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Abstract
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1 Introduction

This paper concerns the strategic interplay between two types of information transmission

within a team that result from activities of the peers.1 One form of information transmis-

sion occurs simply with team members talking to each other, holding motivational sessions

etc. – inherently costless activities that may convey what the success of the team as a

whole means to the individuals. I call such activities, in the language of game theory, cheap

talk. Information transmission also occurs through the transparency of peers’ costly actions.

Transparency in some cases is the result of the structural organization of the workplace

whereby some employees observe what others do before choosing how much effort to ex-

ert. Elsewhere, tasks are organized to occur sequentially. The purpose of this paper is to

demonstrate that although transparency and cheap talk are separately valuable, together

they convey no further information and negative welfare consequences.

The theoretical interest in the phenomenon being addressed here accompanies the marked

changes workplace organization and product development during that last two decades. The

traditional method of product development involves sequential effort. Sometimes termed the

“waterfall method” of product development, each functional area of expertise performs its

functions before passing responsibility to the next functional area. Arguably, here it is the

second type information that is predominant. A currently more popular development process

is integrated product development, sometimes linked to Apple, in which “employees talk

incessantly about what they call ”deep collaboration” or ”cross-pollination” or ”concurrent

engineering.” Essentially it means that products don’t pass from team to team. There aren’t

discrete, sequential development stages. Instead, it’s simultaneous and organic.” 2 A cross-

functional team negotiates a design taking a holistic view of both the engineering constraints

and final consumer demands. Arguably again, the communication that occurs between the

team members with disparate areas of expertise is cheap talk.

I make my point in the context of a pair of players (which can be generalized to finitely

many players) who seek to complete a joint project to which they can each contribute only

once, at an unrecoverable cost if the project does not succeed. The value of the project’s com-

1 Empirically it is well documented that activities of peers have an important influence on incentives in
teams and partnerships. See Ichino and Maggi [2000], Falk and Ichino [2006] and the vast literature that
follows Kandel and Lazear [1992].

2 The quote is from a Time Magazine article by Lev Grossman’s: “How Apple Does It” (See Grossman
[2005]). See Krishnan and Ulrich [2001] and the references therein for an overview of the academic literature
on the changing nature of product development.
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pletion to a player is her private information. Transparent or observable behavior is a game

form in which effort contributions are sequential, non-transparency involves simultaneous

choices. Broadly speaking, we first show that equilibria under transparency dominate those

under non-transparency. However, non-transparent contributions augmented with a round

a cheap talk involving only two messages dominates transparent behavior, even allowing for

arbitrary (albeit one shot) communication possibilities. It also dominates non-transparent

choices without cheap talk.

A broad intuition for limited impact of cheap talk under transparency that transcends

the specifics of the model here is as follows. When players choose sequentially, sequential

rationality refines the set of equilibria. This may rule out some unattractive equilibria,

which one may argue is a “good thing” provided there is no cheap talk. However, when

each of these games is augmented with a stage of pre-play communication, for cheap talk

to be informative, it may well be that it is precisely these “unattractive equilibria” that

act as punishments for deviation from the equilibrium path. Of course, this argument only

describes the informational aspects. Establishing the welfare properties requires us to borrow

insights that underlie the “revenue/payoff equivalence” principle from auction theory (See

Myerson [1981]) and typically apply only to quasi-linear environments like the one considered

here.

It is worth emphasizing, that even abstracting from issues concerning cheap talk, our

results on transparency vs. non-transparency add another dimension to a large literature on

voluntary contributions to a discrete public good or for funding of joint projects. A recurring

theme in this considerable literature is whether sequential actions accentuate the free-rider

effect and lower total contributions. (See Admati and Perry [1991], Varian [1994], Andreoni

[1998], Marx and Matthews [2000] or Compte and Jehiel [2003].)

Typically this literature considers environments of complete information. ( See Bag and

Roy [2007] however.) With the presence of incomplete information, a leader, when it is her

turn to contribute, has to take a bet on whether the follower’s valuation is high enough

to free-ride on the latter’s contribution. Not only do our results suggest that sequencing

decisions helps, we identify that it is the player with the highest range of valuations that

must be preferred as the leader.3

There is a considerable body of work on the design of incentives by a principal with

multiple agents that in particular involves peer monitoring. Among the more prominent

3Hermalin [1998] offers a theory of “Leadership”. Our conclusion that the player with the highest range of
values must lead is an exercise in comparative statics with respect to different sequences. Hermalin [1998]’s
result is about endogenously determined leaders.
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early contributions are Ma et al. [1988], Varian [1990] and Stiglitz [1990]. Winter [2006] is

a more recent contribution which expands this literature by considering sequential choices.

Except for the fact that peer activities influence incentives, this paper does not have much

in common with this strand of the literature. For, our interest is not the optimal design of

incentives by an external agent. In fact, one consideration for modelling the team problem

here to be a threshold type where only total contributions matter is to minimize the external

incentive issues. Rather, the focus is on how peer activities affect incentives within the team

for a given external incentive structure.

In the last respect, our paper falls squarely into the research program initiated by the

influential piece by Kandel and Lazear [1992]. However, they (and much of the literature

that follows it) models the effect of peer activities using a reduced functional form, much like

in the literature on reciprocity (See Fehr and Gachter [1998]). On the other hand, I regard

peer activities as information transmission mechanisms and divide them based on whether

the signalling actions are inherently costly. Our results then have obvious implications for

the structural makeup of the workplace.

The role of prep-lay communication in joint projects where contributions are necessarily

simultaneous is the subject of Agastya et al. [2007]. See also the references in Farrell and

Rabin [1996] and in particular Matthews and Postlewaite [1989]. Baliga and Morris [2002]

study games with spill-overs and actions are sequential. They offer sufficient conditions

under which cheap talk may be completely uninformative. These conditions are not met for

the contribution game being studied here.

In summary, the theoretical core of this paper is a comparison of cheap talk extensions of

the simultaneous and sequential move games of contributions toward a joint project. Among

the related areas of literature described above, I am not aware of any contribution that

systematically (or otherwise) compares, in terms of their efficiency, likelihood of project’s

completion and total contributions, the equilibria of this class of games.

The organization of the rest of the paper and an elaboration of the results is as follows.

