y, ξ).

Proposition 4.1 is due to the convexity of R with respect to μ, and the use of Jensen’s inequal-
ity on the right-hand sides of (15) and (16). The risk generated from the anticipation of learning
increases the expected marginal utility of investment, leading to a decrease in consumption.

Next, the effect of introducing learning in an optimal growth model, when beliefs are un-
biased, is studied. First, we consider beliefs about the mean of the production shock that are
unbiased, i.e., μ(θ∗) = ∫

Θ
μ(θ)ξ(θ)dθ . Second, we focus on beliefs about the parameter θ∗ that

are unbiased, i.e., θ∗ = ∫
Θ

θξ(θ)dθ . In both cases, conditions are established under which the
introduction of learning, overall and through each of its components, increases or decreases op-
timal consumption using (14), (15) and (16). In other words, gI (y; θ∗), gAL(y; ξ), and gL(y, ξ)

are ordered.
In Proposition 4.2, the effect of learning when beliefs are unbiased about the mean of the pro-

duction shock is studied. From (14) and (15), risk from structural uncertainty does not change
the expected marginal utility of investment, since the uncertainty in outcomes is characterized
only through its mean. Since the true mean of the production shock and unbiased beliefs about
the true mean of the production shock have the same effect on behavior, there is certainty equiva-
lence. Therefore, the total effect of learning is due to the anticipation of learning. As established
in Proposition 4.1, the risk generated from the anticipation component increases the expected
marginal utility of investment, leading to less consumption. Formally,

Proposition 4.2. Suppose beliefs are unbiased about the mean of the production shock, μ(θ∗) =∫
Θ

μ(θ)ξ(θ)dθ . Then, learning decreases optimal consumption, and gI (y; θ∗) = gAL(y; ξ) >

gL(y, ξ).

In Proposition 4.3, the effect of learning when beliefs are unbiased about the unknown pa-
rameter, θ∗ = ∫

Θ
θξ(θ)dθ , is studied. The effect of learning in this case is not as simple as in

Proposition 4.2. The reason is that both sources of risk due to learning are at work here. Indeed,
the effect of structural uncertainty depends on the second derivative of the mean of the produc-
tion shock with respect to θ . If the mean of the production shock is concave with respect to
θ , then structural uncertainty increases consumption. In other words, as structural uncertainty is
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introduced, with θ∗ replaced by unbiased beliefs about θ∗, the expected marginal utility of invest-
ment decreases, inducing more consumption. On the other hand, the expected marginal utility of
investment increases if the mean of the production shock is convex, inducing less consumption.

This point is illustrated in Example 3.5 in which η̃ has a beta distribution with parameters
α,β > 0. If α ≡ θ is unknown and β is known, then μ′′(θ) = −2β/(θ + β)3 < 0, and structural
uncertainty increases consumption. However, if α is known and β ≡ θ is unknown, then μ′′(θ) =
2α/(α + θ)3 > 0, and structural uncertainty decreases consumption.

The total effect depends on the strengths and directions of the beliefs and anticipation compo-
nents. If the mean of the production shock with respect to the parameter is convex, then the two
types of risk work in the same direction and consumption decreases. However, if the mean of the
production shock is concave, then both types of risk pull in opposite directions and the effect of
learning depends on the strength of each risk. Mathematically, it is the second derivative of R

with respect to θ that determines the strength of the overall effect, i.e.,

d2R

dθ2
= μ′′(θ)(1 − δμ(θ)) + 2δμ′(θ)2

(1 − δμ(θ))3
, (17)

for θ ∈ Θ . The sign of (17) is determined by the sign of μ′′ and the relationship μ′′ �
−2δμ′2/(1 − δμ). Formally,

Proposition 4.3. Suppose that beliefs are unbiased about the parameter, θ∗ = ∫
Θ

θξ(θ)dθ .

(1) If μ′′ > 0, then gI (y; θ∗) > gAL(y; ξ) > gL(y, ξ).
(2) If μ′′ = 0, then gI (y; θ∗) = gAL(y; ξ) > gL(y, ξ).
(3) If −2δμ′2/(1 − δμ) < μ′′ < 0, then gL(y, ξ) < gI (y; θ∗) < gAL(y; ξ).
(4) If μ′′ = −2δμ′2/(1 − δμ), then gL(y, ξ) = gI (y; θ∗) < gAL(y; ξ).
(5) If μ′′ < −2δμ′2/(1 − δμ), then gI (y; θ∗) < gL(y, ξ) < gAL(y; ξ).

