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ABSTRACT. We look at imperfectly competitive markets where some con-
sumers might be budget-constrained. We find that the equilibrium
price under budget constrained demand (say, pB ) is often higher than
the equilibrium price under standard demand (say, pA ). The relation-
ship between pB and pA depends on the elasticity of the standard de-
mand (at pA ), technology, and market structure. Lack of competition
and inefficient technology make pB > pA more likely.
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1. INTRODUCTION

How does the equilibrium price change with the introduction of budget-constrained
consumers? Our results indicate that the price often increases, especially when the
markets lack competition and the production technology is inefficient. This conclu-
sion is remarkably robust: it holds for fairly general (i) demand functions, (ii) budget
distribution, and (iii) market structure (with and without free entry). Our finding
suggests that, contrary to what one might expect, prices can be higher in poor re-
gions where consumers have limited purchasing power. Since the poor have less
purchasing power, they demand less. As the aggregate demand shifts inward, the
equilibrium price is expected to be lower as well. This intuitive argument implicitly
assume perfect competition and it does not necessarily go through when markets are
imperfectly competitive.

Key to pricing under imperfect competition is demand elasticity. Introducing budget-
constrained consumers can make the demand less elastic and lead to higher equilib-
rium price. For example, in a monopoly, we find that the equilibrium price is al-
ways higher under budget-constrained demand. First, we characterize the necessary
and sufficient condition for equilibrium price to be higher in the presence of budget
constrained consumers for arbitrary but exogenous market structure. Subsequently,
we also analyze pricing in a free entry environment where the market structure is
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endogenously determined. While the underlying mechanisms are somewhat differ-
ent, in both cases,—exogenous and endogenous market structure—lack of competi-
tion generates higher equilibrium price under budget constrained demand.

Baldenius and Rachelstein [6] have shown that a parallel shift in inverse demand
lowers price for all log-concave inverse demand function but raises it for constant
elasticity demand function. Effect of parallel demand shifts in context of monop-
oly price discrimination is also discussed in Cowan [10]. For demand shifts under
oligopoly, see Dixit [13], Quirmbach [19], and Hamilton [15]. While insightful, the
demand shifts in these papers are often well behaved and captured by a change in
the demand parameter. Furthermore, budget distribution has little role to play.

Demand shift in our framework is induced by a change in budget distribution and
is rarely well-behaved. The shift does not necessarily preserve curvature or even log-
concavity (see section 2). Furthermore, rather than a change in demand parameter,
the demand shift in our framework is better viewed as resulting from a change in
environment: from one, where no consumer is budget constrained to another, where
some consumers are budget constrained.

Demand shifts inward due to exogenous reduction in budget m to the extent that
x(p)—amount of a good x that unconstrained consumers demand at price p—becomes
unaffordable for some consumers (i.e., px(p) > m). Consumers who cannot afford x(p)

at price p are referred to as budget constrained consumers (at p). As we illustrate in
section 2, a consumer might be budget constrained for some prices but not for others.
Some consumers might always be budget constrained and yet some others might
never be budget constrained in the relevant range of prices. Accordingly, the set of
budget constrained consumers and the magnitude of demand shift vary endogenously
with p.

Let DA(p) and DB(p) respectively denote the standard demand and the budget-
constrained demand respectively. While the relationship between DA(p) and DB(p)

can be quite arbitrary, the relationship between the elasticities of DA(p) and DB(p)

is neat (Proposition 1):

• At any given price p, if the standard demand function DA(p) is elastic, the
budget-constrained demandDB(p) is elastic as well but less elastic thanDA(p).
On the other hand if DA(p) is inelastic, then DB(p) is inelastic, but it is less
inelastic than DA(p).

The elasticity relationship covers some distance towards the comparison of equilib-
rium prices under DA(p) and DB(p). However, it does not go far enough. Translating
elasticity ranking to equilibrium price ranking implicitly relies on the condition that
a firm’s marginal revenue function is decreasing in its output—a condition that holds
for all logconcave demand functions. For fairly standard budget distribution and
linear demand, we find that the induced budget-constrained demand DB(p) is not
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logconcave since the demand from budget-constrained consumers, i.e. x = m
p , is not

logconcave. This in turn suggests that equilibrium price under DB(p) is not necessar-
ily unique. Let pi (i = A,B) denote the equilibrium price in economy i. In principle,
multiple pB can generate ambiguity in price ranking as one pB might be higher than
pA while another pB might be lower than pA. Such ambiguity in price ranking does
not arise in our framework as Propositions 2 and 3 establish that exactly one of the
following relationships holds: (i) all pB are greater than pA, (ii) all pB are less than
pA, and (iii) pB = pA. Which one among (i)—(iii) holds and when?

• Equilibrium price is higher (lower) under budget-constrained demand, i.e.,
pB > pA holds, if and only if the standard demand is elastic (inelastic) at pA
(Proposition 4).
• Lack of competition and inefficient technology makes it more likely that pB >

pA. In particular, pB > pA always holds in a monopoly (Proposition 5).

An attractive feature of the if and only if condition is that it does not involve prop-
erties of DB(p) or even budget distribution. As noted earlier, DB(p) might not be
well-behaved. The if and only if condition says that it is not necessary to know the
properties of DB(p).

We endogenize the market structure by introducing free entry (of firms) in section
8 and revisit the price comparison. As with an exogenous market structure, we find
that (i) pB > pA holds if the elasticity of DA(p) at pA is greater than a threshold value
and (ii) lack of competition—modeled as high entry cost—and high unit cost make
pB > pA more likely. In contrast to the exogenous market structure, however, the
threshold (mentioned in (i)) is strictly lower than unity. The threshold is 1

2 if the
budget distribution is uniform, irrespective of the demand function considered. For
suitably concave budget distribution, the threshold is arbitrarily close to zero.

An important outcome of the analysis based on endogenous market structure is
that pB > pA could hold even under inelastic demand. Thus budget-constrained
consumers can end up paying more for necessities which have relatively inelastic
demand. Recent empirical works suggest that the poor often pay more for food and
other necessities (Li [17], Attanasio [4]). Introducing variety-specific fixed costs in
a monopolistic competition model with CES preferences, Li [17] demonstrates that
the price index for a poor individual’s consumption basket might be higher since she
cannot buy as many varieties as the rich consumers. In the context of homogenous
products, one possible explanation is that the poor cannot avail of the bulk discounts
that are offered for purchases beyond a certain threshold level (Attanasio [4]). Conse-
quently they pay a higher price per unit. We show that even in the canonical models
of imperfect competition (e.g., monopoly, oligopoly) with linear pricing, the possibility
of higher prices in poor regions can arise once we introduce the notion of poor/budget-
constrained consumers in a natural way.
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In the concluding section we discuss how DA(p) and DB(p) can be interpreted as
demand for two different regions and also how the two scenarios, fixed number of
firms and free entry, can respectively be interpreted as trade and autarky. Under
these interpretations we argue that trade liberalization makes pB > pA less likely.
The concluding section also discusses price discrimination and non-linear pricing.