A model of team given in Section 2 in which a certain project is success only if the total

effort/contribution of the two players reaches a threshold, say k > 0. The incremental benefit

that accrues to a player from the project’s completion is her private information, drawn from

an interval [vi, vi] and let ri = vi − vi be the range of the player’s valuations. Section 3

studies contributions to the joint project without communication. The more economically

interesting part is Section 3.1 where we explain why observability in the absence of cheap

talk is valuable. In particular, Proposition 3 shows that if priors are concave and ordered
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as per first order stochastic dominance, making the player with the highest ri move first

leads to – a) the highest probability of project’s completion, b) the highest expected total

contribution and c) Pareto dominance (relative to non-transparent behavior) in terms of

players’ ex-ante payoffs. Moreover, this sequence of moves is uniquely optimal whenever k

is above a threshold, say k̂.

In Section 4 we reconsider the observability issue by now allowing for pre-play commu-

nication. We find that the above result on the optimal sequence is completely overturned.

Indeed, we now find that whenever ri > k̂, it is not optimal for Player i’s action to be ob-

servable. A corollary is then that with pre play communication, players choices must not be

observable. The main building block is Proposition 5. It characterizes several properties of

equilibria when cheap talk co-exists with transparency. It shows that for any communication

structure augmented to the sequential contribution game, at most one message can be sent

with a positive probability following which the project has a positive completion probability

in the continuation game. This enables us to conclude that any outcome that can be achieved

through a cheap talk extension of the sequential contributions game can also be achieved via

an augmentation of the simultaneous move game with a message space containing only two

messages. This comparison is taken up in Section 4.3. Thus, the conclusions given in Sec-

tion 3.1 and Section 4.3 taken together give the economic insights related to peer activities

described in this Introduction. Section 5 concludes.

Two further points are worth noting before we delve into the formal details. First, it may

be of some independent interest that some of the sufficient conditions that we impose in prior

beliefs have to do with a new concept called the pseudo-mode of a probability distribution

that I introduce. The pseudo-mode of a probability distribution is the same as the mode of

a uni-modal distribution but differs otherwise.4 Second, a semi-formal outline of the main

argument is given in Section 2.1 for the inefficacy of cheap talk under transparency.

2 Basic setup

We model team activity as contributions to a threshold public good. That is, a joint project

between Player 1 and Player 2 requires a total investment of k > 0 for completion. The

4For instance, in the case of the uniform distribution on [vi, vi], the pseudo-mode is vi.
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payoff of Player i in the event that the two players contribute c1 ≥ 0 and c2 ≥ 0 is

ui (c1, c2|vi) =

{
vi − ci if c1 + c2 ≥ k

−ci otherwise .

vi, the benefit from completion of the project to Player i is assumed to be her private

information. v1 and v2 are independent draws of random variables distributed according to

respective cumulative probability distributions F1 and F2 which are the players’ prior beliefs.

Assume that Fi admits a continuous density fi that is positive on a non-trivial interval

[vi, vi]. The assumption that types are independently distributed is important. Correlated

types warrant a separate analysis.

Given a realization (v1, v2) of benefits, we say that it is ex-post efficient to complete

the project if v1 + v2 ≥ k and ex-post strictly efficient if the inequality is strict. Ex-post

inefficiency is defined similarly.

The above payoff specification seeks to capture two key aspects of a general team envi-

ronment. First, often in a team, one member’s actions are a substitute for another’s actions,

thereby creating an incentive to shirk. This aspect of free-riding is clearly well captured by

the above payoff specification since it is the sum of players’ contributions that determines

whether the project succeeds. Second, in a team, different members bring distinct comple-

mentary skills which give rise to the need for a team in the first place. To emphasize this

latter aspect of teams, we maintain the following restriction throughout our analysis:

v̄i < k for i = 1, 2. (1)

(1) captures the idea that no one player has the ability/skills (or the incentive to acquire

them) to unilaterally complete the project.

It is implicit in the above payoff specification that the benefit from not undertaking

the project is normalized to zero. Therefore vi is the minimum incremental benefit from

completing the project for Player i. We assume that this is non-negative. Finally, to keep

the problem interesting, we assume that

v1 + v2 < k < v1 + v2. (2)

It will be evident that in all the game forms we will consider, if the first inequality fails, it is

easy to ensure the project’s completion with probability one. If the second inequality fails,

it is always ex-post inefficient to complete the project and it will never be undertaken.
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To analyze the effects of different types of information, we shall study different procedures

by which contributions to the joint project occur and compare the equilibria of the resulting

Bayesian games. To begin, we think of transparency of a peer’s actions as one player choosing

how much to contribute after observing the contribution of the other. Let Si denote the

situation where Player i leads and chooses her contribution, which is then observed by Player

j who then makes her choice. Let C denote the case where contributions are simultaneous,

i.e. the non-transparent case. The notation is chosen to denote that contributions occur a

la Stackelberg and Cournot respectively. The question of whether transparency of a peer’s

costly actions helps amounts to comparing equilibria of C with those of S1 and S2.

It is clear that it is not necessary to analyze S1 and S2 separately. In what follows we

study S ≡ S1 and conclusions for S2 are then drawn in the obvious manner.

Remark 1 (Contribution mecahnisms) An important feature that is common to all the

games that we study is that each of them is a contribution mechanism, by which we mean that

a player’s contribution cannot be recovered even if the project is not completed. Therefore,

with little loss in generality, a player of type vi is assumed to never contribute more than vi

in any equilibrium of the relevant game. This will be implicit in our arguments.

Cheap talk extensions

Recall that in this paper, besides the information conveyed through the sequencing of deci-

sions, we are also interested in its interplay with the information conveyed from non-costly

actions. To model this, we need to consider cheap talk extensions of the games C and S. In

a cheap talk extension of either C or S, prior to choosing their contributions to the project,

players exchange non-binding messages. What messages are permitted is an exogenous vari-

able. The thrust of our main result is to show that cheap talk has a greater impact under

simultaneous contributions than under sequential contributions. In fact, we will be showing

that simultaneous exchange of binary messages followed by a play of C, a procedure that we

denote by C∗, is enough to dominate exchange of arbitrary messages followed by a play of

S. The game C∗ is described below.

C∗ is a multi-stage game of incomplete information with the following two stages:

Stage 0 Each player simultaneously chooses a message from {y, n}. (The mes-

sage “y” stands for “Yes, I intend to contribute a positive amount to the

project” while n stands for “No, I do not plan to contribute”.)
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Stage 1 The messages are made public following which both players chooses

simultaneously contribute to the project.

