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Abstract

We examine the asymptotic distribution of the price-dividends ratio in a standard
asset pricing model when agents learn adaptively using a constant gain stochastic
gradient algorithm. The asymptotic distribution is characterized using techniques from
linear recursions with multiplicative noise, and is shown to exhibit fat tails even though
dividends follow a standard stationary AR(1) process with thin tails. We demonstrate
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data.

Keywords: Adaptive learning, large deviations, linear recursions with multiplica-
tive noise

JEL Codes: D80, D83, D84

∗We thank Chryssi Giannitsarou, In-Koo Cho, John Duffy, George Evans, Boyan Jovanovic, Tomasz
Sadzik, Benoite de Saporta, and Tom Sargent for helpful comments and suggestions. The usual disclaimer
applies.
†Address: New York University, Department of Economics, 19 W. 4th Street, 6FL, New York, NY, 10012,

USA. E-mail: jess.benhabib@nyu.edu.
‡Address: New York University, Department of Economics, 19 W. 4th Street, 6FL, New York, NY, 10012,

USA. E-mail: cdave@nyu.edu.



1. Introduction

Figures 1-2 respectively plot annualized monthly data for the S & P 500 and quarterly

CRSP data for aggregate stock prices and dividends in the U.S. The plots show that prices

and dividends do move in tandem, as predicted by standard theory. However the price-

dividend ratios, shown in the third panel of each Figure, exhibit large fluctuations, especially

in the latter parts of the sample.1 These large fluctuations in the price to dividend ratios

are diffi cult to explain within the context of the standard rational expectations asset pricing

model, for example that of Lucas (1978).

200 400 600 800 1000 1200 1400 1600

500

1000

1500

P
t

200 400 600 800 1000 1200 1400 1600
5

10

15

20

25

D
t

200 400 600 800 1000 1200 1400 1600

20

40

60

80

P
t/D

t

Figure 1. Monthly S & P 500 (Source: Shiller (2005)).

1The Data Appendix provides details on the series employed.
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Figure 2. Quarterly CRSP (Source: Campbell (2003)).

Several modifications of the seminal model have been proposed to account for this (and

other) departures of the data from model. A particular formulation replaces the rational

expectations assumption with that of adaptive learning in which agents are assumed to

estimate parameters of processes to be forecasted using recursive (adaptive) methods.2 In

this paper we demonstrate, theoretically and empirically, that one particular form of learning,

stochastic gradient adaptive learning with constant gain, can account for these data features.

Theoretically, we demonstrate that under adaptive learning the tails of the stationary

distribution of the price dividends ratio follow a power law. We show via simulations how

the coeffi cient characterizing the power law varies as a function of the deep parameter values.

Thus under learning a stationary dividends process generates a distribution for the price-

2See Marcet and Sargent (1989), Woodford (1990) and Evans and Honkapoja (1999, 2001).
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dividends ratio that is not Normal. Rare large shocks to exogenous dividends throw off

the persistent learning process and lead to large deviations from the rational expectations

equilibrium of the price-dividends ratio.

Similar results have been obtained through simulations by Sargent (1999) and Cho,

Williams and Sargent (2002) in monetary policy contexts. We build on that literature by

demonstrating that for the asset pricing model, large deviations are possible under a stochas-

tic gradient constant gain (SGCG) learning algorithm.3 Empirically, we estimate the power

law coeffi cient for the price-dividends ratio in the data. We then estimate the deep parame-

ters, including the constant gain coeffi cient, by minimizing the squared deviation between

the empirical and model predicted power law coeffi cients; a minimum distance structural

estimation exercise. We find that not only does the data exhibit fat tails, but the model

predicts this behavior for reasonable deep parameter values and an estimated constant gain

parameter.

The literature that incorporates learning into asset pricing environments is large and

rich with both theoretical and empirical results. Carceles-Poveda and Giannitsarou (2008)

study the ability of asset pricing models to match data features under a variety of learning

algorithms. They find that SGCG algorithms have diffi culty matching data volatility under

their calibrations. Adam, Marcet and Nicolini (2008) study a nonlinear environment in

which the representative agent learns via recursive least squares to forecast the growth of

3Sargent (1999) and Cho et al. (2002) study recursive least squares constant gain (RLSCG) learning
algorithms. Under RLSCG learning uncertainty about estimated parameters persists and fuels ‘escape’
dynamics in which a sequence of rare and unusual shocks propel agents away from the REE of a model (see
also Williams (2009)). Sargent and Williams (2005) further incorporate random walk drift for estimated
parameters, so that uncertainty about parameters persists over time. They then show that the generalized
constant gain stochastic gradient (SGCG) algorithm is the optimal Bayesian estimator in that case. Evans
et al. (2010) follow Sargent and Williams (2005) and show how a SGCG learning algorithm approximates an
optimal (in a Bayesian sense) Kalman filter. We therefore restrict attention to SGCG learning algorithms.
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asset prices. They find that the second moments of the data are well matched. In contrast we

study an environment in which the agent learns by using a SGCG recursion about deviations

from steady state, and we show that, for reasonable parameter values, the distribution of

price-dividends ratio is a power law that has at most a few moments.

