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Abstract
This paper undertakes semi-nonparametric estimation of an ascending

auction model for paddy (rice) auctions in a North Indian paddy market,
with 2 principal objectives. First, it computes optimal reserve prices and sim-
ulates farmers’ revenues from auctions at these reserve prices, and compares
these to the observed reserve prices (and corresponding farmers’ revenues)
in the sample. While the optimal reserve prices are significantly different
from the sample reserve prices, the farmers’ revenues under the two sets of
reserve prices are strikingly similar. Second, it undertakes a reassessment of
government policy on minimum support prices. It shows that government
purchases of processed rice through a levy, at an appropriately chosen levy
price, can achieve the objective of providing price and farmer revenue sup-
port as effectively as direct government purchases of paddy at the minimum
support price, and at a significantly lower cost2.
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1 Introduction

India is the second largest producer of rice in the world, contributing more
than a fifth of the world’s rice output. The large government participation
in the rice market is probably well known: (i) the government purchases
large quantities of rice for distribution to the rural and urban poor through
subsidized food outlets in its ‘public distribution system’ (PDS); (ii) it also
announces a ‘minimum support price’ (MSP) for paddy (unprocessed rice)
at sowing time, and attempts to buy directly from paddy markets in order
to support this price and protect farmers’ revenues.

Less salient perhaps is the fact of a thriving private trade in paddy pur-
chases and milling, which is supported by government-provided market in-
frastructure; one of the ways in which paddy is sold is through the insti-
tution of ascending auctions run by market-appointed auctioneers in these
government-organized markets.

In this paper we analyze paddy auction data from one such market in an
important rice producing state in North India (district Panipat in the state
of Haryana), in terms of a formal structural model of ascending auctions, and
estimate millers’ value distributions for paddy using a semi-nonparametric
method. Our major objectives are to use these estimates to answer two sets
of questions. First, how good are the reserve prices set by the auctioneer
from the point of view of maximizing the expected revenue of the paddy
selling farmers? We answer this by (a) estimating ‘optimal reserve prices’ for
each paddy lot auctioned in our sample and comparing these to the actual
reserve prices set by the auctioneer. (b) We also directly compare simulated
ex ante expected revenues from the sale of each lot under the alternative sets
of actual versus optimal reserve prices.

Our second question relates to sources of government support for farmers’
revenues. The government is supposed to ensure that paddy market prices
do not fall below the announced MSP; in order to ensure this, the govern-
ment needs to maintain a presence as a direct buyer of paddy in many paddy
markets. However, the government is also a large buyer of processed rice,
doing so through the institution of a levy : private millers must sell a given
proportion of their milled rice to the government at a levy price determined
around harvest time as a markup over the MSP. Thus this levy price for
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rice influences millers’ values for paddy in the paddy auction, and through
this, influences farmers’ revenues. Using our estimated auction model, we
ask what level of levy price would act as a substitute for the government’s
direct interventions in paddy markets to protect the MSP.

The above questions are important for the following reasons. The choice
of reserve price in an ascending auction affects the revenue that the seller
expects from it; in order to determine the revenue maximizing or ‘optimal’
reserve price, the seller needs to know the distributions from which potential
bidders draw their values for the grain. The estimation exercise helps to
do precisely that, and the optimal reserve prices that we estimate thereafter
may be used as a tool for policy advice to auction markets such as these.
On the other hand, a finding that estimated optimal reserve prices, or more
importantly expected revenues from auctions that use these reserve prices
are not too different from expected revenues at reserve prices observed in the
sample, can speak strongly to the good functioning of an auction market,
including the informal knowledge that the auctioneer has of bidders’ values.
In fact, we show that this latter striking conclusion holds for the market that
we study.

The second question probably has an even more important bearing on farm-
ers’ revenues and on government foodgrain policy. The government procures
rice from Panipat and other markets through two routes - first, it buys paddy
directly from the farmers at a pre-announced Minimum Support Price (MSP)
and gets it milled into rice from private millers and pays them milling charges
in return. Rice procured through this route is called Custom Milled Rice
(CMR). Second, it requires the private millers to sell a pre-announced per-
centage of their (milled) rice to it at a pre-announced levy price, which is a
mark-up over the MSP. Rice procured through this route is called levy rice.
Acquiring rice through the CMR route is more expensive for the government
since it requires the government to maintain a presence and purchase infras-
tructure at myriad primary paddy markets, and to arrange to get its paddy
milled by private millers, whereas for levy rice, it simply has to accept de-
livery of the processed rice from millers. The main important role that the
CMR route therefore serves is that it permits the government to ensure that
grain sells in primary paddy markets at its announced MSP, at least.

We ask: Can the government operate mostly through the second, levy route,
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thereby reducing the economic cost of rice procurement, without adversely
affecting farmers’ incomes? Specifically, we first compute farmers’ expected
revenues from paddy auctions when the government is a bidder with a bid
equal to the MSP. We then compute the levy price required (that, through
its effect on bidders’ values for paddy) to yield the same farmers’ expected
revenues if the government were absent from the paddy auctions. This price
is only about Rs 14 higher than the actual levy price fixed for the season,
an increase that would easily preserve the economic advantage of using the
levy rather than the CMR route. We are thus able to make a strong case for
the use of the levy route both for grain purchase for the PDS as well as for
providing, indirectly but effectively, price and revenue support for farmers at
paddy auction markets.

Structural estimation of auctions is crucial to asking policy questions of
the above sort, as it enables us to simulate alternative states of the world.
There is now a large and growing literature on such estimation, starting
with Paarsch (1992), Laffont, Ossard and Vuong (1995), Athey and Levin
(2001) among others. See Athey and Haile (2005) for a survey. One of the
first papers to estimate optimal reserve prices at auctions is Paarsch (1997).
Seminonparametric estimation is increasingly popular (see Chen(2007)); our
implementation for auctions is similar to that by Brendstrup and Paarsch
(2006). Research on agricultural markets that uses the structural auction
framework is recent and relatively limited (see Meenakshi and Banerji (2005),
Tostao, Chung and Brorsen (2006)).