Let us now consider introducing pre-play communication to S. The effect of any pre-play

communication in general is an (endogenous) revision of beliefs of the players’ types after the

communication stage. Observe that the choice of Player 2 in the second stage of S depends

only on what Player 1 contributes and not on the latter’s type. Player 1’s contribution

however does depend on her beliefs about Player 2’s type. Therefore, in considering the

effects of pre-play communication under S, it suffices to endow only Player 2 with a message

space.

A cheap talk extension of S is therefore, without much loss in generality, a multi-stage

game 〈M,S〉 where M is an arbitrary message space, with at least two elements such that:

Stage 0 Player 2 sends a message m ∈M .

Stage 1 Player 1 observes m and chooses how much to contribute.

Stage 2 Player 2 observes Player 1’s contribution and chooses how much to

contribute.

In other words, under 〈M,S〉, each announcement m ∈M by Player 1 is followed by a play

of S.

Remark 2 (Equilibrium) A play of any of the procedures C, S, C∗ and 〈M,S〉, together

with the informational assumptions given earlier yield a multi-stage game of incomplete

information as described in Chapter 8, Fudenberg and Tirole [1991]. By an equilibrium

of these games we will mean “Perfect Bayesian Equilibrium” as given by Definition 8.3 in

Fudenberg and Tirole [1991].5

2.1 Outline of the main argument

I will now outline the argument for adding a stage of pre-play communication can help in C
but not necessarily so in S.

Definition 1 (0-outcome) The 0-outcome refers to an outcome in which neither player

makes a positive contribution regardless of her type and the project is never completed.

5In the case of C, this is of course the usual Bayes Nash equilibrium.
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Given (1), it is evident that under C, it is a Bayes Nash equilibrium for neither player

to contribute regardless of her type. Call this the 0-outcome. When one augments C with

a round of pre-play communication, upon exchanging messages, players will revise their

beliefs. Nevertheless, under any Bayes consistent posterior beliefs, since no one player has a

willingness to complete the project unilaterally to begin with,

(A) In C∗, the 0-outcome is a feasible equilibrium outcome in the continuation game that

follows any messages.

Let us now consider S. Assume v1 + v2 > k. If Player 1 were to contribute k − v2 and

sequentially rational play will require that Player 2 complete the project. Thus, Player 1

types v1 ≈ v1 must contribute a positive amount regardless of their Bayes consistent posterior

beliefs after exchanging messages. This allows us to conclude that

(B) Whenever k < v1 + v2, in any cheap talk extension of S, the 0-outcome is infeasible in

the continuation game that follows any message.

(A) and (B) allow us to draw the key insight. Under non-observability, (A) offers a threat

that allows one to separate high type players with lower type players. Under observability of

Player 1’s actions, (B) tells us that such a threat is no longer available. So fewer outcomes

can be sustained as a result. To illustrate, suppose that [vi, vi] = [a, 1] for some a such that

1 < k < 1 + a.

(a, a)

(1, 1)

k − a

k

k

Figure 1: C∗ has an equilibrium in which, ex-post the project is completed only in the shaded

region. Not so for 〈M, S〉
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The state-space is depicted as the thick edged rectangle in the Figure 1. Suppose we try

to achieve the outcome in which the project is completed if and only if v2 ≥ k − a, i.e. in

the shaded region. Outcomes where the project is completed only if the two players types

lie above some respective thresholds that add up to k will shortly be defined as cost-sharing

outcomes and shown to have superior welfare properties.

This can be implemented using C∗ as follows via the following strategy profile: At the

communication stage, Player 1 announces y regardless of her type while Player 2 announces

y if v2 ≥ k − a and n otherwise. At the contribution stage, unless both players have an-

nounced y, neither player contributes regardless of her type. Otherwise, Player 1 contributes

a regardless of her type while Player 2 contributes k − a if v2 ≥ 0 and zero otherwise. It is

not hard to verify that this is a Perfect Bayesian equilibrium of C∗. The key thing to note

in this implementation is the ability of the two players coordinate on the 0-outcome when

Player 2 announces n.

Can such an outcome be achieved in a the cheap talk extension 〈S,M〉 with M = {y, n}?
The answer is no. Indeed, consider a candidate equilibrium configuration in which Player

2 sends the message y if and only if her type v2 ≥ v∗2 = k − a. When Player 1 observes

the message n, her posterior is that Player 2’s type lies in [a, v∗2]. In the continuation game

following this message, with such a posterior, Player 1 of type v1’s payoff from contributing a

is v1−a > 0, so the best response must be to contribute some positive amount. Also, given her

posterior, she would never contribute less than k−v∗2. Therefore, following an announcement

of n by Player 2, the 0-outcome is no longer feasible and moreover, v∗2 receives a positive

interim payoff. On the other hand, by reporting y, Player 1’s posterior is that Player 2’s

type lies in [v∗2, 1] and hence she would never contribute more than k−v∗2 — type v∗2 receives

zero interim payoff. The lack of indifference of the payoff of v∗2 between announcing y and n

shows that the posited equilibrium configuration is not possible.

Of course, in the above argument the message game is held fixed and only a particular

configuration was considered. One could reasonably ask whether there are other communi-

cation schemes with possible equilibrium configurations that can overcome the above diffi-

culties. The crux of the above argument, that there cannot exist a marginal type v∗2 who

cannot remain indifferent between between sending a pair of messages both of which lead

to a positive probability of the project’s completion, will be shown to be valid for arbitrary

communication schemes (and even for parameters that do not satisfy the inequality given in

(B)).
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2.2 Further preliminaries

In this section we shall collect some further definitions and notation that will be used in our

analysis.

An outcome of C, C∗,S or 〈M,S〉 is a tuple 〈q, t1, t2〉 where q : [v1, v1]× [v2, v2] −→ [0, 1]

and ti : [v1, v1]× [v2, v2] −→ R+. Here q (v1, v2) is the ex-post probability that the project is

completed when the true state is (v1, v2) and the contribution of Player i is ti (v1, v2). Thus,

in the 0-outcome for example, q(v1, v2) ≡ 0 and ti(v1, v2) ≡ 0.

