
Abstract

We provide a complete characterization of optimal strategies for both players
in non-symmetric discrete General Lotto games, where one of the players has an
advantage over the other. By this we complete the characterization given in Hart
[2008], where the strategies for symmetric case were fully characterized and some of
the optimal strategies for the non-symmetric case were obtained. Our results can
be used to solve the remaining cases of Colonel Blotto games.
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1 Introduction

The General Lotto games are allocation games introduced in Hart [2008] as a gener-
alization and a technical tool for studying Colonel Blotto games, a classic example of
allocation games, where two players compete on different fronts allocating to them their
limited resources. The Blotto games were introduced by Borel [1921] and most varia-
tions of the classic games remained unsolved. The allocation games of this type find
application in areas such as political economics, all-pay auctions and tournaments. For
example, Merolla et al. [2005] argue that this kind of games is suitable to describe the
allocation problem facing candidates in U.S. presidential races. They discuss, in par-
ticular, how the 2000 US presidential election can been modelled as a Colonel Blotto
game. They show in their analysis that Gore could have utilized a strategy that would
have won the election, but that such a strategy was not identifiable ex ante.

General Lotto games, apart from being applicable to solve Colonel Blotto games,
have wide applications as well. Before we discuss these applications let us briefly intro-
duce the game. A more detailed definition will be given later.

Given a, b > 0, the General Lotto game Γ(a, b) is defined as follows. There are two
players, A and B, who simultaneously chose non-negative random variables X and Y ,1

respectively, with expectations E(X) = a and E(Y ) = b. The payoff in the game is
given by

H(X,Y ) := P(X > Y )−P(X < Y ). (1)

A general Lotto Game Γ(a, b) is called symmetric if a = b and it is called non-symmetric
otherwise. Putting additional requirements that X and Y are integer valued leads to
discrete General Lotto games.

In Myerson [1993] a model of political competition between two and more candidates
is studied where each candidate decides how to distribute his campaign promises among
the electorate. These promises could be seen, for example, as a promise about how
the budget of a candidate will be distributed among the electorate. They are modelled
by offer distributions, probability distributions over non-negative real numbers. These
offers specify a promise of a fraction of the budget to each voter. An interpretation of a
distribution F is that probability of a given interval is a fraction of voters for whom a
value from this interval is promised. Budget constraints of each candidate is expressed
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as constraints on the average offer per voter that a candidate can promise. The budgets
constraints of all the candidates are assumed to be equal and this model results in a
multi-player symmetric General Lotto game. It is further extended by Sahuguet and
Persico [2006] to a situation where there are only two candidates but with unequal
budgets constraints. This leads to a non-symmetric General Lotto game. A different
model was studied by Dekel et al. [2008], who investigate vote buying games where
two parties, alternately, make one of the two possible offers: up-front payments or
campaign promises. Two games with these two different types of offers are studied with
the assumption of a minimal unit of exchange. The model considered is essentially a
sequential variant of General Lotto game.

Sahuguet and Persico [2006] connect the non-symmetric General Lotto games with
complete information all-pay auctions, as studied by Baye et al. [1996]. In this kind of
auctions equilibria in pure strategies do not exist. The mixed strategies are probability
distributions over possible bids. As shown by Sahuguet and Persico [2006], there is a cor-
respondence between the budget constraints in the model of political competition they
study and the object valuations in all-pay auctions, as well as between the equilibrium
mixed strategies in the auctions game and the political promises game. All pay auctions
can be also used to link General Lotto games to tournaments, as shown by Groh et al.
[2010]. They study elimination tournaments with heterogeneous contestants, modelling
each match as an all pay auction. The task of the players is to decide how the effort
should be distributed at each stage.

A symmetric continuous variant of General Lotto games was solved by [Bell and
Cover, 1980, Section 2] while Sahuguet and Persico [2006] provided the solution for
the non-symmetric case of these games. The latter proof uses a reduction to “all-pay-
auctions”, thus providing a link between the multi-object auctions and General Lotto
games. A significantly easier proof based on first principles was given by Hart [2008].

A discrete variant of General Lotto games was solved by Hart [2008]. However,
not for every value of a and b the complete characterization was obtained (although
examples of optimal strategies are provided for each case). In this paper we fill in
the missing places by providing complete characterization of the optimal strategies in
discrete General Lotto games. Such a characterization is useful for two reasons. Firstly,
using the optimal strategies for discrete General Lotto games one could try to solve the
unsolved variants of the discrete Colonel Blotto games (see Hart [2008] for the cases
solved so far). Secondly, as we discussed above, General Lotto games are of interest
on their own due to their connection to political economics, multi-object auctions and
tournaments. In these applications a continuous case was mostly used, however the
discrete case is a natural variant with the minimal unit of exchange.

The paper is structured as follows. In Section 2 we describe the connection with
Colonel Blotto game and formally define the discrete General Lotto game. In Section 3
we give the complete characterization of the optimal strategies for the game. In Section 4
we give some concisions and remarks regarding the application of the solutions found to
Colonel Blotto games.

2 Discrete General Lotto Game

Before defining the discrete General Lotto Game we give a description of the connection
between this game and the Colonel Blotto game discovered by Hart [2008]. The Colonel
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Blotto game is a classic example of allocation games, where two players compete on
different fronts allocating to them their limited resources (see Borel [1921], Tukey [1949],
Shubik [1982]). The game B(A,B;K) is defined as follows. There are two players A
and B having A ≥ 1 and B ≥ 1 tokens, respectively, to distribute simultaneously over
K urns. Thus a pure strategy of player A is a K-partition, x = 〈x1, . . . , xK〉, of A, so
that x1 + . . . + xK = A and each xi is a natural number. Similarly, a pure strategy of
player B is a K-partition, y = 〈y1, . . . , yK〉, of B, so that y1 + . . .+ yK = B and each yi
is a natural number.

After the tokens are distributed, the payoff of each player is computed as follows.
For each urn where a player has a strictly larger number of tokens placed he receives
the score 1, while for each urn where a player has a strictly smaller number of tokens
placed, he receives the score −1. The score on the tied urns is 0 for each player. The
overall payoff is the average of payoffs obtained for all urns, that is, given the strategies
x and y of A and B, respectively, it is

hB(x, y) =
1

K

K∑
i=1

sign(xi − yi).

The Colonel Blotto is a zero-sum game.
The Colonel Lotto game, denoted by L(A,B;K), is a symmetrized-across-urns vari-

ant of the Colonel Blotto games. That is the urns are indistinguishable and players
simultaneously divide their tokens into K groups, which are then randomly paired.
Thus, again, the strategies of the players are K-partitions and the payoff of each player
is an average over all possible pairings, that is, given the strategies x and y of A and B,
respectively, it is

hL(x, y) =
1

K2

K∑
i=1

K∑
j=1

sign(xi − yj).

To see the connection between the Colonel Blotto and Colonel Lotto games, given
a pure strategy x of player A, let σ(x) denote a mixed strategy that assigns equal
probability, 1

K! , to each permutation of x. Similarly, given a mixed strategy ξ of player
A, let σ(ξ) denote a mixed strategy obtained by replacing each pure strategy x in the
support of ξ by σ(x). The strategies σ(x) and σ(ξ) are called symmetric across urns. As
was observed in Hart [2008], hB(σ(ξ), y) = hL(ξ, y), for any pure strategy y of player B.
Consequently, hB(σ(ξ), η) = hL(ξ, η), for any mixed strategy η of player B. Analogously
for the strategies of player B. Hence the following observation can be made

Observation 1 (Hart). The Colonel Blotto game B(A,B;K) and the Colonel Lotto
game L(A,B;K) have the same value. Moreover, the mapping σ maps the optimal
strategies in the Colonel Lotto game onto the optimal strategies in the Colonel Blotto
game that are symmetric across urns.

Having linked the Colonel Blotto and Colonel Lotto games we are ready to define
the General Lotto game and see the link between them. Notice that any K-partition
〈z1, . . . , zK〉 of a natural number C can be seen as a discrete random variable Z with val-
ues in the set {z1, . . . , zK} and the distribution obtained by assigning to each z1, . . . , zK
the probability 1

K . The expected value of Z is then E(Z) = C
K , which is the average

number of tokens per urn. This construction links the pure strategies x and y or players
A and B in Colonel Lotto game with discrete integer valued random variables X and Y .
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The strategies of players A and B in Colonel Lotto game could be seen as non-negative,
integer valued random variables bounded by A and B and having expectations A/K
and B/K, respectively. The payoff hL(x, y) can be then written as

hL(x, y) = H(X,Y ) = P(X > Y )−P(X < Y ).