In an emerging literature, some authors have also incorporated the notion of rare disasters

directly into learning models of asset pricing. For instance, Koulovatianos and Wieland

(2011) adopt the notion of rare disasters studied by authors such as Barro (2009) in a

Bayesian learning environment. They find that volatility issues are well addressed. We

demonstrate that even with a regular stationary dividend process (such as a stationary

AR(1)), the endogenous variable can still exhibit large deviations and fat tails. That is,

under SGCG learning, the equilibrium evolution of the price-dividends ratio may follow a fat

tailed distribution that matches the resulting model to data. This may briefly be described

as a stochastic process with ‘thin tails in, but fat tails out.’ The reason is that under the

SGCG algorithm, new dividend realizations can stochastically amplify forecast errors and

throw off the price dividend ratio away from its rational expectations equilibrium.4 Gabaix

(2009) provides an excellent summary of instances in which economic data follow power laws

and suggests a number of causes of such laws for financial returns. In particular, Gabaix,

Gopikrishnan, Plerou and Stanley (2006) suggest that large trades in illiquid asset markets

on the part of institutional investors could generate extreme behavior in trading volumes

(usually predicted to be zero in Lucas-type environments) and returns.

The paper is structured as follows. We first describe the single asset pricing version of

Lucas (1978) under learning. We then prove in Section 3 that the model, written as a random

4Constant gain algorithms limit the horizon of learning of the agent (see Cho et al. (2002)).
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linear recursion, predicts that the tails of the stationary distribution of the price-dividends

ratio will follow a power law with coeffi cient κ. In Section 4 we provide estimates of the deep

parameters that are consistent with the κ estimated from the price-dividends ratio plotted

in Figures 1 and 2 above. Finally, we use simulations to study how κ varies with the deep

parameters using as a baseline parametrization the estimates we obtain; Section 6 concludes.

2. Learning and Asset Pricing

Consider a discrete time single asset, endowment economy following Lucas (1978) with

utility over consumption given by

u(Ct) =
C1−γt

1− γ , γ > 0. (1)

Under a no-bubbles condition the nonlinear pricing equation is

Pt = Et

{
β

(
Dt+1

Dt

)−γ
(Pt+1 +Dt+1)

}
(2)

where β ∈ (0, 1) is the usual exponential discount factor and (real) dividends (Dt) follow

some exogenous stochastic process. Linearizing the above equation yields

pt = βEt(pt+1) + (1− β − γ)Et(dt+1) + γdt (3)
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where all lowercase variables denote log-deviations from the steady state (P ,D) =
(

δ
1−δ , 1

)
.

We assume that the exogenous dividends process follows

dt = ρdt−1 + εt, |ρ| < 1 (4)

in which εt is an iid(0, σ2) random variable (such that σ2 < +∞) with compact support

[−a, a], a > 0, and a non-singular distribution function F .5 Since Et(dt+1) = ρdt

pt = βEt(pt+1) + θdt, θ ≡ (1− β − γ)ρ+ γ (5)

is the fundamental expectational difference equation for prices. The rational expectations

solution to (5) is

pt = φREEdt, φ
REE =

θ

1− βρ (6)

for all βρ 6= 1.

We follow Evans and Honkapohja (1999, 2001) and assume the perceived law of motion

(PLM) on the part of the representative agent is

pt = φt−1dt−1 + ξt, ξt ∼ i.i.d.(0, σ2ξ), σ
2
ξ < +∞ (7)

which in turn implies

Et(pt+1) = φt−1dt. (8)

5The distribution function F is non-singular with respect to the Lebesque measure if there exists a
function f ∈ R+,

∫
R
f(t)dt > 0, such that F (dt) ≥ f(t)dt.
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where φt−1 is the coeffi cient that agents estimate from the data to forecast pt. Inserting the

above into (5) yields the actual law of motion (ALM) under SGCG learning6:

pt = βφt−1dt + θdt = (βφt−1 + θ)dt (9)

= (βφt−1 + θ)ρdt−1 + (βφt−1 + θ)εt (10)

By contrast the ALM under rational expectations is

pt = φdt = φρdt−1 + φεt. (11)

Under SGCG learning, φt evolves as
7

φt = φt−1 + gdt−1(pt − φt−1dt−1), g ∈ (0, 1) (12)