Definition 2 (Cost Sharing Outcome) An outcome (q, t1, t2) is a cost sharing outcome

if there exists a real number x such that

1. v1 ≥ x and v2 ≥ k − x implies i. q(v1, v2) = 1, ii. t1(v1, v2) = x and t2(v1, v2) = k − x.

2. q(v1, v2) = t1(v1, v2) = t2(v1, v2) ≡ 0 otherwise.

We let E(x) denote such an outcome.

In other words, in a cost sharing outcome, whenever Player 1 and Player 2 types are

above their respective thresholds of x and k − x, the project is completed with probability

one and each pay x and k − x (only if the project is completed).

We shall say that 〈q, t1, t2〉 is feasible or is an equilibrium outcome for any of these games

if there is an equilibrium of that relevant game in which it can be realized.

Throughout, when we say the “probability of the project’s completion” we mean the

ex-ante probability of the project’s completion which is

E[q(v1, v2)] =

∫ v1

v1

∫ v1

v1

q(v1, v2)dF1(v1)dF (v2).

Thus, in a cost sharing outcome E(x), the probability of the project’s completion is

(1−F1(x))(1−F2(k−x)) and the expected total contribution is (1−F1(x))(1−F2(k−x))k.

3 Transparency of a peer’s actions

In this section, we analyze the effect of transparency of a peer’s action which entails a

comparison of the equilibria of the procedures C and S. We begin with a complete analysis

of the game S and take up the actual comparisons in Section 3.1 after describing the equilibria

under non-transparency, namely C, by drawing on Agastya et al. [2007].
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Recall that in S, Player 2 contributes after she observes the contribution of Player 1.

Hence a strategy of Player 1 is a function S1 : [v1, v1] −→ R whereas a strategy of Player 2

is a function S2 : [0, k]× [v2, v2] −→ [0, k] where S2 (c, v2) is her contribution when she is of

type v2 and the history is that Player 1 has contributed c.

Determination of equilibria of S is as usual through backward induction. We begin by

calculating the reaction function of Player 2. Upon observing a contribution c1 ≥ 0, Player

2 of type v2 need only decide whether to complete the project by contributing k − c1 or not

contribute at all. Contribution is a best response only if v2 ≥ k − c1. Therefore,

S∗2 (c, v2) =

{
k − c1 if v2 ≥ k − c1
0 otherwise,

must be the equilibrium strategy of Player 2 in any equilibrium of S.

Fixing this behavior of Player 2 let us discuss the incentives of Player 1. By contributing

an amount c, Player 1 simply ensures that Player 2 types only above k − c will contribute

and complete the project. Therefore, Player 1’s choice problem, taking the above optimal

behavior of Player 2 as a given, can be recast as choosing a threshold type v2 and contribute

an amount, in fact k − v2, so that all types of Player 2 whose value is at least v2 will finish

the project. Doing so will leave Player 1 with a payoff of

G (v1, v2) = (1− F2 (v2)) v1 + v2 − k (3)

when she is of type v1. Alternatively, Player 1 can choose not to contribute, which gives her

a payoff of zero. Therefore, any type v1 such that G (v1, v2) > 0 for some v2 ∈ [v2, v2] will

contribute a positive amount and others contribute zero. Noting that G (v1, v2) is increasing

in its first argument, its maximum function

g (v1) = max
v2∈[v2,v2]

G (v1, v2)

is increasing and continuous (by the well known Theorem of the Maximum). Therefore,

there exists a unique w∗1 ∈ [v1, v1] with the property that

g(v1) < 0 if v1 < w∗1

g(v1) > 0 if v1 > w∗1.
(4)

Thus, every Player 1 type above w∗1 receives a positive payoff and contributes a positive

amount. Those types below w∗1 are better off by not contributing. Also notice that, by
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continuity of g, g(w∗1) = 0 whenever w∗1 is in the interior of [v1, v1].

Given an equilibrium of S, let U s
i (vi) denote the interim payoff of type vi player in that

equilibrium of S.

Proposition 1 In any equilibrium of S,

1. Player 1 types v1 < w∗1 do not contribute and a type v1 ∈ [w∗1, v1] contributes a positive

amount k − ϕ (v1) where

ϕ (v1) ∈ argmaxv2
G (v1, v2) .

Moreover, ϕ is non-increasing and the interim payoff of Player 1 is

U s
1 (v1) =

g(v1) if v1 ≥ w∗1

0 otherwise
(5)

2. Player 2 chooses S∗2 . Let

w∗2 = ϕ(v1). (6)

The interim payoff of Player 2 is

U s
2 (v2) =


∫ v1

w∗
1

max{v2 − ϕ (v1) , 0}dF1 (v1) if v2 ≥ w∗2

0 otherwise.

In particular, U s
2 (w∗2) = 0 and if the probability of completion is positive, U s

2 (v2) > 0.

Remark 3 It is worth drawing attention in particular to the interim payoff of Player 2 types

w∗2 and v2 in an equilibrium. Part 2 shows that the payoff of the infimum (w∗2) of all Player

2 types that contribute a positive amount is necessarily driven to the individually rational

payoff of zero while the highest type necessarily derives a positive rent. This property plays

a crucial role in determining the structure of equilibria of cheap talk extensions of S and

holds even if F2 does not admit a positive density everywhere on [v2, v2].

Although Proposition 1 completely characterizes all equilibria of S, it does not reveal

whether an equilibrium with a positive completion probability can occur or whether 0-

outcome is the unique equilibrium outcome. Fortunately, it is possible to offer a simple
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sufficient condition on F2 to address these issues. To develop such a condition, we introduce

the following (new) concept for probability distribution functions.

Definition 3 (Pseudo-mode) The pseudo-mode of the probability distribution Fi, de-

noted by µi, is the smallest x such that its density is non-increasing everywhere to the right

of x.

The idea of a pseudo-mode is closely aligned to the notion of the mode of a distribution.

For instance when the distribution is uni-modal, the density is increasing everywhere to the

left and decreasing everywhere to the right of the unique mode. In this case the mode is the

same as the pseudo-mode. That the two concepts are different can be seen by considering

the uniform distribution. The mode is no longer unique. Yet, since the density is a constant,

the pseudo-mode is uniquely determined as the lower end of the support. Also note that the

restriction of Fi to [µi, vi] is (weakly) concave.

Proposition 2 S admits an equilibrium in which the probability of completion is positive if

and only if

G (v1, v2) > 0 for some v2 ∈ [v2, µ2] . (7)

Proof of Proposition 2. Suppose (7) holds, then g(v1) > 0 which implies w∗1 < v1.

