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Abstract

In a joint project involving two players who can contribute in one or both rounds

of a two-round effort investment game, transparency, by allowing players to observe

each other’s efforts after the first round, achieves at least as much, and sometimes

more, collective and individual efforts relative to a non-transparent environment in

which efforts are not observable. Without transparency multiple equilibria can arise

and transparency eliminates the inferior equilibria. When full cooperation arises only

under transparency, it occurs gradually : no worker sinks in the maximum amount

of effort in the first round, preferring instead to smooth out contributions over time.

The benefit of transparency, demonstrated both for exogenous rewards and in terms

of implementation costs (with rewards optimally chosen by a principal to induce full

cooperation), obtains under a general complementary production technology. If the

players’ efforts are substitutes, transparency makes no difference to equilibrium efforts.
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1 Introduction

Joint projects in teams based on voluntary contributions of efforts are vulnerable to

free-riding. In formulating incentives, an organization may try to influence its members’

effort decisions by designing the structure of contributions. In particular, the organization

may be able to determine how much the members know about each other’s efforts. This type

of knowledge can be facilitated by an appropriate work environment, such as an open space

work-floor or regular reporting of team members’ actual working hours. We aim to show

how transparency in effort contributions within a team may (or may not) help to mitigate

shirking and foster cooperation. Empirical evidence certainly point to the relevance of this

kind of transparency as a key determinant of productive efficiency (Teasley et al., 2002;

Heywood and Jirjahn, 2004; Falk and Ichino, 2006).

When efforts are observable during a project’s live phase (i.e., in a transparent environ-

ment), team members play a repeated contribution game. On the other hand, when efforts

cannot be observed (i.e., a non-transparent environment), the project is a simultaneous move

game. The repeated contribution game expands the players’ strategy sets relative to a si-

multaneous move game because later period actions can be conditioned on the history. The

additional strategies can create new equilibria that are not available under the simultaneous

move game, or remove existing equilibria of the simultaneous move game by introducing

strategies that lead to profitable deviations. By enlarging or shrinking the equilibrium set or

by simply altering it, does observability of interim efforts induce more overall efforts or less

efforts? Which game form is better? We will show two main results. First, if the production

technology exhibits complementarity in team members’ efforts, transparency is beneficial.

On the other hand, if the technology involves substitutability in efforts, transparency is

mostly neutral in its impact on individual and collective team efforts.

In teams, repeated games and dynamic public good settings, the general issue of trans-

parency (i.e., observability/disclosure of actions) and its incentive implications have been

studied by several other authors. See Che and Yoo (2001), Lockwood and Thomas (2002),

Andreoni and Samuelson (2006) etc. in the context of dynamic/repeated games, Winter

(2006a), and Mohnen et al. (2008) in the context of sequential and repeated contribution

team projects, and Admati and Perry (1991), Marx and Matthews (2000), etc. in dynamic

voluntary contribution pure public good settings.1

1There is also a growing literature on tournaments with more recent contributions by Gershkov and Perry
(2009), Aoyagi (2010), etc. where the focus is on interim performance evaluations (or feedbacks) as a way of
incentivizing competing players to exert greater efforts. Transparency in teams, as an issue, is very different
from the feedback idea for two reasons: (i) because of the public good nature of the players’ rewards, in
contrast to tournaments where the reward is of the winner-take-all variety; (ii) interim efforts do not directly
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Our paper is closer to the peer transparency problems of Mohnen et al. (2008) and Winter

(2006a). Mohnen et al. consider a team of two workers exerting efforts over any (or both) of

two rounds, with the total output equaling the sum of efforts by the two workers (i.e., the

technology is one of perfect substitutes). The workers are paid identical remunerations – a

fixed wage plus bonus – with the latter being a positive fraction of the team output. When

each worker is averse to inequality of efforts (relative to co-worker’s effort), allowing the

contribution game to be transparent by making each other’s first-round efforts observable

improves the overall contribution and output relative to when the workers cannot observe

the first-round efforts. Further, if the workers’ utility functions are modified by dropping

the inequity aversion component, then transparency makes no difference to the equilibrium

efforts (and output). Thus in their model the benefits of transparency are realized largely

due to the workers’ distaste for inequity.

In the context of a team project, Winter (2006a) asks when more information among peers

about each other’s efforts (IIE or ‘internal information about effort’ measuring transparency)

makes it easier for the principal to provide incentives so that all agents exert “effort” (called

the INI outcome).2 The agents can either exert effort or shirk as a one-off effort investment

decision, and each agent’s effort choice is made at different points of time although an

agent may or may not observe the past decisions by the earlier agents. With an acyclic

binary order, k, on the agents reflecting an IIE,3 if any two IIE s, say k1 and k2, can be

compared in the manner k1 is “richer” than k2,
4 then k1 is said to be more transparent

than k2. Then, defining a project to exhibit complementarity (substitution) if an agent’s

effort is marginally more (less) effective in improving the project’s probability of success as

the set of other agents who also exert effort expands, the paper makes several interesting

observations: (i) if a project satisfies complementarity, then it is less costly to induce INI

the more transparent the IIE ; (ii) a sequential architecture in which each agent observes

the effort decision of his immediate predecessor is the most transparent IIE ; and (iii) if the

project exhibits substitution, transparency is no longer important, i.e., neutral, in inducing

INI ; etc.

We complement and extend the analysis of Mohnen et al. (2008) and Winter (2006a), by

translate into rewards whereas in tournaments rewards are a function of interim performance.
2Winter (2006b) analyzes the problem of incentive provision in a team where its members exert efforts

sequentially towards a joint project but does not analyze the transparency issue, whereas Winter (2004)
studies another team efforts problem where the agents move simultaneously (rather than sequentially). On
incentive design with complementarities across tasks but in a principal-agent setting (rather than team
setting), see MacDonald and Marx (2001).

3An ordering of peers in the form of i1 k i2 k...k ir indicates that peer i1 knows peer i2’s effort, i2 knows
i3’s effort, and so on.

4I.e., i k2 j would imply i k1 j but not necessarily the other way around; see the previous footnote.
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studying a team setting with some plausible and important model features not considered

by these authors. There is a project consisting of two tasks. Two workers work over two

rounds on one task each, and in each round a worker may choose to put in zero, one or two

units of effort with total efforts over two rounds not exceeding two units. The success or

failure of the project materializes only at the end of the second round. The project’s success

probability is increasing in the total efforts invested in each task. The project exhibits

complementarity (substitutability) if the incremental success probability due to additional

efforts in a task is increasing (decreasing) in the efforts invested in the other task. Following

successful completion of the project each worker receives a (common) reward v > 0 and

receives zero if the project fails; rewards cannot be conditioned on efforts as the latter might

not be verifiable. Two alternative work environments are considered: in a transparent (or

open-floor) environment first-round efforts are publicly observed by each worker before each

chooses respective second-round efforts; in a non-transparent (or closed-door) environment

efforts are not observed.

Among the modeling differences, ours consider more general technologies than the one

analyzed by Mohnen et al. (general complementary/substitution technologies vs. perfect

substitution technology) but the agents’ preferences are standard utilitarian without any

concern for equity. Different from Winter (2006a), we allow for repeated efforts by the

players and thus transparency in our setting not only allows a player to influence another

player’s future play through his own action today but also by conveying how he himself

might again play/respond in a future round.5 This intertemporal coordination in players’

actions through public observation of all players’ past actions demands more complicated

strategic considerations compared to the one-off effort investment decision model of Winter.

So the relationships between transparency, technologies and incentive provision need further

scrutiny.

We show the following results. Under complementary technology, with exogenous player

rewards, the transparent environment is weakly better than the non-transparent environment

(Propositions 2, 3 and Table 1) in the following sense: the best Nash equilibrium efforts pair

in the non-transparent environment entailing partial or full cooperation by the players can

be uniquely implemented in subgame-perfect equilibrium in the transparent environment,

by eliminating any other inferior Nash equilibrium (or equilibria); in addition, we show

that when shirking (i.e., (0, 0)) is the unique Nash equilibrium, under certain conditions the

maximal efforts equilibrium or some form of cooperation (i.e., (2, 2) or (2, 1)) can be achieved

5In Winter (2006a) the structure of IIE rules out mutual knowledge of efforts as there is a fixed timing
structure according to which the agents make their investment decisions (formally, any binary order k
reflecting IIE is acyclic).
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with transparency.6 Further, when full cooperation is induced only under observability of

efforts, it involves each worker putting in one unit of effort in the first round followed by

another unit of effort in the second round. Thus, full cooperation might be achieved at

best gradually – transparency allows workers to make observable partial commitments in the

first round and complete the project successfully by supplying the remaining efforts in the

second round (Proposition 2).7 These results we obtain assuming effort costs are linear. For

increasing marginal costs, similar results (weak-dominance and gradualism) obtain except

that now the uniqueness of equilibrium involving partial or full cooperation may not be

guaranteed under transparency. Based on the weak-dominance result in Proposition 3 we

further show that, when the principal determines the rewards optimally , compared to non-

transparency the principal can achieve weak or unique implementation of full cooperation

at no more and possibly lower overall costs in a transparent environment (Proposition 4).

Finally we show that if the technology exhibits substitutability in efforts and effort costs are

linear, transparency is neutral in terms of equilibrium efforts induced (Propositions 5 and

6).8

The weak-dominance property of transparency in our setup, while similar to the main

theoretical result of Mohnen et al., is due to different underlying reasons. First, as our results

show, the workers’ inequity aversion is not necessary for explaining why organizations may

favor transparency; in our setup the dominance (of transparency) obtains mainly due to the

complementary nature of the production technology.9 This enriches the possibilities under

which organizations may favor a transparent work arrangement beyond the environment

studied by Mohnen et al. The contrast between complementary and substitution technologies

with their differing implications (for transparency) is similar to Winter’s (2006a) result. But

unlike in Winter’s paper the players in our setting receive identical rewards, so there is no

discrimination among team members (according to one’s position in the sequential efforts

chain).

Another related point may be noted here. In a pure public good setting, Varian (1994)

made the observation that if agents contribute sequentially, rather than simultaneously, the

free-riding problem gets worse – total contribution in a sequential move game is never more

6In the latter case (2, 2) obtains along with (0, 0), so transparency results in a weak improvement; when
(2, 1) obtains, it is more likely that (0, 0) will be eliminated, which is a strict improvement.

7Besides a number of papers mentioned earlier, some of the other works on gradualism are Bagnoli and
Lipman (1989), Fershtman and Nitzan (1991), and Gale (2001).

8Elsewhere Pepito (2010) has shown that for increasing marginal costs of effort, transparency is harmful
(i.e., induces strictly lower efforts).

9Knez and Simester (2001) and Gould and Winter (2009) document the positive impact of peer efforts
due to complementarity between team members’ roles – the former is a case study on the performance of
Continental Airlines in 1995, and the latter is a panel data analysis of the performance of baseball players.
Gould and Winter also show negative peer effect when the players are substitutes.
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and possibly less than in a simultaneous move game.10 As Winter (2006a) has shown, if

an external authority can give discriminatory rewards to the contributors of a joint project

(unlike in voluntary contribution public good models), then even though such projects exhibit

public good features, sequential game performs better than a simultaneous move game when

player efforts are complementary. And we show that, in joint projects, the domination over

the simultaneous move format can be extended to the repeated contributions format. So

unlike in the sequential move game of Varian, observability of contributions is distinctly a

positive aspect for complementary production technology.

The model is presented next. In sections 3 and 4, we derive our main results on trans-

parency. Section 5 concludes. The proofs not contained in the text appear in the Appendix.

A separate Supplementary materials file contains some additional results.

2 The Model

A team of two identical risk-neutral members, henceforth players, engage in a joint project

involving two tasks, with one player each separately responsible for one of the tasks. The

probability of the project’s success depends on the players’ aggregate effort profile over a

horizon of two rounds.

In each round, players simultaneously decide on how much effort to put in. Denote

player i’s sequence of effort choices by {eit}2t=1, i = 1, 2 and his overall effort
∑2

t=1 eit by

ei ∈ Ei = {0, 1, 2}. Let p(ei, ej) be the project’s success probability. The cost to player i of

performing his task is c per unit of effort, c > 0. If the project succeeds, both players receive

a common reward v > 0; otherwise, they receive nothing. The payoff to player i (= 1, 2),

given his overall effort ei and player j’s overall effort ej (j 6= i, j = 1, 2), is:

ui(ei, ej) = p(ei, ej)v − cei. (1)

The efforts are irreversible: shirking by player i (ei = 0) means {eit}2t=1 = {0, 0}, partial

cooperation by player i (ei = 1) means either {eit}2t=1 = {1, 0} or {eit}2t=1 = {0, 1}, and full

cooperation by player i (ei = 2) implies any of the following: {eit}2t=1 = {2, 0}, {eit}2t=1 =

{0, 2}, or {eit}2t=1 = {1, 1}. So a player can choose full cooperation either by making a single

contribution of two units of effort early or late in the game or by contributing gradually, one

unit of effort in each round.

10Bag and Roy (2008) show that if agents contribute repeatedly to a public good and have incomplete in-
formation about each other’s valuations, expected total contribution may be higher relative to a simultaneous
contribution game.

5



The success probability function p(ei, ej) has the following properties:

A1. p(2, 2) = 1 and p(0, 0) > 0;

A2. Symmetry : p(ei, ej) = p(ej, ei);

A3. Monotonicity : For given ej, p(ei, ej) is (strictly) increasing in ei; and

A4. General Complementarity : For any ej ∈ {0, 1}, p(1, e′j) − p(0, e′j) > p(1, ej) − p(0, ej)

and p(2, e′j)− p(1, e′j) > p(2, ej)− p(1, ej), where e′j > ej.

In other words, while the project succeeds for certain if and only if both players exert

the maximum amount of effort, there is, however, still some chance of success if players

shirk or cooperate only partially. We have specified complementarity in a general form,

requiring only that any additional effort by player i is more effective (in terms of incremental

probability of success) the more cooperative player j is.11 This formulation admits perfectly

complementary technology, p(ei, ej) = p(ei)p(ej), where p(ei) and p(ej) are the individual

tasks’ success probabilities. Also note that symmetry and monotonicity are very natural and

weak assumptions; further, for complementary technology to be analyzed in section 3, we

do not require any further curvature restriction on the success probability function: p(., .)

can be concave or convex in each effort component (i.e., incremental probability of success

is decreasing or increasing).12

Finally, v can be interpreted in two ways – as the players’ valuation for the project, or

their compensation as set by a principal, with v being common knowledge. The principal

can condition the rewards only on the outcome and not directly on the efforts; in fact, the

principal need not necessarily observe the efforts. Since players are identical, v1 = v2 = v.

The paper’s main insights do not depend on the identical players assumption. Most of the

analysis will be carried out assuming v to be exogenous. Later on v will be solved to minimize

the principal’s costs of inducing full (or partial) cooperation.

We will consider two versions of the effort investment game. In one version, players are

able to observe first-round effort choices in an interim stage before the second-round effort

choices are made, while in the other version players are unable to observe actions taken in the

first round. Observability of efforts (or the lack of it) may be due to the principal designing a

suitable work environment or because of direct reporting. Following others studying similar

11The incremental gain (in terms of probability of success) from own effort is assumed to be strictly
increasing in the other player’s effort, in order to eliminate equilibrium involving asymmetric efforts un-
der non-transparency. A similar assumption will be made for the substitution technology in section 4 for
consistency in modeling.

12However, in section 4 with players’ efforts acting as perfect substitutes, the success probability function
will be strictly concave. See footnote 23.
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environments, we term the observable effort case transparent and the one with non-observable

actions non-transparent.

Most of our analysis in this paper will be carried out under the assumption of constant

per-unit cost of effort, as specified above. Towards the end we discuss briefly how changing

to increasing marginal costs (of effort) might alter the results.

3 Benefit of Transparency: Complementary Efforts

Unobservable contributions. When a player is unable to observe the amount of

effort exerted by the other player before the end of the project’s active phase, the overall

efforts are determined by the Nash equilibrium (or NE ) of the following simultaneous move

game:

Player 1

Player 2

0 1 2

0 p(0, 0)v, p(0, 0)v p(0, 1)v, p(0, 1)v − c p(0, 2)v, p(0, 2)v − 2c

1 p(1, 0)v − c, p(1, 0)v p(1, 1)v − c, p(1, 1)v − c p(1, 2)v − c, p(1, 2)v − 2c

2 p(2, 0)v − 2c, p(2, 0)v p(2, 1)v − 2c, p(2, 1)v − c v − 2c, v − 2c

Figure 1: Simultaneous move game G

Denote this one-shot game by G, any strategy profile (e1, e2) of G by eG, and a pure-strategy

NE, (e∗1, e
∗
2) of G, by e∗G.

Lemma 1. Suppose success probability p(., .) satisfies A1-A4. Then the game G has no

asymmetric pure strategy Nash equilibrium.

In view of Lemma 1, in the one-shot game we focus on the symmetric pure strategy Nash

equilibrium (or equilibria):

Proposition 1 (One-shot Nash equilibrium). In the one-shot game G (i.e.,

with unobservable contributions), the pure strategy Nash equilibrium (or equilibria) can be

characterized as follows:

Equilibrium (e∗1, e
∗
2) = (0, 0) obtains if and only if

c ≥ max{(p(1, 0)− p(0, 0))v, [(p(2, 0)− p(0, 0))v]/2};
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Equilibrium (e∗1, e
∗
2) = (1, 1) obtains if and only if

(p(2, 1)− p(1, 1))v ≤ c ≤ (p(1, 1)− p(0, 1))v;

Equilibrium (e∗1, e
∗
2) = (2, 2) obtains if and only if

c ≤ min{(1− p(1, 2))v, [(1− p(0, 2))v]/2}.

Note that the above is a characterization result. In the Appendix we show that there

always exists a pure strategy Nash equilibrium.

Observable contributions. The effort investment game proceeds as follows:

Round 1 : Players simultaneously choose their efforts ei1 ∈ {0, 1, 2}, i = 1, 2.