Following the usual practice in the literature for analyzing learning asymptotics, we insert

the ALM under learning in place of pt in the recursion for φt in (12) to obtain

φt = λtφt−1 + ψt (13)

λt = 1− (1− ρβ)gd2t−1 + βgdt−1εt = 1− gd2t−1 + gβdtdt−1 (14)

ψt = θρgd2t−1 + θgdt−1εt = θgdtdt−1. (15)

6We note that in the asset pricing context, the ALM is linear in the ‘belief’parameter (φt). In other
contexts the ALM might be nonlinear in beliefs. However, the linear forces generating large deviations in
the adaptive learning model may drive the dynamics in nonlinear contexts. For example in Cho et al. (2002)
adaptive learning leads to non-neglible probablities for large deviations even in the prescence of nonlinearities
for the true data generating process.

7See Carceles-Poveda and Giannitsarou (2007, 2008) for details and derivations under a variety of learning
algorithms.

7



The equation in (13) takes the form of a linear recursion with both multiplicative (λt in (14))

and additive (ψt in (15)) noise. We show that the tail of the stationary distribution of φt

follows a power law and can have fat tails. We characterize the tail of the distribution and

show that under learning the the price-dividend ratio can exhibit large deviations from its

rational expectations equilibrium value with non-negligible probabilities. We provide that

theoretical analysis in the next section.

3. Large Deviations and Rare Events

We begin by noting that λt is a random variable, generating multiplicative noise, and can

be the source of large deviations and fat tails for the stationary distribution of φt. We use

results from large deviation theory (see Hollander (2000)) together with the work of Saporta

(2005), Roitershtein (2007) and Collamore (2009) to characterize the tail of the distribution

of φt.
8

Let N = 0, 1, 2... We first note that the stationary AR(1) Markov chain {dt}t∈Z given by

(4) is uniformly recurrent, and has compact support
[
−a
1−ρ ,

a
1−ρ

]
(see Nummelin (1984), p.

93). We denote the stationary distribution of {dt}t∈N by π. Since {dt}t∈N and εt for t = 1, 2...

are bounded, so are {λt}t∈N and {ψt}t∈N. In fact, following the first definition of Roitershtein

(2007), {λt, ψt}t∈N constitutes a Markov Modulated Process (MMP): conditional on dt, the

8For an application of these techniques to the distribution of wealth see Benhabib et al. (2011) and to
regime switching, Benhabib (2010).
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evolution of the random variables λt+1 (dt, dt−1) and ψt+1 (dt, dt−1) are given by

P (dt ∈ A, (λt, ψt) ∈ B) =

∫
A

K (d, dy)G (d, y, B) |d=dt−1 , (16)

G (d, y, ·) = P ((λt, ψt) ∈ ·) | dt−1 = d, dt = y) , (17)

where K (d, dy) is the transition kernel of the Markov chain {dt}t∈N.

Next we seek restrictions on the support of the iid noise εt ∈ [−a, a] to assure that

E |λ∞| < 1 where, from equation (14), λ∞ is the random variable associated with the sta-

tionary distribution of dt . We assume:

a <

(
6 (1− ρ2)
g (1− βρ)

)0.5
. (18)

Note that

E(λt) = E
(
1− g (dt−1)

2 + gβ (dt−1 (ρdt−1 + εt))
)

E(λt) = 1− gE (dt−1)
2 + gβρE (dt−1)

2

E(λ∞) =
(
1− gE (dt−1)

2 (1− βρ)
)
t→∞

Since εt is iid and is uniform with variance σ2,

E(λ∞) = 1− g σ2

1− ρ2 (1− βρ) (19)

E(λ∞) = 1− g
1
12

(2a)2

1− ρ2 (1− βρ) (20)
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From equation (20) it follows that E(λ∞) < 1, and solving for a such that E(λ∞) > −1, we

obtain the restriction (18) to guarantee that E |λ∞| < 1.

Let Sn =
∑n

t=1 log |λt|. Following Roitershtein (2007) and Collamore (2009)9 the tail of

the stationary distribution of {φt}t depends on the limit10

Λ(δ) = lim
n→∞

sup
1

n
logE

n∏
t=1

|λt|δ = lim
n→∞

sup
1

n
logE[exp(δSn)] ∀ δ ∈ R. (21)

Using results in Roitershtein (2007), we can now prove the following about the tails of the

stationary distribution of {φt}t∈N:

Proposition 1 For π-almost every d0 ∈ [−a, a], there is a unique positive κ <∞ that solves

Λ(δ) = 0, such that

K1 (d0) = lim
τ→∞

τκP (φ > τ |d0) and K−1 (d0) = lim
τ→∞

τκP (φ < −τ |d0). (22)

and K1 (d0) and K−1 (d0) are not both zero.11

Proof. The results follow directly from Roitershtein (2007), Theorem 1.6 if we show the

