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Abstract

This paper estimates climate sensitivity of electricity demand by examining the

impact of apparent temperature on the electricity demand of Delhi using daily data for

the period 2000-2009. A semiparametric variable coe¢ cient model has been adopted to

investigate the non linear time varying impact of climatic factors on electricity demand.

Electricity demand is a U-shaped function of temperature. I �nd that that the ris-

ing part of the temperature-electricity curve is becoming more pronounced over time

implying increasing cooling demand per unit increase in summer temperatures. In-

creasing temperature dependence of cooling demand shifts the temperature-electricity

curve of Delhi leftwards. Further, adverse e¤ects of climate change will be asymmetri-

cally distributed in di¤erent seasons resulting in serious disequilibrium in hot months

in the future.

1 Introduction

A growing consensus regarding the plausibility of increases in the Earth�s mean temperature

has stimulated attempts to assess the possible impacts of such changes on di¤erent economic

sectors. The goal of this paper is to quantify how climate change will a¤ect electricity

demand in the continental climate of Delhi (28030
0
N), one of the biggest cities in India. I

use a within-year identi�cation strategy to estimate the e¤ects of apparent temperature on

daily electricity demand over a 10-year period (2000-2010). The estimated model is used

to forecast the impact of 10C, 20C and 30C increase in apparent temperature on electricity

demand of Delhi in 2015 and 2021.
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The literature highlights a U-shaped non-linear temperature-electricity curve (TEC).

Starting from low levels, rising temperatures �rst decrease electricity demand due to lower

heating demand in cold weather, and after the level of temperature exceeds the minimum

electricity demand threshold, rising temperatures increase electricity demand due to higher

cooling demand in hot weather. The expected net e¤ect of climate change on electricity

demand is therefore ambiguous prima facie. Previous studies have shown that the heating

e¤ect dominates the cooling e¤ect in cold countries such as Sweden. As a result, climate

warming would result in a decline in electricity demand in these countries. On the other

hand, the reverse has been predicted for Germany with the cooling e¤ect dominating the

heating e¤ect. This suggests that much warmer countries such as India are also likely to

experience a net increase in their electricity demand due to climate warming. However, we

do not know the size and nature of climate warming e¤ects on electricity demand for India.

Such quanti�cation is attempted in this paper.

The key contribution of this paper is that it recognizes and addresses two special problems

in the estimation of the TEC for developing countries. First, with rapid changes in economic

structure in future, the relation is likely to be shifting over time. In this paper, I address

this issue by estimating a semiparametric variable coe¢ cient model that allows temperature-

electricity relation to vary over time. Like in Engle et al. (1986), the temperature-electricity

relation is modeled nonparametrically using cubic regression splines so that weather extremes

can have relatively larger impacts on electricity demand while the other predictor variables

enter the regression linearly. The innovation of this paper is to allow the nonparametric

temperature-electricity relation to vary across years by interacting the non-parametric com-

ponent with year dummies.

Second, black-outs or power-outages are common in many developing countries. This

means that observed electricity use is typically less than the notional electricity demand

(the object of interest). I adjust daily electricity consumption with daily shoratge data to

obtain unrestricted demand of Delhi.

It is important to highlight the limitations of this study. First, this study takes a broad

perspective, estimating the average TEC for the aggregate electricity demand of Delhi. The

temperature-electricity sensitivities may di¤er across sectors signi�cantly. In the residential

and commercial sector, a large chunk of this demand is due to space conditioning and water

heating that is highly sensitive to temperature. On the other hand, in agriculture and indus-

trial sectors, electricity demand is determined by the level of economic activity and is largely

temperature insensitive. Given data limitations it is not possible to obtain daily electricity

demand data of di¤erent sectors and an aggregated approach has been adopted. Moreover,

in Delhi (with 97.5% urban population), residential and commercial sector together account
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for about 80% of the total electricity demand.

Second, electricity demand can be modeled structurally, where electricity consumption is

chosen to maximize the expected utility of the households and pro�ts of the �rms. In order

to estimate such a model, I require data on prices, utilization and e¢ ciency of electricity

using equipment at the household and �rm level over time. However, these data do not exist,

and a structural model is hard to implement. Thus, like much of the literature this paper

also works with a reduced form model.

There are three results from my analyses that have important implications for electricity-

climate policy: �rst, it is observed that the rising part of the TEC is becoming more pro-

nounced over time implying increasing cooling demand per unit increase in summer tem-

peratures. For instance a 10C increase in temperature at 300C increased electricity demand

by 3.2 Million kilowatt-hours (MKWH) in 2009 as compared to only 1.2 MKWH in 2000.