2. AN ILLUSTRATIVE EXAMPLE

To illustrate the implications of our results, we present a simple example with
quadratic utility function and uniform budget distribution. Consider economy A with
unit mass of consumers with identical preferences over x and y:

V (x, y) = x− x2

2
+ y.

The price of x and y are p and 1 respectively. Consumers differ in the overall budget
(m) that can be spent on these two goods. Budget (m) is uniformly distributed in [1, 2].
Each consumer demands x = 1 − p irrespective of m. Since there is a unit mass of
consumers

DA(p) = 1− p,

where DA(p) denotes aggregate demand of x. As p(1 − p) ≤ 1
4 and minimum m is 1,

no consumer is budget-constrained in economy A.
Suppose there are n identical firms producing good x at a constant marginal cost

c. Assuming Cournot competition, it is straightforward to show that the equilibrium
price and output in the economy are, respectively:

(1) pA =
1 + nc

n+ 1
, DA(pA) =

n(1− c)
n+ 1

.

Now consider economy B which is identical to economy A in all respects but budget.
Budget (m) in economy B is distributed uniformly on [0, 1]. We say that a consumer
m is budget-constrained at p if she could not afford x = (1 − p) or equivalently if
p(1− p) > m. Observe that a consumer with

• m ≥ 1
4 is never budget-constrained for any price (since the maximum value of

px for p ∈ [0, 1] is 1
4 );

• m = 0 is budget constrained for all p ∈ (0, 1);
• m = 3

16 is budget-constrained only for p ∈ (1
4 ,

3
4) but not for p ∈ [0, 1

4 ] or for
p ∈ [3

4 , 1].

A budget-constrained consumer with m < px(p) buys m
p , while others with m >

px(p) buy 1 − p. Summing up the demand for all consumers gives the aggregate
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demand for the budget-constrained economy:

DB(p) =

1∫
p(1−p)

(1− p)dm+

p(1−p)∫
0

m

p
dm =

1

2
(2− 3p+ 2p2 − p3).

Observe that DB(p) − DA(p) or DB(p)
DA(p) are not constant. Thus, as Figure 1 shows,

the inward demand shift in this simple example is neither parallel nor proportional.
The shift does not preserve curvature either, as D′′B(p)(= 2−3p) is strictly positive for
p < 2

3 and strictly negative for p > 2
3 .

(Figure 1 to be inserted here)

Fortunately, this particular DB(p) is logconcave, which guarantees unique Cournot
equilibrium. In general, DB(p) is not logconcave since the demand from budget-
constrained consumers, i.e. x = m

p , is not logconcave.1 Also, since DB(p) is a third-
order polynomial even for quadratic utility and uniform distribution of budget, com-
puting equilibrium pB seems complicated in general, let alone the comparison be-
tween pA and pB.

The following condition, formally established in Proposition 4, suggests that com-
puting pB and/or analyzing the properties of DB(p) are not necessary for comparing
pA and pB:

pB > (=, <)pA ⇔ εA(pA) > (=, <)1,

where εA(pA) ≡ −pAD
′
A(pA)

DA(pA) denotes the elasticity of DA(p) at equilibrium price pA. For
the example considered here,

(2) pB > pA ⇔ εA(pA) > 1⇔ pA
1− pA

> 1⇔ c+
1

2n
>

1

2
.

Observation 1. Equilibrium price is higher under budget-constrained demand if the
number of firms (n) is small and/or unit cost c is high. In particular, if the market
structure is a monopoly (n = 1), pB > pA holds for all c > 0. Similarly, if c > 1

2 ,
pB > pA holds irrespective of the market structure.

In section 8 we endogenize the number of firms by allowing entry. Let k denote the
entry cost for each firm. Setting (pA−c)DA(pA)

n − k = 0 and solving for n gives the free
entry number of firms: nA = 1−c−

√
k√

k
. Substituting n = nA in (1) gives

(3) pA = c+
√
k.

1That x = m
p

is not logconcave follows from noting that
d2lnm

p

dp2
= 1

p2
> 0. Consider the quadratic utility

function and F (m) = mα. For all α < 1 we find that there always exists positive prices such that
d2lnDB(p)

dp2
< 0. Details are available on request.
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For quadratic utility function and uniform distribution of m in [0, 1] we find that

(4) pB > pA ⇔ εA(pA) >
1

2
⇔ pA

1− pA
>

1

2
⇔ c+

√
k >

1

3

Observation 2. The key implication of (4) is qualitatively the same as that of (2).
pB > pA holds if εA(pA) is greater than a threshold and this condition is satisfied
when unit cost c is high and/or competition is low. Since n is endogenous in this
formulation, low competition is captured by high entry cost k. A new but important
feature under free entry is that the threshold of εA(pA) below which pB > pA holds is
strictly lower than unity. Thus pB > pA can hold even when the demand is inelastic.

3. PRELIMINARIES

Consider an economy with two sectors: a competitive sector producing good y and
an oligopolistic sector with n(≥ 1) firms producing a homogenous good x at a constant
marginal cost c > 0. There is a unit mass of consumers with identical preferences. A
consumer chooses x and y to maximize her utility:

V (x, y) ≡ U(x) + y,

subject to the budget constraint
px+ y ≤ m,

where y’s price is 1, p denotes the price of x and m denotes the consumer’s budget (i.e.,
spending limit) on x and y. Budget m is distributed according to a strictly increasing,
twice differentiable cumulative distribution function F (m) over an interval [m,m].
Furthermore F (m) = 0 and F (m) = 1.