Interim period : Players’ first-round decisions are revealed. Denote the set of possible ob-

served effort levels e1 = (e11, e21) by Ê1. Clearly,

Ê1 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)} .

Round 2 : Players make their effort decisions simultaneously, having observed each other’s

first-round effort choices. Denote player i’s set of admissible second-round effort choices by

Êi2. Since overall effort ei cannot exceed 2,

Êi2 =


{0,1,2} if ei1 = 0;

{0,1} if ei1 = 1;

{0} if ei1 = 2.

(2)

At the end of Round 2, the project concludes. Both players receive reward v if the project

is successful. If the project fails, they both receive 0. ||

With observability, the joint project induces a repeated contribution game in which play-

ers move simultaneously in each round. The extensive form appears in Fig. 2. The payoffs in

each continuation game are in terms of the second-round incremental gains relative to those

yielded by the pair of observed effort levels e1 that gives rise to the continuation game. For

example, suppose that both players choose one unit of effort in the first round. This restricts

the set of admissible actions for players 1 and 2 to Ê12 = Ê22 = {0, 1}, resulting in a con-

tinuation game with the strategy space S2 = {0, 1} × {0, 1}. (In general, the strategy space

of any continuation game is S2 = Ê12 × Ê22.) Denote player i’s interim payoff, i.e., payoff
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generated by observed effort levels e1 = (e11, e21), by ûi1(ei1, ej1),
13 and incremental gains

following second-round actions (ei2, ej2) by ûi2(ei2, ej2|e1) = ui(ei1+ei2, ej1+ej2)−ûi1(ei1, ej1).

Therefore, player i’s payoffs in the continuation game following e1 = (1, 1) are

ûi2(ei2, ej2|(1, 1)) =


0 if ei2 = 0, ej2 = 0;

(p(1, 2)− p(1, 1))v if ei2 = 0, ej2 = 1;

(p(2, 1)− p(1, 1))v − c if ei2 = 1, ej2 = 0;

(1− p(1, 1))v − c if ei2 = 1, ej2 = 1.

Payoffs for the other continuation games are computed in the same way.

One specific continuation game is worth noting here: the game following (0, 0) efforts

in the first round. This continuation game is same as the one-shot game G except that all

the payoffs are subtracted by p(0, 0)v. For later use, we will describe these two games as

identical, given that the players’ strategic decisions will be the same.

Denote the extensive-form game by Ĝ, and any subgame-perfect equilibrium (or SPE )

strategy (e∗11, e
∗
21; e

∗
12(e

∗
11, e

∗
21), e

∗
22(e

∗
11, e

∗
21)) of this game by e∗Ĝ.

14

Given the extensive-form representation in Fig. 2, we can evaluate how the overall equi-

librium efforts change when efforts are made transparent. In particular, take an equilibrium

(or equilibria) that arises in the one-shot game; from Proposition 1 we see that this equilib-

rium (or equilibria) results if and only if certain conditions hold. Taking these conditions as

given, we then examine the setting with repeated, observable contributions, and determine

which overall efforts result (or do not result) in an SPE under these conditions.

Below we start with some preliminary results hoping to demonstrate, at the end, how

transparency can sometimes be critical to achieving full cooperation and ensure the project’s

success.

Lemma 2. Assume A1-A4.

(i) If, without observability, full cooperation is not an equilibrium, then the only way full

cooperation can arise with observability is through gradual cooperation, i.e., (1, 1; 1, 1).

(ii) If, without observability, partial cooperation is an equilibrium while full cooperation is

not, then full cooperation cannot arise with observability.

13Interim payoffs are calculated assuming as if the players will exert no further effort in Round 2.
14To be precise, equilibrium second-round strategies should be more general functions of any first-round

effort decisions and not just of (e∗11, e
∗
21). Our equilibrium analysis uses the formal definition of SPE.
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Lemma 3. Assume A1-A4. Suppose, without observability, shirking is the unique equi-

librium. Then full cooperation may arise with observability and can only be through gradual

cooperation. A set of sufficient conditions that guarantee full cooperation, and which can be

consistent with shirking as the unique equilibrium without observability, is as follows:

p(0, 2)v > v − 2c ≥ p(1, 2)v − c
p(0, 1)v − c > p(0, 2)v − 2c

and v − 2c ≥ p(0, 1)v.

 (3)

Moreover, if shirking is the unique equilibrium without observability and (3) hold, shirking

remains an equilibrium with observability.

Fig. 3 illustrates Lemma 3 for the perfectly complementary technology, p(e1, e2) =

p(e1)p(e2), where for i = 1, 2,

p(ei) =


α if ei = 0;

β if ei = 1;

1 if ei = 2.

(4)

Given this specification, p(0, 2) = α, p(1, 2) = β, p(0, 1) = αβ, and p(1, 1) = β2. The

figure plots the payoffs against β and identifies the values of β such that the payoffs satisfy

conditions (3) for a profile of the remaining parameters, (α = 1
5
, v = 2.4, c = 1).15 Further,

e∗G = (0, 0) since for all β ∈ (0, 1), α2v > 0, αβv − c < 0, and αv − 2c < 0 (i.e., p(0, 0)v > 0,

p(1, 0)v − c < 0, and p(2, 0)v − 2c < 0). To verify uniqueness of e∗G = (0, 0), first note that

(1, 1) is not an NE since p(0, 1)v > p(1, 1)v − c (because αv > β2v − c), and (2, 2) is not

an NE because p(0, 2)v > v − 2c (follows from (3)), and there is no other pure strategy

equilibrium (by Lemma 1).

Let us now denote the value of β at which v − 2c = βv − c by β1. In this example,

β1 = 7
12

, and we see that, for the given parameter values of (α, v, c), all the conditions (i.e.,

(3) as well as uniqueness of e∗G = (0, 0)) are simultaneously satisfied for β ∈
(

1
5
, 7

12

]
.

It is clear from the first and the third conditions in (3) above that p(0, 2)v > v −
2c > p(0, 0)v. In other words, full cooperation Pareto-dominates shirking, though the latter

prevails when there is no way to observe the ongoing contributions. There is mutual interest

in cooperating, but it is not in any player’s individual interest to cooperate. In this setting,

making efforts observable encourages full cooperation. However, since efforts are irreversible,

sinking two units of effort in the first round is risky, as the other player can exert zero effort

15The figure has been generated in Mathematica.
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Figure 3: (0, 0) is the unique e∗G and (2, 2) is supported in subgame-perfect equilibrium, for

p(e1, e2) = p(e1)p(e2) with p(0) = α, p(1) = β, and p(2) = 1.

in both rounds, get p(0, 0)v > v−2c, and go unpunished. (The only way to punish him would

be for the cooperating player to move back to shirking, which is not possible.) Therefore,

while transparency induces cooperation, it can only do so using partial commitments, i.e.,

gradually. The result is similar to the gradualism result of Lockwood and Thomas (2002).

Lemma 2 and Lemma 3, together, yield the following behavioral prediction for one type

of full cooperation equilibrium under observability:

Proposition 2 (Gradualism). Suppose a joint project involves two tasks satisfying

a general form of complementarity as defined in A1-A4 in section 2.

If full cooperation does not arise when transparency is lacking, then transparency can

achieve full cooperation only through gradual reciprocity. Moreover, in this case full coop-

eration obtains under transparency only if under non-transparency partial cooperation fails

to realize (along with full cooperation not being an NE), and if conditions (3) hold.

Thus gradualism is one way to make transparency make a difference when, without it,

only the worst (i.e., shirking) would have realized. This may lead to a distinct cost advantage

for a principal who wants to design reward incentives to uniquely implement full cooperation,

12



as we will see in Proposition 4. Proposition 2 also prompts the question whether a similar

domination could be achieved but without realizing full cooperation. Later in Table 1 we will

verify that indeed this is possible, sometimes by achieving overall equilibrium efforts of (2, 1)

in the transparent environment while (0, 0) is the only equilibrium under non-transparency.

In Proposition 2 we assumed full cooperation not being an equilibrium under non-

transparency. It is possible that sometimes shirking or partial cooperation is not an equi-

librium under non-transparency. Then, a similar outcome also fails to realize under trans-

parency:

Lemma 4. (i) If (0, 0) 6= e∗G, then overall efforts of (0, 0) cannot arise in an SPE of

the extensive-form game Ĝ.

(ii) If (1, 1) 6= e∗G, then overall efforts of (1, 1) cannot arise in an SPE of the extensive-form

game Ĝ.

Finally, full cooperation being an equilibrium under non-transparency has the following

implications for the transparency regime:

Lemma 5. Suppose full cooperation is an NE in the one-shot game. Then:

(i) Full cooperation obtains in an SPE in the transparent environment. Specifically, all

strategy profiles in the extensive-form game Ĝ that correspond to full cooperation are

SPE.

(ii) Partial cooperation, i.e. (1, 1), cannot arise in an SPE of the extensive-form game Ĝ.

While Lemmas 4 and 5 (and other lemmas to be reported) may not offer a very clean

picture of their standalone economic implications/motivations, these should be seen as nec-

essary steps to develop our main results on the performance of transparency vis-à-vis non-

transparency for implementation of better effort profiles and the related optimal incentive

costs.

We begin with the claim that by allowing players to observe each other’s efforts during the

project’s active phase, the principal would do no worse and possibly do better. For example,

if full cooperation is an equilibrium in the one-shot game but not necessarily unique, then

full cooperation must be the only equilibrium in the extensive-form game.

Define the set of outcomes inferior to eG = (e1, e2) by

IeG = {(ẽ1, ẽ2) | ẽ1 < e1 or ẽ2 < e2} .

13



Note that by this definition, (2, 0) and (0, 2) are inferior to the effort pair (1, 1).

We now look at two cases: when partial cooperation is a one-shot equilibrium, and when

full cooperation is a one-shot equilibrium.

Lemma 6. Suppose that e∗G = (1, 1) (not necessarily unique). Then under transparency

overall efforts that entail shirking by any player cannot arise in an SPE.

Lemma 7. Suppose that e∗G = (2, 2) (not necessarily unique). Then under transparency

overall efforts where any player exerts less than two units of effort cannot arise in an SPE.

Thus, making efforts observable eliminates all outcomes inferior to the ‘best’ one-shot

equilibrium possible where ‘best’ is interpreted in terms of total team efforts. But still

elimination does not establish superiority of transparency. We must show that the best

one-shot equilibrium, or perhaps a better effort profile, can be supported as a pure-strategy

SPE of the extensive-form game under transparency. The following proposition achieves this

objective.

Proposition 3 (Beneficial Transparency). Suppose a joint project involves

two complementary tasks as defined in A1-A4. Then transparency dominates over non-

transparency in the following sense:

Equilibrium (or equilibria) in the non-transparent environment entailing partial or full

cooperation by both players is weakly improved upon in a unique equilibrium in the trans-

parent environment by retaining the best equilibrium and at the same time by eliminating

all inferior effort profiles (i.e., ones in which at least one player exerts lower effort).

Moreover, under appropriate conditions, when shirking (i.e., (0, 0)) is a unique equilib-

rium under non-transparency, with transparency it is possible to achieve full cooperation by

both players.

Thus, when there are multiple one-shot equilibria, the weak dominance of transparency

is achieved through (i) preservation of the best one-shot equilibrium and (ii) the elimination

of all potential inferior outcomes (including inferior one-shot equilibria). When the one-shot

equilibrium is unique and involves cooperation (partial or full), overall equilibrium efforts

under transparency coincide with the efforts under non-transparency. Finally, when shirking

is the unique one-shot equilibrium, transparency improves upon non-transparency by making

full cooperation possible (under certain conditions) through partial commitments.

As already mentioned in the Introduction, relative to non-transparency the expanded

strategies under transparency has the potential to result in additional equilibria and equally

14



it could eliminate some one-shot equilibrium. Proposition 3 confirms both these predictions

to be true but what is interesting is the uniform impact of the two effects to make trans-

parency superior in terms of effort incentives (not only inferior outcomes are eliminated,

strictly superior outcome may emerge). For an intuition note that with complementary

efforts whenever there are multiple equilibria in the one-shot game, the equilibria can be

strictly Pareto-ranked from the players’ point of view with the equilibrium involving highest

symmetric efforts dominating the lower symmetric efforts equilibrium (or equilibria). This

allows a player to be unilaterally aggressive to play his “best” one-shot equilibrium effort in

the first round under observability. The unique best response of the other player, then, is to

choose aggregate efforts over two rounds to correspond to his best one-shot NE. Thus, any

player, through an aggressive play, can eliminate all inferior effort pairs (not just inferior

NE ) from being supported in SPE. By a similar logic, due to complementarity observability

(of efforts) can generate strictly higher efforts than is possible under non-observability. Later

on we will see that if, instead, the efforts are substitutes, transparency is either neutral or

sometimes may even be harmful.

Another aspect worth emphasizing is that, while equilibrium selection using the criterion

of Pareto domination may seem a valid reason not to worry about the inferior equilibria (in

the case of multiple equilibria under non-transparency), the problem of miscoordination in

team settings is a very reasonable concern which gets worse as the team size becomes large.

And with the introduction of slight risk aversion on the part of the players (in our treatment

players are risk neutral in monetary rewards), non-transparency is likely to tilt the balance

towards lower efforts equilibria. Transparency fully resolves this coordination problem by

eliminating the inferior equilibria.16

In Table 1 we provide (see detailed formal derivations in the Appendix), for a complete

breakdown of the cost parameter c in an ascending order (for any given value of v and the

project technology p(e1, e2)), the list of various equilibria under the two arrangements, non-

transparency and transparency.17 It demonstrates cleanly the value of mutual observability

of team members’ interim efforts.

The case of increasing marginal costs. So far our analysis has been based on

16For example, in the case where e∗G = (0, 0), e∗G = (1, 1), and e∗G 6= (2, 2), transparency allows any player
to confidently sink in one unit of effort early on regardless of whether the other player chooses zero effort or
one, because when the other player observes his move it will be in his best interest to match it (if he has not
already done so). Since this decision by any player will always be matched by the other player, a situation
where one player partially cooperates and the other player shirks cannot arise with observability.

17In Table 1 and later on in Table 2 and for the supporting derivations for Table 1 in the Appendix, we will
slightly abuse the notation e∗

Ĝ
to refer to overall efforts pair in the two-round game that can be supported

in SPE.
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0,
2)

)v
an

d

c
<

p
(1

,2
)−

p
(0

,0
)

2
v

(0
,0

)
(2
,1

)

(w
)

(p
(1
,2

)
−
p(

0,
2)

)v
<
c

(0
,0

)
(0

,0
)
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n
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n

A
d
d
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n
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l

co
n
d
it

io
n
s

(a
)

c
p
(2

,0
)−

p
(1

,0
)
<
v

c
p
(1

,0
)−

p
(0

,0
)
≤
v

(2
,2

)
(2
,2

)

(b
)

2
c

p
(2

,0
)−

p
(0

,0
)
<
v
<

c
p
(1

,0
)−

p
(0

,0
)

(2
,2

)
(2
,2

)

(c
)

v
<

c
p
(1

,0
)−

p
(0

,0
)

an
d

2
c

1
−

p
(0

,2
)
≤
v
≤

2
c

p
(2

,0
)−

p
(0

,0
)

(2
,2

)
an

d
(0
,0

)
(2
,2

)

(d
)

v
<

c
p
(1

,0
)−

p
(0

,0
)

an
d

v
<

2
c

1
−

p
(0

,2
)

(0
,0

)
(0
,0

)

(e
)

c
p
(2

,1
)−

p
(1

,1
)
<
v
≤

c
p
(2

,0
)−

p
(1

,0
)

c
p
(1

,0
)−

p
(0

,0
)
<
v

(2
,2

)
(2
,2

)

(f
)

v
=

c
p
(1

,0
)−

p
(0

,0
)

(2
,2

)
an

d
(0
,0

)
(2
,2

)

(g
)

2
c

1
−

p
(0

,2
)
≤
v
<

c
p
(1

,0
)−

p
(0

,0
)

(2
,2

)
an

d
(0
,0

)
(2
,2

)

(h
)

v
<

c
p
(1

,0
)−

p
(0

,0
)

an
d

2
c

1
−

p
(0

,1
)
≤
v
<

2
c

1
−

p
(0

,2
)

(0
,0

)
(2
,2

)
an

d
(0
,0

)

(i
)

v
<

c
p
(1

,0
)−

p
(0

,0
)

an
d

v
<

2
c

1
−

p
(0

,1
)

(0
,0

)
(0
,0

)
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(j
)

c
1
−

p
(1

,2
)
≤
v
≤

c
p
(2

,1
)−

p
(1

,1
)

2
c

1
−

p
(0

,2
)
≤
v

an
d

c
p
(1

,0
)−

p
(0

,0
)
<
v

(2
,2

)
an

d
(1
,1

)
(2
,2

)

(k
)

2
c

1
−

p
(0

,2
)
≤
v

an
d

c
p
(1

,1
)−

p
(0

,1
)
≤
v
≤

c
p
(1

,0
)−

p
(0

,0
)

(2
,2

),
(1
,1

)
an

d
(0
,0

)
(2
,2

)

(l
)

2
c

1
−

p
(0

,2
)
≤
v

an
d

v
<

c
p
(1

,1
)−

p
(0

,1
)

(2
,2

)
an

d
(0
,0

)
(2
,2

)

(m
)

2
c

1
−

p
(0

,1
)
≤
v
<

2
c

1
−

p
(0

,2
)

an
d

c
p
(1

,0
)−

p
(0

,0
)
≤
v

–
–

(n
)

2
c

1
−

p
(0

,1
)
≤
v
<

2
c

1
−

p
(0

,2
)

an
d

c
p
(1

,1
)−

p
(0

,1
)
≤
v
<

c
p
(1

,0
)−

p
(0

,0
)

(1
,1

)
an

d
(0
,0

)
(1
,1

)

(o
)

2
c

1
−

p
(0

,1
)
≤
v
<

2
c

1
−

p
(0

,2
)

an
d

v
<

c
p
(1

,1
)−

p
(0

,1
)

(0
,0

)
(2
,2

)
an

d
(0
,0

)

(p
)

v
<

2
c

1
−

p
(0

,1
)

an
d

c
p
(1

,1
)−

p
(0

,1
)
≤
v

(1
,1

)
an

d
(0
,0

)
(1
,1

)

(q
)

v
<

2
c

1
−

p
(0

,1
)

an
d

v
<

c
p
(1

,1
)−

p
(0

,1
)

(0
,0

)
(0
,0

)
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(r
)

v
<

c
1
−

p
(1

,2
)

c
p
(1

,0
)−

p
(0

,0
)
<
v

(1
,1

)
(1
,1

)

(s
)

c
p
(1

,1
)−

p
(0

,1
)
≤
v
≤

c
p
(1

,0
)−

p
(0

,0
)

(1
,1

)
an

d
(0
,0

)
(1
,1

)

(t
)

c
p
(1

,2
)−

p
(0

,2
)
≤
v
<

c
p
(1

,1
)−

p
(0

,1
)

an
d

v
<

2
c

p
(1

,2
)−

p
(0

,0
)

(0
,0

)
(0
,0

)

(u
)

c
p
(1

,2
)−

p
(0

,2
)
≤
v
<

c
p
(1

,1
)−

p
(0

,1
)

an
d

v
=

2
c

p
(1

,2
)−

p
(0

,0
)

(0
,0

)
(0
,0

)
an

d
(2
,1

)

(v
)

c
p
(1

,2
)−

p
(0

,2
)
≤
v
<

c
p
(1

,1
)−

p
(0

,1
)

an
d

2
c

p
(1

,2
)−

p
(0

,0
)
<
v

(0
,0

)
(2
,1

)

(w
)

v
<

c
p
(1

,2
)−

p
(0

,2
)

(0
,0

)
(0
,0

)
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the assumption of linear effort costs. We now briefly discuss possible modification to the

main result if effort costs are convex: the cost of exerting the second unit of effort within

the same round is c+ δ, δ > 0, i.e., the marginal cost of effort is increasing within a round.