In what follows, we describe the data in Section 2, followed by the ascend-
ing auction model, identification and estimation, and estimation results in
Sections 3-5. Sections 6 and 7 report the results related to optimal reserve
prices, and to considerations of levy price setting versus direct government
purchases at paddy auctions as alternatives to supporting farmers’ revenues
in the auction context. Section 8 concludes.
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2 Data

We use data from auctions of parmal paddy at the Panipat market, in the
state of Haryana (North India) 3. Paddy is raw harvested grain which on
milling is converted into rice (grain separated from chaff and most often pol-
ished subsequently). Parmal paddies are high-yielding varieties, derived in
part from the IR − 8 releases (vintage early Green Revolution era). The
rice milled from Parmal paddy is shorter in length and thicker in width than
traditional (Basmati) varieties; it has a relatively poor cooking quality. At
about one-fifths the price of the traditional varieties, it is the cheapest rice in
the market. The Parmal arrivals begin in October and the marketing season
lasts for about a month. About 60,000 quintals of paddy arrives in the sur-
veyed market over the entire season, of which more than 60% is concentrated
in the first 3 weeks of October. The arrivals peak around the end of the first
week, with about 3000 quintals arriving per day.

Panipat is a regulated wholesale grain market set up by the Government
under the Market Regulation Act and run by a Market Regulation Com-
mitee. The mode of selling the grain is through auctions. The interacting
players on the ground in this market include commission agents who sell the
grain on behalf of the farmers (katcha arhtias), and millers who purchase
the grain. The government also purchases paddy at these auctions, through
a commission agent (the participation of the government in this and many
other markets was very limited in the given year, 1999, though). When it
participates in the auction of a paddy lot, the government bids the minimum
support price (MSP) that it announced for paddy during sowing season.
Commission agents are registered with the Market Committee and their li-
cense is renewed annually.

The buyers side of the market is rather concentrated. Though 25 distinct
buyers were recorded over the entire marketing season, the combined mar-
ket share of the two largest buyers (with large mills located within 5 km
from the mandi) was about 45% of the total arrivals. The remaining buyers
had smaller mills and picked up smaller shares of the market arrivals. It
was observed that the two large buyers avoided competing with each other
by alternating the days on which they made large purchases. Such collu-
sion is expected, ceteris paribus, to depress the win price. Meenakshi and
Banerji (2005) undertake parametric maximum likelihood estimation of both

3The data are taken from a primary survey conducted in 1999 by Meenakshi and Banerji
(2005). See for example, their cited paper.
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the noncooperative and the collusive models (for this market) and compare
them using Vuong’s test. Their results support the hypothesis of collusion, in
the form of simple bid rotation by the 2 largest buyers. In the present study,
therefore, we work with the maintained assumption of collusive behavior on
the part of the two large buyers4.

The sellers side of the market by contrast is far from concentrated. A
katcha artia typically serves between 100 and 500 farmers; and earns a com-
mission of 2% of the total value of sales from the farmer. There were 49
katcha artias in this market with small individual shares (none exceeding
5%).

The parmal paddy lots are sold through oral ascending auctions. The auc-
tioneer after visual inspection of a lot announces5 a start price for the lot,
following which the bidders whose valuation for the lot is less than the start
price leave. The remaining bidders are essentially the active bidders for the
lot. The auctioneer then raises the price in small increments, as long as there
are at least two interested bidders (active bidders keep exiting as the price
goes past their valuation). The auction ends when only a single bidder is
still interested. This bidder wins the object and pays an amount equal to the
price at which the second-last bidder dropped out. The auctioneer receives
0.8% of the win price.

The data set was constructed using a primary survey conducted in October
1999 (See footnote (1).). This information was supplemented using market
commitee records and personal interviews with millers and farmers. Based
on the market shares and differences in the processing capacity, broadly two
bidder-types are discernible6. The information recorded for each auction was
the seven covariate quality vector, start (or reserve) price, win price, identity
of the winner, number of potential and active bidders.

Parmal paddy is heterogeneous in several quality characteristics, variations
in which affect the valuation a bidder may have for a lot. Based on infor-
mation from agricultural scientists, market commitee officials and bidders at
auctions, the following seven quality characteristics emerged as potentially
important: moisture content, uniformity of grain size, grain luster, presence

4Specifically, collusion that involves simple bid rotation between them.
5Based on his assessment of the quality of the lot.
6The two large players being one type of bidder, and the small players being the other

type.
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of chaff, green and immature grains, broken grains and a category of other
variables (encapsulating evidence of disease or pest infestation). The auc-
tions proceed at a fast pace and so lab testing a sample for quality at the
auction site is not possible. The bidders perform visual and other simple
on-the-spot tests (such as breaking the grain and looking at the cross-section
for evidence of brittleness). To construct the data set, a quality vector was
assigned to each lot by evaluating each characteristic for a lot on a scale of
either 1 to 3 (worst to best) or 1 to 2 (poor and good); the determination
of quality was done using the same visual and other tests, by a trained enu-
merator.

The number of distinct winners on any given day was used as a proxy for the
number of potential bidders for all auctions on that day7. The bidders who
continued to participate in the auction once the start price was announced,
constituted the set of active bidders for that auction.

Data for the sample are summarized in Table 1 below.