On the other hand, a 10C increase in temperature at 150C decreased electricity demand by

0.8 MKWH in 2009 as compared to 0.7 MKWH in 2000. Second, increasing temperature

dependence of cooling demand shifts the temperature-electricity curve of Delhi leftwards. In

particular, minimum temperature threshold (TT) shifts from about 20-230C in 2000-2005

to about 17-210C in 2006-2009. Third, my study suggests that adverse e¤ects of climate

change will be asymmetrically distributed in di¤erent seasons. Higher temperature increases

electricity demand in summers (led by April and May), monsoon (led by September) and

post monsoons (led by October) and decreases demand in winters (led by January). Since,

electricity saved in winters cannot be stored and used in summers, global warming could

result in serious disequilibrium in hot months in the future.

The rest of the paper is organized as follows. Section 2 reviews existing studies and

models that assess the impact of temperature on electricity demand. Section 3 discusses

the estimation strategy. Section 4 describes the data sources and summary statistics of the

major variables. Section 5 discusses the results of the empirical model. Section 6 forecasts

future electricity demand impacts under three di¤erent climate scenarios, and evaluates the

estimated model. Section 7 concludes the paper.

2 Understanding time varying TEC

Consider a hypothetical temperature-electricity curve (TEC) as represented in Fig.1. In this

U-shaped curve, the minimum point is called the threshold. TEC is in�uenced by a large

number of structural socio-economic developments, such as the growth in incomes, extent of

electri�cation, energy e¢ ciency improvements, cultural habits, and prevailing climatic con-

ditions. Hekkenberg et al. (2009) argues that. over time temporal dynamics could in�uence
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the slopes as well as the threshold temperature of the TEC. For instance, increased internal

heat gains in commercial buildings from increasing use of computers or decreasing tolerance

for heat, leads to a general shift towards lower heating demand and higher cooling demand.

Neglecting a downwards shifting threshold temperature results in the underestimation of

the electricity demand resulting from a temperature increase. On the other hand, ignor-

ing an upward shifting threshold temperature results in the overestimation of the electricity

demand.

With increasing electricity access and rising income level, the number of households

owning temperature control devices (such as air conditioners and air coolers) is increasing

very rapidly in India. According to National Sample Survey Organization surveys (50th,

61st, 66th) the number of households owning an air cooler or an air conditioner doubled

from 32.9% in 1993 to 60% in 2009 in urban Delhi (which represents 97.5% of total Delhi

population as per census 2011) and increased from 20.6% to 26% in rural Delhi. In the case

of refrigerators, the upward trend was even more impressive; saturation went from 29% in

1993 to 61.3% in 2009 in urban Delhi and from 17.7% to 38% in rural areas.

As per 61st (2004-05) NSSO survey ( which provides ownership of air coolers and air

conditioners separately unlike other rounds) only 9% have access to air conditioners and 58%

to air coolers in Urban Delhi. With growing incomes there is a very high probability that

total air conditioning electricity demand could increase substantially. Further, with higher

a¤ordability sensitivity of households to higher temperatures is likely to increase which may

further shift the location of the minimum point of the TEC (representing balance temperature

with minimum comfort related heating and cooling demand). For instance, higher income

households may want to switch on their air conditioners when average temperature is 190C

in 2015 as compared to 220C in 2000.

According to a study (Kothawale et al.(2010)) done at IITM temperatures (mean, max-

imum and minimum) increased by about 0.2�C per decade for the period 1971�2007, with

a much steeper increase in minimum temperature than maximum temperature. On a sea-

sonal scale, signi�cant warming trends in mean temperature were observed in two seasons

characterized by high humidity-monsoon and post monsoon. Increasing night temperatures

in these humid seasons could have signini�cant implications for the usage of air conditioners

and thus electricity demand. As market saturation of air conditioners is currently quite low

the response of its di¤usion (with growing incomes) to long term increase in the number of

hot days and extreme temperature events may play an important role in determining how

electricity consumption on the whole will respond to global warming.
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3 Relevant Literature

The simplest way to estimate a U-shaped TEC is to use a regression model that is quadratic

in temperature. However, such a model assumes a symmetric relationship in the sense

that at any point in the curve, upward and downward changes in temperature of equal

magnitude would lead to identical changes in electricity demand. This is an extremely strong

assumption, and many past studies have shown that the sensitivity of electricity demand to

temperature changes depends on initial temperature levels (Valor et al. (2001), Mirasgedis

et al. (2004)).