With the change in effort costs, our previous intuition in favor of transparency gets some-

what weakened. After all, due to increasing marginal costs players are strongly discouraged

against sinking in two units of effort within a single round. This gives fewer options to con-

tribute two units of effort in both the transparent and the non-transparent environments,

as the players should like to space out their effort contributions over the two rounds. In

the non-transparent environment this lack of options is of no real consequence, because the

players can shift their contributions across the two rounds privately. But in the transpar-

ent environment, this creates a perverse incentive among the players to withhold individual

contributions in the first round, thereby credibly conveying to the other player that pushing

up contribution in a later round would be unlikely (this effect is the principal reason why

transparency is potentially harmful in the substitution technology case). So players may

well end up in a bad coordination under transparency with reduced first-round efforts and

lower aggregate efforts. We show that, in our three efforts setup, such harmful effect never

arises and transparency continues to be (weakly) better than non-transparency. The main

difference, compared to the linear effort costs case, is that we can no longer guarantee the

uniqueness of the overall equilibrium efforts in the extensive-form game. The formal analysis

is developed in a separate Supplementary materials file.

Optimal rewards. So far we did not consider the question of optimal incentives: what

should be the minimal rewards to induce a particular pair of aggregate efforts, with and

without transparency? Table 1 provides an exhaustive summary of the various equilibria

possible as the effort cost parameter, c, is varied. We then construct Table 2 by rearranging

the same information given in Table 1 but now in terms of the ranges of v, in decreasing

order of v. It should be clear from Table 2 how to determine the optimal v: for any given

effort implementation target, identification of the required minimal v would minimize the

implementation costs. Below we demonstrate the procedures for unique implementation of

full cooperation; similar methods apply for weak implementation of full cooperation.

Suppose the objective is to uniquely implement full cooperation under non-transparency.

From Table 2, we know that the ‘optimal’ reward, call it vu
NT , is either in (a), (b), or (e) (by

‘optimal’ reward we mean the lower bound (i.e., the infimum) of the reward, v, inducing any

target efforts pair).

Let c be a typical condition enumerated in the first column in Table 2, and denote the

lower bound of any set of v values defined by c, when non-empty, by mc. Clearly, mc is

equal to either the lower bound of v satisfying the main condition or the lower bound of v
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satisfying the additional condition(s) (under c), whichever is greater.

Suppose that the set of v-values defined by (b) and (e) are empty, i.e., respectively (i)
c

p(1,0)−p(0,0)
≤ c

p(2,0)−p(1,0)
and c

p(2,0)−p(1,0)
≤ c

p(1,0)−p(0,0)
, or (ii) c

p(1,0)−p(0,0)
≤ 2c

p(2,0)−p(0,0)
and

c
p(2,0)−p(1,0)

≤ c
p(1,0)−p(0,0)

.

Suppose (i) holds. Then it must be that c
p(2,0)−p(1,0)

= c
p(1,0)−p(0,0)

, and vu
NT = m(a) =

c
p(2,0)−p(1,0)

. Now under transparency, aside from vu
NT = c

p(2,0)−p(1,0)
, any v that satisfies any

of the conditions in Λ1 = {(f), (g), (k), (l)} (i.e., the union of v-values defined by each of

these configurations) would uniquely implement full cooperation.18

If the set defined by (f) is non-empty (in which case it is single-valued), then the set

defined by (g) is also non-empty; moreover, any v satisfying (g) will be strictly less than the

v satisfying (f). Therefore, for unique implementation under transparency, we can restrict

to the set of v-values defined by Λ1 \ {(f)}.

Now note that mc, when it is well-defined for any c ∈ Λ1 \ {(f)}, will be strictly less

than c
p(2,0)−p(1,0)

.19 Then it must be that the least-cost reward that uniquely implements full

cooperation under transparency, call it vu
T , is equal to the min{mc} with c being the elements

from Λ1 \ {(f)} for which mc’s are well-defined. By construction vu
T = min{mc} < vu

NT ,

whenever mc is well-defined for at least one c ∈ Λ1 \ {(f)}; otherwise, vu
T = vu

NT .

However, suppose (ii) holds. Then it must be that c
p(2,0)−p(1,0)

< c
p(1,0)−p(0,0)

(the equality

case was considered in (i)), and vu
NT = m(a) = c

p(1,0)−p(0,0)
. Under transparency, aside from

vu
NT = c

p(1,0)−p(0,0)
, any v that satisfies any of the conditions in Λ2 = {(c), (g), (k), (l)} would

uniquely implement full cooperation.20 Therefore, by construction vu
T = min{mc} < vu

NT ,

whenever mc is well-defined for at least one c ∈ Λ2; otherwise, vu
T = vu

NT .

Next, suppose that max{ c
p(2,0)−p(1,0)

, 2c
p(2,0)−p(0,0)

} < c
p(1,0)−p(0,0)

so that the set of v’s defined

by (b) is non-empty, and c
p(2,0)−p(1,0)

≤ c
p(1,0)−p(0,0)

so that the set of v’s defined by (e) is

empty. Then vu
NT = m(b) = max{ c

p(2,0)−p(1,0)
, 2c

p(2,0)−p(0,0)
}. By construction vu

T = min{mc} <
m(b) = vu

NT , whenever mc is well-defined for at least one c ∈ {(c), (g), (k), (l)};21 otherwise,

vu
T = vu

NT .

18Configurations (b) and (e) were already excluded under non-transparency. If c
p(2,0)−p(1,0) = c

p(1,0)−p(0,0) ,
then (c) is empty-valued; further, v ≤ c

p(2,1)−p(1,1) <
c

p(1,0)−p(0,0) (by applying A4 on the right-hand side of
the main condition of (j)), thus configuration (j) is also empty-valued.

19It should be clear that the permissible v’s are decreasing as we move down the list of configurations.
20Earlier, configurations (b) and (e) were excluded (see footnote 18). Configuration (f) is empty-valued

since c
p(2,0)−p(1,0) <

c
p(1,0)−p(0,0) . Configuration (j) is also empty-valued: the right-hand side of the main

condition implies v < c
p(2,0)−p(1,0) , so to be non-empty it must be that c

p(1,0)−p(0,0) <
c

p(2,0)−p(1,0) , which is
impossible by hypothesis.

21Configuration (e) is already excluded under non-transparency. If c
p(2,0)−p(1,0) ≤

c
p(1,0)−p(0,0) holds, then

(f) is empty-valued. Configuration (j) is also empty-valued, by the same argument as in footnote 20.
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Finally, suppose the set of v’s defined by (e) is non-empty, i.e., c
p(1,0)−p(0,0)

< c
p(2,0)−p(1,0)

.

Then vu
NT = m(e) = max{ c

p(2,1)−p(1,1)
, c

p(1,0)−p(0,0)
}. By construction vu

T = min{mc} < m(e) =

vu
NT , whenevermc is well-defined for at least one c ∈ {(g), (j), (k), (l)};22 otherwise, vu

T = vu
NT .

More generally, we can make the following observation:

Proposition 4 (Implementation costs). Suppose a joint project involves two

complementary tasks as defined in A1-A4. Then full cooperation by both players, i.e. overall

efforts (2, 2), can be uniquely (or weakly) implemented under transparency for a reward that

is no more and possibly less than the minimal reward needed for unique (respectively, weak)

implementation under non-transparency.

4 Substitution Technology: A Neutrality Result

In this section, we consider team projects with player efforts primarily as substitutes. The

main objective is to see whether the change from complementary to substitution technology

alters how transparency impacts on team members’ efforts. We hope to convince that much

of the benefits of transparency will be lost as a result, and transparency may even prove

rather unhelpful.

To formalize, let the project’s success probability, denoted by ρ(e1, e2), inherit properties

A1-A3 from the previous section and satisfy the following property:

A4′. General Substitutability : For any ej ∈ {0, 1}, ρ(1, e′j)−ρ(0, e′j) < ρ(1, ej)−ρ(0, ej) and

ρ(2, e′j)− ρ(1, e′j) < ρ(2, ej)− ρ(1, ej), where e′j > ej.

That is, the incremental probability of project success due to an extra unit of effort by a

player is decreasing in the other player’s effort.23 We continue to assume linear effort costs.

At the end we discuss the likely changes in results if one assumes increasing marginal costs.

Unobservable contributions. When efforts are unobservable, the induced effort

contribution game is essentially a simultaneous move game although the efforts are exerted

over two rounds. The normal form, denoted by GS , is as follows:

22By hypothesis, c
p(1,0)−p(0,0) <

c
p(2,0)−p(1,0) , so (f) is empty-valued.

23It is easy to check that in the perfect substitution case, ρ(e1, e2) = ρ(e1 +e2), the general substitutability
property implies ρ(1)− ρ(0) > ρ(2)− ρ(1) > ρ(3)− ρ(2) > ρ(4)− ρ(3) > 0, i.e., ρ(e1, e2) is strictly concave
separately in each player’s effort.
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Player 1

Player 2

0 1 2

0 ρ(0, 0)v, ρ(0, 0)v ρ(0, 1)v, ρ(0, 1)v − c ρ(0, 2)v, ρ(0, 2)v − 2c

1 ρ(1, 0)v − c, ρ(1, 0)v ρ(1, 1)v − c, ρ(1, 1)v − c ρ(1, 2)v − c, ρ(1, 2)v − 2c

2 ρ(2, 0)v − 2c, ρ(2, 0)v ρ(2, 1)v − 2c, ρ(2, 1)v − c v − 2c, v − 2c

Figure 4: Simultaneous move game GS

Denote the NE of this game by e∗GS . In the Appendix we show that there always exists a

pure-strategy NE in GS . We also establish the following result:

Lemma 8. In the normal-form game GS , multiple symmetric pure strategy Nash equilibria

cannot arise. That is, any e∗GS = (e, e) must be a unique equilibrium.

While for complementary technology one-shot equilibrium is necessarily symmetric, for

substitution technology one-shot equilibrium can be asymmetric. Moreover, an asymmetric

equilibrium can arise along with a symmetric one-shot equilibrium.24

Observable contributions. When first-round efforts are observable, the extensive

form is as in Fig. 5. Denote the extensive-form game by ĜS , any SPE of this game by

e∗
ĜS

, and the continuation game following e1 = (e11, e21) in the extensive-form game ĜS by

GS (e11,e21).

With player efforts as substitutes (as opposed to complementary efforts), free-riding be-

comes a more serious problem under either contribution format, with and without trans-

parency, because one player’s slack can be more easily picked up by another player. But

then a player cannot easily free ride by simply putting in low effort in the first round be-

cause this effort reduction can be made up for by the same player by putting in more effort

in the second round, given linear costs of effort. So how substitutability in efforts affects the

players’ overall effort incentives under the two formats, transparency and non-transparency,

is not a priori clear.

Our next result shows that unlike in the complementary technology case, when efforts are

substitutes, transparency cannot eliminate inferior efforts equilibrium if there are multiple

equilibria under non-transparency.

24For example, suppose that v−2c > p(1, 2)v− c and v−2c = p(0, 2)v, such that e∗GS = (2, 2). By Lemma
8, we know that e∗GS 6= (1, 1) and e∗GS 6= (0, 0). However, v − 2c > p(1, 2)v − c and v − 2c = p(0, 2)v imply
that, using A4′ and A2, p(0, 2)v− 2c > p(2, 1)v− c and p(0, 2)v− 2c > p(0, 0)v. Together with the fact that
v − 2c = p(0, 2)v, these conditions imply that e∗GS = (0, 2).
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Proposition 5. Suppose a joint project involves effort substitution as defined by A1-A3

and A4′. Any NE efforts pair (η∗1, η
∗
2) under non-transparency can be supported as an SPE of

the effort contribution game under transparency with the strategy profile eĜS = (η∗1, η
∗
2; 0, 0).

The next result shows that any overall effort profile achievable under transparency can

also be replicated in the one-shot game under non-transparency:

Proposition 6. Suppose a joint project involves effort substitution as defined by A1-A3

and A4′. If under transparency eĜS = (e∗11, e
∗
21; e

∗
12(e

∗
11, e

∗
21), e

∗
22(e

∗
11, e

∗
21)) is an SPE, then the

aggregate efforts pair eGS = (η∗1, η
∗
2), where η∗1 = e∗11 + e∗12 and η∗2 = e∗21 + e∗22, is an NE of

the effort contribution game under non-transparency.

Substitutability in efforts thus takes away from transparency the distinctive advantage of

‘gradualism’ noted previously: under complementary technology sometimes full cooperation

could be supported mainly by gradualism that might fail to materialize otherwise.

To summarize, Propositions 5 and 6 together establish, in contrast to our findings in

section 3, a form of ‘neutrality of transparency’ when player efforts are broad substitutes in

team output and effort costs are linear: observability of efforts is neither gainful nor harmful

for inducing efforts. The result further implies that if one were to explicitly design incentives

to implement full cooperation (or partial cooperation), the optimal reward v will be identical

with and without transparency.

Our neutrality result contrasts with Varian (1994), who showed that total contribution in

a two-player voluntary contribution public good game under observability of contributions

is often less than (and never exceeds) the total contribution under non-observability. Note

that in Varian’s setup, due to sequential structure of contributions, an early mover has

the opportunity to free ride on the late mover by committing to low contribution; in our

setup, the fact that in the last round both players get to move simultaneously, combined

with the fact that marginal cost of effort is constant, completely nullify the extra free-

riding opportunity associated with an early move and observability makes no difference.

But if marginal cost of effort is increasing, low contribution in the early round will have

a commitment value similar to Varian’s setup because to make it up in the second round

will push up the player’s effort costs at an increasing rate, making observability of efforts

harmful (from the organization’s point of view).25 This result is demonstrated elsewhere in a

25A similar contrast can be found between the dynamic contribution game of Admati and Perry (1991),
which assumes sequential contributions, and the repeated contribution game of Marx and Matthews (2000),
which assumes simultaneous contributions within each round.
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related paper by Pepito (2010) in a continuous efforts formulation of a two-player, two-round

repeated efforts joint project game, assuming the players’ efforts are substitutes.26

Also as we discussed in the Introduction, our neutrality property of transparency is

similar to Winter (2006a)’s result. The important difference between Winter’s setup and

ours is that a player in our model may choose non-zero efforts over multiple rounds giving

rise to repeated efforts contribution game, whereas in Winter’s analysis a player gets to exert

effort (or shirk) only once so that the effort investment game is mostly sequential in nature

(late movers observe the early movers’ efforts and not the other way around).27

5 Conclusion

Transparency is an important subject of debate in public economics and its applications in

team settings. Samuelsonian formulation of public goods, in a majority of models, takes

substitutability of contributions in public good’s production as a starting point, with the

free-rider problem as the main challenge. Team productions in organizations, on the other

hand, may exhibit a large degree of complementarity, while the benefits of team performance

are similar to a public good.

To see how the paper adds to the literature on transparency, in Table 3 we present a

summary of the main features and results of our model and three related papers. Our model

has the following attributes: joint (or team) project, repeated contribution of efforts, self-

interested utilitarian contributors (whose preferences we describe as “standard preferences”),

complete information, and the two types of production technologies – complementary and

substitutes.

Of the papers listed in Table 3, Varian (1994) is in pure public good setting. Winter’s

(2006a) is in a team setting (similar to ours) analyzing the architecture of information (i.e.,

how different peers are positioned in the observability-of-efforts chain) and its implications for

what should be the right kind of team (function-based or process-based) from the optimal

design viewpoint. Except Mohnen et al. (2008), all the papers listed assume standard

utilitarian agents; Mohnen et al. consider the implications when agents view an inequitable

26The continuous efforts formulation in Pepito (2010) allows comparison with the result of Mohnen et al.
(2009) who also considered continuous efforts and have shown that transparency is neutral if the players are
selfish utilitarian and the players’ marginal cost of effort is increasing. The difference between Pepito (2010)
and Mohnen et al. (2009) lies in the way efforts translate into output: in Mohnen et al. output is linear in
efforts (output equalling sum of efforts) whereas in Pepito each player’s effort translates into team project’s
success at a decreasing rate.