By Proposition 1, all types [w∗1, v1] will contribute a positive amount leading to an positive

ex-ante probability of the project’s completion. Conversely, suppose (7) fails. From the

definition of pseudo-mode, we note that in the region [µ2, v2], the function G(v1, ·) is weakly

convex and hence G(v1, v2) ≤ max{G(v1, µ2), G(v1, v2)} for all v2 ∈ [µ2, v2]. Now using (1)

and the fact that (7) fails, we conclude G(v1, v2) ≤ 0 for all v2 ∈ [v2, v2], i.e. g(v1) ≤ 0. This

in turn means w∗1 = v1 and by Proposition 1, the project is never completed.

The following corollaries are two easy consequences of Proposition 2 that offer sufficient

conditions concerning the (positive) probability of completion of the project.

Corollary 1 Suppose Player i’s action is transparent, i.e. consider Si.

1. If it is ex-post inefficient to complete the project when Player i is the highest type

and Player j’s type is the pseudo-mode, i.e. vi + µj ≤ k, then the unique equilibrium

outcome is the 0-outcome.
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2. If it is ex-post strictly efficient to complete the project when Player i is highest type

and Player j is the lowest type, i.e. vi + vj > k, then in every equilibrium, there is a

positive probability of completion.

Proof of Corollary 1. Observe that G(v1, v2) ≤ v1 + v2 − k ≤ v1 + µ2 − k for all

v1, v2 ∈ [v2, µ2]. Given our hypothesis in Part 1, (7) is violated. Applying Proposition 2

gives the result. To prove Part 2, simply note that G(v1, v2) = v1 + v2 − k which is positive

given our hypothesis. So (7) holds and we again apply Proposition 2 to complete the proof.l

Observe that if the probability distribution is concave (or uniform), then its density is

non-increasing throughout the support. We can then refine the previous corollary as follows.

First, let

ri = vi − vi

be the range of the original distribution Fi and set

κ = k − v1 − v2. (8)

κ is the cost of completion of the project net of minimal possible total benefit the two players

assign to the project’s completion.

Corollary 2 (Concave Priors) Suppose Player i’s action is transparent and Fj is concave.

The unique equilibrium outcome is the 0-outcome if ri ≤ κ and is otherwise the cost-sharing

outcome E(k − v2) if i = 1 and E(v1) if i = 2.

Note that the condition ri > κ for a positive completion probability can be rewritten as

as vi+vj > k. In other words, with a concave prior, there is a positive completion probability

only if it is ex-post strictly efficient to complete the project when the player whose action is

transparent is the highest type and the follower is the lowest type.

Proof of Corllary 2. Let i = 1. The claim about the zero outcome is simply the first

part of the previous Corollary since with a concave prior µ2 = v2. Next, for any v1, G(v1, ·)
is convex in its second argument and must achieve a maximum at one of the two extreme

points v2 or v2. Therefore, in an equilibrium of S, Player 1 either contributes k− v2 or does

not contribute at all, from which we conclude that w∗1 = k− v2 resulting in the cost sharing

outcome E(k − v2).
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3.1 Whose actions (if any) must be transparent?

We now turn to the question of whether transparency of a peer’s action helps and if so which

player’s action must be made transparent. This question is of course related to whether

sequentiality of voluntary contributions to a public good dominate simultaneous choices,

the subject of a rich literature since Varian [1994], Admati and Perry [1991]. There, the

leader knows that the follower’s preferences and the knowledge the follower cannot free-ride

lowers the leaders incentive to contribute. The total contributions under sequential behavior

is lower. (See Marx and Matthews [2000] however.) Here on the other hand, the leader is

unsure of the follower’s incentives to complete a project, given her choice. Therefore, whether

sequencing decisions benefits or hurts is a priori not clear. Furthermore, if it is indeed the

case that sequential contributions dominate, what features of the type distributions F1 and

F2 determine should be the leader?

The comparison across different formats may be made across several criteria – the interim

Pareto optimality, the total expected contributions or the overall probability of completion.

To progress further, we borrow a result from Agastya et al. [2007] concerning C. There, it

was shown that the existence of an equilibrium with a positive probability of completion in

C is equivalent to the existence of a pair of types (v1, v2) such that H(v1, v2) > 0 where

H(v1, v2) = (1− F2(v2))v1 + (1− F1(v1))v2 − k (9)

When F1 and F2 are concave, H is convex and hence its possible maxima include (v1, v2),

(v1, v2), (v1, v2) and (v1, v2) with the respective values under H being v1 + v2 − k, v1 − k,

v2 − k and −k. This observation, along with (1) and (2)) gives us:

Fact 1 Suppose F1 and F2 are concave. Under non-transparency, i.e. in the game C, the

unique equilibrium outcome is the 0-outcome.

Comparing Fact 1 and Corollary 2, it is immediate that, with concave priors, transparency

of Player i’s action dominates non-transparency across all the above mentioned criteria

whenever ri > κ. At least under the assumption of concave priors, the issue then is really

which player’s action should be made transparent rather than whether a players’ actions

should be transparent. To answer this question, we introduce the following.

Definition 4 (Normalized distribution) Given a probability distribution F whose sup-

port is [v, v], its normalized probability distribution function is F̂ where F̂ (x) = F (v + x)

for all x ≥ 0.
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It is common-knowledge that Player i values the project at least vi. F̂i(x) is therefore

the likelihood that she values the project an additional x units. Note that the support of the

normalized distribution F̂i is [0, ri]. Also writing κ = max{0, r1− v2, r2− v1}, the conditions

(1)-(2) may be re-expressed compactly as

κ < κ < r1 + r2 (10)

Recall that F̂i is said to first order stochastically dominate F̂j if F̂i(x) ≤ F̂j(x) for all x ≥ 0,

with a strict inequality for some x.

Proposition 3 Suppose the type distributions are concave and F̂i first order stochastically

dominates F̂j. Then, Player i’s choice should be transparent to achieve

1. the highest probability of completion and

2. the highest expected total contribution.

Moreover, this sequence is uniquely optimal unless κ ≥ max{r1, r2}, in which case the 0-

outcome is the unique equilibrium outcome under all transparent and non-transparent behav-

ior.