In case (1), the convexity of the mean of the production shock implies that structural uncer-
tainty decreases consumption, as does the anticipation component. In other words, the two types
of risk work in the same direction. In case (2), the mean of the production shock is linear in θ ,
so that structural uncertainty has no effect on the expected marginal utility of investment. Here,
consumption decreases solely due to the anticipation component. In case (3), the mean of the
production shock is concave. Here, the beliefs and anticipation components pull in opposite di-
rections. The beliefs component increases, while the anticipation component, as is always the
case, decreases consumption. But the mean of the production shock is not concave enough for
the beliefs component to be dominant, and the overall effect of learning is to decrease consump-
tion. Case (4) is a knife-edge case in which beliefs and anticipation components pull in opposite
directions in equal strength. In case (5), the beliefs and anticipation components pull in opposite
directions, but the mean of the production shock is concave enough to overwhelm the anticipation
component. Thus, consumption increases.

5. Comparative analysis

In this section, the effect of different properties of the signal and initial beliefs on the learning
planner’s optimal consumption is studied. Specifically, we study the effects of the mean and
riskiness of the distribution φ of the production shock η̃ as well as beliefs ξ about θ∗. The effect
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of riskier distributions on optimal consumption has been studied only in stochastic dynamic
models in which the planner knows the distributions of stochastic variables. This analysis is
extended to the learning case.

To facilitate the discussion, let g
j
L(y, ξ) denote optimal consumption and μj (θ) =∫ 1

0 ηφj (η|θ)dη, for the distribution φj . Moreover, let gL(y, ξj ) denote optimal consumption
with respect to ξj , j = 1,2. Finally, we use the following definitions.

Definition 5.1. The p.d.f. ϕ1 first-order stochastically dominates the p.d.f. ϕ2, ϕ1 �1 ϕ2, i.e., ϕ1

has a higher mean than ϕ2, if, for every nondecreasing function λ : R → R,
∫

R
λ(x)ϕ1(x)dx �∫

R
λ(x)ϕ2(x)dx.

Definition 5.2. For any two p.d.f.’s ϕ1 and ϕ2, ϕ1 second-order stochastically dominates the
p.d.f. ϕ2, ϕ1 �2 ϕ2, i.e., ϕ1 is less risky than ϕ2, if, for every concave function λ : R → R,∫

R
λ(x)ϕ1(x)dx �

∫
R

λ(x)ϕ2(x)dx.

5.1. Properties of the signal

Proposition 5.3 shows that a higher mean of the production shock η̃ decreases consumption.

Proposition 5.3. If φ1 �1 φ2, then g1
L(y, ξ) � g2

L(y, ξ).

From (16), the expected marginal utility of investment is greater under φ1 than under φ2 for
φ1 �1 φ2, inducing more investment and less consumption. Here, the planner faces a higher
expected production shock for the next period, hence current investment is more profitable, and,
thus, increases.6

Proposition 5.4 shows that an increase in the riskiness of the distribution of the production
shock η̃ has no effect on consumption.

Proposition 5.4. If φ1 �2 φ2, then g1
L(y, ξ) = g2

L(y, ξ).

From (16), only μ(θ) affects the expected marginal utility of investment. Hence, in
the Mirman–Zilcha class of models, the learning planner’s reaction to the anticipation of learning
is independent of the amount of learning that takes place. Specifically, the informativeness of the
signal has no effect on decisions. In other words, certainty equivalence regarding the random
production shock continues to hold in this model with the introduction of learning.

Finally, changes in the mean and riskiness of the distribution of the production shock do have
a dynamic effect on consumption in the subsequent period through updating beliefs. Indeed, if
φ1 �1 φ2 or φ1 �2 φ2, then ξ̂1 �= ξ̂2, for the same η. Hence, g1

L(ŷ, ξ̂1) �= g2
L(ŷ, ξ̂2).

5.2. Properties of prior beliefs

Proposition 5.5 shows the effect of more optimistic beliefs about θ∗ on consumption. The
effect of more optimistic beliefs depends on the first derivative of μ(θ).

6 For studies on the effect of news about future productivity shocks on decision making in dynamic models that do not
embed learning in the maximization problem, see [4–6,11,27] for the literature on expectation driven business cycles.
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Proposition 5.5. Suppose that ξ1 �1 ξ2.

(1) If μ′ > 0, then gL(y, ξ1) � gL(y, ξ2).
(2) If μ′ < 0, then gL(y, ξ1) � gL(y, ξ2).
(3) If μ′ = 0, then gL(y, ξ1) = gL(y, ξ2).