General Lotto game is a generalization of Colonel Lotto game which allows for strate-
gies of the players to be unbounded random variables. The General Lotto game Γ(a, b)
is a two player game where the pure strategies of players A and B are non-negative,
integer valued random variables X and Y with expectations a and b, respectively. Fol-
lowing Hart [2008] we identify random variables with their distributions. Thus every
random variable X is

∑∞
i=0 pi1i, where pi = P(X = i) and 1i denotes Dirac’s measure

which puts probability 1 on i. Thus the set of strategies of player A is a set X of all
non-negative, integer valued random variables X such that all X ∈ X have the same
expectation a (but their distributions are different). Similarly for player B. The payoff
of the game is

H(X,Y ) = P(X > Y )−P(X < Y ).

Notice that every strategy in the Colonel Lotto game L(A,B;K) is a strategy in
the General Lotto game Γ(A/K,B/K;K), although the opposite is not necessarily true.
However, every optimal strategy in a General Lotto game which is a strategy in the
corresponding Colonel Lotto game is an optimal strategy there. Hence one of the ap-
proaches to find optimal strategies for Colonel Lotto games (and, further, for Colonel
Blotto games) one could find the optimal strategies in General Lotto games and see
which of them are the strategies in the aforementioned game. This was partially done
in Hart [2008], where, in particular, the symmetric case of A = B was covered. However,
most of non-symmetric cases were only partially solved.

In the next section we give the complete characterization of the optimal strategies
in General Lotto games.

3 Solution of the Discrete General Lotto Game

All random variables considered from now on are non-negative and integer-valued. As
we mentioned above, every random variable X is

∑∞
i=0 pi1i, where pi = P(X = i) and

1i denotes Dirac’s measure which puts probability 1 on i. Also E(X) =
∑

i iP(X =
i) =

∑
iP(X ≥ i). Expected payoff of player A from using strategy X against strategy

Y of player B is:

H(X,Y ) =

∞∑
i=0

pi[P(i > Y )−P(i < Y )] =

∞∑
i=0

pi[1−P(Y ≥ i)]−P(Y ≥ i+ 1)]

= 1−
∞∑
i=0

pi[P(Y ≥ i) + P(Y ≥ i+ 1)].

Notice that H satisfies the following properties:

H(X,Y ) = −H(Y,X), (2)

H(αX1 + βX2, Y ) = αH(X1, Y ) + βH(X2, Y ). (3)
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The following two distributions where crucial for players strategies discovered in Hart
[2008]:

UmO := U({1, 3, . . . , 2m− 1}) =

m∑
i=1

(
1

m

)
12i−1, and

UmE := U({0, 2, . . . , 2m}) =
m+1∑
i=1

(
1

m+ 1

)
12i.

Distributions UmO and UmE can be thought of as “uniform on odd numbers” and “uniform
on even numbers”, respectively. We will use

Um = {UmE , UmO }

to denote the set of these distributions. We will also ~umO and ~umE to denote stochastic
vectors representing these distributions.

As was shown in Hart [2008], for every Y it holds that

H(UmO , Y ) = 1−
(

1

m

) 2m∑
i=1

P(Y ≥ i) ≥ 1− E(Y )

m
, (4)

with equality if and only if
∑+∞

j=2m+1P(Y ≥ j) = 0 or, in other words, Y ≤ 2m. For
every Y it also holds that

H(UmE , Y ) = 1−
(

1

m+ 1

)(
1 +

2m+1∑
i=1

P(Y ≥ i)

)
≥ 1− E(Y ) + 1

m+ 1
, (5)

with equality if and only if
∑+∞

j=2m+2P(Y ≥ j) = 0 or, in other words, Y ≤ 2m+ 1.
We extend this repertoire with the following distributions: Wm

j (with 1 ≤ j ≤ m−1),
defined form ≥ 2, and V m

j (with 1 ≤ j ≤ m) defined form ≥ 1, represented by stochastic
vectors:

~wmj :=
1

2m
[1, 0, 2, . . . , 0, 2︸ ︷︷ ︸

2(j−1)

, 0, 1, 2, 0, . . . , 2, 0︸ ︷︷ ︸
2(m−j)

]T ,

~vmj :=
1

2m+ 1
[0, 2, . . . , 0, 2︸ ︷︷ ︸

2(j−1)

, 0, 1, 2 0, 2, . . . , 0, 2︸ ︷︷ ︸
2(m−j)

]T .

Distribution Wm
j could be thought of as distribution UmO distorted at the first 2j + 1

positions with a sort of 2-moving average, so that P(Wm
j = i) = (P(U jO = i−1)+P(U jO =

i+ 1))/2, for 0 ≤ i ≤ 2j (where P(U jO = −1) = 0). Similarly, distribution V m
j could be

thought of as distribution UmE distorted at the first 2j positions with a sort of 2-moving

average, so that P(V m
j = i) = (P(U j−1E = i−1)+P(U j−1E = i+1))/2, for 0 ≤ i ≤ 2j−1

(where P(U j−1E = −1) = 0). It could be also thought of as distribution Wm+1
j ‘shifted

to the left’ by one position.
We will also use

Wm = {Wm
1 , . . . ,W

m
m−1}
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to denote the set of distributions Wm
j , as well as

Vm = {V m
1 , . . . , V m

m }

to denote the set of distributions V m
j . These sets are defined for m ≥ 0. In the case

of m < 2 we assume that Wm = ∅. Similarly, in the case of m < 1 we assume that
Vm = ∅.

Additionally, will consider the following distribution, defined for m ≥ 1:

UmO↑1 := U({2, 4, . . . , 2m− 2}) =
m−1∑
i=1

(
1

m− 1

)
12i,

which could be thought of as uniform on even numbers from 2 to 2m − 2, or as the
distribution Um−1O ‘shifted to the right’ by one position. We will also use ~umO↑1 to denote
stochastic vector associated with this distribution.

Let pi = P(Y = i). For every Y it holds that

H(Wm
j , Y ) = 1−

(
1

2m

)(
P(Y ≥ 0) + P(Y ≥ 1) + 2

j−1∑
i=1

[P(Y ≥ 2i) + P(Y ≥ 2i+ 1)]

+ P(Y ≥ 2j) + P(Y ≥ 2j + 1) + 2

m∑
i=j+1

[P(Y ≥ 2i− 1) + P(Y ≥ 2i)]

)

= 1−
(

1

2m

)(
p0 − p2j + 2

2m∑
i=1

P(Y ≥ i)

)
≥ 1− E(Y )

m
+
p2j − p0

2m
(6)

with equality if and only if
∑+∞

j=2m+1P(Y ≥ j) = 0 or, in other words, Y ≤ 2m.

H(V m
j , Y ) = 1−

(
1

2m+ 1

)(
2

j−1∑
i=1

[P(Y ≥ 2i− 1) + P(Y ≥ 2i)]

+ P(Y ≥ 2j − 1) + P(Y ≥ 2j) + 2

m∑
i=j

[P(Y ≥ 2i) + P(Y ≥ 2i+ 1)]

)

= 1−
(

1

2m+ 1

)(
−p2j−1 + 2

2m+1∑
i=1

P(Y ≥ i)

)
≥ 1− 2E(Y )

2m+ 1
+

p2j−1
2m+ 1

(7)

with equality if and only if
∑+∞

j=2m+2P(Y ≥ j) = 0 or, in other words, Y ≤ 2m+ 1.

H(UmO↑1, Y ) = 1−
(

1

m− 1

)(m−1∑
i=1

[P(Y ≥ 2i) + P(Y ≥ 2i+ 1)]

)

= 1−
(

1

m− 1

)(
−P(Y ≥ 1) +

2m−1∑
i=1

P(Y ≥ i)

)

= 1−
(

1

m− 1

)(
p0 − 1 +

2m−1∑
i=1

P(Y ≥ i)

)
≥ 1− E(Y )− 1

m− 1
− p0
m− 1

(8)
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with equality if and only if
∑+∞

j=2mP(Y ≥ j) = 0 or, in other words, Y ≤ 2m− 1.
Before starting the analysis, we introduce some additional notation that will be used.