Nonetheless, a linear parametric model can still be used to estimate a non-linear relation

by using the degree day approach (Douglas (1981), Al Zayer (1996), Sailor and Munoz

(1997), Valor et al. (2001), Sailor (2001), Pardo et al. (2002), Mirasgedis et al. (2007)).

This approach de�nes heating degree days (HDD) and cooling degree days (CDD). HDD and

CDD quantify di¤erence between the daily mean temperatures above or below a threshold

temperature ( 180C is used as a common threshold temperature), respectively. The HDD

index is calculated on the basis of the relation: HDD=max (0,18 -Td), where Td is the

average daily air temperature on day d. The CDD index is calculated on the basis of

the relation: CDD=max (0,Td-18 ). These studies estimated the TEC with ordinary least

squares regression model using annual, monthly or daily data in the following manner:

etd = �0 + �1trend+ �2CDDt + �3HDDt + �4CDDt�1 + �5HDDt�1 +
11X
k=1

�kMONTHkt +
6X
b=1

'bWD
b
td + �6HOLIDAYt + �7Xt + "t

where e is the demand for electricity on day d of year t, WD is a set of week data dummies,

MONTH is a set of month dummies, HOLIDAY is dummy for holidays. X includes socio-

economic factors, such as, income and population, and " is the residual term. Although this

approach estimates separate linear relationships of electricity demand due to heating and

cooling demand, it relies on an arbitrary choice of threshold value (180C in most cases).

More recent papers such as Carcedo and Otero (2005) and Bessec and Fouquau (2008) es-

timated the above non-linear relationship by obtaining these thresholds endogenously rather

than choosing it a priori using di¤erent types of non-linear threshold regression models.

These studies estimated the above relationship in the following manner:
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et = �0+�1trend+�2(trend)
2+�3(trend)

3+

6X
b=1

'bWDbtd+�4Ht+�5Xt+�6g(Tt; ; c)+"t

where g(Tt; ; c) is a function of the temperature Tt that allows a transition from a cold to a

warm regime. In the literature, the transition function has been speci�ed in di¤erent ways

such as piece-wise linear or as a smooth function (exponential or logistic). The assumption

of particular functional forms for the transition function is a limitation of this literature.

Non-parametric methods, also known as smoothing models, have therefore been used to

achieve greater �exibility in functional form. To estimate the functional form from data, such

models replace global estimates of the electricity-temperature function with local estimates.

For local estimators, a regression is estimated between electricity demand (E) and temper-

ature (T ) for some restricted range of E and T . This local estimate of the dependency is

repeated across the range of E and T . This series of local estimates is then aggregated to

summarize the relationship between the two variables. This resulting nonparametric esti-

mate does not impose a particular functional form on the relationship between E and T ,

and thus minimizes speci�cation errors (Powell, 1994; Keele, 2008). The estimates are also

consistent under more general conditions than are parametric estimates (Wadud et al., 2010;

Yatchew, 2003). Both loess and splines are common nonparametric regression models that

rely on local estimates to estimate functional forms from data. Engle et al. (1986) esti-

mated impact of weather on electricity sales of four US utilities with smoothing splines using

monthly data for 7-8 years. The semiparametric partial linear regression model estimated

by them is given by

E = Z + f(T )+"

In the above regression, temperature (T ) is assumed to a¤ect electricity sales non-linearly

by an unknown cubic smoothing spline function f . However, other important variables (Z)

such as income and prices enter linearly in the model. Semiparametric model consists of

a parametric and a nonparametric part at the same time. A fully nonparametric model is

computationally complex in presence of numerous predictors. Some of the papers using semi-

parametric regressions to model electricity demand-temperature relationship are Hyndman

and Fan (2008), Harvey and Koopman (1993) and Henley & Peirson (1997).

The only study that estimates the temperature-electricity relation for India is Ramesh

et al. (1988) that estimated the impact of weather variables on peak electricity load for

Delhi using ordinary least squares parametric regression separately for summers and winters,
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during the period 1980-1985. It should be noted that despite the fact that the relationship

between electricity demand and climatic conditions in Delhi was investigated in the past

for peak demand forecasting, this is the �rst study that focuses on non-linear time varying

impact of climate on electricity demand using semiparametric variable coe¢ cient model.

4 Estimation strategy

4.1 The reduced-form model

I estimate four models. The �rst model is based on simple linear regression. The second

speci�es a semiparametric additive model using unpenalized splines and the third estimates a

semiparametric additive model with penalized splines. The fourth model estimates a variable

coe¢ cient model, where the smooth of temperature index is interacted with year dummies

to capture the time varying impact of temperature on electricity demand.