From (16), if μ′ > 0, then ξ1 �1 ξ2 implies that the expected marginal utility of investment is
greater under ξ1 than under ξ2. Here, more optimistic beliefs about the production shock induces
more investment and less consumption.

While, as stated in Proposition 5.4, a riskier distribution of η̃ does not affect consumption,
Proposition 5.6 shows that riskier beliefs about θ∗ do affect consumption. Proposition 5.6 gen-
eralizes Proposition 4.3. Recall that in Proposition 4.3, informed and learning planners are
compared by increasing risk around θ∗. Here, two learning planners, one with riskier beliefs
about θ∗ than the other are compared.

As in Proposition 4.3, the effect of a riskier prior on consumption is determined by the sign
of (17). Formally,

Proposition 5.6. Suppose that ξ1 �2 ξ2.

(1) If μ′′ < −2δμ′2/(1 − δμ), then gL(y, ξ1) � gL(y, ξ2).
(2) If μ′′ > −2δμ′2/(1 − δμ), then gL(y, ξ1) � gL(y, ξ2).
(3) If μ′′ = −2δμ′2/(1 − δμ), then gL(y, ξ1) = gL(y, ξ2).

The discussion is similar to the one for Proposition 4.3. In case (1), the beliefs and antici-
pation components pull in opposite directions, but the mean of the production shock is concave
enough to overwhelm the anticipation component. Thus, as beliefs become riskier, consumption
increases. In case (2), the anticipation component is dominant, implying that the marginal utility
of investment is convex in θ , leading to less consumption as beliefs become riskier. In case (3),
the beliefs and anticipation components pull in opposite directions in equal strength, implying
that the marginal utility of investment is linear in θ . There is no reaction to riskier beliefs.7

Finally, changes in the mean and riskiness of beliefs have a dynamic effect on consumption
in the subsequent period through updating beliefs. Indeed, if ξ1 �1 ξ2 or ξ1 �2 ξ2, then ξ̂1 �= ξ̂2,
for the same η. Hence, gL(ŷ, ξ̂1) �= gL(ŷ, ξ̂2).

6. Final remarks

We have introduced learning in an optimal growth model in which the planner learns about
the structure of the economy while making consumption and investment decisions. Since the
planner observes the production shock directly there is no experimentation in this model, i.e.,
consumption and investment decisions cannot affect the flow of information.

There are situations in which it is reasonable to assume that the production shock is not ob-
servable. In this case, output is the signal used to update beliefs about the unknown parameter,
which, in general, leads to experimentation. Previous work on experimentation in growth has

7 It is possible to extend Proposition 4.2 by comparing two learning planners, one with riskier beliefs about μ(θ∗) than
the other one. As in Proposition 4.2, consumption always decreases as beliefs about μ(θ∗) become riskier.
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only characterized optimal policies in models with three periods and a two-value support of the
unknown parameter. See Bertocchi and Spagat [8] and Datta et al. [13]. Future research should
focus on characterizing optimal policies under experimentation in a more general setting.
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Appendix A. Proofs

Proof of Proposition 3.4. We conjecture that the value function of the learning planner is of the
form VL(y, ξ) = κ1(ξ) lny + κ2(ξ), where κ1 and κ2 depend on ξ . From (4),

VL(y, ξ) = max
c∈(0,y)

{
ln c + δ ln(y − c)

1∫
0

κ1
(
ξ̂ (·|η)

)
η

[∫
Θ

φ(η|θ)ξ(θ)dθ

]
dη

+ δ

1∫
0

κ2
(
ξ̂ (·|η)

)[∫
Θ

φ(η|θ)ξ(θ)dθ

]
dη

}
. (A.1)

The first-order condition is c−1 = δ(y − c)−1
∫ 1

0 κ1(ξ̂ (·|η))η[∫
Θ

φ(η|θ)ξ(θ)dθ ]dη, evaluated at
c = gL(y, ξ), so that

gL(y, ξ) =
(

1 + δ

1∫
0

κ1
(
ξ̂ (·|η)

)
η

[∫
Θ

φ(η|θ)ξ(θ)dθ

]
dη

)−1

y. (A.2)

Plugging (A.2) into (A.1) yields

VL(y, ξ) =
(

1 + δ

1∫
0

κ1
(
ξ̂ (·|η)

)
η

[∫
Θ

φ(η|θ)ξ(θ)dθ

]
dη

)
lny + κ3(ξ), (A.3)