Given a distribution X, a set of distributions Y and λ1, λ2 ∈ R, we will use

λ1X + λ2Y = {λ1X + λ2Y : Y ∈ Y}

to denote the set of distributions that can be obtained by linearly combining X and the
distributions from Y with coefficients λ1 and λ2, respectively. Similarly, given two sets
of distributions X and Y as well as λ1, λ2 ∈ R, we will use

λ1X + λ2Y = {λ1X + λ2Y : X ∈ X and Y ∈ Y}

to denote the set of distributions that can be obtained by linearly combining distributions
from X and Y with coefficients λ1 and λ2, respectively. Given a set of distributions X
we will use conv(X ) to denote the set of all convex combinations of distributions from
X .

The following cases where left incomplete in Hart [2008]:

• a is an integer and b < a,

• a is not an integer and b = bac,

• a is not an integer and b < bac.

We start the analysis with the first case, where a is an integer and b < a. The
following theorem characterizing this case was shown in Hart [2008].

Theorem 1 (Hart). Let a > b > 0, where a is an integer. Then the value of General
Lotto game Γ(a, b) is

val Γ(a, b) =
a− b
a

= 1− b

a
.

The optimal strategies are as follows:

(i). Strategy UaO is the unique optimal strategy of Player A.

(ii). The strategies (1 − b/a)10 + (b/a)Z with Z ∈ conv(Ua) are optimal strategies of
Player B.

(iii). Every optimal strategy Y of Player B satisfies Y ≤ 2a and

1− a

b
≤ P(Y = 0) ≤ 1− b

a+ 1
.

What is missing in this case is the complete characterization of the optimal strategies
for the disadvantaged player B. We characterize them in two theorems covering the case
where b ≤ a− 1 first and then the case where a− 1 < b < a.

Theorem 2. Let a − 1 ≥ b > 0, where a is an integer. The strategy Y is optimal for
Player B if and only if

Y =

(
1− b

a

)
10 +

(
b

a

)
Z, with Z ∈ conv

(
Ua ∪Wa ∪ {UaO↑1}

)
.
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Proof. Suppose that Y is an optimal strategy for Player B. By Theorem 1 we have
P(Y = 0) ≥ 1− (a/b), hence Y can be written as

Y =

(
1− b

a

)
10 +

(
b

a

)
Z.

Since Y is optimal and, by Theorem 1, val Γ(a, b) = 1 − b/a so for any X with
E(X) = a it must hold that

1− b

a
≥ H(X,Y ) =

(
1− b

a

)
H(X,10) +

(
b

a

)
H(X,Z)

=

(
1− b

a

)
P(X > 0) +

(
b

a

)
H(X,Z). (9)

Thus Z is optimal (i.e. such that Y is optimal) if and only if

H(Z,X) ≥ −
(
a− b
b

)
(1−P(X > 0)) = −

(
a− b
b

)
p0, (10)

where p0 = P(X = 0).
Consider distributions T ai,j = λ1i + (1 − λ)1j with E(T ai,j) = a (i.e. with λ =

(j − a)/(j − i)). Take any T ai,j with 0 < i ≤ a ≤ j. For optimal Z, from (10), we have:

H(Z, T ai,j) = λH(Z,1i) + (1− λ)H(Z,1j) ≥ 0.

Let wi = H(Z,1i). Then we have

(j − a)wi + (a− i)wj ≥ 0. (11)

Since UaO is non-zero for all positive and odd j ≤ 2a−1, so for any odd i and j such that
1 ≤ i ≤ a ≤ j ≤ 2a− 1 we have UaO = τT ai,j + (1− τ)W for some 0 < τ < 1 and W ≥ 0
with E(W ) = a. Since UaO is optimal and P(UaO = 0) = 0, so for optimal Z it must be
that H(Z,UaO) = 0. Thus τH(Z, T ai,j) + (1− τ)H(Z,W ) = 0 and since, by optimality of
Z, H(Z, T ai,j) ≥ 0 and H(Z,W ) ≥ 0, so H(Z, T ai,j) = 0. Hence for i and j odd and such
that 1 ≤ i ≤ a ≤ j ≤ 2a− 1, (11) becomes equality.

Suppose that a is even. Taking i = a − 1 from (11) we get wj ≥ (a − j)wa−1 (with
equality for positive and odd j ≤ 2a − 1). In particular, this yields wa−1 = −wa+1.
On the other hand, taking j = a + 1 from (11) we get wi ≥ (i − a)wa+1 and, further,
wi ≥ (a− i)wa−1. Hence for all i > 0 it holds that wi ≥ (a− i)wa−1 (with equality for
positive and odd i ≤ 2a− 1). For odd 1 ≤ i ≤ 2a− 1 this implies

wi − wi+1 ≤ wa−1. (12)

On the other hand, for even 2 ≤ i ≤ 2a− 2 this implies

wi − wi+1 ≥ wa−1. (13)

Let qi = P(Z = i). Then wi−wi+1 = qi+qi+1 and, from (12 – 13) we get qi+qi+1 ≤ wa−1
(for all odd 1 ≤ i ≤ 2a − 1) and qi + qi+1 ≥ wa−1 (for all even 2 ≤ i ≤ 2a − 2). Hence
for all odd 1 ≤ i ≤ 2a− 3 we have qi + qi+1 ≤ qi+1 + qi+2 and for all even 2 ≤ i ≤ 2a− 2
we have qi + qi+1 ≥ qi+1 + qi+2. Thus there exist di ≥ 0 (with 1 ≤ i ≤ 2a− 2) such that

qi − qi+2 + di = 0, for odd 1 ≤ i ≤ 2a− 2 (14)

−qi + qi+2 + di = 0, for even 1 ≤ i ≤ 2a− 2. (15)
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In the case of odd 1 ≤ i ≤ 2a− 1, (11) becomes equality and it yields wi = (a− i)wa−1.
Thus wi − wi+2 = 2wa−1 (for odd 1 ≤ i ≤ 2a− 3) and so wi − wi+2 = wi+2 − wi+4 (for
odd 1 ≤ i ≤ 2a− 5). Since wi − wi+2 = qi + 2qi+1 + qi+2, so this implies

qi + 2qi+1 − 2qi+3 − qi+4 = 0, for odd 1 ≤ i ≤ 2a− 5. (16)

Moreover, since w2a−1 − w2a+1 ≤ 2wa−1 (as w2a−1 = −(a− 1)wa−1 and w2a+1 ≥ −(a+
1)wa−1), so in the case of i = 2a−3 we have inequality w2a−3−w2a−1 ≥ w2a−1−w2a+1.
Thus there exist d2a−1 ≥ 0 such that

q2a−3 + 2q2a−2 − 2q2a − d2a−1 = 0 (17)

(recall that, by Theorem 1, q2a+1 = 0). Equations (14 – 17) can be obtained for even a
as well, taking i = a− 2, j = a− 2 and noticing that wa−2 = wa+2.

Observe also that since
∑∞

i=0 qi = 1 and
∑∞

i=0 iqi = a, so
∑∞

i=0(i − a)qi = 0. Since
Z ≤ 2a, so in this case

2a∑
i=0

(i− a)qi = 0. (18)

Lemma 1. The set of solutions of the system of Equations (14 – 18) with additional
constraints:

0 ≤ qi ≤ 1, for all 0 ≤ i ≤ 2a, (19)

di ≥ 0, for all 1 ≤ i ≤ 2a− 1, (20)

q0 + . . .+ q2a = 1, (21)

is conv

({[
~z−1
~d−1

]
, . . . ,

[
~za
~da

]})
, where

~z−1 = ~uaO, ~z0 = ~uaE, ~zi = ~wai , for 1 ≤ i ≤ a− 2,

~za−1 =
2a

a+ 1
~waa−1 −

a− 1

a+ 1
~uaO↑1, ~za = ~uaO↑1,

and ~di, −1 ≤ i ≤ a, satisfy Constraints (20).

(Proof of Lemma 1 is moved to the Appendix).
If Z is optimal, then it must satisfy Equations (14 – 18) with Constraints (19 – 21).