Table 1
Summary statistics of the sample

Mean Standard deviation Minimum Maximum
Start price (Rs./quintal) 483.79 30.24 350 580
Win price (Rs./quintal) 505.40 23.80 400 611
No. of potential bidders per lot 8.51 0.81 5 9
No. of active bidders per lot 3.34 0.70 2 5
Moisture content 2.35 0.57 1 3
Uniformity in grain size 2.43 0.57 1 3
Presence of chaff 2.07 0.56 1 3
Presence of brokens 1.46 0.50 1 2
Grain lustre 1.59 0.49 1 2
Green and immature grain 1.17 0.38 1 2
Others 1.37 0.38 1 2

.

3 Theoretical Model

We study this market with oral ascending auctions as the selling mechanism within
the independent private values framework. That is, we assume it is common knowl-

7Bidders generally stay through the bidding all day, and it is unlikely that there are
bidders who don’t win even a single lot.
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edge that each bidder i’s (here miller) valuation for a given lot of grain is privately
known (to him) and is an independent random variable from a distribution FVi(.).

A bidder’s valuation for a paddy lot depends upon the difference between the
price he expects to receive from selling rice (paddy is processed into rice in mills)
and the cost of processing paddy. Millers operating in this market are required
to sell 75% of their rice to the government at Rs 913 per quintal8. The quantity
and quality of rice (better quality rice fetches a higher price) that a lot of paddy
produces depends on its observable quality characteristics. But the processing
cost of paddy is mill-specific9 and privately known. Thus, an IPV specification for
valuations (conditional on observed quality) may be a reasonable assumption for
this market.

Describing the set up more formally, based on the (observable) quality of the
lot of grain being auctioned and knowledge of processing costs, a bidder places a
value vi on the lot. The strategy set of each bidder consists of all (measurable)
functions from the set of possible valuations to the set of possible bids; condition-
ing on his value, a strategy is just a bid. In an ascending auction, each bidder i’s
bid bi is essentially the price at which he drops out. With IPV, it is a weakly dom-
inant strategy for each bidder to drop out once the price rises past his valuation.
Staying any longer would cause him to bear a negative payoff if he won. It also
doesn’t make sense to drop out earlier because there is always a possibility that
all of the other bidders drop out by a price w that is lower than vi, in which case
he would get a positive payoff (equal to vi − w). As a result, the win price in an
ascending auction is essentially the second-highest bid, which coincides with the
second-highest valuation.

4 Nonparametric Identification and Seminon-

parametric Estimation of valuation distri-

butions

In general, before attempting estimation of the bidders’ value distributions from
the set of observables, one needs to check whether statistically, the former can
be identified from the latter; i.e., whether there exists a unique inverse for the

8These were the levy percentage and levy price figures for kharif 1999-2000 in the state
of Haryana.

9With the large millers’ costs typically being lower than the smaller millers’ costs.
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mapping from the latent distribution to the observable data. Certain economic
assumptions and restrictions are typically imposed on the latent structure and the
way in which that could have generated the sample data. For parametric esti-
mation, it is sufficient to verify parametric identifiability, which is based on the
premise that the functional form of the distribution from which the sample could
have been drawn is known. Nonparametric estimation however, can be carried out
only if nonparametric identifiability holds. Nonparametric identification results do
not assume a functional form for the latent distribution and hence also have more
stringent data requirements (than parametric identification).

For the independent private values framework, nonparametric identification re-
sults follow from Athey and Haile (2002)10. Since the lot characteristics are ob-
served and recorded, if we also assume a functional form for the effect of these
(lot-specific) covariates, the latent valuations are reduced to (or can be analyzed
within) an IPV paradigm.

In the symmetric IPV model, the common distribution FV (.) from which all players
draw values is identified from the win price (Athey and Haile (2002), Theorem 1)11.

In the asymmetric IPV model, assuming that each FVi(.) is continuous and that
the support of the distributions supp[FVi(.)] is the same for all i, each FVi(.) is
identified if the win price and identity of the winner are observed (Athey and
Haile 2002, Theorem 2). In this paper, we use the asymmetric model, owing to
the asymmetry in bidder values that we can infer from the market shares of the
millers: recall that the 2 large millers won about 45% of the lots, while the others
won uniformly small shares.

As the model is nonparametrically identified, we implement seminonparamtric es-
timation of the value distributions using a recently proposed strategy (Brendstrup
and Paarsch (2006); see Chen (2009) for a general survey). We assume that at the
tth auction for a lot with quality vector zt, the valuation of player i of type j is
given by

ln vijt = ztβ + µ + uit (1)

10These build on earlier results by Arnold, Balakrishnan and Nagaraja (1992) and Meil-
ijson (1981).

11Adapted from Arnold, Balakrishnan and Nagaraja (1992).
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The parameter vector β that captures the marginal effect of each lot-specific char-
acteristic, is unknown and needs to be estimated. By type or class of bidder we
will refer to 2 bidder classes: 1. the 2 large bidders; 2. the rest of the bidders.
Owing to bid rotation, only 1 large bidder is present at each auction, the rest being
the small bidders. So, µ is the parameter that captures the asymmetry between
the two bidder classes

µ

{
= 0 for the large bidder
6= 0 for small bidders

uit which is the idiosyncratic component of bidder i’s valuation at auction t is
assumed to

1. be independently and identically distributed for all bidders with distribution
function FU (.),

2. have E[uit] = 0,

3. be independent of zt.

We denote the large bidders’ valuation density and distribution functions by fV1(.)
and FV1(.) and small bidders’valuation density and distribution functions by fV2(.)
and FV2(.) respectively.

We approximate the density function fU (.) by a hermite series expansion. Gallant
and Nychka (1987) show that a density with mean zero, support (−∞,+∞) can be
estimated using a hermite series. The hermite series is in the form of a polynomial
squared times a normal density function (with mean zero) with the coefficients of
the polynomial restricted so that the series integrates to one12. The rule for deter-
mining series length is data-dependent (the length of the series should be higher,
the greater the sample size).