9For results on processes driven by finite state Markov chains see Saporta (2005).
10 lim
n→∞

sup 1
n logE[exp(δSn)] is the Gartner Ellis limit that also appears in Large Deviation theory. For

an exposition see Hollander (2000).
11We can also show that π (K1 (d0) = K−1 (d0)) = 1 if a is large enough. This follows from Condition

G given by Roitershtein (2007): Conditon G holds if there does not exist a partition of the irreducible set

D =
{
d ⊂

(
−a
1−ρ ,

a
1−ρ

)}
into two disjoint sets D−1 and D1 such that:

P (d ∈ D−1, ρd+ ε ∈ D1, λ < 0)

= P (d ∈ D−1, ρd+ ε ∈ D−1, λ > 0) = 0

where ε ⊂ [−a, a] and ρ ⊂ (0, 1). (See Roitersthein’s Definition 1.7 and subsequent discussion, and his
Proposition 4.1.) Suppose in fact that P (d ∈ D−1, ρd + ε ∈ D1, λ > 0) = 0 for D−1 with minimal element
d0 and maximal element d1. Then P (d ∈ D−1, ρd + ε ∈ D−1, λ > 0) = 1. Then it must be true, since d1 is
the maximum element of D−1, that ρd1 + a ≤ d1 and so a

1−ρ ≤ d1, implying d1 = a
1−ρ . Similarly, it must be

true that ρd0 − a ≥ d0 so that −a1−ρ ≥ d0, implying
−a
1−ρ ≥ d0. Thus D−1 = D, that is the whole set. Now we

10



following:

(i) There exists a δ0 such that Λ(δ0) < 0. First we note that Λ(0) = 0 for all n. Note also

that

Λ′(0) = lim
n→∞

sup
1

n

d logE

n∏
t=1

|λt|δ

dδ
|δ=0

= lim
n→∞

sup
1

n

(
E

n∏
t=1

|λt|δ
)−1

E

(
n∏
t=1

|λt|δ log

n∏
t=1

|λt|
)
|δ=0

= lim
n→∞

sup
1

n
E log

n∏
t=1

|λt|

For large n, as {λt}t converges to its stationary distribution ω, we have

Λ′(0) = lim
n→∞

sup
1

n
logE

n∏
t=1

|λt| = Eω (log |λ∞|)

From equations (18)-(20) we have Eω |λ∞| < 1. Therefore Λ′(0) = Eω log (|λ∞|) < 0, and

there exists δ0 > 0 such that Λ(δ0) < 0.

(ii) There exists a δ1 such that Λ(δ1) > 0. As in (i) above, we can evaluate, using Jensen’s

can show that for a large enough, P (d ∈ D, ρd+ ε ∈ D,λ > 0) = 1 cannot hold. Since

λ = 1− g (d0)
2

+ gβd0 (ρd0 + ε) = 1− g
(
d20
)

(1− ρβ) + gβd0ε,

we attain the smallest possible λ if we set d0 = a
1−ρ and ε = −a, or equivalently d0 = −a

1−ρ and ε = a. Then

λ ≥ 0 with probability 1 if and only if a ≤ ā = (1−ρ)
(g(1+β(1−2ρ)))0.5 . If a > ā with positive probability, then

P (λ < 0) > 0, which contradicts P (d ∈ D−1, ρd+ ε ∈ D−1, λ > 0) = 1. Note also that λ = 1 for d0 = 0 so
it also follows that the P (λ > 0) > 0.
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inequality,

Λ(δ) = lim
n→∞

sup
1

n
logE

n∏
t=1

|λt|δ = lim
n→∞

sup
1

n
logE[exp(δSn)] (23)

= lim
n→∞

sup log (E[exp(δSn)])
1
n ≥ lim

n→∞
sup log

(
E[exp(δ

Sn
n

)]

)
(24)

so that at the stationary distribution of {λt}t∈N

Λ(δ) ≥ logEω[exp(δ log |λ∞|)] = log

∫
λ

[exp(δ log |λ∞|)]dω (λ) . (25)

As δ → ∞ for log |λ| < 0 we have [exp(δ log |λt|)] → 0, but if Pω (log |λ| > 0) > 0 at

the stationary distribution of {λt}t, then limδ→∞ Λ(δ) = log
∫
λ
[exp(δ log |λt|)]dω (λ) → ∞.

Therefore if we can show that Pω (log |λt| > 0) > 0, it follows that there exists a δ1 for which

Λ(δ1) > 0. Since Λ(δ) is convex12, it follows that there exists a unique κ for which Λ(κ) = 0.