Hence, by Lemma 1, it must be that

Z = λOU
a
O + λEU

a
E +

a−2∑
i=1

λiW
a
i + λa−1

(
2a

a+ 1
W a
a−1 −

a− 1

a+ 1
UaO↑1

)
+ λO↑1U

a
O↑1, (22)

with λO + λE +
∑a−1

i=1 λi + λO↑1 = 1 and λO, λE, λO↑1, λi ≥ 0, for all 1 ≤ i ≤ a − 1.
Consider any distribution T ai,2a with 1 ≤ i < a. By (3), (4 – 8) and the fact that
E(T ai,2a) = a we have

H(Z, T ai,2a) = −λa−1
a− 1

a+ 1

p2a
a− 1

+ λO↑1
p2a
a− 1

= −
(
λa−1
a+ 1

−
λO↑1
a− 1

)
p2a, (23)
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where p2a = P(T ai,2a = 2a) > 0. On the other hand, by (10), it must be that

H(Z, T ai,2a) ≥ 0. Thus it must be that λO↑1 ≥ a−1
a+1λa−1. Hence any optimal Z can

be represented as

Z = λOU
a
O + λEU

a
E +

a−1∑
i=1

λiW
a
i + λ′O↑1U

a
O↑1,

where λ′O↑1 = λO↑1 − a−1
a+1λa−1 ≥ 0 and λO + λE +

∑a−1
i=1 λi + λ′O↑1 = 1. Therefore

Z ∈ conv
(
Ua ∪Wa ∪ {UaO↑1}

)
.

On the other hand it can be easily checked that for any Z ∈ Ua ∪ Wa ∪ {UaO↑1},
H(Z,X) ≥ −

(
a−b
b

)
p0, if b ≤ a − 1. Hence H(Z,X) ≥ −

(
a−b
b

)
p0, for any Z ∈

conv
(
Ua ∪Wa ∪ {UaO↑1}

)
. Thus Z satisfies (10), which implies that Z is optimal (i.e.

such that Y is optimal). ut

In the case of b < a with integer a and b close to a the structure of optimal strategies
for B is like in the case of b ≤ a−1, but not every Z from Theorem 2 leads to an optimal
strategy. Theorem 3 below characterize completely all the Z that do do, thus providing
complete characterization of optimal strategies for B in this case as well.

Theorem 3. Let a = m and b = m−β, where m ≥ 1 is an integer and 0 < β < 1. The
strategy Y is optimal for Player B if and only if

Y =

(
β

m

)
10 +

(
1− β

m

)
Z, with Z ∈ conv

(
Um ∪ Ym,β

)
, where

• Ym,β = ∅, if m = 1,

• Ym,β = (βσWm + (1− βσ)Um)∪
(
βδUmO↑1 + (1− βδ)Um

)
, if m ≥ 2 and 0 < β ≤

m
2m+1 ,

• Ym,β =Wm∪
(
βδUmO↑1 + (1− βδ)Um

)
∪
(

(1− (1− β)σ%)UmO↑1 + (1− β)σ%Wm
)

,

if m ≥ 2 and m
2m+1 < β < 1, where

δ =
m− 1

m− β
, σ =

2m

m− β
, % =

m

m+ 1
.

Proof. It is easy to check that for any Z ∈ Um ∪ Ym,β and any X with E(X) = m,
H(Z,X) ≥ −

(
a−b
b

)
p0, in the two cases given above. Hence H(Z,X) ≥ −

(
a−b
b

)
p0, for

any ~z ∈ conv
(
Um ∪ Ym,β

)
. Thus Z satisfies Inequality (10), which, as we observed in

proof of Theorem 2, means that Z is optimal (i.e. such that Y is optimal).
What remains to be shown is the left to right implication, i.e. that if Z is optimal,

then Z ∈ conv
(
Um ∪ Ym,β

)
. Consider the case with m = 1 first. By Theorem 1, Z ≤ 2

in this case and we need to find the values of q0, q1 and q2, where qi = P(Z = i). From
q0 + q1 + q2 = 1 and q1 + 2q2 = 1 (as E(Z) = 2), we get q0 = q2. Hence any Z must be
a convex combination of U1, which completes the proof of this case.

Suppose now that m ≥ 2. As was already shown in proof of Theorem 2, if Z is

optimal, then it must be that Z ∈ conv
(
Um ∪Wm ∪ {UmO↑1}

)
. Thus any optimal Z can

be represented as
Z = λUU

m + λWW
m + λO↑1U

m
O↑1, (24)
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where Um ∈ conv(Um), Wm ∈ conv(Wm), λU+λW+λO↑1 = 1 and 0 ≤ λU , λW , λO↑1 ≤ 1.
Consider a strategy Tm0,j (as defined in proof of Theorem 2), with odd j such that
m+ 1 ≤ j ≤ 2m− 1 . Then, by (4 – 6) and (8):

H(Z, Tm0,j) = −p0
(
λW
2m

)
− p0

(
λO↑1
m− 1

)
. (25)

Since Z is optimal, so it must satisfy (10) for any X with E(X) = 1. This, together
with (25), implies

λW
δ

σ
+ λO↑1 ≤ βδ. (26)

where δ = m−1
m−β and σ = 2m

m−β .
Suppose that 0 < β ≤ m

2m+1 (in which case 0 ≤ βσ ≤ 1). Inequality (26) implies that
λW ≤ βσ and λO↑1 ≤ βδ. Hence λW and λO↑1 can be represented as α1βσ and α2βδ,
respectively, with 0 ≤ α1, α2 ≤ 1. From this and from (26) we also get α1 + α2 ≤ 1.
Now, equation (24) can be rewritten as:

Z = α3U
m + α1((1− βσ)Um + βσWm) + α2((1− βδ)Um + βδUmO↑1),

where α3 = λU −α1(1−βσ)−α2(1−βδ) = λU +λW +λO↑1− (α1 +α2) = 1− (α1 +α2).
This shows that any optimal Z can be represented as a convex combination of vectors

in Um ∪ (βσWm + (1− βσ)Um) ∪
(
βδUmO↑1 + (1− βδ)Um

)
.

Suppose that m
2m+1 < β < 1 (in which case 0 < (1 − β)σ% < 1). By (26), λO↑1 ≤

βδ − λW δ
σ . Hence λO↑1 can be represented as α

(
βδ − λW δ

σ

)
, where 0 ≤ α ≤ 1. We

rewrite Equation (24) as

Z = α1U
m + α2W

m + α3

(
(1− βδ)Um + βδUmO↑1

)
+

α4

(
(1− β)σ%Wm + (1− (1− β)σ%)UmO↑1

)
α1 = λU −α3(1−βδ), α2 = λW −α4(1−β)σ% = λW(1−α), α3 = α1−βδ−λW (σ−δ)/σ

1−βδ and

α4 = λWα
δ(1−β)(βσ−1)

(1−βδ)(1−(1−β)σ%) = λWα
(m−β)(m+1)
2m2(1−β) . It is easy to check that α3βδ + α4(1 −

(1 − β)σ%) = λO↑1 and, consequently, that α1 + α2 + α3 + α4 = 1. It is also easy to
see that α2, α4 ≥ 0. By the fact that β > m

2m+1 we also have α3 ≥ 0. For α1 notice

that adding σ−δ
σ λW to both sides of (26) and using the fact that λW + λO↑1 = 1− λU ,

from (26) we get

λU ≥ 1− βδ − λW
σ − δ
σ

. (27)

From this it follows that α1 ≥ 0. This shows that if m
2m+1 < β < 1, then any

optimal Z can be represented as a convex combination of vectors in Um ∪ Wm ∪(
βδUmO↑1 + (1− βδ)Um

)
∪
(

(1− (1− β)σ%)UmO↑1 + (1− β)σ%Wm
)

. ut

As an example consider a game Γ(4, 1). Then the value of the game is 3/4 and the
strategy Y 0 = (25/32)10+(1/16)12+(1/32)14+(1/16)15+(1/16)17, given as an example
in Hart [2008] of one of the strategies not captured by Theorem 1, is (3/4)10 +(1/4)W 4

2 .
Now we move to the case of b ≤ bac. The following theorem characterizing this case

was shown in Hart [2008].
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Theorem 4 (Hart). Let a = m+α and b ≤ m, where m ≥ 1 is an integer and 0 < α < 1.
Then the value of General Lotto game Γ(a, b) is

val Γ(a, b) = (1− α)
bac − b
bac

+ α
dae − b
dae

= 1− (1− α)b

m
− αb

m+ 1
.