Remark 4 (Ordering under uniform priors) When F1 and F2 are the uniform distri-

butions, then F̂i(x) = x/ri and therefore F̂i stochastically dominates F̂j if and only if ri > rj.

According to Proposition 3, it is optimal for the player with the largest range to be the leader.

Proposition 3 is summarized in Figure 2. First note that when F̂i first order stochastically

dominates F̂j, then Player i has a larger range of types, i.e. ri > rj. When κ ≥ ri (region

C), then an application of Corollary 2 tells us that the cost of completion is too high and

regardless of which player’s action is transparent, the unique outcome is the 0-outcome, just

as is it is with non-transparency. In the intermediate range of rj ≤ κ < ri (region B), again

from Corollary 2, the unique outcome is the 0-outcome unless Player i is the leader. It is

only when κ ≤ min{r1, r2} (region A), that there is a positive probability of the project’s

completion regardless of whether Player 1 or Player 2 contributes. It is here that stochastic

dominance of F̂i over F̂j plays a role in determining that Player i should be the leader.
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Player 1’s action should be
transparent in regions A & B.
It is the player with a higher
range of valuations.

All three sequences are equiv-

alent in C.

k̂

A︷ ︸︸ ︷
r2

B︷ ︸︸ ︷
r1

C︷ ︸︸ ︷
r1 + r2

κ 7−→

Figure 2: Ranking of different sequences without pre-play communication

The ranking of the different procedures is not as clear cut across the different criteria

when we drop the assumption of concavity of the priors. The following Proposition however

suggests that non-transparency cannot be an unequivocally superior choice.

Proposition 4 (C vs. S) Relative to non-transparency (the game C), under transparency

of Player i’s action, every type of Player i who contributes a positive amount is better off.

(The remaining types of Player i are indifferent.)

The proposition is intuitive. In C, if at all a Player 2 type contributes a positive amount,

her contribution is strictly below her valuation. Therefore, to induce type v2 and above to

contribute, Player 1 would have to be contributing more than k − v2. On the other hand in

S, the leader, namely Player 1, need only contribute k−v2 to induce the same outcome. This

insight leads to the conclusion that the leader is unequivocally better off. Unfortunately, it

is not possible to use a similar argument to compare either the probability of completion or

the total expected effort. For, in C, since the contributions of one player cannot conditioned

on those of another, the total ex-post contribution at some state (v1, v2) may be more or

less than k. Under S on the other hand, the total contribution is either k or less than k at

all realizations of v1 and v2. Therefore, the comparison between the expected contributions

remains ambiguous.

4 Pre-play Communication

In the previous section we studied the implications of information transmission through

costly actions. In this section, we shall study how the introduction of a channel for cost-

17



less information transmission influences those conclusions. For this we need to study the

equilibria of C∗ and 〈M,S〉 and compare them with the results obtained in the previous

section. We begin by collecting some of the results on C∗ from Agastya et al. [2007] in

Section 4.1. Then we analyze 〈M,S〉 in Section 4.2. The comparisons with and without

pre-play communication are then taken up in Section 4.3.

4.1 Cheap talk & non-transparent actions

Consider the following set of cost sharing outcomes

E =
{
E(x) : k − v2 ≤ x ≤ v1

}
. (11)

The probability of completion in a cost sharing outcome is (1 − F1(x))(1 − F2(k − x)). E

contains all the cost sharing outcomes that lead to a positive probability of completion of

the project.

The following Fact is the combination of Proposition 15, 16 and 18 in Agastya et al.

[2007].

Fact 2 Consider the simultaneous contributions game C and its binary message cheap talk

extension C∗.

1. For every equilibrium of C, there exists a cost sharing outcome in E that a). is Pareto-

dominant in the ex-ante and interim sense, b). leads to a higher probability of comple-

tion and c). yields a expected higher total contribution.

2. Every cost sharing outcome in E is an equilibrium outcome of C∗. Moreover, if F1 and

F2 are concave, these are its only equilibrium outcomes.

The two statements taken together show that introduction of a round of pre-play com-

munication to non-transparent behavior can lead to superior outcomes. In a cost sharing

outcome, the payment of one player depends on the type of the other player. As such, it

cannot be supported as an equilibrium outcome of C with the choices being simultaneous.

With the addition of a round of pre-play communication, it is possible to achieve such a

coordination. That every element of E is feasible under C∗ is easily verified. (Alternatively

see Agastya et al. [2007].) Of greater interest is the Pareto superiority of these outcomes

over the equilibria of C, i.e. Part 1 above. It turns out that the main reason for this is that
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in any equilibrium of C, the infimum of Player i types that contributes a positive amount,

denote by v̂i, is such that v̂1 + v̂2 > k. Using the fact (well known since Myerson [1981])

that payoff depends primarily on the ex-post completion probabilities (see Fact 3 given in

the Appendix), the assertion follows.

4.2 Cheap talk & transparent actions

Let us now consider 〈M,S〉. When it is Player 2’s turn to make a contribution, the history

of the game is a pair h = (m, c), which represents that the message m has been sent in the

communication stage and Player 1 has contributed c. Player 2’s behavior after any such

history is clear: contribute k−c and complete the project if v2 ≥ k−c and do not contribute

otherwise. Therefore, in what follows, the description of Player 2’s strategy in the game will

be confined to her behavior at the communication stage.

A strategy of Player 2 is then a function σ : [v2, v2] −→ M where σ (v2) is the message

she sends when she is of type v2. Most generally, one would allow any measurable σ. Instead,

to avoid technical complications that would shift the focus of this paper (and those being

beyond my ability to resolve), I will assume the following: a σ is permitted as a strategy

only if the set of types that send any given message m, namely σ−1 (m), is the union of at

most finitely many intervals. This allows us to exclude pathological situations where Player

2 sends one message if her type is a rational number and another message otherwise. The

above restriction on permitted strategies is however general enough to allow behavior that

ranges from fully revealing strategies to cases where a pair of types v2 < v′2 send the same

message while other types intermediate to them (v2, v
′
2) send a different message.

Proposition 5 Consider an arbitrary cheap talk extension 〈M,S〉 of S.

1. In any equilibrium, there can be at most one message (sent with a positive probability)

following which the project is completed with a positive probability.

2. If r1 > κ, all types of Player 2 send the same message – the game 〈M,S〉 and S are

outcome equivalent.