To show that Pω (|λ| > 1) > 0, define A =
{
d ∈

(
0, µaβ

1−ρβ

)}
, µ ∈ (0, 1) so that µaβ

1−ρβ <
a
1−ρ .

At its stationary distribution {dt}t∈N is uniformly recurrent over
[
−a
1−ρ ,

a
1−ρ

]
which implies

that Pπ (dt−1 ∈ A) > 0. We have λt = 1−βgdt−1
(
β−1(1− ρβ)dt−1 − εt

)
, so for dt−1 ∈ A and

εt ∈ (µa, a], it follows that λt > 1. Thus Pω (|λt| > 1) = Pπ (dt−1 ∈ At)P (εt ∈ (µa, a]) > 0.

(iii) The non-arithmeticity assumption required by Roitershtein (2007) (p. 574, (A7))

holds13: There does not exist an α > 0 and a function G : R× {−1, 1} → R such that

P (log |λt| ∈ G (dt−1, η)−G (dt, η · sign (λt)) + αN) = 1. (26)

12This follows since the moments of nonnegative random variables are log convex (in δ); see Loeve (1977,
p. 158).
13See also Alsmeyer (1997). In other settings {λt}t may contain additional iid noise independent of the

Markov Process {dt}t, in which case the non-aritmeticity is much more easily satisfied.
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We have

log |λt| = log
∣∣(1− gd2t−1 + gβdtdt−1)

∣∣ = log
∣∣(1− (1− ρβ)gd2t−1 + βgdt−1εt

)∣∣ = F (dt−1, εt) ,

(27)

which contains the cross-partial term dtdt−1. Therefore in general F (dt−1, εt) cannot be

represented in separable form as R (dt−1, η)−R (dt, η) + αN ∀ (dt−1, dt) where dt = ρdt−1 +

εt. Suppose to the contrary that there is a small rectangle [D,D∗] × [E,E∗] in the space

of (d, ε), over which λ remains of constant sign, say positive, such that F (d, ε) = R(d) −

R(ρd+ ε), d is in the interior of [D,D∗], and ε is in the interior of [E,E∗], up to a constant

from the discrete set αN, which we can ignore for variations in [D,D∗] × [E,E∗] that are

small enough. Now fix d, d′ close to one another in the interior of [D,D∗]. We must have,

for ε ∈ [E + ρ|d− d′|, E∗ − ρ|d− d′|], that

F (d, ε)−R(d) = −R(ρd+ ε) = −R(ρd′ + ε+ ρ(d− d′)) (28)

= F (d′, ε+ ρ(d− d′))−R(d′), (29)

or F (d, ε) − F (d′, ε + ρ(d − d′)) = R(d) − R(d′). However the latter cannot hold since the

cross-partial term dt−1εt in F (dt−1, εt) = 1− (1− ρβ)gd2t−1 + βgdt−1εt is non-zero except of

a set of zero measure where d or ε are zero.14 ,15

(iv) To show that K1 (d0) = limτ→∞ τκP (φ > τ |d0) and K−1 (d0) = limτ→∞ τκP (φ <

−τ |d0) are not both zero, we have to assure, since ψt and λt are not assumed to be inde-

14We thank Tomasz Sadzik for suggesting this proof for (iii).
15We can avoid possible degeneracies that may occur if λt and ψt have a specific form of dependence so

that
P (φ|λtφ+ ψt = φ) = 1.
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pendent, that φ is not a deterministic function of the initial d−1. We invoke (a) and (c) of

Proposition 8.1 in Roitersthein (2007): Condition 1.6, π (K1 (d0) +K−1 (d0) = 0) = 1, holds

if and only if there exists there exists a measurable function Γ :
[
−a
1−ρ ,

a
1−ρ

]
→ R such that

P (ψ0 + λ0Γ (ρd−1 + ε0) = Γ (d−1)) = 1.

However

ψ0 + λ0Γ (ρd−1 + ε0) = θgd−1ρd−1 + θgd−1ε0 +
(
1− gd2−1 + gβd−1 (ρd−1 + ε0)

)
Γ (ρd−1 + ε0)

is a random variable that depends on ε0 while Γ (d−1) is a constant, so

P (ψ0 + λ0Γ (ρd−1 + ε0) = Γ (d−1)) < 1

and Condition 1.6 in Roitersthein (2007) cannot hold. Then from Roitersthein (2007) Propo-

sition 1.8 (c), K1 (d0) and K−1 (d0) are not both zero.16

The Proposition above characterizes the tail of the stationary distribution of φ as a