The optimal strategies are as follows:

(i). Strategy Y ∗ = (1− b/m)10 + (b/m)UmE is the unique optimal strategy of Player B.

(ii). The strategy X∗ = (1 − α)UmO + αUm+1
O is an optimal strategy of Player A and,

when b = m, so are (1− α)V + αUm+1
O for all v ∈ conv(Um).

(iii). Every optimal strategy X of Player A satisfies Y ≤ 2m + 1; moreover, it also
satisfies X ≥ 1, when b < m, and

P(X = 0) ≤ 1− α
m+ 1

,

when b = m.

What is missing is the complete characterization of optimal strategies from the ad-
vantaged player A. We give this characterization in the theorem below.

Theorem 5. Let a = m+α and b ≤ m, where m ≥ 1 is an integer and 0 < α < 1. The
strategy X is optimal for Player A if and only if

X ∈ conv(Um,α ∪ Xm,α) ,where

• Um,α = (1− α)Um + αUm+1
O , if b = m,

• Um,α =
{

(1− α)UmO + αUm+1
O

}
, if b < m

and

• Xm,α = αδVm + (1− αδ)Um, if 0 < α ≤ m+1
2m+1 and b = m,

• Xm,α = αδVm + (1− αδ)UmO , if 0 < α ≤ m+1
2m+1 and b < m,

• Xm,α = (1− α)σVm + (1− (1− α)σ)Um+1
O , if m+1

2m+1 < α < 1, where

δ =
2m+ 1

m+ 1
, σ =

2m+ 1

m
.

Proof. Suppose that X is an optimal strategy for player A. Consider any strategy Y of
player B of the form (1− b/m)10 + (b/m)Z, where E(Z) = m. Then

H(X,Y ) =

(
1− b

m

)
H(X,10) +

(
b

m

)
H(X,Z)

=

(
1− b

m

)
(1− p0) +

(
b

m

)
H(X,Z), (28)

where p0 = P(X = 0). Since E(Y ) = b so, by Theorem 4 and Equation (28),

H(X,Z) ≥ α

m+ 1
+ p0

(
m− b
b

)
, (29)
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for any Z with E(Z) = m. Since, by Theorem 4, any optimal X satisfies P(X = 0) = 0
if b < m, so (29) can be replaced with

H(X,Z) ≥ α

m+ 1
, (30)

Let Tmi,j , with 0 < i ≤ m ≤ j be defined like in proof of Theorem 2. By Equation (30)
for any optimal X we have

H(Z, Tmi,j) = λH(X,1i) + (1− λ)H(X,1j) ≥
α

m+ 1
.

Like in proof of Theorem 2 we take wi = H(Z,1i) to obtain

(j −m)wi + (m− i)wj ≥
α(j − i)
m+ 1

. (31)

Since the strategy (1− b/m)10+(b/m)UmE is optimal for player B, so for any optimal
X we have equality in (30) for Z = UmE , as well as for Z = Tmi,j , with even 0 ≤ i ≤ m ≤
j ≤ 2m (c.f. proof of Theorem 2 for similar analysis and arguments used there). Hence
for i and j even and such that 0 ≤ i ≤ m ≤ j ≤ 2m, (31) becomes equality.

Suppose that m is odd. Taking i = m− 1 from (31) we get

wj ≥ −(j −m)wm−1 +
α(j −m+ 1)

m+ 1
(32)

(with equality for even m ≤ j ≤ 2m). Similarly, taking j = m+ 1 we get

wi ≥ −(m− i)wm+1 +
α(m+ 1− i)

m+ 1
(33)

(with equality for even 0 ≤ i ≤ m). Since m−1 and m+ 1 are even so, from (32) we get

wm+1 = −wm−1 +
2α

m+ 1
. (34)

From this and from (33) we find out that (32) holds for all j ≥ 0, with equality for all
even 0 ≤ j ≤ 2m. For even 0 ≤ j ≤ 2m this implies

wj − wj+1 ≤ wm−1 −
α

m+ 1
. (35)

On the other hand, for odd 1 ≤ j ≤ 2m− 1 this implies

wj − wj+1 ≥ wm−1 −
α

m+ 1
. (36)

Let pj = P(X = j). Then wj −wj+1 = pj + pj+1 and, from (35 – 36) we get pj + pj+1 ≤
pj+1 + pj+2 (for all even 0 ≤ j ≤ 2m − 2). and pj + pj+1 ≥ pj+1 + pj+2 (for all odd
1 ≤ j ≤ 2m− 1). Thus there exist dj ≥ 0 (with 0 ≤ j ≤ 2m− 1) such that

pj − pj+2 + dj = 0, for even 0 ≤ j ≤ 2m− 2 (37)

−pj + pj+2 + dj = 0, for odd 1 ≤ j ≤ 2m− 1. (38)

In the case of even 0 ≤ j ≤ 2m− 2, (32) becomes equality and it yields

wj − wj+2 = 2wm−1 −
2α

m+ 1
,
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for all even 0 ≤ j ≤ 2m−2. Thus wj−wj+2 = wj+2−wj+4 (for all even 1 ≤ j ≤ 2m−4)
and, since wi − wi+2 = pi + 2pi+1 + pi+2, so this implies

pj + 2pj+1 − 2pj+3 − pj+4 = 0, for even 0 ≤ j ≤ 2m− 4. (39)

Moreover, in the case of j = 2m− 2 we have inequality w2m−2 − w2m ≥ w2m − w2m+2.
Thus there exist d2m ≥ 0 such that

p2m−2 + 2p2m−1 − 2p2m+1 − d2m = 0 (40)

(recall that, by Theorem 4, p2m+2 = 0). Equations (37 – 40) can be obtained for odd
m as well, taking i = m− 2 and j = m+ 2.

Observe also that since
∑∞

i=0 pi = 1 and
∑∞

i=0 ipi = m, so
∑∞

i=0(i−m)pi = 0. Since
Z ≤ 2m+ 1, so in this case

2m+1∑
i=0

(i−m)pi = 0. (41)

Lemma 2. The set of solutions of the system of Equations (37 – 41) with additional
constraints:

0 ≤ pi ≤ 1, for all 0 ≤ i ≤ 2m+ 1, (42)

di ≥ 0, for all 0 ≤ i ≤ 2m, (43)

p0 + . . .+ p2m+1 = 1 (44)

is
∑m+1

i=0 λi

[
~zi
~di

]
with

∑m+1
i=0 λi = 1,

~zm+1 = (1− α)~umO + α~um+1
O ,

and

• in the case of 0 < α ≤ m+1
2m+1 : λi ≥ 0, for all 0 ≤ i ≤ m and i = m+1, λ0+λm ≥ 0,

and

~z0 = (1− α)~umE + αδ~vmm + α(1− δ)~umO , ~zi = αδ~vmi + (1− αδ)~umO ,

where 1 ≤ i ≤ m, δ = 2m+1
m+1 and ~dj, with 0 ≤ j ≤ m+ 1, satisfy Constraints (43);

• in the case of m+1
2m+1 < α < 1: λi ≥ 0, for all 0 ≤ i ≤ m, and

~z0 = (1− α)~umE + α~um+1
O , ~zi = (1− α)σ~vmi + (1− (1− α)σ)~um+1

O ,

where 1 ≤ i ≤ m, σ = 2m+1
m and ~dj, with 0 ≤ j ≤ m+ 1, satisfy Constraints (43).

(Proof of Lemma 2 is moved to the Appendix).
Let ~x be a stochastic vector representing X. If X is optimal, then it must satisfy

Equations (37 – 41) with Constraints (42 – 44). Hence, by Lemma 2, it must be that

~x =
m+1∑
i=0

λi~zi, (45)

with
∑m+1

i=0 λi = 1 and additional properties depending on the value of α.
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Suppose first that 0 < α ≤ m+1
2m+1 and b < m. Then, by Theorem 4, it must be that

λ0 = 0 and, consequently, λm ≥ 0. Hence any optimal X ∈ conv(Um,α ∪ Xm,α) with
Um,α = {(1− α)UmO + αUm+1

O } and Xm,α = αδVm + (1− αδ)UmO .
Secondly, suppose that 0 < α ≤ m+1

2m+1 and b = m. Consider any distribution Tmi,2m+1

with even 1 ≤ i ≤ m. By (3), (4 – 7) and the fact that E(Tmi,2m+1) = m we have

H(X,Tmi,2m+1) =
α

m+ 1

m+1∑
i=0

λi − q2m+1
α

m+ 1
λ0 + q2m+1

1−αδ
m

m∑
i=1

λi + q2m+1
1−α
m

λm+1

=
α

m+ 1
+ q2m+1

(
1− αδ
m

m∑
i=1

λi +
1− α
m

λm+1 −
α

m+ 1
λ0

)
,

where q2m+1 = P(Tmi,2m+1 = 2m+ 1) > 0. On the other hand, by (30), it must be that
H(X,Tmi,2m+1) ≥ α

m+1 . Thus it must be that

α

m+ 1
λ0 ≤

1− αδ
m

m∑
i=1

λi +
1− α
m

λm+1,

which can be reduced to

λ0 ≤
1− αδ
1− α

m∑
i=0

λi + λm+1.