27In Winter’s setup, in some of the stages more than one worker may move (simultaneously) in which case
they do not observe each other’s efforts, but the late movers do observe the early movers’ efforts.
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Table 3: Alternative related models of transparency

This paper Mohnen et al. Winter[2006a] Varian

complete info. complete complete/ complete

incomplete

effort effort effort public

contr. contr. contr. good

repeat repeat mainly sequential

contr. contr. sequential;

simult. in some

stages

standard inequity standard standard

preferences aversion# preferences preferences

complementary tech.; substitution; complementary; substitution;

transparency adv. transparency adv. transparency adv. transparency disadv.

substitution tech.; #change to substitution;

transparency std. pref. transparency –

neutrala ⇒ transparency neutral

neutral

a This holds for linear effort costs; for strictly convex effort costs, transparency

is harmful (Pepito, 2010).

distribution of the burden of contribution with extra aversion beyond the direct utility-of-

rewards calculations.

Appendix

Proof of Lemma 1. For various comparisons in this proof, refer to Fig. 1. Suppose

(e∗1, e
∗
2) = (1, 0). This implies that

p(1, 0)v − c ≥ p(0, 0)v,

and p(1, 0)v ≥ p(1, 1)v − c.

These imply, respectively, that (p(1, 0)−p(0, 0))v−c ≥ 0 and that (p(1, 1)−p(1, 0))v−c ≤ 0,

leading to inconsistencies given that p(1, 1) − p(1, 0) = p(1, 1) − p(0, 1) > p(1, 0) − p(0, 0),

by A2 and A4. Therefore, (1, 0) cannot be an NE, and by symmetry, nor can (0, 1).
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Suppose that (e∗1, e
∗
2) = (2, 0). Therefore,

p(2, 0)v ≥ v − 2c,

and p(2, 0)v − 2c ≥ p(0, 0)v,

yielding, respectively, (1 − p(2, 0))v − 2c ≤ 0 and (p(2, 0) − p(0, 0))v − 2c ≥ 0, which are

inconsistent given that (1−p(2, 0))v−2c = (p(2, 2)−p(2, 0))v−2c = (p(2, 2)−p(0, 2))v−2c >

(p(2, 0)− p(0, 0))v − 2c, by A2 and A4. Therefore, (2, 0) and (0, 2) cannot be NE.

Finally, suppose that (e∗1, e
∗
2) = (2, 1). This implies that

p(2, 1)v − c ≥ v − 2c,

and p(2, 1)v − 2c ≥ p(1, 1)v − c,

yielding, respectively, (1 − p(2, 1))v − c ≤ 0 and (p(2, 1) − p(1, 1))v − c ≥ 0, which are

inconsistent given that (1− p(2, 1))v− c = (p(2, 2)− p(2, 1))v− c = (p(2, 2)− p(1, 2))v− c >
(p(2, 1)− p(1, 1))v − c, by A2 and A4. Therefore, (2, 1) and (1, 2) cannot be NE. �

Proof of Proposition 1. Equilibrium (e∗1, e
∗
2) = (0, 0) occurs if and only if

p(0, 0)v ≥ p(1, 0)v − c,

and p(0, 0)v ≥ p(2, 0)v − 2c,

i.e., c ≥ max{(p(1, 0)− p(0, 0))v, [(p(2, 0)− p(0, 0))v]/2}, which is satisfied for high c values.

Equilibrium (e∗1, e
∗
2) = (1, 1) occurs if and only if

p(1, 1)v − c ≥ p(0, 1)v,

and p(1, 1)v − c ≥ p(2, 1)v − 2c,

i.e., (p(2, 1)− p(1, 1))v ≤ c ≤ (p(1, 1)− p(0, 1))v.

Finally, equilibrium (e∗1, e
∗
2) = (2, 2) occurs if and only if

v − 2c ≥ p(1, 2)v − c,

and v − 2c ≥ p(0, 2)v,

i.e., c ≤ min{(1 − p(1, 2))v, [(1 − p(0, 2))v]/2}, which is clearly satisfied for low values of

c. �
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Existence of pure strategy NE in G. The one-shot game, G, has at least one

pure-strategy Nash equilibrium.

Proof. Suppose that e∗G 6= (0, 0). Then (refer to Fig. 1) p(0, 0)v < max{p(1, 0)v−c, p(2, 0)v−
2c}. If max{p(1, 0)v − c, p(2, 0)v − 2c} = p(1, 0)v − c, then

p(1, 0)v − c ≥ p(2, 0)v − 2c, i.e., c ≥ (p(2, 0)− p(1, 0))v,

and p(1, 0)v − c > p(0, 0)v, i.e., (p(1, 0)− p(0, 0))v > c,

from which we can infer, using A4, that

(p(1, 2)− p(0, 2))v > (p(1, 1)− p(0, 1))v > (p(1, 0)− p(0, 0))v > c ≥ (p(2, 0)− p(1, 0))v. (5)

Now if c ≥ (p(2, 1)− p(1, 1))v, then using (5) write

(p(1, 1)− p(0, 1))v > c ≥ (p(2, 1)− p(1, 1))v,

and we conclude that e∗G = (1, 1), by Proposition 1. On the other hand, if (p(2, 1)−p(1, 1))v >

c, then by A4,

(1− p(1, 2))v > c. (6)

From (5), we know that p(1, 2)− p(0, 2))v > c, hence

(1− p(1, 2))v + (p(1, 2)− p(0, 2))v > 2c, i.e., [(1− p(0, 2))v]/2 > c,

which, together with (6), implies that e∗G = (2, 2), by Proposition 1.

If max{p(1, 0)v − c, p(2, 0)v − 2c} = p(2, 0)v − 2c, then

p(2, 0)v − 2c ≥ p(1, 0)v − c, i.e., (p(2, 0)− p(1, 0))v ≥ c, i.e., (1− p(1, 2))v > c (by A4);

and p(2, 0)v − 2c > p(0, 0)v, i.e.,
(p(2, 0)− p(0, 0))v

2
> c, i.e.,

(1− p(0, 2))v

2
> c (by A4).

Therefore, c < min{(1− p(1, 2))v, [(1− p(0, 2))v]/2}, and e∗G = (2, 2), by Proposition 1.

Otherwise, e∗G = (0, 0). Therefore, G has at least one pure-strategy Nash equilib-

rium. �

Proof of Lemma 2. (i) First we claim that full cooperation cannot be achieved in the

extensive-form game through (0, 0; 2, 2) or (2, 2; 0, 0). The first case implies that (2, 2) is

an NE in the continuation game following e1 = (0, 0), contradicting our hypothesis that
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(2, 2) 6= e∗G (recall, the continuation game following e1 = (0, 0) is simply G). The second case

cannot be supported in equilibrium as any player i would have an incentive to deviate from

ei1 = 2 to either ei1 = 1 or ei1 = 0, because full cooperation is not an equilibrium in the

one-shot game: in the extensive form i can deviate the same way as he would have done in

the one-shot game, first by deviating in the first round (as in the one-shot game) and then

putting in zero effort in the second round.

Next consider full cooperation of the form (2, 1; 0, 1) or (1, 2; 1, 0) and each player col-

lecting a payoff of v − 2c overall. Since (2, 2) 6= e∗G, at least one of the following must hold

(see Fig. 1):

p(0, 2)v > v − 2c, (7)

p(1, 2)v − c > v − 2c. (8)

But then the player who is considering to cooperate gradually in the extensive-form game

(say, player 1) can either shirk in both rounds and obtain an overall payoff p(0, 2)v that

exceeds v − 2c, or partially cooperate in the first round and shirk in the second round to

receive p(1, 2)v − c that exceeds v − 2c; one of these profitable deviations must be possible,

by (7) and (8). Thus, neither (2, 1; 0, 1) nor (1, 2; 1, 0) can be sustained as SPE.

Then consider (0, 1; 2, 1) (or similarly (1, 0; 1, 2)) as an equilibrium possibility. It is easy

to see that there is a profitable deviation for player 1 in the second round, given that one of

(7) and (8) must be true.

The above eliminations leave us with gradual cooperation, i.e. (1, 1; 1, 1), as the only

equilibrium possibility.

(ii) Since e∗G = (1, 1), by Proposition 1,

(p(2, 1)− p(1, 1))v ≤ c ≤ (p(1, 1)− p(0, 1))v. (9)

Independently, since by hypothesis (2, 2) 6= e∗G, applying part (i) of this lemma we conclude

that the only way full cooperation can arise with observability is through (1, 1; 1, 1). But to

generate (e∗12(1, 1), e∗22(1, 1)) = (1, 1), it must be that (1− p(1, 1))v − c ≥ (p(1, 2)− p(1, 1))v

(see Fig. 2), i.e.,

v − 2c ≥ p(1, 2)v − c.

Further, since (2, 2) 6= e∗G, either (7) or (8) must apply. Condition (7) and v−2c ≥ p(1, 2)v−c
(an implication of gradualism) imply that

(p(1, 2)− p(0, 2))v < c,
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which contradicts the right-hand side (weak) inequality in condition (9) (since (p(1, 1) −
p(0, 1)) < (p(1, 2)− p(0, 2)), by A4). On the other hand, condition (8) directly contradicts

v−2c ≥ p(1, 2)v−c (established above). Thus, gradualism is also ruled out as an equilibrium

possibility. So full cooperation cannot arise with observability. �

Proof of Lemma 3. Given that shirking is the unique equilibrium without observability,

by Lemma 2 the only way full cooperation can arise with observability is via gradualism,

i.e., through the sequence of efforts (1, 1; 1, 1). Below we verify compatibility of gradual co-

operation with shirking being the unique equilibrium, under the stated sufficient conditions.

The sufficient conditions will be verified to be non-empty.

Recalling the first of the triple conditions in (3),

p(0, 2)v > v − 2c ≥ p(1, 2)v − c, (10)

we can further write

(1− p(1, 2))v ≥ c > (p(1, 2)− p(0, 2))v. (11)

Also write the left-hand side inequality of (10) separately as

(1− p(0, 2))v − 2c < 0. (12)

We now claim that condition (10) (equivalently, conditions (10) and (11) together) implies

that e∗G = (0, 0) and it is a unique equilibrium.

By Proposition 1, e∗G = (0, 0) if and only if c ≥ max{(p(1, 0) − p(0, 0))v, [(p(2, 0) −
p(0, 0))v]/2}. The right-hand side inequality of (11) and A4 imply that c > (p(1, 0) −
p(0, 0))v, and (12) and A4 imply that

[(p(2, 0)− p(0, 0))v]/2 < c, (13)

so e∗G = (0, 0).

Next, recall that (1, 1) is an NE in the one-shot game if and only if

(p(2, 1)− p(1, 1))v ≤ c ≤ (p(1, 1)− p(0, 1))v

(by Proposition 1). The right-hand side (weak) inequality above implies that c < (p(1, 2)−
p(0, 2))v (by A4). But from (11) (which derives from (10)), we know that c > (p(1, 2) −
p(0, 2))v. Therefore e∗G 6= (1, 1).
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Finally, (12) implies that e∗G 6= (2, 2) (by Proposition 1). Thus, e∗G = (0, 0) is unique.

Let us next consider how gradual cooperation can be supported as an equilibrium under

observability.

In the continuation game following e1 = (1, 1), (e∗12(1, 1), e∗22(1, 1)) = (1, 1) if and only if

v − 2c ≥ p(1, 2)v − c (see Fig. 2), which is guaranteed by the right-hand (weak) inequality

in condition (10). Now going back to the start of the extensive-form game and considering

the strategy profile (1, 1; 1, 1), the overall payoff to each player is

ui(1, 1; 1, 1) = v − 2c.

Suppose now player 1 contemplates deviation in Round 1 to e11 = 2 while player 2 continues

to choose e21 = 1. Since v − 2c ≥ p(2, 1)v − c (using right-hand inequality in (10) and A2),

in Round 2 player 2 can choose either e22 = 0 or e22 = 1 (see Fig. 2), neither of which results

in a profitable deviation for player 1, since

u1(2, 1; 0, 0) = p(2, 1)v − 2c,

and u1(2, 1; 0, 1) = v − 2c.

Next we rule out a possible deviation by player 1 in Round 1 to e11 = 0 (refer to Fig. 2)

by identifying sufficient conditions. In the continuation game following e1 = (0, 1), we show

that (e12, e22) = (0, 0) is an NE if the following condition holds (along with (10), i.e., (11)

and (12)):

p(0, 1)v − c > p(0, 2)v − 2c. (14)

(Recall, this is the second of the triple conditions in (3) specified in the lemma statement.)

This condition implies that c > (p(0, 2)− p(0, 1))v, which is not inconsistent with (11) and

(12). Therefore, condition (14) is not inconsistent with the fact that the unique one-shot

equilibrium is e∗G = (0, 0).

In addition to (14), suppose that the following condition applies (the last of the triple

conditions under (3)):

v − 2c ≥ p(0, 1)v. (15)

Note that this condition is also not inconsistent with the fact that e∗G = (0, 0) is unique,

since it merely implies that (1−p(0, 1))v−2c ≥ 0 and c ≤ 1−p(0,1)
2

v, which do not necessarily

contradict (11) and (12) holding together.

We can now show that if (10), (14), and(15) (i.e., (11), (12), (14) and (15)) hold, then

player 1 does not gain by unilaterally deviating to e11 = 0. From condition (11), we see that
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(p(1, 2)− p(0, 2))v − c < 0, which in turn implies that

(p(1, 1)− p(0, 1))v − c < 0,

using A4. Also, from condition (12) and using A4, we conclude that

(p(2, 1)− p(0, 1))v − 2c < 0.

Given these last two derived inequalities and using conditions (11) and (12) directly, it can

be checked using Fig. 2 that in the continuation game following e1 = (0, 1), e12 = 0 is

the (strict) dominant strategy for player 1. Given that player 1 chooses e12 = 0, then from

condition (14), player 2’s (unique) best response is e22 = 0, generating an overall payoff to

player 1 of

u1(0, 1; 0, 0) = p(0, 1)v,

which, by condition (15), is not a gainful deviation. Therefore, there is no incentive for

player 1 to engage in a unilateral first-round deviation from e11 = 1.

By symmetric arguments as above, for the specified conditions, in Round 1 player 2 will

not deviate from e21 = 1 either. Therefore, when shirking is the unique equilibrium in the

one-shot game, full cooperation (only in the form of gradual cooperation) can be supported

as an SPE if conditions (10), (14) and (15) hold. Fig. 3 shows an example of parameter

constellations satisfying these sufficient conditions.

However, under these conditions, shirking remains an SPE. To see this, first note that

shirking in the extensive form implies e∗Ĝ = (0, 0; 0, 0), from which any player i, say player

1, receives

u1(0, 0; 0, 0) = p(0, 0)v.

Suppose he deviates by choosing e11 = 1. From (11) and (12) (which follow from (10)) and

A4, and from (14), we see that (e12, e22) = (0, 0) is an NE following (1, 0); moreover, from

(10), it is clear that player 2 chooses e22 = 0 following player 1’s first-round deviation to

e11 = 2. These deviations yield to player 1, respectively, the payoffs u1(1, 0; 0, 0) = p(1, 0)v−c
and u1(2, 0; 0, 0) = p(2, 0)v − 2c, both of which are no better than u1(0, 0; 0, 0) = p(0, 0)v,

by condition (14). �

Proof of Lemma 4. (i) Shirking in the extensive form implies e∗Ĝ = (0, 0; 0, 0). But if

(0, 0) 6= e∗G, then (e∗12(0, 0), e∗22(0, 0)) 6= (0, 0), since the continuation game following e1 =

(0, 0) is simply G; a contradiction.

(ii) When effort is observable, four strategy profiles entail partial cooperation: (0, 0; 1, 1),
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(1, 0; 0, 1), (0, 1; 1, 0) or (1, 1; 0, 0). We immediately rule out e∗Ĝ = (0, 0; 1, 1): the continuation

game following e1 = (0, 0) is simply G, and since (1, 1) 6= e∗G, therefore (e∗12(0, 0), e∗22(0, 0)) 6=
(1, 1).

We next rule out e∗Ĝ = (1, 0; 0, 1). The fact that (1, 1) 6= e∗G implies that at least one of

the following two conditions must hold:

p(1, 1)v − c < p(1, 0)v, (16)

p(1, 1)v − c < p(1, 2)v − 2c. (17)

The first inequality implies that (p(1, 1)− p(1, 0))v − c < 0. If, following e1 = (1, 0), player

1 chooses e12 = 0, player 2 would benefit by deviating to e22 = 0 from e22 = 1 (see Fig.

2); hence (1, 0; 0, 1) cannot be an equilibrium. The second inequality implies that p(1, 1)v−
c− p(1, 0)v < p(1, 2)v − 2c− p(1, 0)v, i.e., (p(1, 1)− p(1, 0))v − c < (p(1, 2)− p(1, 0))v − 2c,

which means in the second round player 2 does better by deviating to e22 = 2; so once again

(1, 0; 0, 1) cannot be an SPE. By symmetry, (0, 1; 1, 0) is also ruled out to be an SPE.

Finally, consider (1, 1; 0, 0). Since (1, 1) 6= e∗G, either (16) or (17) must hold. If (17)

holds, then following e1 = (1, 1) player 2 would deviate in Round 2 by choosing e22 = 1 as

player 1 continues to choose e12 = 0 (see Fig. 2). This implies that (1, 1; 0, 0) is not an SPE.

Suppose now that (17) fails so that

p(1, 1)v − c ≥ p(1, 2)v − 2c. (18)

Then it must be that (16) holds, hence,

p(1, 0)v > p(1, 1)v − c ≥ p(1, 2)v − 2c. (19)

We claim that player 1 would deviate in Round 1 to e11 = 0, given that player 2 continues to

choose e21 = 1, followed by (e∗12(0, 1), e∗22(0, 1)) = (0, 0) as an NE in the continuation game.

For this to happen, the following conditions must hold (see Fig. 2):

Player 1’s best-response : 0 ≥ (p(1, 1)− p(0, 1))v − c, (20)

0 ≥ (p(2, 1)− p(0, 1))v − 2c; (21)

Player 2’s best-response : 0 ≥ (p(0, 2)− p(0, 1))v − c. (22)

Conditions (20) and (21) are guaranteed by (19) and A2. To see that (22) is satisfied, rewrite
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(18):

0 ≥ (p(1, 2)− p(1, 1))v − c

i.e., 0 > (p(0, 2)− p(0, 1))v − c, by A4.