Hermite polynomials are a class of orthogonal polynomials that have support over
the entire real line and the gaussian function exp(−x2/2) as the weighting func-
tion. Given the size of our sample (280 data points), a truncated Hermite series of
order two is reasonable. Also, we employ as weighting function, a normal density
with mean zero and standard deviation 0.4.

12This ensures that we have a density function.
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The density function fU (.) of uit is approximated as

f̂U (s) = [
2∑

k=0

γk h
∗
k(s)]

2 exp[
−s2

2(0.4)2
] (2)

where

h∗k(.) is the kth order normalized Hermite polynomial.

γk are the coefficient parameters to be estimated13.

Asymmetric Bidders

Let G(.|FV1,V2) be the joint distribution of the win price (second-highest order
statistic) and the winner identity (the last remaining bidder). We need to esti-
mate FV1(.), FV2(.) using G(.|FV1,V2). This is implemented using the method of
quasi-maximum likelihood.

Maximum likelihood estimation requires determination of f̂V1(.), f̂V2(.) such that

(f̂V1 , f̂V2) = argmaxfV1
,fV2

1
T

T∑
t=1

ln g(yt|FV1,V2) (3)

where

g(.) is the joint probability density function of the win price and the winner identity

f̂V1(v) =
1
v
f̂U (ln v − ztβ̂ − µ̂) (4)

f̂V2(v) =
1
v
f̂U (ln v − ztβ̂) (5)

where f̂U is defined in equation (2).

13Subject to the restriction
∑2

k=0 γ
2
k = 1, in order that f̂U (.) is actually a density

function (i.e., such that it integrates to one). See the next section.

11



Note that the parameter space must be restricted so that f̂V1 , f̂V2 are in fact den-
sities. So we need the constraints∫ +∞

0
f̂V1(y) dy = 1 (6)

∫ +∞

0
f̂V2(y) dy = 1. (7)

This can be implemented through the following restriction on the parameter space∫ +∞

−∞
f̂U (u) du = 1. (8)

From equation (2), this implies the following restriction on the hermite coeffi-
cients

γ2
0 + γ2

1 + γ2
2 = 1. (9)

Thus to obtain f̂V1 , f̂V2 , we maximize
∑T

1 ln ĝ(.) with respect to β̂, µ̂, γ̂k (k=0,1,2)
subject to the restriction that the norm of the hermite coefficients equal one.

The number of potential bidders p at an auction is assumed to be the same as
the number of distinct winners on the day of that auction. But assuming there is
collusion among the two large bidders, the effective number of potential bidders
at an auction reduces to p− 1.

The joint probability density of the win price and a specific small bidder win-
ning is given by(

p− 3
n− 1

)
FV1(r)(FV2(r))p−n−2(1− FV2(w))(n− 1)(FV2(w)− FV2(r))n−2fV2(w)

+

(
p− 3
n− 2

)
(FV2(r))p−n−1(1− FV2(w))[(n− 2)(FV2(w)− FV2(r))n−3fV2(w)

(FV1(w)− FV1(r)) + (FV2(w)− FV2(r))n−2fV1(w)]

The first term in this equation corresponds to the case where the large bidder’s
valuation is less than the start price r.
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The probability that the large bidder’s valuation is less than r is FV1(r); the proba-
bility that a specific small bidder’s valuation is more than w is (1−FV2(w)). The re-

alized set of remaining (n−1) bidders (all small) could be any one of

(
p− 3
n− 1

)
dif-

ferent possibilities. The probability that one of these has valuation equal to w while
the rest have valuations between r and w is (n − 1)fV2(w)(FV2(w) − FV2(r))n−2.
Finally, the probability that the valuations of all the (remaining) (p − n − 2) po-
tential bidders are less than the reserve price is (FV2(r))p−n−2.

The second term consists of two possibilities, the large bidder’s valuation being
between r and w, and it being exactly w. In either case, the probability that a
specific small bidder’s valuation is greater than w is (1− FV2(w)), the realized set

of non-winning active small bidders can be one of

(
p− 3
n− 2

)
different combina-

tions, and the probability that the (p−n−1) remaining small bidders are inactive
is (FV2(r))p−n−1. Given this, the probability that the large bidder’s valuation is
exactly w and that the (n − 2) small bidders valuations are between r and w is
fV1(w)(FV2(w)−FV2(r))n−2; while the probability that the win price valuation be-
longs to one of (n− 2) small bidders and that the large bidder’s and (n− 3) small
bidders’ valuations lie between r and w is (n−2)fV2(w)(FV1(w)−FV1(r))(FV2(w)−
FV2(r))n−3.

The joint probability density of the win price and a specific large bidder win-
ning is given by(
p− 2
n− 1

)
F (r)p−n−1(1−G(w))(n− 1)(F (w)− F (r))n−2f(w)

The probability that a specific large bidder’s valuation is greater than the win
price is (1− FV1(w)). The realized set of the other (n− 1) active bidders who are
all small is akin to a random draw from the set of (p− 2) small potential bidders

and could be one of

(
p− 2
n− 1

)
different combinations. The probability that one

of these (n − 1) small bidders has valuation equal to the win price while the rest
(n− 2) small non-winning active bidders’ valuations are between the reserve price
and the win price is (n − 1)fV2(w)(FV2(w) − FV2(r))n−2. Finally, the probability
that (p− n− 1) small bidders’ valuations are less than r is (FV2(r))p−n−1.
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5 Estimation Results

We now present the results from our constrained maximum likelihood exercise at-
tempted using semi-nonparametric approximation to the true density functions.

We have estimated the 10 − tuple covariate coefficient vector β, the parameter
capturing the difference in means µ and the coefficients in the hermite series ex-
pansion γ0, γ1, γ2. The estimates for β and µ are listed in Table 2. The hermite
coefficients as estimated in our exercise are γ̂0 = 0, γ̂1 = 0, γ̂2 = 1.