Thus

λ0 = β
1− αδ
1− α

m∑
i=0

λi + λm+1,

where 0 ≤ β ≤ 1. From this and from (45) we get ~x = λ′0~z
′
0 +

∑m
i=1 (λ′i~zi + λ′′i ~z

′
i) +

λ′m+1zm+1 where

λ′0 = βλm+1, λ′m+1 = (1− β)λm+1,

λ′i = βλi, λ′′i = (1− β)λi, for 1 ≤ i ≤ m− 1,

λ′m = β (λ0 + λm) , λ′′m = (1− β) (λ0 + λm)

and

~z′0 = ~zm+1 + ~z0 − ~zm = α~um+1
O + (1− α)~umE ,

~z′i = ~zi +
1− αδ
1− α

(~z0 − ~zm) = αδ~vmi + (1− αδ)~umE , for 1 ≤ i ≤ m.

It is easy to see that
∑m+1

i=0 λ′i +
∑m

i=1 λ
′′
i = 1, λ′i ≥ 0, for all 0 ≤ i ≤ m + 1, and

λ′′i ≥ 0, for all 1 ≤ i ≤ m. Hence any optimal X ∈ conv(Um,α ∪ Xm,α) with Um,α =
(1− α)Um + αUm+1

O and Xm,α = αδVm + (1− αδ)Um.
Lastly, suppose that m+1

2m+1 < α < 1. Consider any distribution Tmi,2m+1 with even
1 ≤ i ≤ m. By (3), (4 – 7) and the fact that E(Tmi,2m+1) = m we have

H(X,Tmi,2m+1) =
α

m+ 1

m+1∑
i=0

λi + q2m+1
1− α
m

λm+1 =
α

m+ 1
+ λm+1q2m+1

1− α
m

,
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where q2m+1 = P(Tmi,2m+1 = 2m+ 1) > 0. On the other hand, by (30), it must be that
H(X,Tmi,2m+1) ≥ α

m+1 . Thus it must be that λm+1 ≥ 0. Moreover, by Theorem 4, it
must be that λ0 = 0 in the case of m = b. Hence any optimal X ∈ conv(Um,α ∪ Xm,α)
with Xm,α = (1 − α)σVm + (1− (1− α)σ)Um+1

O and Um,α = (1 − α)Um + αUm+1
O (if

b = m) and Um,α = {(1− α)UmO + αUm+1
O } (if b < m).

To see that the strategies found above are optimal, by Theorem 4, it is enough to
check that

H(X,Y ) ≥ 1− (1− α)b

m
− αb

m+ 1
, (46)

for any X ∈ conv(Um,α ∪ Xm,α) and any Y with E(Y ) = b. Using (3) and (4 – 7) it can
be easily checked that (46) is satisfied for any X ∈ Um,α ∪ Xm,α, for any case listed in
the theorem. Hence it is also satisfied for any X ∈ conv(Um,α ∪ Xm,α). ut

As an example consider a game Γ(3/2, 1). Then the strategy X = (1/2)11 +(1/2)12,
given as an example in Hart [2008] of one of the strategies not captured by Theorem 4, is
(3/4)V 1

1 +(1/4)U1
O. Consider also a game Γ(5/2, 1/2). Then the strategyX = (5/12)11+

(1/4)13 + (1/3)14, given in Hart [2008] as another example of optimal strategies not
captured by Theorem 4, is (5/6)V 2

1 + (1/6)U2
O.

4 Conclusions

In this paper we have found the missing optimal strategies for the players in discrete
General Lotto games introduced in Hart [2008]. This could allow for solving the missing
cases of Colonel Blotto games, which we reserve for future research.

Appendix

In the analysis below we will use standard notation 1i to denote the i’th unit vector, In to denote
the n×n unit matrix and 0m,n to denote the m×n zero matrix. We will drop subscripts denoting
the dimension of these matrices if it is clear from the context. Given a sequence of elements
a1 . . . an we will use the notation (a1 . . . an)m to denote a sequence obtained by repeating

the sequence m times. Hence, for example,
[

1 (0 2)2 0
]T

denotes the vector [1 0 2 0 2 0].
If m ≤ 0, then we will a convention that (a1 . . . an)m denotes the empty sequence. So, for

example,
[

1 (0 2)0 0
]T

denotes the vector [1 0].
In two of the lemmas we prove below we compute the basis of a null space of matrices of

the form

[
f f
~0 Bn

]
(in the case of Lemma 1) or of the form

[
f
Bn

]
(in the case of Lemma 2),

where f is a row vector and Bn is a 3(n− 1)× (4n− 1) matrix of the form

Bn =

[
Gn

Hn

]
, (47)

where

Gn =
[
G̃n I2n−2 ~0

]
, G̃n =


g1

−g2

...
g2n−3
−g2n−2

 ,
gi =

[
(0)i−1 1 0 −1 (0)2n−i−2

]
, for 1 ≤ i ≤ 2n− 2,
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Hn =

[
H̃n 0 ~0
hn−1 (0)2n−2 −1

]
, H̃n =

 h1

...
hn−2

 ,
hi =

{ [
(0)2(i−1) 1 2 0 −2 −1 (0)2(n−i)−3

]
, if 1 ≤ i ≤ n− 2,[

(0)2(i−1) 1 2 0 −2
]
, if i = n− 1.

The computation is by Gaussian elimination and before we give the proofs of the lemmas we

show how Bn can be reduced by Gaussian elimination to a matrix B
(2)
n , which will be used in

those proofs. The process of elimination is as follows. First we add to each row i of Gn the sum
of rows j > i of Gn with the same parity as i and multiply even rows of the resulting matrix by
−1. By doing this we obtain

G(1)
n =

[
I2n−2 −~g−1 −~g0 G̃

(1)
n

]
, with

~g−1 =
[
(1 0)n−1

]T
, ~g0 =

[
(0 1)n−1

]T
, G̃(1)

n =


g
(1)
1

−g(1)
2
...

g
(1)
2n−3
−g(1)

2n−2

 , where

g
(1)
i =

{ [
(0)2j (1 0)n−j−1 0

]
, if i = 2j + 1,[

(0)2j (0 1)n−j−1 0
]
, if i = 2j + 2.

Next, we eliminate the first 2n+ 1 columns of matrix Hn using rows of G
(1)
n , obtaining:

H(1)
n =

[
0 ên−1 ~0 H̃

(1)
n

]
, where

H̃(1)
n =


h
(1)
1
...

h
(1)
n−1

 , with

h
(1)
i =

[
(0)2(i−1) −1 2 −1 (0)2(n−i−1)

]
, for 1 ≤ i ≤ n− 1.

We proceed further by adding to each row 2j− 1 of G
(1)
n the sum of rows k ≥ j of H

(1)
n with

the same parity as j obtaining:

G(2)
n =

[
I2n−2 −~g′−1 −~g0 G̃

(2)
n

]
, where

~g′−1 =

{ [
(1 0 0 0)(n−1)/2

]T
, if n is odd,[

(0 0 1 0)n/2−1 0 0
]T
, if n is even.

and

G̃(2)
n =


g
(2)
1

−g(2)
2
...

g
(2)
2n−3
−g(2)

2n−2

 , with

g
(2)
i =


[

(0)2j (0 2 0 0)(n−j)/2−1 0 2 −1
]
, if i = 2j + 1 and n− j is even,[

(0)2j (0 2 0 0)(n−j+1)/2−1 0
]
, if i = 2j + 1 and n− j is odd,

g
(1)
i , if i is even.
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Next we add to each row i of H
(1)
n the sum of rows j > i of H

(1)
n with the same parity as i

and subtract from it the sum of rows j > i of H
(1)
n with different parity to i. Multiplying the

result by −1 we obtain:

H(2)
n =

[
0 ~h−1 ~0 H̃

(2)
n

]
, where

~h−1 =

{ [
(1 − 1)(n−1)/2

]T
, if n is odd,[

(−1 1)n/2−1 −1
]T
, if n is even,

and

H̃(2)
n =


h
(2)
1
...

h
(2)
n−1

 , with

h
(2)
i =

{ [
(0)2(i−1) 1 −2 (0 2 0 − 2)(n−i−1)/2 1

]
, if n− i is odd,[

(0)2(i−1) 1 −2 (0 2 0 − 2)(n−i)/2−1 0 2 −1
]
, if n− i is even.