So, in the NE, (e∗12(0, 1), e∗22(0, 1)) = (0, 0), following player 1’s deviation in Round 1, player

1 receives an overall payoff in the two rounds combined,

u1(0, 1; 0, 0) = p(0, 1)v,

which, by (19) and A2, exceeds player 1’s overall payoff in the originally posited strategy

profile:

u1(1, 1; 0, 0) = p(1, 1)v − c.

Hence player 1 would deviate in Round 1 as claimed and (1, 1; 0, 0) cannot be an SPE. This

completes the proof that, under transparency, overall efforts of (1, 1) cannot be supported

in equilibrium. �

Proof of Lemma 5. (i) If e∗G = (2, 2), then for every e1 = (e11, e21) ∈ Ê1, the second-

round strategy profile (2 − e11, 2 − e21) is an NE in the continuation game, denoted by

(e∗12(e1), e∗22(e1)). Moreover, all strategy profiles (e1; e∗12(e1), e∗22(e1)), e1 ∈ Ê1, yield:

ui(e11, e21; e
∗
12(e1), e∗22(e1)) = v − 2c for i = 1, 2.

Therefore, for each of these strategy profiles, there exists no profitable first-round deviation

for any player i, since the payoffs to the deviating player is the same as what he would get

by not deviating. Thus, full cooperation is an SPE.

(ii) Corresponding to overall efforts (1, 1), the strategy profile in the extensive form is

one of the following: (0, 0; 1, 1), (1, 1; 0, 0), (1, 0; 0, 1), (0, 1; 1, 0). Each of these profiles yields

player 1 a payoff of p(1, 1)v − c, and since v − 2c ≥ p(1, 2)v − c (recall, e∗G = (2, 2)) it

follows, using A3, that v− 2c > p(1, 1)v− c. It is now easy to see that none of the strategy

profiles will be SPE : given a first-round deviation by player 1 to e11 = 2, in Round 2 player

2 choosing an effort such that overall efforts are (2, 2) is an NE. This would result in a payoff

of v − 2c to player 1, which exceeds his payoff p(1, 1)v − c in the posited equilibrium. Thus,

under transparency, overall efforts of (1, 1) cannot be supported in equilibrium. �

Proof of Lemma 6. Let e∗G = (1, 1), and by definition I(1,1) = {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2)}.
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By Proposition 1,

(p(1, 1)− p(0, 1))v − c ≥ 0 (23)

and (p(2, 1)− p(1, 1))v ≤ c. (24)

Fix any (ẽ1, ẽ2) ∈ I(1,1) \ (0, 0). By Lemma 1, such (ẽ1, ẽ2) cannot be an SPE with the

strategy profile (0, 0; ẽ1, ẽ2). This is so because the continuation game following e1 = (0, 0)

is strategically equivalent to the one-shot game G.

Consider elimination of overall efforts (1, 0). Since (0, 0; 1, 0) cannot be an SPE, what re-

mains to be shown is that (1, 0; 0, 0) is not subgame-perfect. Player 1’s payoff u1(1, 0; 0, 0) =

p(1, 0)v − c; but then player 1 can deviate in Round 1 to e11 = 0 while player 2 chooses

e21 = 0, and with (1, 1) being an NE in the continuation game (because e∗G = (1, 1)) player

1 will receive an overall payoff of u1(0, 0; 1, 1) = p(1, 1)v − c. Thus, player 1 would benefit

(p(1, 1)v − c > p(1, 0)v − c, by (23) and A3), ruling out (1, 0; 0, 0) as an SPE. So, un-

der transparency, overall efforts of (1, 0), and by symmetry (0, 1), cannot be supported in

equilibrium.

Next consider overall efforts (2, 0). We know that (0, 0; 2, 0) cannot be an SPE. Consider

then the strategies (2, 0; 0, 0). By (23) and invoking A2 and A4, (p(2, 1)− p(2, 0))v− c > 0,

so following (2, 0) player 2 will gain by choosing e22 = 1 over e22 = 0 (see Fig. 2). Therefore,

(e∗12(2, 0), e∗22(2, 0)) 6= (0, 0), hence (2, 0; 0, 0) is not an SPE. Finally, consider (1, 0; 1, 0). By

(24) and invoking A4, (p(2, 0) − p(1, 0))v − c < 0: if player 2 chooses e22 = 0, player 1

would choose e12 = 0 instead of e12 = 1, so (1, 0) cannot be an NE following (1, 0); this

rules out (1, 0; 1, 0) as an SPE. Thus, overall efforts (2, 0), and by symmetry (0, 2), cannot

be supported in equilibrium.

Finally, consider overall efforts (0, 0). There are two subcases to be considered.

If e∗G 6= (0, 0), then by Lemma 4 overall efforts of (0, 0) cannot arise in equilibrium of Ĝ.

Alternatively suppose e∗G = (0, 0), in addition to e∗G = (1, 1). We claim that here too

overall efforts of (0, 0) cannot be supported in equilibrium of Ĝ. To see this, note that by

(23) and (24) and invoking A2, we can conclude that (0, 1) is an NE in the continuation

game following e1 = (1, 0) (see Fig. 2). Moreover, using (23) directly and invoking A3, we

see that

u1(1, 0; 0, 1) = p(1, 1)v − c ≥ p(0, 1)v > p(0, 0)v = u1(0, 0; 0, 0).

This shows that first-round efforts (0, 0) cannot be supported as part of an equilibrium in

the extensive-form game, since player 1 (in fact, any player) would have an incentive to

undertake a first-round unilateral deviation by choosing e11 = 1 which will be followed up in
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Round 2 by (0, 1) as an NE. Therefore, once again overall efforts, (0, 0), cannot be supported

in equilibrium of Ĝ.

This completes the proof that overall efforts in I(1,1) cannot be supported in SPE. �

Proof of Lemma 7. Let e∗G = (2, 2), and by definition

I(2,2) = {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (1, 2), (2, 1), (1, 1)} .

By Proposition 1,

(1− p(1, 2))v − c ≥ 0 (25)

and (1− p(0, 2))v − 2c ≥ 0. (26)

Fix any (ẽ1, ẽ2) ∈ I(2,2) \ {(0, 0), (1, 1)}. By Lemma 1, such (ẽ1, ẽ2) cannot be supported

in an SPE with the strategy profile (0, 0; ẽ1, ẽ2); the continuation game following e1 = (0, 0)

is strategically equivalent to the one-shot game G. Note that, by construction ẽ1 6= ẽ2.

Consider elimination of overall efforts (1, 0). Since (0, 0; 1, 0) cannot be an SPE, what re-

mains to be shown is that (1, 0; 0, 0) is not subgame-perfect. Player 1’s payoff u1(1, 0; 0, 0) =

p(1, 0)v − c; but then player 1 can deviate in Round 1 to e11 = 0 while player 2 chooses

e21 = 0, and with (2, 2) being an NE in the continuation game (because e∗G = (2, 2)) player

1 will receive an overall payoff of u1(0, 0; 2, 2) = v − 2c. This makes player 1 better off since

u1(0, 0; 2, 2) = v − 2c ≥︸︷︷︸
by (25)

p(1, 2)v − c >︸︷︷︸
by A3

p(1, 0)v − c = u1(1, 0; 0, 0).

Therefore, overall efforts (1, 0), and by symmetry (0, 1), cannot be supported in SPE.

Consider overall efforts (2, 0). Aside from (0, 0; 2, 0), which we already argued cannot be

an SPE, these efforts can also arise via the strategy profiles (2, 0; 0, 0) and (1, 0; 1, 0). First

consider (2, 0; 0, 0) in which player 1 receives p(2, 0)v − 2c. But then player 1 can deviate

in Round 1 to e11 = 0, following which (e12, e22) = (2, 2) is an NE in the continuation

game (since e∗G = (2, 2)) and player 1 receives a higher payoff, u1(0, 0; 2, 2) = v − 2c. Hence

(2, 0; 0, 0) is not an SPE.

Consider next the strategy profile (1, 0; 1, 0). Again, similar to the case just analyzed,

player 1 can deviate in Round 1 to e11 = 0, following which (e12, e22) = (2, 2) realizes and

player 1 is strictly better off compared to his payoff of u1(1, 0; 1, 0) = p(2, 0)v − 2c. Hence

(1, 0; 1, 0) cannot be an SPE.

Thus, overall efforts (2, 0), and by symmetry (0, 2), cannot be supported in SPE.
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Consider overall efforts (1, 1). By Lemma 5(ii), overall efforts (1, 1) cannot be supported

in an SPE.

Consider overall efforts (2, 1). The strategy profiles that yield these overall efforts are

(2, 1; 0, 0), (2, 0; 0, 1), (1, 1; 1, 0), (1, 0; 1, 1), (0, 1; 2, 0), and (0, 0; 2, 1). Note that in each of

these profiles player 1 receives a payoff of p(2, 1)v−2c. First, it has already been established

at the beginning that the strategy profile (0, 0; 2, 1) cannot be an SPE. Next, examine the

strategy profiles (2, 1; 0, 0) and (2, 0; 0, 1). Neither of these strategy profiles will be an SPE :

given a first-round deviation by player 1 to e11 = 1 in either strategy profile, (e12, e22) =

(1, 2− e21) is an NE in the continuation game that follows (since e∗G = (2, 2)), which results

in a payoff of u1(1, 1; 1, 1) = u1(1, 0; 1, 2) = v − 2c ≥ p(2, 1)v − c > p(2, 1)v − 2c (the first

inequality follows from (25) and applying A2). Now consider the strategy profile (1, 1; 1, 0).

For (1, 0) to be an NE following e1 = (1, 1), and given that e∗G = (2, 2) (in particular, note

condition (25) and property A2), the following conditions must hold (see Fig. 2):

Player 1’s best-response : 0 ≤ (p(2, 1)− p(1, 1))v − c (27)

Player 2’s best-response : (p(2, 1)− p(1, 1))v = (1− p(1, 1))v − c

i.e., 0 = (1− p(2, 1))v − c. (28)

However, these conditions are inconsistent, given A4 and A2. Therefore, (e∗12(1, 1), e∗22(1, 1)) 6=
(1, 0), and (1, 1; 1, 0) is not an SPE. Moreover, note that conditions (27) and (28) must also

hold for (2, 0) to be an NE following e1 = (0, 1) and for (1, 1) to be an NE following

e1 = (1, 0). Since these conditions are inconsistent, then (e∗12(0, 1), e∗22(0, 1)) 6= (2, 0) and

(e∗12(1, 0), e∗22(1, 0)) 6= (1, 1), and the strategy profiles (0, 1; 2, 0) and (1, 0; 1, 1) are not SPE.

Therefore, none of the strategy profiles yielding overall efforts (2, 1) can be SPE.

What is left now is to show that overall efforts of (0, 0) cannot be supported in an SPE.

There are three subcases to be considered.

First consider the subcase where e∗G 6= (0, 0). By Lemma 4(i), overall efforts (0, 0) cannot

arise in an SPE.

Next, suppose e∗G = (2, 2), e∗G = (0, 0), and e∗G 6= (1, 1). While (0, 0) is clearly an NE in

the continuation game following e1 = (0, 0), (0, 0; 0, 0) cannot be sustained as an equilibrium

in the overall game since a first-round unilateral deviation to e11 = 2 by player 1 is gainful:

u1(2, 0; 0, 2) = v − 2c ≥︸︷︷︸
by (26)

p(0, 2)v > p(0, 0)v = u1(0, 0; 0, 0),

thus ruling out overall efforts of (0, 0) in an equilibrium of Ĝ.
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Finally, consider the subcase where all symmetric equilibria arise in the one-shot game.

By Lemma 6, overall efforts of (0, 0) cannot be supported in an equilibrium of Ĝ. �

Proof of Proposition 3. We divide the proof into three parts.

[1] First suppose that e∗G = (1, 1) but e∗G 6= (2, 2); this equilibrium may be unique or there

could be another equilibrium e∗G = (0, 0). Then, we show that the overall efforts (1, 1) can

be supported as an SPE in the extensive-form game; moreover, the equilibrium (in terms of

overall efforts) will be unique.

By Proposition 1, e∗G = (1, 1) if and only if

(p(2, 1)− p(1, 1))v ≤ c ≤ (p(1, 1)− p(0, 1))v. (29)

Consider the strategy profile (1, 0; 0, 1). By condition (29), we know that (0, 1) is an NE in

the continuation game following first-round efforts (1, 0).

Suppose that player 1 unilaterally deviates in Round 1 to e11 = 0. Since e∗G = (1, 1), and

the continuation game following e1 = (0, 0) is simply G, then (e∗12(0, 0), e∗22(0, 0)) = (1, 1).

This yields payoffs of p(1, 1)v − c to player 1, the same as his payoffs before the deviation.

Therefore, deviation to e11 = 0 is not gainful for player 1.

Moreover, since e∗G 6= (2, 2), we know that if player 1 deviates unilaterally in Round 1

by choosing e11 = 2, then player 2 will not choose e22 = 2. Specifically, player 2 will choose

e22 = 1: the right-hand side (weak) inequality in (29) implies that (p(2, 1)−p(2, 0))v−c > 0,

by A2 and A4. Consequently, this deviation is not gainful for player 1 since, by (29),

u1(2, 0; 0, 1) = p(2, 1)v − 2c ≤ p(1, 1)v − c = u1(1, 0; 0, 1).

Thus, there is no profitable deviation for player 1.

There is also no profitable deviation for player 2 in Round 1. To see this, suppose player

2 deviates in Round 1 to e21 = 2. Recall that (p(1, 2) − p(0, 2))v − c > 0 (as argued in the

above paragraph), or p(1, 2)v − c > p(0, 2)v. Since e∗G 6= (2, 2), then p(1, 2)v − c > v − 2c

(because p(1, 2)v − c > p(0, 2)v), i.e., (1 − p(1, 2))v − c < 0. Therefore, player 1 chooses

e12 = 0 following e1 = (1, 2), and

u2(1, 2; 0, 0) = p(1, 2)v − 2c ≤︸︷︷︸
(e∗G=(1,1))

p(1, 1)v − c = u2(1, 0; 0, 1).

Next, suppose player 2 deviates to e21 = 1. Note that (e12, e22) = (0, 0) is the only NE of the

continuation game following e1 = (1, 1), since (1 − p(1, 2))v − c < 0 (as established above)
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and A2 and A4 apply. So,

u2(1, 1; 0, 0) = p(1, 1)v − c = u2(1, 0; 0, 1).

Therefore, overall efforts (1, 1) can be supported in an SPE with (1, 0; 0, 1) (and by symmetry,

(0, 1; 1, 0) is also an SPE ).28

Note that in this case overall efforts of (2, 2) cannot be supported in an SPE of Ĝ, by

Lemma 2. Moreover, by Lemma 6, none of the overall efforts that are inferior to (1, 1)

are subgame-perfect. Also, overall efforts (2, 1) (and by symmetry, (1, 2)) cannot be sup-

ported in SPE. To show this, consider first overall efforts (2, 1) which can result from any

of the following strategy profiles: (0, 0; 2, 1), (1, 1; 1, 0), (1, 0; 1, 1), (0, 1; 2, 0), (2, 0; 0, 1), and

(2, 1; 0, 0). By Lemma 1, (e∗12(0, 0), e∗22(0, 0)) 6= (2, 1), hence (0, 0; 2, 1) cannot be an SPE.

Next, consider (1, 1; 1, 0). If (1, 0) is an NE in the continuation game following e1 = (1, 1),

then by A4 and A2 respectively,

(p(2, 1)− p(1, 1))v − c ≥ 0, i.e., (p(2, 2)− p(1, 2))v − c > 0 (30)

and (p(2, 1)− p(1, 1))v ≥ (1− p(1, 1))v − c, i.e., 0 ≥ (1− p(1, 2))v − c. (31)

However, these conditions are inconsistent. Therefore, (e∗12(1, 1), e∗22(1, 1)) 6= (1, 0), and

(1, 1; 1, 0) cannot be an SPE. By the same argument, the profiles (1, 0; 1, 1) and (0, 1; 2, 0)

cannot be SPE : both (e∗12(1, 0), e∗22(1, 0)) = (1, 1) and (e∗12(0, 1), e∗22(0, 1)) = (2, 0) require

that conditions (30) and (31) simultaneously hold, an impossibility. Next, the strategy

profile (2, 0; 0, 1) is an SPE only if (e∗12(2, 0), e∗22(2, 0)) = (0, 1), which in turn requires

(p(2, 1)− p(2, 0))v − c ≥ (1− p(2, 0))v − 2c, i.e., 0 ≥ (1− p(2, 1))v − c.

Consequently, by A2 and then A4, 0 > (p(2, 1) − p(1, 1))v − c, i.e., p(1, 1)v − c >

p(2, 1)v− 2c, thus player 1 gains from a unilateral first-round deviation to e11 = 1: following

e1 = (1, 0), in the continuation game (0, 1) is an NE (since e∗G = (1, 1)), and u1(1, 0; 0, 1) =

p(1, 1)v − c > p(2, 1)v − 2c = u1(2, 0; 1, 0). Therefore, (2, 0; 1, 0) cannot be an SPE. Finally,

consider the strategy profile (2, 1; 0, 0). For (e∗12(2, 1), e∗22(2, 1)) = (0, 0) to arise, it must be

that

0 ≥ (1− p(2, 1))v − c,

which implies that, by A2 and A4, 0 > (p(2, 1) − p(1, 1))v − c, or that p(1, 1)v − c >

p(2, 1)v − 2c. But then player 1 will find unilateral deviation to e11 = 1 gainful, because

28In fact, all strategy profiles leading to (1, 1) are SPE, a result derived in an earlier version of this paper.
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(e∗12(1, 1), e∗22(1, 1)) = (0, 0) (why? e∗G = (1, 1)) and

u1(1, 1; 0, 0) = p(1, 1)v − c > p(2, 1)v − 2c = u1(2, 1; 0, 0).