Assume that (i) U(x) is at least thrice continuously differentiable, (ii) U ′(0) ≡ p̄ <

∞ and furthermore, (iii) there exists a X > 0 (but not necessarily finite) such that
U ′(x) > 0 and U ′′(x) < 0 for all x ∈ (0, X).2 Utility maximization yields the following
direct demand:

(5) x(p,m) =


0 if p ≥ p̄,
x(p) if p ∈ (U ′(mp ), p̄),
m
p if p ≤ U ′(mp ).

where x(p) is the unique value of x that maximizes U(x)− px.
Equation (1) says that no consumer buys x if p ≥ p̄. For lower values of p, a

consumer buys x(p) or m
p depending on her budget m. If m is high (and consequently

U ′(mp ) is low) a consumer buys x(p). Else, if m < px(p) (or equivalently p ≤ U ′(mp ))
the consumer spends her entire budget on x and buys m

p units. We say this consumer

2Finite U ′(0) guarantees the existence of Cournot equilibrium. See, for example, Anderson and Renault
[1]
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is budget-constrained as she cannot afford x(p). To examine cleanly the impact of
budget-constrained consumers on pricing we consider two scenarios:

(A) m > maxp∈[c,p̄] px(p),
(B) m = 0.3

Consider an economy where (A) holds. Call this the economy A. As the consumer with
minimum income m can afford x(p) for any p, no consumer is budget-constrained in
economy A. This description corresponds to the standard partial equilibrium setting
with quasi-linear preferences where all consumers can afford x(p) and there is no
income effect. On the other hand, if (B) holds, there are always some consumers who
cannot afford x(p) for some p > 0. An economy, where (B) holds, is referred to as the
budget-constrained economy or in short, economy B.

4. DEMAND AND ELASTICITY

4.1. Aggregate demand. Consider economy A first. Each consumer demands x(p)

in economy A for p < p. Since there is a unit mass of consumers, x(p) denotes the ag-
gregate demand as well. In economy B, a consumer with income m ≥ px(p) demands
x(p), while a consumer with income m < px(p) demands m

p . Thus the aggregate
demand in economy B is

m∫
px(p)

x(p)f(m)dm+

px(p)∫
0

m

p
f(m)dm = x(p)− 1

p

px(p)∫
0

F (m)dm,

where the equality follows from expanding the first integral, applying integration by
parts for the second and simplifying subsequently. To summarize, we have

(6) Di(p) =


x(p), if i = A,

x(p)− 1
p

px(p)∫
0

F (m)dm, if i = B.

where Di(p) denotes the aggregate demand function for x in economy i(= A,B).

4.2. Price elasticity of demand. Define εA(p) ≡ −pD
′
A(p)

DA(p) and εB(p) ≡ −pD
′
B(p)

DB(p)

as the price elasticity of demand corresponding to the demand functions DA(p) and
DB(p) respectively. Since DA(p) = x(p),

εA(p) = −
pD

′
A(p)

DA(p)
= −px

′
(p)

x(p)
.

3We can state (B) as m ≤ minp∈[c,p̄] px(p). Since x(p̄) = 0, minp∈[c,p̄] px(p) = 0. The only m(≥ 0) that
satisfy the requirement is m = 0.
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Recall from (6),

DB(p) = x(p)− 1

p

px(p)∫
m

F (m)dm.

Multiplying both sides by p and taking the total derivative with respect to p we get

pD′B(p) +DB(p) = px′(p) + x(p) [1− F (px(p))].

Rearranging this equation and rewriting it in terms of elasticities we get

(7) |εB(p)− 1| = |εA(p)− 1|x(p)(1− F (px(p)))

DB(p)
,

where x(p)(1−F (px(p)))
DB(p) is the share of unconstrained consumers demand in economy B’s

aggregate demand for x and |.| denotes absolute value.

Proposition 1. For all p ∈ (0, p̄),
(i) εB(p) > (=, <)1 if and only if εA(p) > (=, <)1.
(i) εB(p) > (=, <)εA(p) if and only if εA(p) < (=, >)1.

Proof: Part (i) is immediate from (7). Rearranging (7) gives

εB(p)− εA(p)

1− εA(p)
=
x(p)(1− F (px(p)))

DB(p)

which implies (ii), once we note that x(p)(1−F (px(p)))
DB(p) ∈ (0, 1) for the relevant range of

p. �

Proposition 1 says that if x(p) is elastic then the budget constrained demand is
elastic as well but less elastic than x(p). On the other hand if x(p) is inelastic then
the budget constrained demand is inelastic as well but less inelastic than x(p). To
see why, note that the price elasticity of demand corresponding to x = m

p is 1 while

that corresponding to x = x(p) is −px
′
(p)

x(p) = εA(p). Since εB(p) is a weighted average of
εA(p) and 1, we have that

min{εA(p), 1} < εB(p) < max{εA(p), 1}

when εA(p) 6= 1 and εA(p) = εB(p) = 1 otherwise. Proposition 1 follows from expand-
ing the above inequality separately for the two cases—εA(p) < 1 and εA(p) > 1.

5. PRICING

Suppose there are n(≥ 1) firms producing the homogeneous product x at constant
marginal cost c ∈ (0, p̄). Product market competition is Cournot. That is, firms com-
pete in quantities.
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Consider economy A first where the industry demand is DA(p) ≡ x(p). Each firm
i ∈ {1, 2, ..., n} chooses output xi to maximize its profit,

πi ≡ (p(x)− c)xi,

where p = p(x) is the inverse industry demand function corresponding to x = x(p).
The standard first-order conditions are

p′(x)xi + p(x) = c for i = 1, ..., n.

Summing up these conditions yields

(8) p′(x)x+ np(x) = nc

where x =
n∑
i=1

xi denote the aggregate output. In Cournot equilibrium, each firm i

chooses xi = xA
n where xA is a solution to (8). The following condition —now standard

in the oligopoly literature—guarantees the existence and uniqueness of xA.

(9) 2p′(x) + xp′′(x) < 0.

Remark 1. All logconcave inverse demand functions satisfy equation 9. In terms
of direct demand function the equivalent condition is that for all p < p̄, (x(p))−1 is
strictly concave (Deneckre and Kovenock [12]). Anderson and Renault [1]) provide
an elegant characterization of direct demand functions in terms of ρ concavity. Using
their terminology the condition for uniqueness can be stated as the direct demand
function is (-1)- strictly concave.

The unique xA that solves (8) and pA = p(xA) respectively are the equilibrium
output and price of x in economy A. Using xA = x(pA) and p′(xA) = 1

x′ (pA)
, rewrite (8)

as follows:
−x (pA)

x′ (pA)
+ npA = nc.