Thus we obtain the matrix

B(2)
n =

[
G

(2)
n

H
(2)
n

]
. (48)

Now we are ready to give proofs of Lemmas 1 – 2.

Proof of Lemma 1. Matrix representation of the system of Equations (14 – 18) is

Aa ·
[
~q
~d

]
= ~0, where Aa =

[
f1 f2
~0 Ba

]
, (49)

Ba is defined in Equation (47) and
[
f1 f2

]
= f =

[
−a −(a− 1) . . . a− 1 a (0)2a−1

]
.

Any solution of (49) is an element of the null space of Aa, Ker(Aa). To find its basis we
proceed by the standard methods, applying Gaussian elimination to Aa first. Firstly, we reduce

Ba to B
(2)
a , as given in Equation (48). Next, we eliminate first elements in columns 2..2a− 2 of

f with rows of G
(2)
a . Dividing the result by −a we get:

f (1) =

{ [
1 (0)2a−2 0 −1 (0 − 1 0 0)(a+1)/2−1 0

]
, if a is odd,[

1 (0)2a−2 − 1
2 −1 (0 − 1 0 0)a/2−1 0 −1 1

2

]
, if a is even.

The resulting matrix A
(1)
a , written column-wise, is:

A(1)
a =

[
I2a−1 −~g−1 −~g0 ~0 −~g1 . . . ~0 −~ga−1 −~ga
0 −~h−1 ~0 ê1 −~h1 . . . êa−2 −~ha−1 −~ha

]
,

where

~g−1 =
[
0 (1 0 0 0)(a−1)/2

]T
, ~h−1 =

[
(−1 1)(a−1)/2

]T
, if a is odd,

~g−1 =

[
1

2
0 0 (1 0 0 0)a/2−1

]T
, ~h−1 =

[
(1 − 1)a/2−1 1

]T
, if a is even,

~g0 =
[
(1 0)a−1 1

]T
,

~g2j−1 =
[
1 − 2 (1 0 1 − 2)j−1 1 (0)2a−4j

]T
,

~h2j−1 =
[
(2 − 2)j−1 2 (0)a−2j

]T
, 1 ≤ j ≤

⌈
a− 1

2

⌉
,
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~g2j =
[
0 0 (1 − 2 1 0)j (0)2a−4j−3

]T
,

~h2j =
[
(−2 2)j (0)a−2j−1

]T
, 1 ≤ j ≤

⌊
a− 1

2

⌋
,

~ga =
[
0 (0 0 1 0)(a−1)/2

]T
, ~ha =

[
(1 − 1)(a−1)/2

]T
, if a is odd,

~ga =

[
−1

2
1 0 (0 0 1 0)a/2−1

]T
, ~ha =

[
(−1 1)a/2−1 − 1

]T
, if a is even,

Notice that there are a + 2 columns of A
(1)
a that are associated with free variables. These are

the columns with indexes 2a, 2(a+ i) + 1 (with 0 ≤ i ≤ a−1) and 4a−1, i.e. the columns where
in the upper part of the matrix there are vectors −~gi with −1 ≤ i ≤ a.

To obtain the basis for the null space of Aa we multiply the free variable columns by −1
and then fill in the rows by adding êTi at positions i = 2a, 2(a + j) + 1 (with 0 ≤ j ≤ a − 1)
and 4a − 1. The columns in thus obtained matrix form a basis of the null space, Ker(Aa) =
span {~x−1, ~x0, ~x1, . . . , ~xa}, where

~x−1 =

{ [
0 1 (0 0 0 1)(a−1)/2 0 (−1 01 0)(a−1)/2 0

]T
, if a is odd,[

1
2 (0 0 1 0)a/2 (1 0 − 1 0)a/2−1 1 0 0

]T
, if a is even,

~x0 =
[

(1 0)a 1 (0)2a−1
]T
,

~x2j−1 =
[

1 −2 (1 0 1 − 2)j−1 1 (0)2a−4j+2 (2 0 − 2 0)j−1 2 1 (0)2a−4j+1
]T
,

1 ≤ j ≤
⌈
a− 1

2

⌉
,

~x2j =
[

0 0 (1 − 2 1 0)j (0)2a−4j−1 (−2 0 2 0)j−1 −2 0 2 1 (0)2a−4j−1
]T
,

1 ≤ j ≤
⌊
a− 1

2

⌋
,

~xa =

{ [
0 0 (0 1 0 0)(a−1)/2 0 (1 0 − 1 0)(a−1)/2 1

]T
, if a is odd,[

− 1
2 (1 0 0 0)a/2 (−1 0 1 0)a/2−1 −1 0 1

]T
, if a is even,

First we change the basis to {~x′−1, . . . , ~x′a}, where

~x′−1 =
1

a
(~x−1 + ~xa) =

[
~uaO
~d−1

]
, where ~d−1 =

1

m

[
(0)2a−2 1

]T
,

~x′0 =
1

a+ 1
~x0 =

[
~uaE
~d0

]
, where ~d0 = ~0,

~x′1 =
1

2a

(
2~x′−1 + ~x1

)
=

[
~wa1
~d1

]
, where ~d1 =

1

2m

[
2 1 (0)2a−4 2

]T
,

~x′i =
1

2a

(
2~x′−1 + ~xi−1 + ~xi

)
=

[
~wai
~di

]
, where ~di =

1

2m

[
(0)2i−3 1 2 1 (0)2(a−i−1) 2

]T
and 2 ≤ i ≤ a− 2,

~x′a−1 =
2

a+ 1
~x−1 =

[ 2a
a+1 ~w

a
a−1 − a−1

a+1~u
a
O↑1

~da−1

]
, where ~da−1 =

1

a+ 1

[
2 0 0

]T
, if a = 2,

~x′a−1 =
1

a+ 1
(2~x−1 + ~xa−2) =

[ 2a
a+1 ~w

a
a−1 − a−1

a+1~u
a
O↑1

~da−1

]
,

where ~da−1 =
1

a+ 1

[
(0)2a−5 1 2 0 0

]T
, if a ≥ 3,

~x′a =
1

a− 1
(~xa−1 + 2~xa) =

[
~uaO↑1
~da

]
, where ~da =

1

m− 1

[
(0)2a−3 1 2

]T
.
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Any solution ~x = [q0, . . . , q2a, d1, . . . , d2a−1] of (49) is a linear combination of the vectors
above, that is

~x =

a∑
i=−1

λi~x
′
i.

Since q1 = λ−1
1
a , q2a = λ0

1
a+1 , d2a−2 = λa

1
a−1 , d2a−3 = λa−1

1
a+1 and d2i−1 = λi

1
a , for

1 ≤ i ≤ a − 2 so, from Constraints (19 – 20), we get that λi ≥ 0, for all −1 ≤ i ≤ a.

Additionally, from Constraint (21) and the fact that
∑2a
j=0 x

′
ij = 1, for all −1 ≤ i ≤ a, we have:

a∑
i=−1

λi =

a∑
i=−1

λi

2a∑
j=0

x′ij =

2a∑
i=0

qi = 1.

Hence the set solutions of the system of Equation (14 – 18) with Constraints (19 – 20) is
conv

({
~x′−1, . . . , ~x

′
a

})
. ut

Proof of Lemma 2. Matrix representation of the system of Equations (37 – 41) is

Am ·
[
~p
~d

]
= ~0, where Am =

[
f

Bm+1

]
, (50)

Bm+1 is defined in Equation (47) and

f =
[
−m− α −(m− 1)− α . . . m− α m+ 1− α (0)2m+1

]
.