Thus (2, 1; 0, 0) cannot be an SPE either.

This achieves (weak) domination of partial cooperation in the game G by partial cooper-

ation in the game Ĝ, through elimination of any inferior equilibrium. Moreover, this is the

only overall equilibrium efforts possible in the game Ĝ.

[2] Suppose that e∗G = (2, 2) (possibly unique). Then in the transparent environment overall

efforts of (2, 2) can also be supported in an SPE (by Lemma 5(i)). Moreover, by Lemma 7,

none of the overall efforts that are inferior to (2, 2) can be supported in an SPE. Therefore, full

cooperation in G is (weakly) dominated by full cooperation as the unique overall equilibrium

efforts in the game Ĝ.

[3] Finally, suppose the unique one-shot equilibrium is e∗G = (0, 0). By Lemma 4(ii), partial

cooperation cannot arise in an SPE. However, by Proposition 2, full cooperation can arise in

equilibrium in the extensive-form game. Therefore, shirking in G can be dominated by full

cooperation in Ĝ. �

Derivation of Table 1
The equilibrium (or equilibria) reported in Table 1 are exhaustive. We start with a prelimi-

nary result that will be used repeatedly.

Lemma 9. Suppose e∗G = (0, 0) is unique. Then,

(i) c > (p(1, 0)− p(0, 0))v;

(ii) e∗Ĝ 6= (1, 0);

(iii) e∗Ĝ 6= (2, 0);

(iv) Further, if p(0, 2)v > p(1, 2)v − c, then e∗Ĝ 6= (2, 1).

Proof. (i) Uniqueness of e∗G = (0, 0) implies the following conditions must hold: p(0, 0)v ≥
p(1, 0)v−c, p(1, 1)v−c < max{p(0, 1)v, p(2, 1)v−2c}, and v−2c < max{p(0, 2)v, p(1, 2)v−
c}. We claim that max{p(0, 1)v, p(2, 1)v − 2c} = p(0, 1)v. Suppose not. Then p(0, 1)v <

p(2, 1)v−2c and p(1, 1)v− c < p(2, 1)v−2c, i.e., c < p(2,1)−p(0,1)
2

v and c < (p(2, 1)−p(1, 1))v.

By A4, these conditions further imply that c < 1−p(0,2)
2

v and c < (1 − p(1, 2))v, or that
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e∗G = (2, 2), a contradiction. So max{p(0, 1)v, p(2, 1)v−2c} = p(0, 1)v, which in turn implies

that p(0, 1)v > p(1, 1)v− c, or c > (p(1, 1)− p(0, 1))v. Applying A4 on this last inequality

yields c > (p(1, 0)− p(0, 0))v.

(ii) Note that (1, 0) cannot be supported in SPE through the profile (0, 0; 1, 0), by Lemma

1. Thus the only way (1, 0) can be an SPE is through (1, 0; 0, 0), but this is not possible

either: if player 1 deviates to e11 = 0, then (0, 0) is an NE in the continuation game, and

player 1 receives u1(0, 0; 0, 0) = p(0, 0)v > p(1, 0)v − c = u1(1, 0; 0, 0), by part (i).

(iii) By Lemma 1, (2, 0) cannot be supported in SPE through (0, 0; 2, 0). Next, note that

in part (i) we had established that p(0, 1)v ≥ p(2, 1)v − 2c. By A4, this implies that

p(0, 0)v > p(2, 0)v − 2c. Therefore, (2, 0; 0, 0) cannot be an SPE : player 1 can deviate to

e11 = 0, following which (e∗12(0, 0), e∗22(0, 0)) = (0, 0) arises (since e∗G = (0, 0)), and he receives

u1(0, 0; 0, 0) = p(0, 0)v > p(2, 0)v−2c = u1(2, 0; 0, 0), a profitable deviation. Finally, consider

the strategy profile (1, 0; 1, 0). If player 1 deviates to e11 = 0, in the continuation game (0, 0)

is an NE and he thus obtains u1(0, 0; 0, 0) = p(0, 0)v > p(2, 0)v − 2c = u1(1, 0; 1, 0).

(iv) Since e∗G 6= (2, 2), either p(0, 2)v > v − 2c or p(1, 2)v − c > v − 2c must hold. But

then the condition p(0, 2)v > p(1, 2)v − c implies that p(0, 2)v > v − 2c.

This part will rely on Fig. 2. By Lemma 1, (0, 0; 2, 1) is not an SPE. The profile (2, 1; 0, 0)

is not an SPE either: if player 2 deviates to e21 = 0, then by p(0, 2)v > p(1, 2)v − c,

p(0, 2)v > v − 2c and A2, player 2’s unique best response in Round 2 is e22 = 0. This

results in u2(2, 0; 0, 0) = p(2, 0)v > p(2, 1)v− c, so player 2 would deviate in Round 1. Also,

(2, 0; 0, 1) is not an SPE ; following e1 = (2, 0), player 2’s unique best response is e22 = 0.

The profile (0, 1; 2, 0) is not an SPE as well. Applying A4 on p(0, 2)v > v−2c (established

above) yields p(0, 1)v > p(2, 1)v − 2c which, together with p(0, 1)v > p(1, 1)v − c (part (i)),

imply that player 1’s unique best response, if player 2 chooses e22 = 0 in the continuation

game following e1 = (0, 1), is e12 = 0. Hence, (e∗12(0, 1), e∗22(0, 1)) 6= (2, 0). The profile

(1, 1; 1, 0) is not an SPE : if (1, 0) is an NE following e1 = (1, 1), then by player 1’s best-

response property (p(2, 1)− p(1, 1))v ≥ c, which, by A4, implies that (1− p(1, 2))v > c, i.e.,

if player 1 chooses e12 = 1 then player 2 chooses e22 = 1 and not e22 = 0. Finally, (1; 0; 1, 1)

cannot be an SPE : following e1 = (1, 0), if player 1 chooses e12 = 1 then player 2 would

prefer e22 = 0 over e22 = 1 (since p(0, 2)v > p(1, 2)v − c, by hypothesis). ||

We now verify the equilibria reported in Table 1. The analysis consists of two sets of

conditions – the main condition and the subsidiary conditions – and it is developed in order

of ascending costs.

1. Suppose that c < (p(2, 0) − p(1, 0))v. By A4, c < (p(2, 1) − p(1, 1))v; thus, if c <

(p(2, 0) − p(1, 0))v, e∗G 6= (1, 1) (see Proposition 1). Therefore, the only equilibrium
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possibilities in the one-shot game are (0, 0) only, (2, 2) only, and the multiple equilibria

of (0, 0) and (2, 2). We consider the following additional conditions.

(a) Suppose further that c ≤ (p(1, 0)− p(0, 0))v. This condition and the main condi-

tion imply, respectively, that p(1, 0)v−c ≥ p(0, 0)v and p(2, 0)v−2c > p(1, 0)v−c;
therefore, p(2, 0)v− 2c > p(0, 0)v, or c < p(2,0)−p(0,0)

2
v, which by Proposition 1 im-

plies e∗G 6= (0, 0). Since there always exists a pure strategy equilibrium in the

game G, it must be that e∗G = (2, 2). Then by Proposition 3, the unique SPE is

e∗Ĝ = (2, 2).

Now suppose that

(p(1, 0)− p(0, 0))v < c.

We consider three subcases (configurations (b), (c), and (d)):

(b) Suppose that (p(1, 0) − p(0, 0))v < c and c < (p(2,0)−p(0,0))
2

v. From the latter

condition it follows that e∗G 6= (0, 0), hence, as in (a), it follows that e∗G = (2, 2),

and by Proposition 3 the unique SPE is e∗Ĝ = (2, 2).

(c) Suppose that (p(1, 0) − p(0, 0))v < c and p(2,0)−p(0,0)
2

v ≤ c ≤ 1−p(0,2)
2

v. By A4,

the main condition c < (p(2, 0) − p(1, 0))v implies that c < (1 − p(1, 2))v; this,

together with the additional condition c ≤ 1−p(0,2)
2

v, implies that e∗G = (2, 2). Also,

the additional conditions (p(1, 0)− p(0, 0))v < c and p(2,0)−p(0,0)
2

v ≤ c imply that

e∗G = (0, 0). Since e∗G = (2, 2), by Proposition 3 the unique SPE is e∗Ĝ = (2, 2).

(d) Suppose that (p(1, 0)−p(0, 0))v < c and 1−p(0,2)
2

v < c. The latter condition implies

that e∗G 6= (2, 2). Moreover, applying A4 on this condition yields p(2,0)−p(0,0)
2

v < c;

this and (p(1, 0)− p(0, 0))v < c imply that e∗G = (0, 0).

We claim that e∗Ĝ = (0, 0), i.e., e∗Ĝ = (0, 0; 0, 0). First observe that following

e1 = (0, 0), (0,0) is an NE given that e∗G = (0, 0). Now go back to Round 1.

Suppose player 1 deviates to e11 = 1. By A4, the main condition implies c <

(1− p(1, 2))v, which, together with 1−p(0,2)
2

v < c, implies ((p(1, 2)− p(0, 2))v < c.

This and 1−p(0,2)
2

v < c (defining player 2’s best response) and the main condition

c < (p(2, 0)−p(1, 0))v (defining player 1’s best response) imply that following e1 =

(1, 0), (1,0) is an NE, yielding player 1 the payoff u1(1, 0; 1, 0) = p(2, 0)v − 2c <

p(0, 0)v = u1(0, 0; 0, 0) (by the inequality in the previous paragraph). Finally,

suppose player 1 deviates to e11 = 2. From ((p(1, 2)−p(0, 2))v < c and 1−p(0,2)
2

v <

c, we know that player 2 would choose e22 = 0, yielding player 1 the payoff
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u1(2, 0; 0, 0) = p(2, 0)v − 2c < p(0, 0)v = u1(0, 0; 0, 0). By symmetry, there is no

profitable deviation for player 2.

We claim that e∗Ĝ 6= (2, 2). Note that by Proposition 2, full cooperation arises

in this case only through (1, 1; 1, 1); applying A4 on the main condition allows us

to conclude that (1, 1) is an NE following e1 = (1, 1). However, the sequence of

efforts (1, 1; 1, 1) is not an SPE because player 2 (say) can profitably deviate to

e21 = 0 : following e1 = (1, 0), we know (from the argument above) that (1,0) is

an NE, so player 2 would receive u2(1, 0; 1, 0) = p(2, 0)v > v − 2c = u2(1, 1; 1, 1).

Since e∗G = (0, 0) is unique, by Lemma 9 e∗Ĝ 6= (1, 0) and e∗Ĝ 6= (2, 0); and by

Lemma 4(ii), e∗Ĝ 6= (1, 1). Finally, rewrite ((p(1, 2) − p(0, 2))v < c (as shown

above) as p(1, 2)v − c < p(0, 2)v, which, by Lemma 9(iv), implies e∗Ĝ 6= (2, 1).

Therefore, the unique SPE is e∗Ĝ = (0, 0).

2. Suppose that the main condition is now (p(2, 0)− p(1, 0))v ≤ c < (p(2, 1)− p(1, 1))v.

From the right-hand side inequality, we conclude that e∗G 6= (1, 1) by Proposition 1.

Therefore, the only equilibrium possibilities in the one-shot game are (0, 0) only, (2, 2)

only, and the multiple equilibria of (0, 0) and (2, 2). Moreover, note that the right-hand

side inequality also implies that c < (1− p(1, 2))v.

(e) Suppose that c < (p(1, 0) − p(0, 0))v holds at the same time; thus e∗G 6= (0, 0).

Since there always exists a pure strategy equilibrium in the game G, it must be

that e∗G = (2, 2). By Proposition 3, the unique SPE is e∗Ĝ = (2, 2).

(f) Next, suppose that c = (p(1, 0)− p(0, 0))v. This condition and the left-hand side

inequality of the main condition imply that p(0, 0)v = p(1, 0)v− c ≥ p(2, 0)v−2c,

i.e., e∗G = (0, 0). Applying A4 on the subsidiary condition yields p(0, 2)v <

p(1, 2)v−c. Likewise, by A4, the right-hand side inequality of the main condition

implies that p(1, 2)v− c < v− 2c. Therefore, p(0, 2)v < p(1, 2)v− c < v− 2c, i.e.,

e∗G = (2, 2). By Proposition 3, the unique SPE is e∗Ĝ = (2, 2).

Now suppose that

(p(1, 0)− p(0, 0))v < c.

From this condition and the left-hand side inequality of the main condition, we

see that p(0, 0)v > p(1, 0)v− c ≥ p(2, 0)v− 2c, i.e., e∗G = (0, 0). We consider three

subcases (configurations (g), (h), and (i)):

(g) Consider (p(1, 0) − p(0, 0))v < c and c ≤ 1−p(0,2)
2

v. The latter condition and

applying A4 on the right-hand side inequality of the main condition yield e∗G =
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(2, 2). Moreover, e∗G = (0, 0), once by the left-hand side inequality of the main

condition, then a second time again by the left-hand side inequality of the main

condition together with the left-hand side inequality of the subsidiary condition.

By Proposition 3, the unique SPE is e∗Ĝ = (2, 2).

(h) Consider (p(1, 0) − p(0, 0))v < c and 1−p(0,2)
2

v < c ≤ 1−p(0,1)
2

v. By the left-

hand side inequality of the latter relation, e∗G 6= (2, 2). Since there always exists

a pure strategy equilibrium in the game G, it must be that e∗G = (0, 0). By

Lemma 3, using the main condition and the subsidiary conditions listed in Table

1 and applying A4 we can conclude that e∗Ĝ = (0, 0) and e∗Ĝ = (2, 2). The right-

hand side inequality of the main condition implies that c < (1 − p(1, 2))v, or

p(1, 2)v − c < v − 2c; together with the left-hand side inequality of the second

subsidiary condition, this yields p(1, 2)v−c < v−2c < p(0, 2)v, thus e∗Ĝ 6= (2, 1), by

Lemma 9(iv). Since e∗G = (0, 0) is unique, by Lemma 9 it follows that e∗Ĝ 6= (1, 0)

and e∗Ĝ 6= (2, 0); and by Lemma 4(ii), e∗Ĝ 6= (1, 1).

(i) Finally, suppose that (p(1, 0)− p(0, 0))v < c and 1−p(0,1)
2

v < c. By A3, the latter

implies that 1−p(0,2)
2

v < c, i.e., e∗G 6= (2, 2). Therefore, shirking is the unique

one-shot equilibrium.

Note that because of the subsidiary condition 1−p(0,1)
2

v < c, Lemma 3 does

not apply. We establish that e∗Ĝ = (0, 0), i.e. (0, 0; 0, 0) is an SPE, as follows.

That following e1 = (0, 0), (0, 0) is an NE is clear. So consider the beginning of

Round 1. Suppose player 2 deviates to e21 = 1. The right-hand side inequality

of the main condition combined with 1−p(0,2)
2

v < c and A4 result in p(0, 2)v >

v − 2c > p(1, 2)v − c, i.e., c > 1−p(0,2)
2

v and c > (p(1, 2) − p(0, 2))v. Applying

A4 on these two conditions yields c > p(2,1)−p(0,1)
2

v and c > (p(1, 1)− p(0, 1))v, or

p(0, 1)v > p(2, 1)v− 2c and p(0, 1)v > p(1, 1)v− c; thus in the continuation game

following (0, 1) in the first round, e12 = 0 is player 1’s best response when player

2 chooses e22 = 0. Further, if player 1 chooses e12 = 0, player 2’s best response is

e22 = 0, by the left-hand side inequality of the main condition. Thus (0, 0) is an NE

in the said continuation game, resulting in the payoff u2(0, 1; 0, 0) = p(0, 1)v−c <
p(0, 0)v = u2(0, 0; 0, 0) (from condition (p(1, 0)−p(0, 0))v < c). If player 2 deviates

to e21 = 2, we know that e12 = 0 (since p(0, 2)v > v − 2c > p(1, 2)v − c, as

argued above); therefore, u2(0, 2; 0, 0) = p(0, 2)v − 2c < p(0, 0)v = u2(0, 0; 0, 0)

(from condition v − 2c < p(0, 2)v and A4). By symmetry, there is no profitable

deviation for player 1.

We claim that in the extensive form, e∗Ĝ 6= (2, 2). To see this, note that by
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Proposition 2, full cooperation in this case only arises through (1, 1; 1, 1). The

right-hand side inequality of the main condition, with A4 applied to it, guarantees

that (1, 1) is an NE following (1, 1). However, suppose that player 1 deviates to

e11 = 0. As we have shown above, in the continuation game following (0, 1) in

the first round, (0, 0) is an NE, thus player 1 receives u1(0, 1; 0, 0) = p(0, 1)v >

v − 2c = u1(1, 1; 1, 1) (since by hypothesis, 1−p(0,1)
2

v < c), a profitable deviation.

Since e∗G = (0, 0) is unique, by Lemma 9 it follows that e∗Ĝ 6= (1, 0) and e∗Ĝ 6=
(2, 0); and by Lemma 4(ii), e∗Ĝ 6= (1, 1).

By A4, the right-hand side inequality of main condition implies that p(1, 2)v−
c < v − 2c. Together with 1−p(0,2)

2
v < c (as shown above), we conclude that

p(1, 2)v − c < p(0, 2)v. Therefore, by Lemma 9(iv), e∗Ĝ 6= (2, 1).

3. Suppose that the main condition is now (p(2, 1)− p(1, 1))v ≤ c ≤ (1− p(1, 2))v. First,

consider the case where c also satisfies

c ≤ 1− p(0, 2)

2
v.

We analyze three subcases (configurations (j), (k), and (l)).

(j) Suppose that c ≤ 1−p(0,2)
2

v and c < (p(1, 0) − p(0, 0))v. The right-hand side

inequality of the main condition and c ≤ 1−p(0,2)
2

v imply that e∗G = (2, 2). Applying

A4 on c < (p(1, 0)−p(0, 0))v and combining it with the left-hand side of the main

condition yields (p(2, 1)− p(1, 1))v ≤ c < (p(1, 1)− p(0, 1))v, i.e, e∗G = (1, 1). The

condition c < (p(1, 0) − p(0, 0))v implies that e∗G 6= (0, 0). By Proposition 3, the

unique SPE is e∗Ĝ = (2, 2).