Divide both sides by n and rearrange to obtain the pricing equation,

(10) pA

(
1− 1

nεA(pA)

)
= c,

where the left-hand side of (10) is a firm’s marginal revenue (in Cournot equilibrium)
expressed in terms of p and the right-hand side of (10) is marginal cost. We record
the following results for future reference.

Lemma 1. (i) p(1 − 1
nεA(p)) is increasing in p; (ii) pA is strictly decreasing in n and

increasing in c.

Proof: See Appendix.

Now consider the budget constrained economy where the industry demand isDB(p).
The relevant pricing equation in economy B, i.e., the counterpart of (10) in economy
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A is:

(11) pB

(
1− 1

nεB(pB)

)
= c,

where εB(p), as defined earlier, is −pD′
B(p)

DB(p) . Using the limiting values, i.e.,

lim
p→c

p

(
1− 1

nεB(p)

)
< c, lim

p→p̄
p

(
1− 1

nεB(p)

)
> c,

we can show that there exists an equilibrium with xi = D(pB)
n for all i ∈ {1, 2, ..., n}

where pB ∈ (c, p̄) solves (11).
We remain agnostic about the uniqueness of pB because, as we have argued before

(see footnote 1), budget-constrained demand is not necessarily logconcave. This sug-
gests that p(1− 1

nεB(p)) might be non-monotone and the solution to (11) might not be
unique.

6. COMPARISON OF EQUILIBRIUM PRICES

Instead of assuming unique pB, or imposing restriction on U(x) and F (m) (to en-
sure uniqueness), we take the road less travelled: allow for multiple pB and compare
pA with all possible pB that satisfy (11).

Proposition 2. Define

P = {p ∈ R+ : p(1− 1

nεB(p)
) = c}

as the set of possible equilibrium prices in the budget-constrained economy and let
pB ∈ P. Then,

pB > (=, <)pA ⇒ εA(pA) > (=, <)1.

Proof: We show that pB > pA ⇒ εA(p) > 1. The proofs of (i) pB < pA ⇒ εA(pA) < 1

and (ii) pB = pA ⇒ εA(pA) = 1 are analogous and hence omitted.
Suppose not. That is, suppose pB > pA and yet εA(pA) ≤ 1. From the pricing

equations, (10) and (11), pB > pA ⇒ εA(pA) > εB(pB), which, together with εA(pA) ≤ 1

imply εB(pB) < 1. By Proposition 1, εB(pB) < 1⇒ εB(pB) > εA(pB). Consequently

(12) pB(1− 1

nεB(pB)
) > pB(1− 1

nεA(pB)
).

Moreover, we have

(13) pB(1− 1

nεA(pB)
) > pA(1− 1

nεA(pA)
) = c.

The inequality in (13) follows from noting that p(1− 1
nεA(p)) is strictly increasing in p

(by Lemma 1). The equality is due to the pricing equation (10). Combining (12) and
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(13) gives

pB(1− 1

nεB(pB)
) > c,

which is a contradiction because

pB ∈ P ⇒ pB(1− 1

nεB(pB)
) = c.

�

Proposition 2 says that a necessary condition for pB > pA is that x(p) is elastic
at p = pA. Observe that the condition does not involve eB(p) or DB(p), which im-
plies no further restriction on budget distribution F (m) is necessary. Furthermore,
a closer look at Proposition 2 reveals the following, which drastically simplifies the
price comparison.

Proposition 3. Suppose p0
B ∈ P.

pA < (=, >)p0
B ⇒ pA < (=, >)pB for all pB ∈ P.

Proof: First, we prove that pA < p0
B ⇒ pA < pB for all pB ∈ P. Suppose not. That is,

suppose pA < p0
B and there exists p1

B ∈ P such that pA ≥ p1
B. By Proposition 2,

pA < p0
B ⇒ εA(pA) > 1,

pA ≥ p1
B ⇒ εA(pA) ≤ 1,

which leads to contradiction since both εA(pA) > 1 and εA(pA) ≤ 1 cannot hold simul-
taneously. The proof of other parts are analogous and hence omitted. �

To understand the value of Proposition 3 note that in presence of multiple pB, it is
possible to have a pB strictly higher than pA while another pB strictly lower. In that
case, comparison of equilibrium prices between the standard demand and the budget-
constrained demand will depend on the selection of pB. Proposition 2 implies that this
possibility never arise since exactly one of the following holds: (i) all pB ∈ P are lower
than pA, (ii) all pB ∈ P are strictly higher than pA, or (iii) pB = pA. Combining the
results from Propositions 2 and 3 now we are ready to state the main characterization
result of this paper.

Proposition 4. Let pA denote the equilibrium price under standard demand. Simi-
larly let P denote the set of equilibrium prices under budget-constrained demand.

εA(pA) > (=, <)1⇔ pA < (=, >)pB,

for all pB ∈ P.

Proof: We show that
εA(pA) > 1⇔ pA < pB,
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for all pB ∈ P. Proofs of the other two if and only if claims are analogous and hence
omitted. That εA(pA) > 1 ⇐ pA < pB for all pB follows directly from Propositions 2
and 3. We prove the other side (i.e., sufficiency) by contradiction. Suppose εA(pA) >

1 and yet there exists pB ∈ P such that pB ≤ pA. By Proposition 2, a necessary
condition for pB ≤ pA is εA(pA) ≤ 1 which leads to contradiction (since we started
with the supposition εA(pA) > 1). �

Proposition 4 says that εA(pA) > 1 is necessary and sufficient for pB > pA. The
condition does not involve DB(p) or pB which makes it easy to verify. Before we turn
to the the implications of Proposition 4 for different market structures, two remarks
are in order—both regarding costs.

Remark 2. Incorporating cost asymmetry in our framework is straightforward. Sup-
pose there are n firms. Let ci denote firm i’s marginal cost and without loss of gener-
ality assume that c1 ≤ c2 ≤ ... ≤ cn. Define c ≡ Σni=1ci

n . Proceeding as in section 5, one
can show that the pricing equations for economies A and B—which lie at the heart of
our analysis—are effectively the same as in (10) and (11) except that c is substituted
by c̄. This innocuous substitution does not affect the results.

Remark 3. Departure from constant marginal costs partially affects our results.
While the possibility of pB > pA remains, εA(pA) > 1 is no longer necessary and
sufficient for pB > pA. In particular we find that εA(pA) > 1 is sufficient but not
necessary for pB > pA if marginal cost is decreasing in output. Similarly, if marginal
cost is increasing in output, εA(pA) > 1 is necessary but not sufficient for pB > pA. In
other words, decreasing marginal costs increases the possibility of pB > pA while the
opposite is true for increasing marginal costs.