Note

φ =
ψt

1− λt
=

θρgd2t + θgdtεt+1
1− (1− ρβ)gd2t + βgdtεt+1

=
θ

β

βρgd2t + gbgdtεt+1
1− (1− ρβ)gd2t + βgdtεt+1

Differentiating wrt εt, the right side is zero only if βρgd2t = 1 − (1 − ρβ)gd2t , or βρg = 1 − g + gρβ. This
holds only if g = 1. So in general, for any dt, there exists a constant φ such that P (φ|λtφ+ ψt = φ) = 1
only if g = 1, which we ruled out by assumption.
16In models where the driving stochastic process is iid or is a finite stationary Markov chain, the exponent

κ can be analytically derived using the results of Kesten (1973) and Saporta (2005 ). In the case where λ
is iid in equation (13), κ solves E (λκ) = 1. In the finite markov chain case, under appropriate assumptions,
κ solves ς (PAκ) = 1 where P is the transition matrix, A is a diagonal matrix of the states of the Markov
chain assumed to be non-negative, and ς (PAκ) is the dominant root of PAκ.
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power tail with exponent κ. It follows that the distribution of φ has moments only up to

the highest integer less than κ, and is a ‘fat tailed’distribution rather than a Normal. The

results are driven by the fact that the stationary distribution of {λt}t∈N has a mean less

than one, which tends to induce a contraction towards zero, but also has support above 1

with positive probability, which tends to generate divergence towards infinity. The stationary

distribution arises out of a balance between these two forces. Then large deviations as strings

of realizations of λt above one, even though they may be rare events, can produce fat tails.

In the asset price model φ relates the dividends to assets prices. Under adaptive learning,

the results above show how the probability distribution of large deviations, or ‘escapes’of φ

from its REE value is characterized by a fat tailed distribution, and will occur with higher

likelihood than under a Normal.17

We now briefly discuss the case where {dt}t is an MA(1) process. Proposition 1 still

applies and we obtain similar results to the AR(1) case. Let

dt = εt + ζεt−1, |ζ| < 1, t = 1, 2... (30)

Then at its stationary distribution dt ∈ [−a (1 + ζ) , a (1 + ζ)]. Under the PLM

pt = φ0tεt + φ1tεt−1, (31)

17In the model of Cho et al. (2002), the monetary authority has a misspecified Philips curve and sets
inflation policy to optimize a quadratic target. The learning algorithm using a constant gain however is not
linear in the recursively estimated parameters (the natural rate and the slope of the Philips curve).
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after observing εt at time t but not φ1t+1, the agents expect

Et(pt+1) = φ0tEt(εt+1) + φ1tEt(εt) = φ1tεt (32)

Then the ALM is

pt = βφ1tεt + γ(εt + ζεt−1) = [βφ1t + γ] εt + γζεt−1

and the REE is given by

φ0 = γ(1 + βζ) (33)

φ1 = γζ. (34)

Under the learning algorithm in equation (18) we obtain

φ1t = φ1t−1 + gdt−1(pt − φ1t−1dt−1) (35)

φ1t+1 = λt+1φ1t + ψt+1 (36)

λt+1 = 1− gd2t + gβεt+1dt (37)

ψt+1 = gγεt+1dt + γζgdtεt (38)

It is straightforward to show that at the stationary distribution of {λt}t, E (λt) < 1, and

that P (λt > 1) > 0. It is also easy to check that λt > 0 if a < ((1 + ζ)(1 + ζ − β))−0.5. With

the latter restriction, it is easy to check that the other conditions in the proof of Proposition
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1 are satisfied.

4. Empirics

We first check whether real world data on price-dividend ratios have fat tails. We use a

maximum likelihood procedure following Clauset et al. (2009) to estimate κ associated with

Pt/Dt for both S&P and CRSP dividend series plotted in Figures 1 and 2 above. The results

provided in Table 1 below show fairly small values of κ for both series, suggesting that only

the first few moments of Pt/Dt exist irrespective of the data source. Table 1 also reports the

estimated persistence ρ under an AR(1) specification for the two linearly detrended dividends

series, alongside the average price-dividends ratio (Pt/Dt) and its standard deviation.

Table 1. Data Characteristics

Monthly S & P 500 Quarterly CRSP

κ̂ 3.5753 6.9779

s.e.(κ̂) 0.1620 1.2008

ρ̂ 0.9966 0.9747

s.e.(ρ̂) 0.0021 0.0150

Mean (Pt/Dt) 26.5901 26.0271

Std. Dev (Pt/Dt) 13.7530 8.7663

Next we feed the actual S&P and CRSP dividend series into our learning model and

estimate the parameters, ϑ = [g γ β ρ] by minimizing the squared difference between the

empirical κ’s reported in Table 1 and those generated by our model. That is, we implement
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a simulated minimum distance method to estimate ϑ as18

min
ϑ

[κ− κ(ϑ)]2. (39)