3. Suppose v1 + µ2 ≤ k. The set of equilibrium outcomes is E.

The reasoning behind Part 1 may be laid bare by considering the possibility of a situ-

ation where a set of types [a, b] ⊆ [v2, v2] send one message, say m1, and the set of types

[b, c] ⊆ [v2, v2] choose another message say m2. Assume, by way of contradiction, that in
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the continuation game following both the messages, the project has a positive completion

probability. Observe that the marginal type m1 must be indifferent to reporting either m1

or m2. However note that if she should report m1, in the continuation game, as per Player

1’s posterior, she is the highest of all possible types. By Part 2 of Proposition 1, her in-

terim payoff is positive. On the other hand, if she reports m2, she would be regarded as the

smallest possible type in Player 1’s posterior. Using Part 2, Proposition 1 again, her interim

payoff would be zero and provides the desired contradiction. The argument in the formal

proof has to account for the fact that the set of types that send a given message need not

be an interval.

Part 2 and Part 3 correspond to situations we considered in Corollary 1. Part 3 is the case

where, without pre-play communication the unique equilibrium is for no player to contribute.

The feasibility of the 0-outcome is the feature that enables one to divide Player 2 types into

two sets, one that sends a high message following which there is a positive completion

probability and the other, which coordinates on the now feasible 0-outcome. Indeed, any

cost sharing outcome in E may now be implemented. Part 2 represents a situation where,

absent pre-play communication, there is a positive probability of completion. Interestingly,

no matter however small this probability of completion is, it completely undermines all

information transmission through pre-play communication.

4.3 Transparency vs. non-transparency under cheap talk

We can now ask whether transparency continues to dominate non-transparent behavior when

pre-play communication is also a possibility. Virtually all the information that is needed to

make the comparison is already available from the several propositions and corollaries we

have proved thus far. The conclusions will therefore be given as a series of remarks rather

than presenting them as further results. The punchline can be seen from Figure 3. Assume

throughout that F1 and F2 are concave so that Corollary 2 remains applicable.

Let us begin with the case where ri > κ. An application of Part 2, Proposition 5 shows

that allowing pre-play communication has no impact if Player i’s action is transparent.

The unique equilibrium outcome is the E(k − v2) or E(v1) depending on whether i = 1 or

i = 2. On the other hand, any cost sharing outcome E(x) ∈ E may be achieved through

a play of C∗. Recalling that the probability of completion in a cost-sharing outcome is

(1−F1(x))(1−F2(k− x)), we conclude that except in a non-generic situation, introduction

of cheap talk under non-transparent behavior strictly dominates transparency of Player i’s

action even if cheap talk is allowed as far as completion probability is concerned.
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When ri < κ, appealing to Part 3, Proposition 5, we note that the introduction of cheap

talk when Player i’s actions are transparent, enlarges the set of equilibrium outcomes to E
just as in the case with C∗. We collect these observations in the following figure.

Simultaneous contributions

and Player 2 being the leader

are optimal and dominate

Player 1 leading.

Contributions must

be simultaneous.

All three are equiv-

alent.

k̂

A︷ ︸︸ ︷
r2

B︷ ︸︸ ︷
r1

C︷ ︸︸ ︷
r1 + r2

κ 7−→

Figure 3: Ranking of different sequences with pre-play communication and concave priors

5 Conclusion

In environments where individual contributions to a project are compensated only if the

total contribution reaches a threshold, we have addressed the impact of two channels of

information transmission on the incentive to contribute. We have shown that information

conveyed through transparency of a players’ (costly) action is often beneficial in two ways.

First, it improves the incentives of the later movers to contribute which in turn improves the

incentive of the leader to contribute as well. Second, sequential rationality required under

transparency refines the set of equilibria. We have shown that this latter attractive feature

however, is precisely responsible for limiting the effectiveness of transparency in the presence

of a second channel of information transmission, namely cheap talk. These we believe, are

important insights for organization of teams for undertaking joint projects and given the

formal equivalence of the underlying games, to provision of voluntary contributions to joint

projects.

There are three aspects of the above analysis which may seem to restrict the applicability

of the above analysis. First, the role of concave or uniform priors. Our intention here is to

emphasize as setting in which communication has a significant impact when there is no ob-
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servability but is very limited if there is observability of players actions. Concave or uniform

priors provide a simple sufficient (and sometimes necessary) condition for the equilibrium

outcome to be the 0-outcome absent communication or observability. Economically these

assumptions mean that higher types are relatively sparse (since strictly concave prior would

mean that that its mode is the lower end of the support). Although the qualitative nature

of our ranking can be rescued for somewhat more general assumptions (since for example,

the key elements in such a comparison namely Proposition 2 and Proposition 4 do not rely

on concavity), the increased complexity is unlikely to deliver different insights.

Second, here the payoff of a player depends only on her type. So, the only uncertainty

that is being resolved for the second mover is whether the former will contribute. One might

consider a more general model in which a player learns more about her own type upon

observing the actions of the other player. Third, this paper considers arbitrary one-shot

communication schemes. A natural question to consider is whether both players can be made

better off by allowing further rounds of communication. What is the impact of continuing

conversations (a la Aumann and Hart [2003] ) with possible interim contributions? These are

substantial generalizations beyond the scope of the present work. They will be the subject

of future investigations.

Appendix

Given an outcome (q, t1, t2), the interim probability that the project is completed conditional

on Player i being of type vi is

q1 (v1) =

∫ v1

v1

q (v1, s) dF (s) and q2 (v1) =

∫ v2

v2

q (s, v2) dF (s) .

The following fact is a well-known (implication of incentive compatibility for direct mecha-

nisms) since Myerson (1984).

Fact 3 If 〈q, t1, t2〉 is an equilibrium outcome of C, C∗,S or 〈M,S〉 , the corresponding in-

terim payoff of Player i is

Ui (vi) =

∫ vi

vi

qi (v̂i) dv̂i + Ui (vi) ∀ vi

and qi(vi) ≥ q1(v
′
i) whenever vi > v′i.

In particular, Ui(vi) is non-decreasing.
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Proof of Proposition 1. Part 1 is evident from the discussion that preceded the Propo-

sition, apart from the assertion that ϕ is non-increasing. To see this, we note that in

this equilibrium, the interim probability of project’s completion for any type v1 ≥ w∗1 is

q1(v1) = 1−F (ϕ(v1)), which we know from Fact 1, is non-decreasing. Part 2, the statement

regarding U s
2 is also immediate. It is also clear from that equation that U s

2 (v2) > 0 provided

the project has a positive completion probability since in this case w∗1 < v1. It remains to

show that U s
2 (w∗2) = 0. Since ϕ is non-increasing, k−w∗2 is the highest possible contribution

of Player 1. By (1), all Player 2 types v2 ≤ w∗2 must therefore receive a zero payoff.