Table 2
Semi-nonparametric maximum likelihood estimates for the asymmetric bidders
specification

Parameter estimate Standard error
Constant 5.9464∗∗∗ 0.0601
Moisture content 0.0340∗∗∗ 0.0150
Uniformity of grain 0.0178∗ 0.0157
Presence of chaff 0.0206∗ 0.0156
Presence of brokens 0.0214 0.0191
Lustre of grain 0.0256∗ 0.0189
Green and immature grain 0.0004 0.0188
Others 0.0047 0.0270
Week 2 dummy −0.0559∗∗∗ 0.0225
Week 3 dummy 0.0039 0.0210
Difference in means −0.1458∗∗∗ 0.0257
Mean log-likelihood -3.3096

Note that *, **, *** indicate significance at 25%, 10%, 5% levels respectively.

Thus the estimated densities are

f̂V1(v) = 1
v f̂U (ln v − ztβ̂ − µ̂)

f̂V2(v) = 1
v f̂U (ln v − ztβ̂)

where,
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β̂ = (5.9464, 0.0340, 0.0178, 0.0206, 0.0214, 0.0256, 0.0004, 0.0047,−0.0559, 0.0039)

µ̂ = −0.1458

f̂U (s) = (s2−1)2

0.76 exp[ −s
2

2(0.4)2
].

Since all the seven paddy characteristics are measured on a scale that is increas-
ing in quality (either 1 to 2 or 1 to 3), they are expected to have positive signs.
Our results are consistent with this expectation. Moisture content has the largest
coefficient (also highly significant) suggesting that a substantial quality premium
is associated with this characteristic. Three of the characteristics, viz., brokens,
green and others are found to be not significant in the sample. A negative coeffi-
cient for week 2 dummy implies that a lot of a specific quality has a lower valuation
in week 2 than in week 1. One reason for this could be that anxiety to fill up
coffers is greater in week 1 and pumps up the valuations (the two large bidders
for instance, had made 80% of their purchases by the end of week 1). There could
be other reasons as well, such as the prices in this market get influenced by those
prevailing in the other bigger markets. A negative sign on the parameter estimate
(highly significant) for difference in means implies that the large bidders draw their
valuations from a higher distribution than the small bidders, i.e., given a lot with
a particular quality vector, the large bidders have a greater valuation for it than
the small bidders.

We provide a plot of the semi-nonparametrically estimated distribution of resid-
uals14 in the appendix (figure 1). It can be noticed that our density is unimodal
and truncated at -1 and +115, implying that the probability of the valuation of a
bidder for a lot being far from the expected valuation for that quality is zero.

The valuation distributions of bidders in this market have previously been es-
timated parametrically, using a lognormal distribution16. Lognormal functional
forms are quite popular with researchers seeking to approximate positive (or right)
skewed distributions because they allow flexibility on two accounts - location and
variance. We therefore test whether for the asymmetric bidders specification, the
semi-nonparametrically estimated model is indeed an improvement over the log-

14Residuals are simply the logarithm of the valuations conditional upon the lot quality
and upon the bidder type.

15This is unlike the lognormal approximation where the density is asymptotic on either
side.

16See Meenakshi and Banerji (2005).
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normal approximation.

It is found that the value of the Vuong’s statistic for testing the lognormal model
versus the semi-nonparametric model is

vstat = -10.21046

which strongly suggests that the semi-nonparametric estimates are closer to the
actual data-generating process.

6 Optimal Reserve Prices

The choice of the reserve price (the threshold price r below which the seller does
not sell the object) constitutes an important instrument with the seller to increase
his profits from an auction. In an ascending auction, selecting a reserve price
to maximize expected profits (such a reserve price is known as an ‘optimal re-
serve price’) balances the tradeoff between not selling the object (in the event that
r > Y1)17 with the possibility of a higher revenue (= r − Y2) in case the reserve
price lies between the highest and the second-highest valuations (i.e., in the event
Y2 < r < Y1).

With collusion between the two large bidders taking the form of bid-rotation (i.e.,
both never together participate seriously in any one auction), the analysis and
derivation of optimal reserve price follows the assumption of non-cooperative be-
havior among the bidders with the number of large bidders at an auction being
equal to 1.

Suppose there are Ni bidders of type i, i = 1, 2 (large and small bidders respec-
tively). If a specific bidder of the ith type wins the auction, the distribution of the
max of the values of all other bidders is given by Gi(.) below:

G1(x) = F2(x)N2F1(x)N1−1

G2(x) = F1(x)N1F2(x)N2−1

The expected payment of a bidder of type i with value x ≥ r is

17Yi is the ith highest order statistic or bid.
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mi(x, r) = rGi(r) +
∫ x

r
ygi(y)dy. (10)

The first term captures the expected payment of the bidder if none of the other
bidders’ values is greater than r, the probability of which happening is Gi(r). If
on the other hand, there is/are other bidder(s) with values exceeding r, but less
than x, the object is sold to our bidder at the highest of other values; so as the
auctioneer raises the price from r, the probability of our bidder winning at a price
y, is gi(y); thus, the second component of the expected payment integrates from r
to x, the product of each value with the probability of our bidder winning at that
value.