The minimization procedure proceeds as follows. For candidate parameterizations of ϑ we

employ the S&P or CRSP series dividends dt to calculate φt as per (13)-(15). The ALM

(9) then produces a corresponding pt series which in turn delivers a price-dividend ratio

Pt/Dt. We then estimate the κ associated with the ‘simulated’Pt/Dt, using the methods

of Clauset et al. (2009) to produce the κ(ϑ). The minimization procedure searches over

the parameter space of ϑ to implement (39). Table 2 below reports the estimates (ϑ̂) and

associated standard errors (s.e.(ϑ̂)) for each of the the S&P or CRSP dividend series, as well

as the κ associated with the estimated parameters.19

Table 2. Parameter Estimates

Monthly S & P 500 Quarterly CRSP

Parameter ϑ̂ s.e.(ϑ̂) ϑ̂ s.e.(ϑ̂)

g 0.4750 1.7273 0.6708 0.5281

γ 2.6504 0.6244 2.3720 2.2971

β 0.9816 24.3008 0.9801 0.5099

ρ 0.9792 0.0033 0.9788 7.4603

Associated κ 4.2376 5.9676

18Minimization was conducted using a simplex method and standard errors were computed using a stan-
dard inverse Hessian method.
19Starting values for the minimization procedure were ϑ0 = [0.5 2.5 0.95 0.95].
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The point estimates of g are plausible, although the standard errors are quite large in the

case of the Monthly S & P 500 dataset. Carceles-Poveda and Giannitsaraou (2008) discuss

plausible values of g, where under constant gains the decay in weights on past observations

dating i periods back is given by (1− g)i−1. For example, for quarterly observations a

g = 0.46 corresponds to 15 years of learning, with periods beyond 15 years having practically

zero weight. If we want learning to go back 20 years, then g becomes 0.37. By contrast,

looking at standard deviations of the price-dividend ratios for the Lucas asset pricing model,

Carceles-Poveda and Giannitsaraou (2008) report that the standard deviations generated by

the rational expectations or the learning models are smaller than the standard deviations in

the actual data by factors of about 20 to 50.20

5. Model Simulations and Comparative Statics

To explore how κ is related to the underlying parameters of our model, we can simulate

the learning algorithm that updates φ, and then estimate κ using the tail index estimator

employed in the previous section. We can then explore how our estimate of κ from simulated

series varies as we vary parameters. We simulate 100 series (each of length 1680 as in the

S&P series) for φt under the AR(1) assumption for dividends with iid uniform shocks. We

then feed the simulated series into the model to produce {pt} and {Pt/Dt}. We estimate κ

for each simulation and produce an average κ.

Escapes or large deviations in prices will take place when sequences of large shocks to

20Note that our estimates match the parameter values used by Carceles-Poveda and Giannitsaraou (2008)
in their simulations except for γ, the CRRA parameter, which they set equal to 1 while we have it at γ = 2.5.
Note also that for the simulations of Figure 3 in the next section, κ drops dramatically with γ.
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dividends throw off the learning process from the rational expectations equilibrium. Such

escapes will be more likely if dividend shocks can produce values of λt above 1, as we can

see from equations (35-38). We expect lower κ, or fatter tails, as the support of λt that lies

above 1 gets larger.

In the AR(1) case for dividends we have λt+1 = 1 − (1 − ρβ)gd2t + βgdtεt+1. Given the

stationary distribution of {dt}t and that of {εt}t, the support of λt above 1 unambiguously

increases if β increases. Increasing ρ however can have an ambiguous effect: while the term

(1 − βρ) declines and tends to raise λt, the support of the stationary distribution of {dt}t

gets bigger with higher ρ. This increases (1 − ρβ)gd2t and reduces the support of λ that is

above 1 for large realizations of d2t . Finally in our simulations we expect that decreasing g

tends to shrink the support of λt that is above 1 so that κ increases with g: as the gain

parameter decreases, the tails of the stationary distribution of {φt} get thinner.21

Given the parameter estimates in the previous section, we use the baseline parameter-

ization, (ρ, g, β, γ) = (0.98, 0.5, 0.95, 2.5). The restriction given by equation (18) implies a

maximum value of a = â = 2.6243, so for the baseline parametrization we set the baseline

value of a = 0.225. We find that the average κ is 4.9172, the average (Pt/Dt) is 20.4989 and

the average Std. Dev (Pt/Dt) is 12.6142. We then vary each element of (ρ, g, β, γ, α) while

keeping the others at their baseline values. The results of varying each parameter around