Proof of Proposition 4. In C, a strategy profile is a pair (C1, C2) where Ci : [vi, vi] −→
[0, k]. In an equilibrium, Ci can be shown to be non-decreasing and right continuous6. Given

an equilibrium and a v1 such that C1 (v1) > 0, let φ (v1) = inf {v2 | C1 (v1) + C2 (v2) ≥ k}.
Then, the payoff of this type is non-negative and equals

v1 (1− F2 (φ (v1)))− C1 (v1) ≤ v1 (1− F2 (φ (v1))) + C2 (φ(v1))− k

< v1 (1− F2 (φ (v1))) + φ (v1)− k

≤ g (v1) .

The first of the inequalities is due to the fact that C1(v1) + C2(φ(v2)) ≥ k while the second

inequality follows from the fact that φ(v1) type of Player 2 must contribute less than her

value for the project. Further, g(v1), as noted in Part 2, Proposition 1, is the equilibrium

payoff of a type v1 player who makes a contributes positive amount under S.

Proof of Proposition 3. From Fact 1, for the relevant values of k̂ simultaneous contri-

butions necessarily result in the 0-outcome. On the other hand, if Player 1 moves first, by

Corollary 2, the probability of completion is (1−F1(k− v2)) = (1− F̂1(κ)). The probability

is (1−F2(k− v1)) = (1− F̂2(k̂)) if Player 2 moves first. First order stochastic dominance of

F̂1 over F̂2 shows that the former sequence has a higher probability of completion. Since in

the equilibria of the sequential contributions, exactly k is contributed whenever the leader

contributes a positive amount, the claim regarding total expected contribution also follows.

κ ≥ r1 being the same as k ≥ v1 + v2 (which also means k ≥ v2 + v1 since r1 > r2) only the

0-outcome entails for all sequences of moves.

6That it should be non-decreasing follows from incentive compatibility and Fact 3. A monotonic function
on a compact set can have only finitely discontinuities. Changing the function C at these points is a change
on a set of measure zero and has no impact on the equilibrium. Therefore, there is no loss in generality in
assuming that C2 is right continuous.
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Proof of Proposition 5. Part 1 Fix an equilibrium (S1, σ) of a cheap talk extension

〈M,S〉 in which there is a positive probability of completion of the project. Let U2(v2) be

the interim payoff of a type v2 player in this equilibrium and set w = inf{v2 : U2(v2) > 0}
and m̄ = σ(w).

By way of contradiction, let m′ 6= σ(w) be a message such that in the continuation game

following m′, denoted by S(m′), the project is completed with a positive probability. S(m′)

is the contribution procedure S but Player 1’s beliefs are given by the posterior distribution,

denote it by G, whose support is a union of finitely intervals:7

[a1, b1] ∪ · · · ∪ [ai, bi] ∪ · · · ∪ [aL, bL],

where ai < bi < ai+1 for all i. Let [a`, b`] be the first of these intervals that lies to the right

of w. Now I claim that the equilibrium payoff of type a` must be zero. For, letting C(v1)

denote the equilibrium contribution of a type v1 player in S(m′), we note that for a generic

v1, we must have C(v1) ≤ k − w′ — otherwise there would be types v2 < w′ such that

U2(v2) > 0. But given that [w′, a`) is not in the support of G, by contributing any amount

in [k − a`, k − w′], Player 1 can ensure that the project is completed with a probability

(1−G(a`)). Therefore, we must in fact have C(v1) ≤ k−a`, which in turn makes the interim

payoff of a` equal zero. If a` > w, we contradict the definition of w.

On the other hand if a` = w, it means type w is indifferent between reporting m̄ and m′.

Therefore we can repeat the above arguments by setting m̄ ≡= m′ = σ(w) and arrive at a

similar contradiction.

Part 2. r1 > k is equivalent to v1 + v2 > k. Let σ(v2) = m̄. Since this message is

being sent by the highest type, and there is an overall positive probability of completion,

probability of project’s completion conditional on the message m̄ being sent is positive. Let

if possible m′ be another message that is sent by a positive mass of Player 2 types. Following

announcement of m′, let v′2 be the lower end of its support of Player 1’s posterior. In the

continuation game after m′, by contributing k−v′2, Player 1 types v1 ≈ v1 get an approximate

(and positive) payoff of v1 + v′2 − k. Therefore, following the announcement m′ too, there is

a positive probability of the project’s completion, in contradiction to Part 1.

Part 3. Choose any E(x) ∈ E with x 6= v1 and set d = k − x and hence d ≥ µ2. M

contains at least two messages, say m̄ 6= m′, by assumption. Consider the strategy where

Player 2 plays σ(v2) = m̄ and σ(v2) = m′ if v2 ≥ d and v2 < d respectively. Upon hearing

7I am writing the support as the union of closed intervals. This is no loss in generality as a type at an
edge will be indifferent between sending a pair of messages.
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the message m̂, the Bayes rational posterior beliefs of Player 1 is the truncation of F2 to

[d, v2], denoted by Ĝ2. From the definition of µ2, Ĝ2 is concave and by Part 2, Corollary 2,

the sequentially rational play yields E(x). Following the message m̂, the posterior is the

truncation F2 to [0, d]. Using Part 1, Corollary 1, in this case the 0-outcome must result.

Putting these together, we conclude that the equilibrium outcome is indeed E(x).

To prove the converse, we use Part 1 of this Proposition. Accordingly, there is a d such

that [d, v2] who send the message m̄ and the project has a positive completion probability

in the continuation game only when m̄ is announced. If d ≤ µ2, then applying Part 1,

Corollary 1, the unique outcome is the 0-outcome, contrary to the definition of m̄. If d ≥ µ2,

repeat the argument in the previous paragraph to conclude that E(k − d) is the outcome

following the message m̄. Since the probability of completion is zero after all other messages,

the overall outcome is E(k−d). The proof is complete on recalling that Player 1 would never

contribute more than v1 and hence d ≥ k − v1.
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