Like in proof of Lemma 1 to find solutions of (50) we find a basis of the null space of Am

using Gaussian elimination. Bm+1 can be reduced to B
(2)
m+1, as given in Equation (48). Next,

we eliminate first 2m elements of f with rows of G
(2)
m+1. Dividing the result by (m + 1)(1 − α)

we get:

f (1) =

{ [
(0)2m −u 1 (0 t 0 0)m/2 −w

]
, if m is even,[

(0)2m −u 1 (0 t 0 0)(m−1)/2 0 t −w
]
, if m is odd, where

u =

{ m+2
2(m+1)

α
1−α , if m is even,

− 1
2 , if m is odd,

t =
m+ 1 + α

(m+ 1)(1− α)

w =

{ m
2(m+1)

α
1−α , if m is even,

1
2
1+α
1−α , if m is odd.

Next, we move the first row below block G
(2)
m+1 obtaining A

(1)
m =

 G
(2)
m+1

f (1)

H
(2)
m+1

. Adding row f (1)

to rows of G
(2)
m+1 we get matrix A

(2)
m , which, written column-wise, is:

A(2)
m =

[
I2m −~g0 ~0 ~0 −~g1 ~0 −~g2 . . . ~0 −~gm −~gm+1

0 −~h0 ê1 ê2 −~h1 ~0 −~h2 . . . êm+2 −~hm −~hm+1

]
,

where

~g0 =
[
0 u (1 u 0 u)(m−1)/2

]T
, ~h−1 =

[
(1 − 1)(m−1)/2 1

]T
, if m is odd,

~g0 =
[
(1 u 0 u)m/2

]T
, ~h−1 =

[
(−1 1)m/2

]T
, if m is even,
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~g2j−1 =
[
(−2 1− t 0 1− t)j−1 − 2 1− t (0 − t)m−2j+1

]T
,

~h2j−1 =
[
(2 − 2)j 2 (0)m−2j−1

]T
, 1 ≤ j ≤

⌈m
2

⌉
,

~g2j =
[
(0 1 − 2 1)j (0)2m−4j

]T
,

~h2j =
[
(−2 2)j (0)m−2j

]T
, 1 ≤ j ≤

⌊m
2

⌋
,

~gm+1 =
[
1 w (0 w 1 w)(m−1)/2

]T
, ~hm+2 =

[
(−1 1)(m−1)/2 − 1

]T
, if m is odd,

~gm+1 =
[
(0 w 1 w)m/2

]T
, ~hm+2 =

[
(1 − 1)m/2

]T
, if m is even.

Notice that there are m + 2 columns of A
(2)
m that are associated with free variables. There are

the columns with indexes 2m+ 1, 2(m+ i+ 1) (with 1 ≤ i ≤ m) and 4m+ 3, i.e. the columns
where in the upper part of the matrix there are vectors −~gi with 0 ≤ i ≤ m+ 1.

To obtain the basis for the null space of Am we multiply the free variable columns by −1
and then fill in the rows by adding êTi at positions i = 2m + 1, 2(m + j + 1) (with 1 ≤ j ≤ m)
and 4m + 3. The columns in thus obtained matrix form a basis of the null space, Ker(Am) =
span {~x0, ~x1, . . . , ~xm+1}, where

~x0 =

{ [
(0 u 1 u)(m+1)/2 (1 0− 1 0)(m−1)/2 1 0 0

]T
, if m is odd,[

1 u (0 u 1 u)m/2 (−1 0 1 0)m/2 0
]T
, if m is even,

~x2j−1 =
[

(−2 1− t 0 1− t)j−1 −2 1− t (0 − t)m−2j+2 (2 0 − 2 0)j−1 2 1 (0)2m−4j+3
]T
,

1 ≤ j ≤
⌈m

2

⌉
,

~x2j =
[

(0 1 − 2 1)j (0)2m−4j+2 (−2 0 2 0)j−1 −2 0 2 1 (0)2m−4j+1
]T
,

1 ≤ j ≤
⌊m

2

⌋
,

~xm+1 =

{ [
(1 w 0 w)(m+1)/2 (−1 0 1 0)(m−1)/2 −1 0 1

]T
, if m is odd,[

0 w (1 w 0 w)m/2 (1 0 − 1 0)m/2 1
]T
, if m is even,

First we change the basis to {~x′0, . . . , ~x′m+1}, where

~x′m+1 =
1− α
m

(~xm + 2~xm+1) =

[
(1− α)~umO + α~um+1

O
~dm+1

]
, with ~dm+1 =

1− α
m

[
(0)2m−1 1 2

]T
,

and, in the case of m+1
2m+1 < α < 1,

~x′0 =
1− α
m+ 1

(~x0 + ~xm+1) =

[
(1− α)~umE + α~um+1

O
~d0

]
, with ~d0 =

1− α
m+ 1

[
(0)2m 1

]T
,

~x′1 =
1− α
m

(2 (~x0 + ~xm+1) + ~x1) =

[
(1− α)σ~vm1 + (1− (1− α)σ)~um+1

O
~d1

]
,

with σ =
2m+ 1

m
and ~d1 =

1− α
m

[
2 1 (0)2m−2 2

]T
,

~x′i =
1− α
m

(2 (~x0 + ~xm+1) + ~xi−1 + ~xi) =

[
(1− α)σ~vmi + (1− (1− α)σ)~um+1

O
~di

]
, for 2 ≤ i ≤ m,

with ~di =
1− α
m

[
(0)2i−3 1 2 1 (0)2(m−i) 2

]T
, for 2 ≤ i ≤ m,
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while in the case of 0 < α ≤ m+1
2m+1 ,

~x′1 =
α

m+ 1
(2 (~x0 + ~xm+1) + γ (~xm + 2~xm+1) + ~x1) =

[
αδ~vm1 + (1− αδ)~umO

~d1

]
,

with δ =
2m+ 1

m+ 1
, γ =

m+ 1− α(2m+ 1)

mα

and ~d1 =
α

m+ 1

[
2 1 (0)2m−3 γ 2(1 + γ)

]T
,

~x′i =
α

m+ 1
(2 (~x0 + ~xm+1) + γ (~xm + 2~xm+1) + ~xi−1 + ~xi) =

[
αδ~vmi + (1− αδ)~umO

~di

]
,

with ~di =
α

m+ 1

[
(0)2i−3 1 2 1 (0)2(m−i)−1 γ 2(1 + γ)

]T
, for 2 ≤ i ≤ m− 1,

~x′m =
α

m+ 1
(2 (~x0 + ~xm+1) + γ (~xm + 2~xm+1) + ~xm−1 + ~xm) =

[
αδ~vmi + (1− αδ)~umO

~di

]
,

with ~dm =
α

m+ 1

[
(0)2m−3 1 2 1 + γ 2(1 + γ)

]T
,

~x′0 =
1− α
m+ 1

(~x0 + ~xm+1) + ~x′m − ~x′m+1 =

[
(1− α)~umE + αδ~vmm + α(1− δ)~umO

~d0

]
,

with ~d0 =
α

m+ 1

[
(0)2m−3 1 2 0 1−α

α

]T
.

Any solution ~x = [p0, . . . , p2m+1, d0, . . . , d2m] of (50) is a linear combination of the vectors
above, that is

~x =

m+1∑
i=0

λi~x
′
i.

From Constraint (44) and the fact that
∑2m+1
j=0 x′ij = 1, for all 0 ≤ i ≤ m+ 1, we have:

m+1∑
i=0

λi =

m+1∑
i=0

λi

2m+1∑
j=0

x′ij =

2m+1∑
i=0

pi = 1.

Suppose that m+1
2m+1 < α < 1. Then p0 = λ0

1−α
m+1 and d2i−1 = λi

2(1−α)
m , for 1 ≤ i ≤ m.

Hence, by Constraints (42 – 43), we get that λi ≥ 0, for all 0 ≤ i ≤ m.
Now, suppose that 0 < α ≤ m+1

2m+1 . Then p0 = λ0
1−α
m+1 , d2i−1 = λi

2α
m+1 , for 1 ≤ i ≤ m − 1,

p2m+1 = λm+1
α

m+1 and d2m−1 = (λm + λ0) 2α
m+1 . Thus, by Constraints (43), we get that λi ≥ 0,

for all 0 ≤ i ≤ m− 1 and i = m+ 1, as well as λ0 + λm ≥ 0. ut
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