The ex-ante18 expected payment of a bidder of type i is

E[mi(X, r)] =
∫ w

r
mi(x, r)fi(x)dx

= r(1− Fi(r))Gi(r) +
∫ w

r
y(1− Fi(y))gi(y)dy (11)

The overall expected payoff of the seller from setting a reserve price r ≥ x0 is

Π0 = N1 E[m1(X, r)] + N2 E[m2(X, r)] + F1(r)N1 F2(r)N2 x0 (12)

Differentiating Π0 with respect to r

dΠ(r)
r

= N1
d

dr
E[m1(X, r)] + N2

d

dr
E[m2(X, r)]

+ N1 F1(r)N1−1 f1(r) F2(r)N2 x0

+ N2 F1(r)N1 F2(r)N2−1 f2(r) x0 (13)

where

d

dr
E[mi(X, r)] = [1 − Fi(r) − r fi(r)] Gi(r) (14)

18Before the value is drawn.
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Thus

dΠ(r)
dr

= N1 [1− F1(r)− rf1(r)] G1(r) + N2 [1− F2(r)− rf2(r)] G2(r)

+ N1 f1(r) G1(r) x0 + N2 f2(r) G2(r) x0 (15)

Since,

fi(r) = λi(r) [1− Fi(r)] (16)

where λi(.) is the hazard-rate function,

we have,

dΠ(r)
dr

= N1 [1− F1(r)− r λ1(r)(1− F1(r))] G1(r)

+ N2 [1− F2(r)− r λ2(r)(1− F2(r))] G2(r)

+ N1 λ1(r) [1− F1(r)] G1(r) x0

+ N2 λ2(r) [1− F2(r)] G2(r) x0

= N1[1− (r − x0)λ1(r)] (1− F1(r)) F2(r)N2 F1(r)N1−1

+ N2[1− (r − x0)λ2(r)] (1− F2(r)) F1(r)N1 F2(r)N2−1 = 0 (17)

Dividing throughout by F1(r)N1−1F2(r)N2−1 we get

N1 [1− (r∗ − x0)λ1(r∗)][1− F1(r∗)]F2(r∗)

+ N2 [1− (r∗ − x0)λ2(r∗)][1− F2(r∗)]F1(r∗) = 0 (18)

The above equation gives for a lot of a specific quality, the first order condition
for profit maximization of the seller. Putting N1 = 1, we get the expression (in
implicit form) for the optimal reserve price (r∗) under simple bid rotation by the
2 large bidders in our data. Given our parameter estimates and the lot-specific
covariates, Eq.(18) is numerically solved for r∗ for every lot in the data. These
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are our optimal reserve price estimates. Confidence intervals around these are
constructed using the Delta Method (see Appendix).

It can be seen that the optimal reserve price for a lot is a function of its qual-
ity, competition at the auction, and how much the seller values a lot unsold at the
auction, henceforth referred to as his reservation utility (x0). While the first two
variables are observed and recorded, the seller’s reservation utility is unknown to
us. Based upon our knowledge of the functioning of the market however, we can
impute a value on x0.

In the event of a lot going unsold at the formal auction, it is typically sold later
through mutual negotiation with a private miller. It is useful to think of these ne-
gotiations in terms of bilateral bargaining with an outside option. Let the miller’s
(buyer’s) valuation for the lot be (v), and the seller’s (farmer’s) be (s). In the ab-
sence of outside options, the subgame perfect equilibrium shares of the players in
Rubinstein’s model (Rubinstein (1982)) are rS

rB+rS
(v−s) (buyer), and rB

rB+rS
(v−s)

(seller), where rB and rS are the buyer’s and seller’s respective discount rates.

The buyers (millers) can be assumed to be facing a discount rate equal to the
prime lending rate of 15% per annum at that time, while the sellers (farmers)
were able to borrow from the co-operative societies or the katcha arhtias at about
2% per month (i.e., 24% per annum). In the course of our interaction with them,
the farmers informed us that if a lot goes unsold, then transporting it and selling
it elsewhere (possibly at another market where auctions are not employed) can
mean a discount of up to Rs 100 compared to the price obtainable in this market
(through auctions). We therefore estimate the outside option of the farmer, for
each lot, as the expected second-highest valuation for that quality minus a penalty
amount of Rs 100.

In the bargaining model with an outside option for the seller, the seller’s equi-
librium payoff is the larger of his Rubinstein share s + rB

rB+rS
(v − s) and his

outside option. This equilibrium payoff is the x0 that we plug into Eq.(18). For a
range of reasonable values for s (the seller’s use value for the grain), we find that
this reservation utility (x0) for the lot equals the farmer’s payoff from the outside
option.

The mean of the estimated optimal reserve prices at Rs 513.3 is about Rs 28
higher than the mean of the observed start prices of Rs 485.8. The mean absolute
difference of Rs 32.3 between the two series is even higher; the confidence intervals
around the optimal reserve prices are within Rs 2, so there is a significant differ-
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ence between these and the observed start prices.

This significant difference between the 2 price series does not depend on our choice
of x0 for each lot. To see this, as well as to compare the series in a different way,
we present a plot of the optimal reserve prices and start prices of lots arranged in
increasing order of quality (figure 2); we use the expected second-highest valua-
tion as proxy for quality. We notice a neat monotonically increasing relationship
between quality and optimal reserve prices. This is to be expected given the the-
oretical relationship between the expected second-highest value and the optimal
reserve price, as both vary positively with the quality of a lot. The optimal re-
serve price in the asymmetric bidders specification is a weighted average of the
inverse hazard rates of the distributions of the two types of bidders; as the quality
improves, inverse hazard rates increase, and so does the the optimal reserve price.
The plot of the start prices by contrast, has a lot of noise overriding a weak upward
trend; also, there appears to be crowding around certain start prices such as 480,
500, 520; (probably because these are salient start prices, perhaps corresponding
to ‘quality grades’ in the auctioneer’s mind). Finally, we note that varying the
level x0 of the reservation utilities of the seller leads to variation in the levels of
the optimal reserve prices, and not the degree of monotonicity of the optimal re-
serve prices with respect to the quality and the tight relationship between the two.
Irrespective of the level, the discrepancy between this close relationship and the
absence of it in the case of the observed starting prices becomes obvious.