(k) Next, suppose that c ≤ 1−p(0,2)
2

v and (p(1, 0)− p(0, 0))v ≤ c ≤ (p(1, 1)− p(0, 1))v.

As in case (j) above we have e∗G = (2, 2), while the left-hand side inequality of the

main condition and c ≤ (p(1, 1)−p(0, 1))v imply that e∗G = (1, 1). Applying A4 on

the left-hand side inequality of the main condition yields p(2, 0)v−2c < p(1, 0)v−c;
this and the fact that (p(1, 0)−p(0, 0))v ≤ c result in p(2, 0)v−2c < p(1, 0)v−c ≤
p(0, 0)v, i.e., e∗G = (0, 0). By Proposition 3, the unique SPE is e∗Ĝ = (2, 2).

(l) Finally, suppose that c ≤ 1−p(0,2)
2

v and (p(1, 1) − p(0, 1))v < c. From the latter

condition, it follows that e∗G 6= (1, 1). As in case (j), we have e∗G = (2, 2). Applying

A4, the left-hand side inequality of the main condition and (p(1, 1)−p(0, 1))v < c

imply, respectively, that p(2, 0)v − 2c < p(1, 0)v − c and p(1, 0)v − c < p(0, 0)v,

i.e., e∗G = (0, 0). By Proposition 3, the unique SPE is e∗Ĝ = (2, 2).
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Now we consider the case where

1− p(0, 2)

2
v < c.

This implies that e∗G 6= (2, 2). Note that the right-hand side inequality of the

main condition can be rewritten as p(1, 2)v − c ≤ v − 2c, while the condition
1−p(0,2)

2
v < c can be rewritten as v − 2c < p(0, 2)v. Combining the two we obtain

p(1, 2)v− c < p(0, 2)v, i.e, (p(1, 2)− p(0, 2))v < c. Applying A4 on this condition

we obtain (p(1, 0) − p(0, 0))v < c, and applying A4 on the subsidiary condition
1−p(0,2)

2
v < c yields p(2,0)−p(0,0)

2
v < c. By Proposition 1, these two conditions imply

that e∗G = (0, 0). We now analyze three subcases (configurations (m), (n), (o)).

(m) Suppose that 1−p(0,2)
2

v < c ≤ 1−p(0,1)
2

v and c ≤ (p(1, 0) − p(0, 0))v. This set is

empty. To see why, note that by A4, the condition c ≤ (p(1, 0)−p(0, 0))v implies

that p(0, 2)v < p(1, 2)v − c. Together with the right-hand side inequality of the

main condition, it must be that p(0, 2)v < p(1, 2)v− c ≤ v− 2c, contradicting the

fact that 1−p(0,2)
2

v < c.

(n) Suppose 1−p(0,2)
2

v < c ≤ 1−p(0,1)
2

v and (p(1, 0)−p(0, 0))v < c ≤ (p(1, 1)−p(0, 1))v.

The left-hand side inequality of the main condition and c ≤ (p(1, 1) − p(0, 1))v

imply that e∗G = (1, 1). By Proposition 3, the unique SPE is e∗Ĝ = (1, 1).

(o) Suppose that 1−p(0,2)
2

v < c ≤ 1−p(0,1)
2

v and (p(1, 1) − p(0, 1))v < c. The latter

condition implies that e∗G 6= (1, 1). By Lemma 3 – using the main condition,

A4, and the subsidiary conditions – we can conclude that e∗Ĝ = (0, 0) and e∗Ĝ =

(2, 2). The right-hand side inequality of the main condition and the left-hand side

inequality of the first subsidiary condition together yield p(1, 2)v − c ≤ v − 2c <

p(0, 2)v, thus e∗Ĝ 6= (2, 1), by Lemma 9(iv). Since e∗G = (0, 0) is unique, by Lemma

9 it follows that e∗Ĝ 6= (1, 0) and e∗Ĝ 6= (2, 0); and by Lemma 4(ii), e∗Ĝ 6= (1, 1).

Now we consider the case where

1− p(0, 1)

2
v < c.

Since it follows by A3 that 1−p(0,2)
2

v < c, we can conclude as in the above subcases

that e∗G 6= (2, 2) and e∗G = (0, 0). Let us then consider two subcases.

(p) Suppose that 1−p(0,1)
2

v < c and c ≤ (p(1, 1) − p(0, 1))v. The latter condition and

the left-hand side inequality of the main condition imply that e∗G = (1, 1). By

Proposition 3, the unique SPE is e∗Ĝ = (1, 1).
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(q) Finally, suppose that 1−p(0,1)
2

v < c and (p(1, 1) − p(0, 1))v < c. Then by the

latter condition, e∗G 6= (1, 1). Hence e∗G = (0, 0), which is already guaranteed, is

unique. However, because of the condition 1−p(0,1)
2

v < c, we cannot use Lemma

3. Note that the subsidiary condition 1−p(0,1)
2

v < c implies that 1−p(0,2)
2

v < c;

combining with the right-hand side inequality of the main condition, we obtain

p(1, 2)v − c ≤ v − 2c < p(0, 2)v. Therefore, using the same argument as in

configuration (i), we can show that e∗Ĝ = (0, 0) and e∗Ĝ 6= (2, 2).

Since e∗G = (0, 0) is unique, by Lemma 9 it follows that e∗Ĝ 6= (1, 0) and e∗Ĝ 6=
(2, 0); and by Lemma 4(ii), e∗Ĝ 6= (1, 1).

From p(1, 2)v − c ≤ v − 2c < p(0, 2)v already established above, conclude that

p(1, 2)v − c < p(0, 2)v. Therefore, by Lemma 9(iv), e∗Ĝ 6= (2, 1).

4. Suppose that the main condition is now (1−p(1, 2))v < c. Then e∗G 6= (2, 2). Therefore,

the only possible equilibria are (1, 1) only, (0, 0) only, and the multiple equilibria of

(1, 1) and (0, 0). We consider the following subsidiary conditions.

(r) Suppose that c < (p(1, 0) − p(0, 0))v; thus e∗G 6= (0, 0). Since there always exists

a pure strategy equilibrium in the game G, it must be that e∗G = (1, 1). By

Proposition 3, the unique SPE is e∗Ĝ = (1, 1).

(s) Suppose now that (p(1, 0) − p(0, 0))v ≤ c ≤ (p(1, 1) − p(0, 1))v. The condition

c ≤ (p(1, 1) − p(0, 1))v and the main condition (where A4 is used) imply that

e∗G = (1, 1). Applying A4 on the main condition, we obtain p(1, 0)v−c > p(2, 0)v−
2c; combining this with the condition (p(1, 0) − p(0, 0))v ≤ c yields p(0, 0)v ≥
p(1, 0)v − c > p(2, 0)v − 2c; thus e∗G = (0, 0). By Proposition 3, the unique SPE

is e∗Ĝ = (1, 1).

Now we consider the case where

(p(1, 1)− p(0, 1))v < c ≤ (p(1, 2)− p(0, 2))v,

which is analyzed in three subcases (configurations (t), (u), and (v)). The left-

hand side inequality of the above condition implies that e∗G 6= (1, 1). Since a pure-

strategy NE must exist in G, it must be that the unique one-shot equilibrium is

e∗G = (0, 0).

Note that by Proposition 2, full cooperation in this case only arises through

(1, 1; 1, 1). However, the main condition implies that (e∗11(1, 1), e∗21(1, 1)) 6= (1, 1),

thus e∗Ĝ 6= (2, 2).
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Consider the profile (0, 0; 0, 0), and the continuation game following the first-

round deviation of player 2 (this argument applies to player 1 as well, by symme-

try) to e21 = 1. Applying A4 on the main condition yields (p(2, 1)−p(1, 1))v < c;

this and the subsidiary condition (p(1, 1) − p(0, 1))v < c together imply that

p(2, 1)v−2c < p(1, 1)v−c < p(0, 1)v, i.e., following e1 = (0, 1), e12 = 0 is the best

response of player 1 to e22 = 0. Moreover, applying A4 on the main condition and

then A2 yields (p(0, 2)−p(0, 1))v < c, i.e., following e1 = (0, 1), e22 = 0 is the best

response of player 2 to e12 = 0. Thus (e∗12(0, 1), e∗22(0, 1)) = (0, 0), and player 2’s

deviation results in the payoff u2(0, 1; 0, 0) = p(0, 1)v−c < p(0, 0)v = u2(0, 0; 0, 0)

(by applying A4 on condition (p(1, 1) − p(0, 1))v < c). Now consider player 2’s

deviation to e21 = 2. By the condition c ≤ (p(1, 2)− p(0, 2))v and the main con-

dition, player 1 can choose e12 = 0 (if c ≤ (p(1, 2)−p(0, 2))v holds as an equality)

or e12 = 1 (if it holds strictly) in the continuation game. If he chooses e12 = 0,

then player 2 receives the payoff u2(0, 2; 0, 0) = p(0, 2)v − 2c. Applying A4 on

the main condition and on the left-hand side inequality of the subsidiary condi-

tion yields, respectively, (p(2, 0) − p(1, 0))v < c and (p(1, 0) − p(0, 0))v < c, i.e.,

p(2, 0)v−2c < p(1, 0)v−c and p(1, 0)v−c < p(0, 0)v. Thus p(2, 0)v−2c < p(0, 0)v,

and u2(0, 2; 0, 0) = p(0, 2)v − 2c < p(0, 0)v = u2(0, 0; 0, 0), an unprofitable devi-

ation. On the other hand, suppose that following e1 = (0, 2), player 1 chooses

e12 = 1 such that player 2 receives u2(0, 2; 1, 0) = p(1, 2)v − 2c. Consider two

subcases:

(t) Suppose that (p(1, 1) − p(0, 1))v < c ≤ (p(1, 2) − p(0, 2))v and p(1,2)−p(0,0)
2

v < c.

Then u2(0, 2; 1, 0) = p(1, 2)v− 2c < p(0, 0)v = u2(0, 0; 0, 0). Therefore, there does

not exist a profitable deviation for player 2 (and by symmetry, for player 1), and

hence e∗Ĝ = (0, 0).

We claim that e∗Ĝ 6= (2, 1). By Lemma 1, the profile (0, 0; 2, 1) cannot be an

SPE. Applying A4 on the main condition yields (p(2, 1) − p(1, 1))v < c; by this

condition, (e∗12(1, 1), e∗22(1, 1)) = (0, 0). This implies that (2, 1; 0, 0) cannot be an

SPE : if player 1 deviates to e11 = 1, then he receives u1(1, 1; 0, 0) = p(1, 1)v− c >
p(2, 1)v − 2c = u1(2, 1; 0, 0) (by the condition (p(2, 1) − p(1, 1))v < c). Next

check that (2, 0; 0, 1) cannot be an SPE. Since e∗G = (0, 0), following e1 = (0, 0),

(0, 0) is an NE, which implies that player 1 can profitably deviate to e11 = 0:

u1(0, 0; 0, 0) = p(0, 0)v > p(2, 1)v− 2c = u1(2, 0; 0, 1), by the subsidiary condition
p(1,2)−p(0,0)

2
v < c. The profile (0, 1; 2, 0) cannot be an SPE either: following e1 =

(0, 1), if player 2 chooses e22 = 0 then e12 = 0 yields player 1 strictly higher payoff

than e12 = 2, by (p(2, 1) − p(1, 1))v < c and the left-hand side inequality of the
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first subsidiary condition. Also (1, 1; 1, 0) cannot be an SPE : following e1 = (1, 1),

if player 2 chooses e22 = 0 then player 1 is strictly better off choosing e12 = 0

than e12 = 1, by (p(2, 1) − p(1, 1))v < c. Finally, (1, 0; 1, 1) cannot be an SPE :

following e1 = (1, 0), player 1 would strictly prefer e12 = 0 over e12 = 1 if player

2 chooses e22 = 1, by the main condition and A4.

Since e∗G = (0, 0) is unique, by Lemma 9 it follows that e∗Ĝ 6= (1, 0) and e∗Ĝ 6=
(2, 0); and by Lemma 4(ii), e∗Ĝ 6= (1, 1).

(u) Suppose that (p(1, 1) − p(0, 1))v < c ≤ (p(1, 2) − p(0, 2))v and p(1,2)−p(0,0)
2

v = c.

Then u2(0, 2; 1, 0) = p(1, 2)v− 2c = p(0, 0)v = u2(0, 0; 0, 0). Therefore, there does

not exist a profitable deviation for player 2 (and by symmetry, for player 1), and

hence e∗Ĝ = (0, 0).

We claim that e∗Ĝ = (2, 1), through the strategy profile (2, 0; 0, 1). Player

1’s first-round deviation to e11 = 0 is not profitable: u1(0, 0; 0, 0) = p(0, 0)v =

p(2, 1)v− 2c = u1(2, 0; 0, 1), by p(1,2)−p(0,0)
2

v = c. Earlier we had shown that (0, 0)

is an NE following e1 = (1, 0). Therefore, a first-round deviation by player 1 to

e11 = 1 is also not profitable: u1(1, 0; 0, 0) = p(1, 0)v − c < p(0, 0)v = p(2, 1)v −
2c = u1(2, 0; 0, 1), where the strict inequality follows from applying A4 on the left-

hand side inequality of the first subsidiary condition. Now consider first-round de-

viations by player 2. If he deviates to e21 = 1, by the main condition we know that

e22 = 0, which does not alter his payoff: u2(2, 1; 0, 0) = p(2, 1)v−c = u2(2, 0; 0, 1).

If, on the other hand, he deviates to e21 = 2, then by the main condition he is

worse off: u2(2, 2; 0, 0) = v − 2c < p(2, 1)v − c = u2(2, 0; 0, 1).

(v) Suppose that (p(1, 1) − p(0, 1))v < c ≤ (p(1, 2) − p(0, 2))v and c < p(1,2)−p(0,0)
2

v.

Then u2(0, 2; 1, 0) = p(1, 2)v − 2c > p(0, 0)v = u2(0, 0; 0, 0), i.e., player 2 can

profitably deviate to e21 = 2, so e∗Ĝ 6= (0, 0). (Following e1 = (0, 2), it is optimal

for player 1 to choose e12 = 1.)

We claim that e∗Ĝ = (2, 1), with the profile (0, 2; 1, 0). Note that if player 2

deviates to e21 = 1, then (e∗12(0, 1), e∗22(0, 1)) = (0, 0), as established earlier, and he

receives u2(0, 1; 0, 0) = p(0, 1)v−c. This implies that the deviation is unprofitable,

since p(0, 1)v − c < p(0, 0)v (this follows from applying A4 on the subsidiary

condition (p(1, 1) − p(0, 1))v < c), and p(0, 0)v < p(1, 2)v − 2c = u2(0, 2; 1, 0)

(by the second subsidiary condition). If he instead deviates to e21 = 0, then

(e∗11(0, 0), e∗21(0, 0)) = (0, 0), and he receives u2(0, 0; 0, 0) = p(0, 0)v < p(1, 2)v −
2c = u2(0, 2; 1, 0). Therefore, there exists no profitable deviation for player 2. Now

consider player 1. He can deviate to e11 = 1, following which he will choose e12 = 0
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(by the main condition), resulting in the payoff u1(1, 2; 0, 0) = p(1, 2)v − c =

u1(0, 2; 1, 0). He can also deviate to e11 = 2 and receive u1(2, 2; 0, 0) = v − 2c <

p(1, 2)v − c = u1(0, 2; 1, 0) (by the main condition). Therefore, there also does

not exist any profitable deviation for player 1.

(w) Finally, suppose that (p(1, 2)− p(0, 2))v < c. By A4, this implies that (p(1, 1)−
p(0, 1))v < c, or that e∗G 6= (1, 1). Since a pure-strategy NE must exist in G, it

must be that the unique one-shot equilibrium is e∗G = (0, 0).

Consider the profile (0, 0; 0, 0). We need to consider only first-round deviations;

there will be no deviation incentive in the second round. Applying A4 on (p(1, 2)−
p(0, 2))v < c and on the main condition yields, respectively, (p(1, 1)−p(0, 1))v < c

and (p(2, 1)− p(1, 1))v < c, implying that p(2, 1)v − 2c < p(1, 1)v − c < p(0, 1)v,

and applying A4 on the main condition and then A2 yields (p(0, 2)−p(0, 1))v < c.

Therefore, following e1 = (0, 1), (0, 0) is an NE, thus the deviation by player 2

to e21 = 1 is unprofitable: u2(0, 1; 0, 0) = p(0, 1)v − c < p(0, 0)v = u2(0, 0; 0, 0)

(by applying A4 on the subsidiary condition (p(1, 2)− p(0, 2))v < c). Player 2’s

deviation to e21 = 2 is likewise unprofitable since in the continuation game player

1 chooses e12 = 0 (by the main and the subsidiary conditions), and u2(0, 2; 0, 0) =

p(0, 2)v − 2c < p(0, 0)v (by applying A4 both on the main condition and on the

subsidiary condition). By symmetry, there is no profitable deviation for player 1.

Therefore, e∗Ĝ = (0, 0).

Since e∗G = (0, 0) is unique, by Proposition 2 the only way (2, 2) can be sup-

ported in an SPE is through the profile (1, 1; 1, 1). But the main condition implies

that (e∗11(1, 1), e∗21(1, 1)) 6= (1, 1), so e∗Ĝ 6= (2, 2).

Also, uniqueness of e∗G = (0, 0) implies, by Lemma 9, that e∗Ĝ 6= (1, 0) and

e∗Ĝ 6= (2, 0); and by Lemma 4(ii), e∗Ĝ 6= (1, 1).

Finally, rewriting the subsidiary condition yields p(1, 2)v− c < p(0, 2)v. There-

fore, by Lemma 9(iv), e∗Ĝ 6= (2, 1). �

Existence of (possibly asymmetric) pure strategy NE in GS. The

one-shot game, GS , has at least one pure-strategy Nash equilibrium.