≡ κ1(ξ) lny + κ2(ξ), (A.4)

where κ3 depends on ξ as well. Therefore,

κ1(ξ) ≡ 1 + δ

1∫
0

κ1
(
ξ̂ (·|η)

)
η

[∫
Θ

φ(η|θ)ξ(θ)dθ

]
dη. (A.5)

The solution to (A.5) is

κ1(ξ) =
∫

ξ(θ)dθ

1 − δμ(θ)
, (A.6)
Θ
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where μ(θ) = ∫ 1
0 ηφ(η|θ)dη. To verify that (A.6) is the solution to (A.5), updating (A.6) to the

next period yields

κ1
(
ξ̂ (·|η)

) =
∫
Θ

ξ̂(θ |η)dθ

1 − δμ(θ)
, (A.7)

=
∫
Θ

1

1 − δμ(θ)

φ(η|θ)ξ(θ)∫
Θ

φ(η|x)ξ(x)dx
dθ. (A.8)

Then, plugging (A.8) into (A.5) yields (A.6), verifying the conjecture of the value function.
Combining (A.5) and (A.6) yields

gL(y, ξ) =
(

1 + δ

1∫
0

κ1
(
ξ̂ (·|η)

)
η

[∫
Θ

φ(η|θ)ξ(θ)dθ

]
dη

)−1

y, (A.9)

= y/κ1(ξ), (A.10)

=
(∫

Θ

ξ(θ)dθ

1 − δμ(θ)

)−1

y. (A.11)

Since both the utility and production functions are strictly concave in c, (A.11) is the unique
maximizer corresponding to (A.1). �
Proof of Proposition 4.1. Since R′′(x) = 2δ/(1 − δx)3 > 0, the right-hand side of (15) is
less than the right-hand side of (16) for any c, by Jensen’s inequality. Therefore, gAL(y; ξ) >

gL(y, ξ). �
Proof of Proposition 4.2. Suppose μ(θ∗) = ∫

Θ
μ(θ)ξ(θ)dθ . First, gI (y; θ∗) = gAL(y; ξ)

from (14) and (15). Second, gAL(y; ξ) > gL(y, ξ) from Proposition 4.1. Therefore, gI (y; θ∗) =
gAL(y; ξ) > gL(y, ξ). �
Proof of Proposition 4.3. Suppose θ∗ = ∫

Θ
θξ(θ)dθ . First, if μ′′ < −2δμ′2/(1 − δμ), then, for

any c, the right-hand side of (14) is greater than the right-hand side of (16) by Jensen’s inequal-
ity. Therefore, gI (y; θ∗) < gL(y, ξ). The proofs for μ′′ > −2δμ′2/(1 − δμ) and μ′′ = −2δμ′2/
(1 − δμ) are identical. Second, if μ′′ < 0, then, for any c, the right-hand side of (14) is greater
than the right-hand side of (15), since μ(θ∗) >

∫
Θ

μ(θ)ξ(θ)dθ by Jensen’s inequality. There-
fore, gI (y; θ∗) < gAL(y; ξ). The proofs for μ′′ > 0 and μ′′ = 0 are identical. Third, gAL(y; ξ) >

gL(y, ξ) from Proposition 4.1. Combining these three points yields Proposition 4.2. �
Proof of Proposition 5.3. From (10), if φ1 �1 φ2, then μ1(θ) = ∫ 1

0 ηφ1(η|θ)dη �∫ 1
0 ηφ2(η|θ)dη = μ2(θ) implying that g1

L(y, ξ) � g2
L(y, ξ). �

Proof of Proposition 5.4. From (10), if φ1 �2 φ2, then μ1(θ) = ∫ 1
0 ηφ1(η|θ)dη =∫ 1

0 ηφ2(η|θ)dη = μ2(θ) implying that g1
L(y, ξ) = g2

L(y, ξ). �
Proof of Proposition 5.5. Suppose that ξ1 �1 ξ2. If μ′ > 0, then, for every c, the expected
marginal return on investment in (16) is greater under ξ1 than under ξ2. Therefore, gL(y, ξ1) �
gL(y, ξ2). The proofs for μ′ < 0 and μ′ = 0 are identical. �
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Proof of Proposition 5.6. Suppose that ξ1 �2 ξ2. If μ′′ < −2δμ′2/(1 − δμ), then, for every c,
the expected marginal return on investment in (16) is greater under ξ1 than under ξ2, by Jensen’s
inequality. Therefore, gL(y, ξ1) � gL(y, ξ2). The proofs for μ′′ > −2δμ′2/(1 − δμ) and μ′′ =
−2δμ′2/(1 − δμ) are identical. �
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