By how much would farmers’ expected revenues increase if the reserve prices are
optimally set? To evaluate this, we compute the expected revenue for each lot
under the alternative scenarios that the reserve price equals (i) the observed start
price and (ii) the optimal reserve price. The mean absolute difference between
the two series of expected revenues at about Rs 2 is very small. Thus the non-
optimality of the start prices does not make a significant difference to farmers’
revenues. The takeout from this analysis indicates that the market functions well,
the auctioneer is experienced and sets start prices at levels that fetch farmers’ rev-
enues close to the maximum possible. This leads us to the other instruments that
have potentially large implications for farmers’ revenues: government intervention
in these markets.
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7 Government intervention

In India, the government has a system of distributing subsidized rice and wheat to
the poor through special food outlets in its public distribution system (PDS). To
procure rice for this purpose, the government uses two channels - it buys paddy
from markets such as the one described above at the MSP, and pays millers to
mill the paddy for it (this is the custom milled rice (CMR) channel). It also buys
rice directly from millers in the form of a levy - millers have to sell a specified
proportion of their milled rice to the government at the levy price fixed by the
government. The levy price is fixed around harvest time, as a mark-up over an
estimated cost of buying paddy and processing it.

Procuring rice for PDS through the CMR route is much more costly than do-
ing so through the levy route. The higher cost (including the unaccounted costs)
of procuring through the CMR route arises partly because the government has
to maintain purchase infrastructure in many primary markets to buy the paddy
directly (unlike having levy rice delivered to it by millers). Despite this cost differ-
ence, the trend of the past years has been tilting in favour of CMR route purchases.
In 1999-2000 for the state of Haryana, the government purchased about 17% of
paddy arrivals whereas a decade later this had gone up to over 90%.

Since the government can procure rice through the cheaper levy route, the con-
tribution of the CMR route is not for procurement per se, but for providing price
support to farmers at the announced MSP. Using our estimated value distribu-
tions, we therefore first ask - how much difference to farmers’ expected revenue
would a credible, supported MSP make in this market? Then we carry this forward
by asking - if the government is unable to support the MSP to an appreciable ex-
tent, what increase in the levy price would result in the same expected revenue for
farmers as a credible, supported MSP? (The increase in the levy price would work
by increasing millers’ valuations for paddy and therefore increasing the win price
of the paddy lots). If the increase required in the levy price is limited, it would
be cheaper to use the levy price as an instrument to support farmers’ revenues, in
lieu of direct paddy purchase by the government at the MSP.

The government announces the MSP, based upon the recommendations of the
Commission for Agricultural Costs and Prices (CACP), around sowing time. The
CACP uses detailed calculations of production costs in order to compute the MSP.
The MSP for the 1999-2000 kharif season as suggested by the CACP was Rs 465
for Fair Average Quality (faq)or ‘Common’ paddy and Rs 495 for Grade A Quality
(gaq) (a higher quality grade). The government however, announced a bonus of
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Rs 25 over the recommended MSP, so the effective MSP for the 1999-2000 kharif
season stood at Rs 495 for faq and Rs 520 for gaq.

This kind of bonus is a political instrument for the political party in power. How-
ever, depending on the level of grain stocks and the government’s fiscal situation,
an unreasonably high MSP beyond the CACP recommendations can become hard
to support, as was the case in the year in question. In our sample, the government
participated in the market quite rarely, picking up just 23 of the 313 lots in the
sample, even though many high quality lots sold for below Rs 520 MSP. That was
simply too high a price to credibly support. In our simulations, therefore, we con-
sider the CACP recommended prices as the ones that a government can credibly
support in the market.

We therefore compute the expected revenue for each lot in our sample, under
the assumption that the government is a bidder for that lot; and bids Rs 465 or
Rs495 depending on whether the lot is faq or gaq. The implication for setting
the optimal reserve price when the government is an additional bidder with these
specific bids, is that a reserve price at or below the MSP always ensures that the
lot will be sold for at least the MSP; whereas, a higher reserve price implies that
the lot could go unsold, fetching the seller only his reservation utility x0. So we
recompute the optimal reserve prices under the assumption of the government as
a bidder; we find that unless the grain is of very high quality, the optimal reserve
price often equals the MSP. We compute expected revenue for each lot at these
optimal reserve prices. We compare the average of these for our sample, with the
(computed) average expected revenue in the absence of government as a bidder.
In these computations, we are basically evaluating the right hand side of Eq.(12),
using numerical integration.

The average expected revenue without government presence is Rs 516.74. The
average expected revenue with government presence (credible MSP support of Rs
465 for faq, Rs 495 for gaq) and the original levy price is about Rs 524. This
comparison shows that in the paddy season of the given year, direct government
purchase of paddy at credible support prices would lead to only a small increase
in farmers’ expected revenue, of about Rs 7 − Rs 8 per quintal. If this is indica-
tive of the extent to which credible price support is useful, it is natural to ask
whether the expensive deep handling of grain (buying paddy across many grain
markets, giving it to be milled, getting it back etc.) is really worth it, if the same
level of revenue support can be accomplished by an increase in the levy price of rice.

The next part of this simulation therefore answers: What increase in levy price
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would increase the expected farmer’s revenue by about Rs 8, in the absence of
government support for the MSP?

An increase in the levy price shifts the bidders’ value distributions to the right,
raising the expected win prices and hence expected revenue from the auction.
These shifts in the distributions can be captured by the shifts in their means. We
first compute the mean shifts required to increase the expected revenue from an
auction of an average lot by Rs 8.

The estimated means of the distributions of small and large bidders for the average
lot of a given quality grade (faq or gaq)are respectively ezβ and ezβ+µ, where z
is the average quality vector for the grade and β, µ are our parameter estimates
of quality and mean shifter for large bidders. Let ezβ = m. Then the expected
revenue, as described in Eq.(12), viewed as an increasing function of the mean m
can be written as:

N1 E[m1(X, r)] + N2 E[m2(X, r)] + F1(r)N1 F2(r)N2 x0 = H(m)

We first compute the mean shift ∆m required to raise the expected revenue by
Rs8, on average in the sample; i.e.