Proof. Suppose that e∗GS 6= (0, 0). Then (refer to Fig. 4),

ρ(0, 0)v < max{ρ(1, 0)v − c, ρ(2, 0)v − 2c}. (32)
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If max{ρ(1, 0)v − c, ρ(2, 0)v − 2c} = ρ(1, 0)v − c, then

ρ(1, 0)v − c ≥ ρ(2, 0)v − 2c, i.e., c ≥ (ρ(2, 0)− ρ(1, 0))v (33)

and ρ(1, 0)v − c > ρ(0, 0)v, i.e., (ρ(1, 0)− ρ(0, 0))v > c, (34)

from which we can infer, using A4′ in (33), that

c > (ρ(2, 1)− ρ(1, 1))v. (35)

Now if

(ρ(1, 0)− ρ(0, 0))v >︸︷︷︸
by A4′

(ρ(1, 1)− ρ(0, 1))v ≥︸︷︷︸
by hypothesis

c,

then this and (35) imply that

(ρ(1, 1)− ρ(0, 1))v ≥ c > (ρ(2, 1)− ρ(1, 1))v,

i.e, ρ(1, 1)v − c ≥ ρ(0, 1)v and ρ(1, 1)v − c > ρ(2, 1)v − 2c, thus e∗GS = (1, 1). On the other

hand, if alternative to our initial hypothesis (see above)

(ρ(1, 0)− ρ(0, 0))v > c > (ρ(1, 1)− ρ(0, 1))v,

then using the right-hand side inequality, (35) and A2 yield

ρ(1, 0)v > ρ(1, 1)v − c > ρ(1, 2)v − 2c.

This, as well as (33) and (34), imply that e∗GS = (1, 0).

We assumed above that e∗GS 6= (0, 0) and max{ρ(1, 0)v − c, ρ(2, 0)v − 2c} = ρ(1, 0)v − c.
If, on the other hand, e∗GS 6= (0, 0) and ρ(1, 0)v − c < ρ(2, 0)v − 2c, then it must be that

(ρ(2, 0)− ρ(1, 0))v > c (36)

and ρ(2, 0)v − 2c > ρ(0, 0)v, i.e., [(ρ(2, 0)− ρ(0, 0))v]/2 > c. (37)

For this last scenario (i.e., (36) and (37)), consider further the following possibilities.

[1] Suppose that

(1− ρ(1, 2))v ≥ c (38)

and [(1− ρ(0, 2))v]/2 ≥ c. (39)
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(Note that (38) and (39) are not inconsistent with (36) and (37)). Then v − 2c ≥
ρ(1, 2)v − c and v − 2c ≥ ρ(0, 2)v, i.e., e∗GS = (2, 2).

[2] Next, suppose (38) holds but (39) does not so that

c > [(1− ρ(0, 2))v]/2. (40)

Conditions (38) and (40) imply, using A2,

ρ(2, 0)v > v − 2c ≥ ρ(2, 1)v − c.

This, together with (36) and (37), imply that e∗GS = (2, 0).

[3] Another possibility is that (39) holds, i.e., v − 2c ≥ ρ(0, 2)v, but (38) does not. Then,

ρ(1, 2)v − c > v − 2c ≥ ρ(0, 2)v. (41)

Condition (41) has the following implications:

[(1− ρ(0, 2))v]/2 > c, i.e., [(ρ(2, 1)− ρ(0, 1))v]/2 > c (by A4′) (42)

(ρ(1, 2)− ρ(0, 2))v > c, i.e., (ρ(1, 1)− ρ(0, 1))v > c (by A4′) (43)

and c > (1− ρ(1, 2))v. (44)

Consider condition (44). If c > (ρ(2, 1)− ρ(1, 1))v > (1− ρ(1, 2))v, then this, together

with (43), imply that (ρ(1, 1) − ρ(0, 1))v > c > (ρ(2, 1) − ρ(1, 1))v, i.e., e∗GS = (1, 1).

On the other hand, suppose that (ρ(2, 1)− ρ(1, 1))v ≥ c > (1− ρ(1, 2))v. Then using

the left-hand side inequality and (42), and applying A2 for both yield, respectively,

ρ(1, 2)v − 2c ≥ ρ(1, 1)v − c

and ρ(1, 2)v − 2c > ρ(1, 0)v.

These and (41) imply that e∗GS = (1, 2).

[4] Next suppose that both (38) and (39) fail to hold:

c > (1− ρ(1, 2))v, i.e., ρ(1, 2)v − c > v − 2c (45)

and c > [(1− ρ(0, 2))v]/2, i.e., ρ(0, 2)v > v − 2c. (46)
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If ρ(0, 2)v > ρ(1, 2)v−c, then ρ(0, 2)v > ρ(1, 2)v−c > v−2c, or ρ(2, 0)v > ρ(2, 1)v−c >
v − 2c (by A2) and this, along with conditions (36) and (37), imply that e∗GS = (2, 0).

On the other hand, if ρ(1, 2)v − c ≥ ρ(0, 2)v, then

ρ(1, 2)v − c ≥ ρ(0, 2)v > v − 2c, (47)

and (ρ(1, 2)− ρ(0, 2))v > c. This last inequality implies, applying A4′, that

(ρ(1, 1)− ρ(0, 1))v > c. (48)

Recall now that condition (45) holds. If

(ρ(2, 1)− ρ(1, 1))v ≥︸︷︷︸
by hypothesis

c >︸︷︷︸
by (45)

(1− ρ(1, 2))v,

then the left-hand side inequality implies ρ(2, 1)v − 2c ≥ ρ(1, 1)v − c, and using A2

and (48) we have ρ(1, 2)v − 2c ≥ ρ(1, 1)v − c > ρ(1, 0)v. This condition, combined

with (47), imply that e∗GS = (1, 2). However, if alternative to our initial hypothesis

(see above)

c > (ρ(2, 1)− ρ(1, 1))v >︸︷︷︸
by A4′

(1− ρ(1, 2))v

holds, then ρ(1, 1)v− c > ρ(2, 1)v− 2c. This, along with (48), imply that e∗GS = (1, 1).

Finally, if our initial position fails then e∗GS = (0, 0), completing the proof that there is

at least one pure strategy NE in the game GS . �

Proof of Lemma 8. Suppose, contrary to the claim, e∗GS = (0, 0) and e∗GS = (1, 1). Then

(refer to Fig. 4) it must be that

c ≥ (ρ(1, 0)− ρ(0, 0))v (49)

and c ≤ (ρ(1, 1)− ρ(0, 1))v. (50)

However, by A4′, (49) implies that c > (ρ(1, 1)− ρ(0, 1))v, contradicting (50).

Next, suppose that e∗GS = (0, 0) and e∗GS = (2, 2). This requires that

c ≥ [(ρ(2, 0)− ρ(0, 0))v]/2 (51)

and c ≤ [(1− ρ(0, 2))v]/2. (52)
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Condition (51) contradicts (52), since by A4′, (51) implies that c > [(1− ρ(0, 2))v]/2.

It is also not possible for e∗GS = (1, 1) and e∗GS = (2, 2) to arise simultaneously. This

would require

(ρ(2, 1)− ρ(1, 1))v ≤ c (53)

and c ≤ (1− ρ(1, 2))v, (54)

but using A4′ in (53) yields 1− ρ(1, 2))v < c, which contradicts (54). �

Proof of Proposition 5. Let ηi denote the aggregate efforts of player i in GS , the game

under non-transparency. By definition, e∗GS = (η∗1, η
∗
2) satisfies

ρ(η∗i , η
∗
j )v − cη∗i ≥ ρ(ηi, η

∗
j )v − cηi, ∀ηi, ∀i. (55)

Denote the first-round efforts (e11, e21) in the game with transparency by e1, and recall

that we defined (in section 3) incremental gains from second-round actions (ei2, ej2) given

history e1, as

ûi2(ei2, ej2|e1) = ui(ei1 + ei2, ej1 + ej2)− ûi1(ei1, ej1).

We now claim that for any NE (symmetric or asymmetric) in the non-transparency game,

there is a strategy profile in the extensive-form game (under transparency) with the same

aggregate efforts that will be an equilibrium in the two-round game. Specifically, for any

e∗GS = (η∗1, η
∗
2), the following strategies form an SPE in the extensive form:

1. In the first round, e∗i1 = η∗i for each player i, and

2. In the second round, for i = 1, 2,

e∗i2 =


0 if e1 = (η̃i, η̃j) and η̃i ≥ η∗i ;

η∗i − η̃i if e1 = (η̃i, η̃j), η̃i < η∗i , and η̃j ≤ η∗j ;

e∗∗i2 if e1 = (η̃i, η̃j), η̃i < η∗i , and η̃j > η∗j ,

(56)

where e∗∗i2 = arg maxei2∈Êi2
ûi2(ei2, 0|(η̃i, η̃j)), Êi2 being player i’s set of admissible

second-round effort choices, and j 6= i.

Actually, we will not fully verify the Nash equilibrium property of all continuation strate-

gies – both on- and off-the-equilibrium path – specified in (56). (The mutual best-response

property of the two players’ continuation strategies pretty much follows by construction.) All
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we need is to confirm that for the specific strategies (η∗1, η
∗
2; 0, 0), the continuation strategies

will be an NE and there is no profitable deviation in Round 1.

So let us first establish that the second-round strategies (0, 0) following e1 = (η∗i , η
∗
j ) form

an NE in the continuation game. Consider player i’s second-round strategies. In the second

round player j would choose, as specified by (56), e∗j2 = 0, to which we claim that player i’s

best response is also to set e∗i2 = 0. To see this, note that i’s incremental gains in the second

round from choosing ei2 = 0 is

ûi2(0, 0|(η∗i , η∗j )) = [ρ(η∗i + 0, η∗j + 0)− ρ(η∗i , η
∗
j )]v − c× 0,

whereas choosing any ei2 > 0 yields

ûi2(ei2, 0|(η∗i , η∗j )) = [ρ(η∗i + ei2, η
∗
j + 0)− ρ(η∗i , η

∗
j )]v − cei2.

Thus, ûi2(0, 0|(η∗i , η∗j ))− ûi2(ei2, 0|(η∗i , η∗j )) = [ρ(η∗i , η
∗
j )− ρ(η∗i + ei2, η

∗
j )]v − c[η∗i − (η∗i + ei2)]

≥︸︷︷︸
by (55)

0.

By similar reasoning, ûj2(0, 0|(η∗i , η∗j )) ≥ ûj2(0, ej2|(η∗i , η∗j )). Therefore, (0, 0) forms an NE

in the continuation game following e1 = (η∗i , η
∗
j ).

Let us now return to the first round and consider the overall strategies (η∗i , η
∗
j ; 0, 0).

This profile yields a payoff to player i of ui(η
∗
i , η
∗
j ; 0, 0) = ρ(η∗i , η

∗
j )v − cη∗i . It is clear that

there does not exist any profitable first-round deviation for any player: if i lowers his first-

round contribution to η̃i < η∗i , he receives ui(η̃i, η
∗
j ; η∗i − η̃i, 0) = ρ(η∗i , η

∗
j )v − cη∗i ,29 which

is equal to his payoff from not deviating, and if he increases it to η̃i > η∗i , he receives

ui(η̃i, η
∗
j ; 0, 0) = ρ(η̃i, η

∗
j )v − cη̃i ≤ ρ(η∗i , η

∗
j )v − cη∗i (by condition (55));30 similar argument is

applicable to player j. Therefore, e∗
ĜS

= (η∗1, η
∗
2; 0, 0). �

Proof of Proposition 6. Suppose not so that one of the players, say player 1, would benefit

by deviating from the claimed equilibrium strategy under non-transparency. So there must

be some η1 6= η∗1 such that

29It is easy to see why player i restoring his total contribution back to η∗i and player j contributing zero
should constitute an NE in the continuation game following e1 = (η̃i, η

∗
j ).

30Again, it is easy to see why (0, 0) is an NE in the continuation game following e1 = (η̃i, η
∗
j ), where

η̃i > η∗i .

58



u1(η1, η
∗
2) > u1(η

∗
1, η
∗
2)

i.e., ρ(η1, η
∗
2)v − cη1 > ρ(η∗1, η

∗
2)v − cη∗1. (57)

Claim 1. η1 ≥ e∗11 is not possible.

To see why, let η1 = e∗11 + e12 where e12 ∈ {0, 1, 2} with the restriction that e12 ≤ 2− e∗11.

Now rewrite (57) as:

[ρ(e∗11 + e12, e
∗
21 + e∗22)− ρ(e∗11, e

∗
21)]v − ce12 > [ρ(e∗11 + e∗12, e

∗
21 + e∗22)− ρ(e∗11, e

∗
21)]v − ce∗12,

i.e., û12(e12, e
∗
22|(e∗11, e

∗
21)) > û12(e

∗
12, e

∗
22|(e∗11, e

∗
21)),

but this contradicts the fact that (e∗11, e
∗
21; e

∗
12(e

∗
11, e

∗
21), e

∗
22(e

∗
11, e

∗
21)) is an SPE in the extensive-

form game under transparency. ||

Next consider the possibility of profitable deviation in the one-shot game (under non-

transparency) with η1 < e∗11.

First note that e∗11 ≥ 1, for deviation to a lower effort level to be feasible. Also observe

that for the SPE, e∗
ĜS

, it must be that e∗22 ≥ 1, because otherwise profitable deviation to η1

in the one-shot game is not consistent with the equilibrium e∗
ĜS

. (We write the strategies

eĜS = (e∗11, e
∗
21; e

∗
12(e

∗
11, e

∗
21), e

∗
22(e

∗
11, e

∗
21)) as e∗

ĜS
.)

Since (e∗11, e
∗
21; e

∗
12(e

∗
11, e

∗
21), e

∗
22(e

∗
11, e

∗
21)) is an SPE, the following two best-response con-

ditions will be satisfied:

[1] (Optimality of Round 2 decisions) In the second round player 1 will not deviate

from his equilibrium effort, that is,

[ρ(e∗11 + e∗12, e
∗
21 + e∗22)− ρ(e∗11, e

∗
21)]v − ce∗12

≥ [ρ(e∗11 + e12, e
∗
21 + e∗22)− ρ(e∗11, e

∗
21)]v − ce12, (58)

for any 0 ≤ e12 ≤ 2− e∗11. A similar condition can be stated for player 2.

[2] (Optimality of Round 1 decisions) It must be that player 1 will not find deviation

by lowering his first-round effort profitable. That is, for any e11 < e∗11,

ρ(e∗11 + e∗12, e
∗
21 + e∗22)v − c[e∗11 + e∗12]

≥ ρ(e11 + e∗12(e11, e
∗
21), e

∗
21 + e∗22(e11, e

∗
21))v − c[e11 + e∗12(e11, e

∗
21)], (59)
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for all Nash equilibria, (e∗12(e11, e
∗
21), e

∗
22(e11, e

∗
21)), in the continuation game following

e1 = (e11, e
∗
21). Again, a similar condition can be written for player 2.

Following on the optimality of first-round decisions, we further claim:

The best deviation payoff for player 1 when he lowers his first-round effort e11 below e∗11

is same as his original SPE payoff.

We show this result by establishing the following steps.

First, let player 1, upon deviation in Round 1, increase his second-round effort by ∆ =

e∗11 − e11 > 0 to e∗12 + ∆, and restore his total efforts to e11 + e∗12 + ∆ = e∗11 + e∗12.

Second, with player 1’s total efforts equalling η∗1, player 2’s best response in Round 2

continues to be e∗22; this follows from eĜS being SPE (i.e., by writing a condition for player

2 similar to (58)).

Third, with total efforts by player 2 over the two rounds equalling η∗2 (shown in the second

step), below we reconfirm that player 1’s best response in Round 2 (after Round 1 deviation

to e11) will indeed be to choose e∗12 + ∆. To see this, recall (58) which can be written as:

[ρ(η∗1, η
∗
2)− ρ(e11, e

∗
21)]v − ce∗12

≥ [ρ(e∗11 + e12, η
∗
2)− ρ(e11, e

∗
21)]v − ce12, for any 0 ≤ e12 ≤ 2− e∗11

i.e., [ρ(η∗1, η
∗
2)− ρ(e11, e

∗
21)]v − c[η∗1 − e11] + c[η∗1 − e11 − e∗12]

≥ [ρ(e11 + ẽ12, η
∗
2)− ρ(e11, e

∗
21)]v − c[e11 + ẽ12 − e∗11], for e11 + ẽ12 = e∗11 + e12 ≤ 2

i.e., [ρ(η∗1, η
∗
2)− ρ(e11, e

∗
21)]v − c[η∗1 − e11]

≥ [ρ(e11 + ẽ12, η
∗
2)− ρ(e11, e

∗
21)]v − cẽ12

+{−c[e11 − e∗11]− c[η∗1 − e11 − e∗12]}, for 0 ≤ ẽ12 ≤ 2− e11

i.e., [ρ(η∗1, η
∗
2)− ρ(e11, e

∗
21)]v − c[η∗1 − e11]

≥ [ρ(e11 + ẽ12, η
∗
2)− ρ(e11, e

∗
21)]v − cẽ12, for 0 ≤ ẽ12 ≤ 2− e11. (60)

(The last inequality is the optimality of Round 2 decision by player 2 after cutting back on

Round 1 effort.)

The second and third steps, together, establish that player 1 choosing e∗12 + ∆ and player

2 choosing e∗22 form an NE in the continuation game following the deviation by player 1 in

Round 1.

Now, by (60),

ρ(η∗1, η
∗
2)v − c[η∗1 − e11] ≥ ρ(e11, η

∗
2)v

i.e., ρ(η∗1, η
∗
2)v − cη∗1 ≥ ρ(e11, η

∗
2)v − ce11, for any e11 < e∗11,

60



contradicting (57).

We have thus shown that in the one-shot game under non-transparency, if player 2 chooses

η∗2 then deviation by player 1 (as in (57)) is not possible. Similarly, if player 1 chooses η∗1,

deviation by player 2 is not possible. Thus, (η∗1, η
∗
2) is an NE under non-transparency. �
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