The main idea, i.e., pB > pA if εA(pA) is greater than a certain threshold holds even
if marginal cost is not constant. The assumption of constant marginal cost helps to
provide sharper characterization. As the main action in this paper is in the demand
side, we continue with constant marginal cost following much of the recent literature
in homogenous and differentiated products oligopoly (see, for example, Anderson and
Renault [1], Hackner[14], Qiu [18], Vives [22]).4

7. MARKET STRUCTURE

Let us start with monopoly (n = 1). Under monopoly, εA(pA) > 1 as long as c >
0. From Proposition 4 we know that εA(pA) > 1 ⇔ pB > pA. Thus for monopoly,
equilibrium price is always higher under budget constrained demand for all c > 0.
When n > 1, competition reduces pA and εA(pA) may or may not be greater than
unity and consequently pB > pA may or may not hold. For sharper characterization

4An exception is Dastidar [11]. In context of Bertrand-Cournot comparison, he examines a homogenous
products oligopoly framework with increasing and asymmetric marginal costs.
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of results under n > 1 and free entry (in the next section), hereafter, we restrict our
attention to logconcave demand functions (for economy A).5

Assumption 1. x(p) is logconcave in p for all p ≤ p̄.

Lemma 2. Suppose Assumption 1 holds. Then

(i)) εA(p) ≡ −pAD
′
A(p)

DA(p) is strictly increasing p;
(ii) εA(pA) is strictly decreasing in n and strictly increasing in c.

Proof: Recall DA(p) ≡ x(p). Differentiating εA(p) ≡ −pAD
′
A(p)

DA(p) = −pA dlnDA(p)
dp yields:

dεA(p)

dp
= −dlnDA(p)

dp
− pA

d2lnDA(p)

dp2
.

The result then follows from noting that dlnDA(p)
dp =

D
′
A(p)

DA(p) < 0 and d2lnDA(p)
dp2 < 0 (by

Assumption 1). Part (ii) follows immediately from noting that (a) εA(p) is strictly
increasing p (part (i)) and (b) pA is strictly decreasing in n and strictly increasing in c
(Lemma 1). �

Now we are ready to state and prove the result which links competition, costs and
the likelihood of pB > pA. Hereafter, following the standard practice in the oligopoly
literature, we treat the number of firms (n) as a continuous variable.

Proposition 5. Equilibrium price under budget constrained demand, pB, is strictly
higher than the equilibrium price under standard demand, pA, if competition is low
or unit cost is high. More formally, for all c ∈ (0, p̄), there exists a unique n(c) > 1

such that
pB > (=, <)pA ⇔ n < (=, >)n(c).

Furthermore, n(c) is strictly increasing in c and n(c) =∞ for all c ≥ c̄where εA(c̄) = 1.

Proof: Proposition 4 says that pB > pA ⇔ εA(pA) > 1. Since εA(pA) > 1 for n = 1 and
εA(pA) is strictly decreasing in n (Lemma 2 (ii)) it follows that there exists n = n(c)(>

1) such that εA(pA) > 1⇔ n < n(c). Thus we have

pB > pA ⇔ εA(pA) > 1⇔ n < n(c).

It is easy to extend the above to the following: pB > (=, <)pA ⇔ n < (=, >)n(c).
Let pA(n, c) denote the equilibrium p for a given n and c. From the above argument

it follows that pA(n(c), c) = ε−1
A (1). Thus

n′(c) = −
∂pA
∂c
∂pA
∂n

> 0.

5Without logconcavity of x(p), we can establish that for all c ∈ (0, p̄), there exists a unique n(c) > 1 such
that pB > pA holds if n < n(c). Logconcavity allows us to replace the if by if and only if.
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where the inequality follows from Lemma 1(ii): pA is decreasing in n and increasing
in c.

Finally, consider high unit cost c. In particular, c ≥ c̄ where εA(c̄) = 1. Since pA > c

holds in equilibrium (for all finite n) and c ≥ c̄ we have pA ≥ c̄. Applying Lemma 2
(ii) gives pA ≥ c̄ ⇔ εA(pA) > εA(c̄) = 1 which in turn implies pB > pA (Proposition 4).
Note that the argument does not rely on n. Thus pB > pA holds for all n whenever
c ≥ c̄ . �

Lack of competition makes pB > pA more likely. Proposition 5 makes this idea
precise. It says that the pB > pA holds if the degree of competition—measured by
number of firms—is lower than a threshold level. Furthermore, as unit cost increases,
the threshold level of competition increases. Thus, pB > pA becomes more likely
under higher cost. Finally, the last bit, i.e., n(c) = ∞ for all c ≥ c̄, says that if cost is
high enough, pB > pA holds irrespective of the degree of competition since if c ≥ c̄, pA
is always in the elastic part of the demand curve.

8. FREE ENTRY

So far we have assumed that the number of firms, n, is fixed and the same for
two economies, A and B. Since DA(p) 6= DB(p), the number of firms is likely to be
different if market structure is endogenously determined. Suppose that each firm
incurs fixed cost k > 0 to enter and entry occurs until net profit equals zero. In this
environment, the equilibrium price and the number of firms corresponding to Di(p),
denoted by ni and pi respectively, solve the pricing equation,

(14) pi

(
1− 1

niεi(pi)

)
= c,

and the following zero-profit condition,

(15)
(pi − c)Di(pi)

ni
= k.

Hereafter, we focus on the price comparison between the two economies A and B

where (14) and (15) hold. Consider economy A first. We already know that there
exists a unique p = p(n) that solves (14) for a given n. Furthermore, since industry
profit (p(n)− c)DA(p(n)) is strictly decreasing in n there exists a unique n = nA that
solves (15).6 Thus, in the unique equilibrium of economy A, n = nA and p = p(nA) =

pA. Lemma 3 records the properties of pA and nA.

Lemma 3. The equilibrium number of firms in economy A, nA, is strictly decreasing
in c and k while the equilibrium price, pA, is strictly increasing in c and k.

Proof: See Appendix. �

6We prove this formally in the Appendix.
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Concerning economy B, we cannot ascertain the uniqueness of (nB, pB) unless
we impose some additional conditions. Later, we provide a sufficient condition for
uniqueness of (nB, pB). The following result holds for comparison between the unique
pA and any pB in economy B.