∆m s.t. H(m+ ∆m)−H(m) = 8. (19)

Using numerical integration to evaluate H(m), and solving this equation for ∆m,
we get ∆m = e6.214 − e6.2 = Rs499.7 − Rs 492.75 or about Rs 6.95. Next, we
compute the increase in levy price required to shift the means of the value distri-
butions by Rs 6.95.

Bidder i’s mean or expected valuation E[Vi] for a paddy lot (one quintal) equals
the revenue that the milled rice is expected to fetch19 minus the expected costs of
milling

m ≡ E[Vi] =
2
3

(
3
4
L+

1
4
P − E[Ci]) (20)

19Recall that the millers in this market are required to sell three-fourths of their milled
rice to the government at the levy price, they can sell the remaining one-fourths in the
open market, and each quintal of paddy converts to about 2/3 quintal of rice.
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where

L = levy price
P = open market price
E[Ci] = bidder i’s expected cost of milling one quintal of rice

Rewriting the above relation we get

3
4
L +

1
4
P − E[Ci] =

3
2
E[Vi] (21)

So a ∆L increase in the levy price causes the expected valuation to go up to
E[V ′i ] = m+ ∆m

3
4

(L+ ∆L) +
1
4
P − E[Ci] =

3
2
E[V ′i ] (22)

Thus, we have
3
4

(∆L) =
3
2

(E[V ′i ]− E[Vi]) = ∆m (23)

∆L = 2(E[V ′i ]− E[Vi]) = 2∆m (24)

Since ∆m = Rs 6.95, an increase in the levy price to the tune of Rs 13.9 per quin-
tal of rice can substitute for direct government purchases at the CACP-determined
minimum support price.

8 Conclusion

In this paper, we analyze a paddy auction market using the structural estimation
approach to answer two important policy questions. First, how well does the auc-
tion market function in terms of maximizing the expected revenue of the paddy
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selling farmers? We find that although the reserve or start prices that the auc-
tioneer chooses are not optimal, the differences from the optimal reserve prices
are small enough that the expected revenues from the auctions are close to the
optimum. The probable conclusion is that the auctioneers have developed a good
feel for bidders’ values for paddy, and act in the interest of farmers in setting their
reserve or start prices.

The second question has to do with whether the government needs to handle the
the grain as deeply, and in as costly a fashion, as it does, in order to enforce the
minimum support price (MSP). We show that direct paddy purchases by the gov-
ernment in numerous paddy markets (a very expensive operation) are not needed
to ensure that farmers’ revenues are at levels implied by a fully enforced MSP. As
the government is a large buyer of rice, a quite small increase in the levy price of
rice can lead to farmers’ revenues at these auctions being similar to revenues that
obtain if the government buys paddy directly at the minimum support price. Since
the levy route is cheaper, this strongly suggests that a rebalancing of government
purchase policy, away from direct paddy purchases to purchases of levy rice from
millers, can reduce the government’s fiscal and managerial burden while at the
same time protect farmers’ revenues.
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9 Appendix

Having derived an expression for it, we can provide an estimate and also confi-
dence intervals for the optimal reserve price for a lot of a given quality, using our
semi-nonparametrically estimated distribution of the bidders’ valuations.

Recall that for a lot with quality vector z, the valuation of player i of type j
is given by

ln vij = zβ + µ + ui (25)

The first-order condition for revenue-maximization (equation from section), which
gives the optimal reserve price r∗ can be rewritten as an implicit function of r∗

and the parameter vector β

γ(r∗, β) = 0 (26)

where

γ(r∗, β) = N1 [ 1− F1(r∗, β)− (r∗ − x0)f1(r∗) ] F2(r∗)

+ N2 [ 1− F2(r∗, β)− (r∗ − x0)f2(r∗) ] F1(r∗) (27)

We now obtain the asymptotic distribution of the optimal reserve price based
on the semi-nonparametric estimates.

Gallant and Nychka (1987) prove the consistency of SNP estimators for multi-
variate data. Fenton and Gallant (1996b) specialize it to the univariate case.
Wong and Severini (1991) establish root-n asymptotic normality and efficiency of
semi-nonparametric maximum likelihood estimators.

Consider an estimator β̂ of β that is consistent and distributed normally asymp-
totically. Thus,

T 1/2 (β̂ − β) →d N(0,V), (28)

where V/T is the variance-covariance matrix of β̂. Then r̂∗, an estimator of r∗

solves
γ(r̂∗, β̂) = 0. (29)
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Expanding γ(r̂∗, β̂) in a Taylor’s series about (r∗, β̂)

γ(r̂∗, β̂) = 0 = γ(r∗, β) + γr̂∗(r∗, β)(r̂∗ − r∗)

+ ∇β̂γ(r∗, β)′(β̂ − β) + U. (30)

Ignoring U, as it will be negligible in the neighborhood of (r∗, β), we obtain

(r̂∗ − r∗) =
−∇β̂γ(r∗, β)′(β̂ − β)

γr̂∗(r∗, β)
≡ m′(β̂ − β). (31)

Thus,

T 1/2 (r̂∗ − r∗) →d N(0,m′Vm). (32)

In practice, we work with approximations, so let

m =
−∇β̂γ(r̂∗, β̂)(β̂ − β)

γr̂∗(r̂∗, β̂)
. (33)

We use the parameter estimates (β̂) to compute20 the optimal reserve price
(r̂∗) and the value of m at r̂∗. Then we construct 95% confidence intervals around
r̂∗, β̂ as follows.(

r̂∗ − (1.96) ∗
(
m′Vm
T

)1/2

, r̂∗ + (1.96) ∗
(
m′Vm
T

)1/2
)

(34)

20for each covariate vector
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