the baseline values are plotted in Figures 3 and 4 below.22

21This of course is in accord with the Theorem 7.9 in Evans and Honkapohja (2001). As the gain parameter
g → 0 and tg →∞, {φgt − κ} /g0.5 converges to a Gaussian variable where κ is the globally stable point of
the associated ODE describing the mean dynamics. More generally, as g → 0, the estimated coeffi cient under
learning with gain parameter g, φgt , converges in probability (but not uniformly) to κ for t→∞. However,
there will always exist arbitrarily large values of t with φgt taking values remote from κ (See Benveniste,
Métivier and Priouret (1980), pp. 42-45). Note however that our characterization of the tail of the stationary
distribution of {φt}t and of κ is obtained for fixed g > 0.
22For all parameter values used to produce Tables 3 and 4, the restriction given by (18) is easily satisfied.
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Figure 3. Simulation Results.
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Figure 4. Simulation Results (cont’d.).

The simulation results confirm the notion that the average κ’s should decline with β, γ
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and a. The results with respect to ρ are non-monotonic, as expected. Figure 4 plots the

results of the critical learning parameter g; it clearly demonstrates that as the learning gain

falls, that is, the horizon for learning increases, average κ rises. However, for empirically

plausible values of g the average κ is small. In summary, constant gains stochastic gradient

learning leads to large deviations of (Pt/Dt) from its rational expectations value in response

to rare large shocks in dividends.

6. Conclusion

An important and growing literature replaces expectations in dynamic stochastic models

not with realizations and unforecastable errors, but with regressions where agents ‘learn’the

rational expectations equilibria. When such agents employ constant gain learning algorithms

that put heavier emphasis on recent observations, escape dynamics can propel estimated

coeffi cients away from the REE values. In an asset pricing framework ‘bubbles,’ or asset

price to dividend ratios that exhibit large deviations from their REE values, can occur with a

frequency associated with a fat tailed power law. The techniques used in our paper generalize

to higher dimensions and to finite state Markov chains under certain assumptions,23 and can

be applied to other more general economic models.
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7. Data Appendix

1. Monthly S&P 500 Dataset

(a) Download monthly data from http://www.econ.yale.edu/~shiller/data.htm, the

Excel file is titled ie_data.xls

(b) The following monthly time series are extracted/constructed for 1871.1 through

2010.12 from the above Excel file (note that t = 1, . . . T where T = 2010.12):

i. Extract S & P Comp (P̃ (t))

ii. Extract Dividend (D̃(t))

iii. Extract Consumer Price Index (CPI(t))

iv. Construct Real Price (P (t)) as P (t) = [P̃ (t)× CPI(T )]/CPI(t)

v. Construct Real Dividend (D(t)) as D(t) = [D̃(t)× CPI(T )]/CPI(t)

vi. Construct the Price to Dividends Ratio (ratio) as P (t)/D(t)

2. Quarterly CRSP Dataset

26



(a) Download the quarterly data from http://scholar.harvard.edu/campbell/data, where

the particular data being used is associated with “Replication Data for: Consump-

tion Based Asset Pricing”. The relevant file is titled USAQE.ASC note that this

is effectively a CRSP dataset with the relevant variables being VWRETD and

VWRETX. The text below is an extract from the explanations for this dataset

on the above website.

(b) The following quarterly time series are extracted/constructed for 1926.1 through

1998.4 from the above dataset (note that t = 1, . . . T where T = 1998.4):

i. Extract Col. 2: P̃ (t). For each month, the price index is calculated as

P̃ (t) = (VWRETX(t) + 1)× P̃ (t− 1). (Note that time t in this equation is

in months.) The price index for a quarter, as reported in this column, is the

price index for the last month of the quarter. The original data, which goes

up to 1996.4 was not altered. The new data, which goes up to 1998.4, was

created as described here starting from 1997.1.

ii. Extract Col. 3: D̃(t). Dividend in local currency, calculated as follows. The

dividend yield for each month is calculated as D̃Y (t) = [1+VWRETD(t)]/[1+

VWRETX(t)]−1. Note that if the return index is calculated from VWRETD

as above, then this formula agrees with the formula for the dividend yield

given earlier. As before, the dividend for each month is calculated as D̃(t) =

D̃Y (t)× P̃ (t). The dividend for a quarter, as reported in this column, is the

sum of the dividends for the three months comprising the quarter.

iii. Extract the Consumer Price Index from Shiller’s Data (CPI(t)) which is
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monthly and compute a quarterly average. Use that quarterly average for

CPI(t) in Campbell’s data.

iv. Construct Real Price (P (t)) as P (t) = [P̃ (t)× CPI(T )]/CPI(t)

v. Construct Real Dividend (D(t)) as [D̃(t)× CPI(T )]/CPI(t) and then take

running sums to get D(t)

vi. Construct the Price to Dividends Ratio (ratio) as P (t)/D(t)
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