Proposition 6. For a given cdf F (.), there exists a threshold eF ∈ (0, 1) such that

εA(pA) > eF ⇒ pB > pA

Proof: It suffices to show that εA(pA) ≥ 1⇒ pB > pA. Suppose not. That is, suppose
εA(pA) ≥ 1 and yet pA ≥ pB. We have that

(16) pA ≥ pB ⇒ εA(pA) ≥ εA(pB) ≥ εB(pB)

where the first inequality follows from Lemma 2 (i) and the second inequality follows
from Proposition 1. The pricing equation (14) implies that

(17) pA ≥ pB ⇒ nAεA(pA) ≤ nBεB(pB)

In addition we have that

(18) (pA − c)DA(pA) > (pB − c)DA(pB) ≥ (pB − c)DB(pB)

where the first inequality is due to the strict concavity of (p− c)DA(p) and the second
inequality follows from noting that DA(pB) ≥ DB(pB).

From (16) and (17) it follows that nA ≤ nB. Equation (18), together with nA ≤ nB

implies that
(pA − c)DA(pA)

nA
− k > (pB − c)DB(pB)

nB
− k.

which is contradiction since (pi−c)Di(pi)
ni

− k = 0 for both i = A,B. �

As before, we find that pB > pA holds if εA(pA) > 1. However, Proposition 6 shows
that εA(pA) > 1 is no longer necessary for pB > pA. Since eF < 1, pB > pA can occur
even in the inelastic region of the demand curve. Thus pB > pA is more likely under
free entry. Can we say something more? To do so, hereafter we focus on a class of
F (m) which satisfy the following:

(19)
d

dz
(

∫ z
0 tf(t)dt

z(1− F (z))
) ≥ 0

A number of standard distributions including uniform and Pareto among others sat-
isfy (19). Lemma 4 highlights an important benefit of (19).

Lemma 4. Suppose F (m) satisfy (19). Then (nB, pB) is unique.

Proof: See Appendix. �
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Uniqueness of (nB, pB) greatly facilitates the characterization of the necessary and
sufficient condition for pB > pA.

Proposition 7. Consider the class of F (m) that satisfy (19). The necessary and
sufficient condition for pB > pA is:

εA(pA) >

∫ pAx(pA)
0 mf(m)dm

pAx(pA)F (pAx(pA))
≡ eF .

Proof: First consider nA and pA which respectively denote the number of firms and
price in the free entry equilibrium of economy A. Choose n = n′ such that pB(n′) = pA

and compute profit per firm in economy B, i.e, (pA−c)DB(pA)
n′ − k. Now note that

(pA − c)DB(pA)

n′
− k < 0⇔ pB > pA.

7

That is, pB > pA if and only if firms incur losses at p = pA, because in that case firms
exit which reduces n below n′ and drives pB up, in particular, higher than pA. Note
that

(pA − c)DB(pA)

n′
− k =

(pA − c)DB(pA)

n′
− (pA − c)DA(pA)

nA
,

= (pA − c)[
DB(pA)

n′
− DA(pA)

nA
],

= −(pA − c)2[D
′
B(pA)−D′

A(pA)],(20)

where the last equality exploits a rearranged version of (14):

−(pi − c)D
′
i(pi) =

Di(pi)

ni
.

From (6) we have DB(p)−DA(p) = −1
p

px(p)∫
0

F (m)dm which upon differentiation gives:

D
′
B(pA)−D′

A(pA) = −
pA(pAx

′(pA) + x(pA))F (pAx(pA))−
pAx(pA)∫

0

F (m)dm

p2
A

.

Simplifying the right-hand side of the above equation gives

(21) D
′
B(pA)−D′

A(pA) =
x(pA)

pA
[εA(pA)−

pAx(pA)∫
0

mf(m)dm

pAx(pA)F (pAx(pA)
].

7This ⇔ implicitly uses the following property: each firm’s equilibrium profit is declining in n in
economy B. Proof of this property is immediate if the marginal revenue function in economy B, i.e.,
p(1 − 1

nεB(p)
) is increasing in p. See the proof of Lemma 4 in the Appendix where we establish that

p(1− 1
nεB(p)

) is indeed increasing in p.
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Combining (20) and (21) we have

pB > pA ⇔ (pA − c)DB(pA)

n′
− k < 0,

⇔ D
′
B(pA)−D′

A(pA) > 0,

⇔ εA(pA) >

pAx(pA)∫
0

mf(m)dm

pAx(pA)F (pAx(pA)
.

�

As in the case of fixed number of firms, we find that pB > pA holds if and only
if elasticity of the standard demand function at p = pA is greater than a threshold
eF . To better appreciate Proposition 7 consider the following budget distribution for
which eF is constant:

(22) F (m) = (
m

m̄
)α, if m ∈ [0, m̄]

where α ∈ (0, 1], and F (m) = 1(0) if m > m̄(m < 0). Since eF ≡
∫ pAx(pA)
0 mf(m)dm
pAx(pA)F (pAx(pA)) =

α
1+α ,

pB > pA ⇔ εA(pA) >
α

1 + α
.

Thus if F (m) is uniform (i.e., α = 1) as in illustrative example, equilibrium price in
the budget-constrained economy is higher if and only if εA(pA) > 1

2 . Two features are
worth noting.

• While eF = α
1+α or eF = 1

2 seem special as they correspond to specific forms of
F (m), note that the same eF applies for all logconcave demand functions.
• Observe that no matter how inelastic the demand is, there always exists α low

enough such that pB > pA. Thus a good might be highly inelastic, as is often
the case for necessities, and yet the equilibrium price in budget-constrained
economy might be higher.

An advantage of working with F (m) = (mm̄)α is that the threshold value eF does
not depend on pA. While, in general eF will generally depend on pA, for concave
F (m) we find an upper bound: eF ≤ 1

2 . This finding implies that if F (m) is concave
and εA(pA) > 1

2 , equilibrium price is higher in the budget constrained economy. To
understand how we obtain this upper bound, write

eF =

pAx(pA)∫
0

mf(m)dm

pAx(pA)F (pAx(pA)
=

pAx(pA)F (pAx(pA)−
pAx(pA)∫

0

F (m)dm

pAx(pA)F (pAx(pA)
.

Now consider Figure 2.

(Figure 2 to be inserted here)



18 ARGHYA GHOSH AND ALBERTO MOTTA

In Figure 2, eF ≡
pAx(pA)F (pAx(pA)−

pAx(pA)∫
0

F (m)dm

pAx(pA)F (pAx(pA) can be expressed as

(Area A + Area B)−Area B

Area A + Area B
=

Area A

Area A + Area B
=

1

1 + Area B
Area A

.

Concavity of F (m) implies Area B ≥ Area A which in turn implies eF ≤ 1
2 .

Finally we conclude our analysis by examining the link between cost, competition
and the possibility of pB > pA. Since n is endogenous, we use entry cost, k, as a proxy
measure for competition. In particular, we interpret an increase in k as a decrease in
the degree of competition.

Proposition 8. Suppose, in addition to the condition stated in Proposition 7, the
following holds:

∫ z
0 tf(t)dt

zF (z) is weakly decreasing in z for all z ∈ (0, m̄). Then pB >

pA holds if competition is low, or equivalently, if entry cost k is high enough. More
formally, for all c there exists k(c) such that pB > pA if k > k(c). Furthermore, k(c) is
strictly decreasing in c.

Proof: See Appendix. �

The essence of Proposition 8 is same as Proposition 5: the low level of competition
and high unit cost makes pB > pA more likely. The analysis is clearcut for F (m) =

(mm̄)α for which the threshold eF = α
1+α is constant:

pB > pA ⇔ εA(pA) >
α

1 + α
.

Since εA(pA) is increasing in pA and pA is increasing k, it follows that higher k, or
equivalently, lower competition makes pB > pA more likely. In Appendix we show
that the additional restriction,

∫ z
0 tf(t)dt

zF (z) is weakly decreasing in z, helps to prove
Proposition 8 when eF is not constant.

9. SUMMARY AND CONCLUDING REMARKS

Introducing budget-constrained consumers in an oligopoly setting, we have shown
that the equilibrium price under budget-constrained demand (pB) can often be higher
than that under standard demand (pA). This holds even though the budget-constrained
demand is lower than standard demand at all relevant prices. Despite the non-
standard nature of the demand shifts and the possibility of multiple pB, we were able
to identify necessary and sufficient conditions for pB > pA. If the market structure
is exogenous, the necessary and sufficient condition for pB > pA is that the elasticity
of the standard demand (at pA) is greater than unity. The condition is easy to ver-
ify as it does not depend on the details of the budget-constrained demand or budget
distribution. Under endogenous market structure (i.e., free entry), price-elasticity
greater than unity is sufficient but not necessary for pB > pA. For both exogenous
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market and endogenous market structures we found that the lack of competition and
inefficient technology make pB > pA more likely.

Throughout the paper we refrained from offering any interpretation of the two
economies, A and B. Here we offer one which could be useful in the context of ur-
ban economics and/or international trade. Think of the two economies A and B as
two different regions with segmented markets. The two regions, A and B, might be
two different suburbs in the same city, two different cities in the same country, or
even two different countries. Outcomes arising from the analysis of an endogenous
market structure can then be viewed as autarky outcomes. In autarky, each firm
in region i incurs fixed cost k and serves region i only. The equilibrium values of
pi and ni, i = A,B, are given by solution to the pricing equation (14) and the zero-
profit condition (15) respectively. Now consider a trade regime where by incurring the
same fixed cost k each firm can serve both A and B. Then the pricing equations, i.e.
pi

(
1− 1

nεi(pi)

)
= c, still apply as long as the markets are segmented but the relevant

zero-profit condition is

(pA − c)DA(pA)

n
+

(pB − c)DB(pB)

n
= k.

Our analysis in sections 3-7 with exogenous market structure (i.e., n is given and
is the same for A and B) can be viewed as the trade regime where the common n

is given by the solution to the above equation. Since pB > pA holds for a smaller
range of elasticities under exogenous market structure, loosely speaking, our analysis
suggests that pB > pA is less likely under the trade regime.

That pB and pA are different under the trade regime might sound odd. However,
the difference in equilibrium prices (across markets) arise from the assumption of
segmented markets which is fairly standard in the imperfect competition models
of trade (see, for example, Brander and Krugman [7], Venables [21], Bagwell and
Staiger [5]). Is welfare higher when firms treat the markets as integrated rather
than segmented? In other words, is welfare higher under uniform pricing? This
question lies at the heart of the industrial organization literature on third degree
price discrimination (see Varian [20], Holmes [16], and Armstrong and Vickers [3]
among others). Cowan[10] and Aguirre, Cowan, and Vickers [2] study the welfare
effects of third-degree price discrimination under monopoly. Using the curvature and
slope of demand functions, they show that uniform pricing delivers higher welfare
for a large class of demand functions. Unlike Cowan [10] and Aguirre et al. [2], we
do not restrict our attention to monopoly. Whether uniform pricing raises welfare in
our oligopoly framework remains an open question. Here we abstract from the wel-
fare question to focus on the issue at hand: comparison of equilibrium prices under
standard demand and the budget-constrained demand.
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A limitation of our analysis is that we consider only linear pricing. Che and Gale
[9] study a mechanism-design problem where a monopoly seller offers a good to a
buyer who may be budget-constrained. In the framework they consider, the optimal
mechanism for a monopolist may involve the use of nonlinear pricing, declining price
sequence, and financing. The pricing mechanism is richer in their work than in our
contribution. However, focusing on linear pricing allow us to examine a richer and
broader set of environments. Che and Gale [9] consider a pure monopoly with unit
demand and linear preferences. We consider monopoly and oligopoly and examine
free entry environment in addition to the canonical set up with exogenous market
structure. Preferences are fairly general and consumers can buy multiple units in
our framework. Analysis of non-linear pricing in oligopoly environments with budget
constrained consumers is left for future research.8

10. APPENDIX

Proof of Lemma 1: (i) Using εA(p) = −px
′(p)
x(p) = − p(x)

xp′(x) we get

p

(
1− 1

nεA(p)

)
= p(x) +

xp′(x)

n
= g(x)

Since x′(p) < 0, p
(

1− 1
nεA(p)

)
is increasing in p⇔ g′(x) < 0 where

g′(x) = p′(x) +
xp′′(x)

n
+
p′(x)

n
=

(n− 1)p′(x)

n
+

2p′(x) + xp′′(x)

n

Note that (a) p′(x) < 0 and (b) 2p′(x) + xp′′(x) < 0 (equation 9). Together (a) and (b) imply
g′(x) < 0.

(ii) From (8) we have

(23) p′(xA)xA + np(xA) = nc,

where xA and p(xA) = pA respectively denote the aggregate output and price in Cournot
equilibrium. Differentiating (23) with respect to n and c respectively gives

dxA
dn

= − p(xA)− c
(n+ 1)p′(xA) + xAp′′(xA)

,
∂xA
∂c

=
n

(n+ 1)p′(xA) + xAp′′(xA)
.

By (9), (n+1)p′(xA)+xAp
′′(xA) < 0 which imply (a) dxA

dn > 0 and (b) dxA

dc < 0. Since p′(xA) < 0,
(a) and (b) imply that

dpA
dn

= p′(xA)
dxA
dn

< 0;
dpA
dc

= p′(xA)
dxA
dc

> 0.

8A framework with budget constrained consumers and non-linear pricing naturally invites two further
possibilities: (i) a group of consumers might want to resell the product to other consumers, (ii) con-
sumers might want to form coalitions in order to exploit bulk discounts. See Calzolari and Pavan [8] for
an analysis of the intricacies associated with monopoly pricing when buyers are expected to resell.
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Proof of Lemma 3: First we prove that (nA, pA) is unique. Let xA(n) and pA(n) = pA(xA(n))

respectively denote the aggregate output and price in Cournot equilibrium for a given n ≥ 1.
To prove uniqueness of (nA, pA) it is sufficient to show that

(pA − c)DA(pA)

n
≡ (p(xA(n))− c)xA(n)

n
≡ π̃(n)

is decreasing in n. Note that

d

dn
[(p(xA)− c)xA] = [p(xA)− c+ xAp

′(xA)]
dxA
dn

=
[
p(xA)− c+

xA
n
p′(xA)

] dxA
dn

+
(n− 1)xA

n
p′(xA)

dxA
dn

First-order condition in section 5 imply p(xA)− c+ xA

n p
′(xA) = 0. The result then follows from

noting that p′(xA) < 0, dxA

dn > 0.

(ii) First we prove that dnA

dk < 0 and dpA
dk > 0. Differentiating π̃(nA) ≡ k and rearranging gives

dnA

dk = 1
π̃′(nA) . From the proof of part (i) we know that π̃′(nA) < 0 which imply dnA

dk < 0. This

finding together with ∂pA(nA)
∂n < 0 [Lemma 1(ii)] imply that dpA

dk = ∂pA(nA)
∂n

dnA

dk > 0.
Now we prove that dnA

dc < 0. Differentiating the free entry condition π̃(nA) ≡ k we get:

dnA
dc

= −
∂π(.)
∂c
∂π(.)
∂n

.

Since ∂π(.)
∂n < 0, dnA

dc < 0⇔ ∂π(.)
∂c < 0. Differentiating π̃(n) = (p(xA(n))−c)xA(n)

n = −p
′(xA(n))x2

A(n)
n2

with respect to c and rearranging subsequently we get

∂π̃(n)

∂c
= −xA

n2
[2p′(xA(n)) + xA(n)p′′(xA(n))]

∂xA
∂c

< 0

where the inequality follows from noting (a) 2p′(xA(n)) + xA(n)p′′(xA(n)) < 0 and (b) ∂xA

∂c < 0

(see the proof of Lemma 1(ii)).
Finally note that dpA(nA)

dc = ∂pA(nA)
∂c + ∂pA(nA)

dn
dnA

dc . By Lemma 1(ii), (a) ∂pA(nA)
∂c > 0 and (b)

∂pA(nA)
dn < 0. We have already proved that (c) dnA

dc < 0. Together, (a) - (c) imply dpA(nA)
dc > 0. �

Proof of Lemma 4: For economy A, we have shown that 2p′(x)+xp′′(x) < 0 or its equivalent,
i.e., p(1 − 1

nεA(p) ) is increasing in p, is sufficient to prove that (nA, pA) is unique. To show
(nB , pB) is unique it suffices to establish that p(1− 1

nεB(p) ) is increasing in p. Below we prove
εB(p) is increasing in p which implies p(1− 1

nεB(p) ) is increasing in p.
Expand DB(p) as follows:

DB(p) = x(p)(1− F (px(p)) +

px(p)∫
0

m

p
f(m)dm,

= x(p)(1− F (px(p))[1 +

px(p)∫
0

mf(m)dm

px(p)(1− F (px(p)))
]
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Using the above expression for DB(p), (7), after some rearrangement can be written as

(24) |εB(p)− 1| = |εA(p)− 1|

1 +

px(p)∫
0

mf(m)dm

px(p)(1−F (px(p)))

Suppose εA(p) > 1 which imply dpx(p)
dp = px′(p) + x(p) = x(p)(1− εA(p)) < 0. Think of px(p)

as z. Condition (19) then imply (a) 1 +

px(p)∫
0

mf(m)dm

px(p)(1−F (px(p))) is decreasing in p. Lemma 1(ii) imply
the (b) εA(p)− 1 is increasing in p. Together with equation (24), (a) and (b) imply that εB(p) is
increasing in p.

For εA(p) < 1 rewrite (24) as

1− εB(p) =
1− εA(p)

1 +

px(p)∫
0

mf(m)dm

px(p)(1−F (px(p)))

.

Here, 1 − εA(p) is decreasing in p while 1 +

px(p)∫
0

mf(m)dm

px(p)(1−F (px(p))) is increasing in p. Thus 1 − εB(p)

is decreasing in p which in turn imply εB(p) is increasing in p. �

Proof of Proposition 8: Define h(pA) ≡ εA(pA)− eF = εA(pA)−
∫ pAx(pA)

0 mf(m)dm
pAx(pA)F (pAx(pA)) . Applying

Proposition 7 gives:
pB > (=, <)pA ⇔ h(pA) > (=, <)0.

If εA(pA) ≥ 1, h(pA) = εA(pA) − eF > 0 since eF < 1. If εA(pA) < 1, pAx(pA) is increasing
in pA. Think pAx(pA) = z. Since

∫ z
0
tf(t)dt

zF (z) is weakly decreasing in z and z is decreasing in

pA it follows that eF =
∫ pAx(pA)

0 mf(m)dm
pAx(pA)F (pAx(pA)) is decreasing in pA. This finding, together Lemma

2(i) imply that h(pA) is increasing in pA whenever εA(p̂A) < 1. Thus there exists a critical p̂A
satisfying εA(p̂A) < 1 such that

h(pA) > 0⇔ pA > p̂A.

The proof then follows from noting that pA is increasing in c and k (Lemma 3). �
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Figure 1: DA(p) and DB(p)



 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 

 
 
 

  Figure 2: Concave F(m) 
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