Model 1 estimates the nonlinear relationship between electricity demand (E) and appar-

ent temperature (AT ) by including global cubic polynomial in AT in the regression equation.

This model, takes the following form:

etd = �0+�1MAJHtd+�2MINHtd+�3RAINtd+
9X
t=1

�tyt+
6X
b=1

'bWD
b
td+�4ATtd+�5AT

2
td+�6AT

3
td+"td

(1)

where e is electricity demand on day d of year t, MAJH is a dummy variable that takes

value one for the major holiday, and zero otherwise, MINH is a dummy variable that takes

value one for the minor holiday, and zero otherwise,1 RAIN represents daily rainfall in mil-

limeters(mm). WD is the set of six day dummies to describe weekly periodicity of electricity

demand (Wednesday is taken as the reference day). y is a set of nine year dummies (with

2000 as base year) to identify deterministic long term trend connected with the impact of

demographic, technological, and socio-economic factors such as prices, urbanization, grow-

ing number of air conditioners and coolers on the electricity demand. The inclusion of year

�xed e¤ects accounts for any �xed di¤erences across years that may be correlated with all

unobservable factors. In matrix notation (1) can be rewriten in the following form

E = Z +T� + " = E = X� + " (2)

1A major holiday is one that is declared to be a holiday for all government employees (on account of
national events or religious events). In addition, government employees are entitled to select 2 additional
days of holidays from a list of holidays for minor religious festivals.
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where, E is an n � 1 vector of electricity demands, " is an n � 1 vector of errors, and Z is
an n � p1 matrix of p1 non-temperature predictors,  is an p1 � 1 vector of coe¢ cients of
predictors in Z, T is an n�p2 matrix of AT temperature predictors, � is an p2�1 vector of
coe¢ cients of predictors inT,X is an n�p (= p1+p2)matrix of all predictors and � is an p�1
vector of coe¢ cients of X predictors. The least squares and maximum likelihood estimator

of � is b�= (XTX)�1XTE and Hat matrix H is an n� n matrix; such that bE = HE. We
can obtain H = X(XTX)�1XT and show that trace(H) = trace(X(XTX)�1XT ) = tr(Ip) =

p =estimated degrees of freedom (EDF) as measured by number of parameters in the model.

This model assumes that the relationship between E and AT is strictly cubic regardless of

whether this is true or not. When it is not , the power transformation can overcorrect the

nonlinearity between E and AT and thus, power transformations often cannot adequately

capture the nonlinear relationship in the data. Model ll estimates a semiparametric model

given by

E = Z + f(AT ) + " (3)

Here, f(AT ) = (f(AT1); ::::f(ATn))0 is an n� 1 vector, where f(AT ) is an unknown smooth
function i.e continuous and su¢ ciently di¤erentiable function of AT . In this paper, I estimate

f(AT ) by cubic regression spline using cardinal basis functions. Wood (2006) and Lancaster

and Salkauskas (1986) gives full details. Such basis functions parameterize the spline in

terms of its values at the knots and thus have advantages in terms of interpretability of

the parameters along with good mathematical properties and numerical stability. It can be

represented as a linear combination of the basis functions of regression splines. For instance,

f(ATi) =
NX
j=1

bj(ATi)�j = B(ATi)� (4)

where bj(AT ) is the basis at the jth point (commonly known as a knot), B(AT ) is the model

matrix containing N cubic spline basis for f(AT ) and � is the corresponding regression

parameter vector. Thus (3) becomes

E = Z +B(AT )� + " = X� + ": (5)

where X is an n � (p1 + (N � 1)) model matrix. One degree of freedom is lost due to

identi�cation constraint on f(AT ) i.e
nX
i=1

f(ATi) = 0: Based on Alkaike Information Criteria,

I select twelve knots (N = 12 ) or eleven basis functions. Given knots, this model becomes

a fully parametric model with an expanded model matrix and estimate predictor variable
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coe¢ cients by minimizing k E�X� k2. The key limitation of this model is that the analyst
must select the number of knots, and the location of these knots. Number of knots directly

controls the degrees of freedom of a smooth term2. To deal with knot selection problem, I

adopt penalized cubic spline approach. These models construct a penalty on f() which will

be large if f is very wiggly and small if it is nearly �at. I estimate model III by adding a

quadratic penalty as ��TP� and the following minimization problem is solved

k E�X� k2 +��TP� (6)

where P is the penalty matrix whose coe¢ cients depend on the second derivatives of f , a

measure used commonly to represent the roughness of the smooth terms (see appendix). �

is the smoothing parameter that controls the trade-o¤ between model �t and model smooth-

ness. For � ! 0 the minimization gives a wiggly function whereas letting � ! 1 gives a

linear �t. The optimal � is selected by cross validation. It works as follows: for a given

value of � , we omit the ith observation from data and �t the penalized spline to this slightly

truncated data set. I denote this prediction of ei as bei�1. The model prediction errors are cal-
culated, and this is repeated as each observation is droped in turn. The cross validation score

is calculated as the average of the individual model prediction errors. One should choose the

value of � with the smallest cross-validation score. In practical applications one replaces the

cross validation (CV) criteria by the generalized cross validation (GCV) as the CV is com-

putationally very intensive and has other problems (Woods, 2006). Like adjusted R-square

GCV adjusts the average model prediction errors with the degrees of freedom (number of

parameters estimated in the model). For penalized spline models, the GCV score is

GCV (�) =

nX
i=1

[ei � bei]2 n
[n� tr(H�)]2

: (7)

Minimizing GCV (�) with respect to � gives an estimate b�:Given � (6) is minimized w.r.t
�. We get b� = �XTX+ �P

��1
XTE and hat matrix H� = X

�
XTX+ �P

��1
XT :The trace

of H� , as in linear regression, represents the degrees of freedom in the spline model and is

nearly equivalent to the number of parameters in the spline �t. Due to shrinkage from the

penalty term, the degrees of freedom for a penalized spline model will not be an integer.

With penalized splines the exact choice of basis dimension is not generally critical as actual

e¤ective degrees of freedom are controlled by �. Number of knots should be selected to be

2In practice it is usual to use Alkaike Information Criteria for selecting optimal number of knots. A Model
with a lower value of Alkaike Information Criteria is pre¤ered
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large enough to have enough degrees of freedom to represent the underlying true structure

of data reasonably well, but small enough to maintain reasonable computational e¢ ciency

(Woods, 2006).

Model IV extends Model III by interacting f(AT ) by ten year dummies to capture time

varying impact of climate on electricity demand. One can capture the time varying e¤ect by

estimating a seperate model (like model III) for each year. However, by pooling data for all

10 years I get more robust estimates for analyzing long term impact of climate on electricity

demand. I �rst select number of knots for each year ( Nt) and corresponding basis functions

Bt(AT ) -

ft(AT ) =
NtX
jt=1

bjt(AT )�jt =Bt(AT )�t: (8)

I select same 10 knots every year. Selected knots are [k0 = 12; 16; 20; 24; 28; 31; 33; 35; 37; 40 =

k10] 8 t. Bt(AT ) is a row vector of basis functions for year t. �t is the coe¢ cient vector of
the basis functions of year t. The model becomes:

E = Z + f(AT)Y + " = Z +
10X
t=1

f(AT)yt + " = Z +
10X
t=1

ft(AT) + " (9)

where, ft(AT) is a vector of smooth function of the temperature index of year t with dimen-

sion n � 1:Here, t indexes year with t = 1 for year 2000 and t = 10 for year 2009: Y is an

n � 10 matrix of year dummies. yt is the tth column of Y. yt represents year dummy for
year t. Degrees of freedom for ft(AT) will be determined by the choice of �t. Note that

same �t is chosen for all years resulting in same degrees of freedom for each year. The �tting

problem becomes:

min imize k E�X� k2 +
X
t

�t�
TPt� (10)

where X is an n � (p1 + ((N � 1) � 10)) model matrix (see appendix). Given �t, (?? can

be minimized w.r.t �: We get b� =

"
XTX+

X
t

�tPt

#�1
XTE =

�
XTX+K

��1
XTE;withX

t

�tPt = K. Smoother matrix for penalized spines with interaction can be derived asH� =

X

"
XTX+

X
t

�tPt

#�1
XT = X

�
XTX+K

��1
XT :As discussed previously, one degree of

freedom is lost due to identi�cation constraint on ft(AT ), which says
NtX
i=1

ft(ATi) = 0 8 t:

From above electricity demand on a particular day is obtained as
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etd = z
0
td + ft(ATtd) + "td (11)

where etd is electricity demand on day d of year t. z0td is a row vector of parametric predictors

for day d of year t: The full form of eq(11) can therefore be written out as

etd = �0+�1MAJHtd+�2MINH td+�3RAINtd+
10X
t=1

f(ATtd)yt+

9X
t=1

�tyt+

6X
b=1

'bWD
b
td+"td

(12)

As the errors from eq(12) are likely to be serially correlated, I carry out the following ad-

justment given in Li & Racine (2007) (chapter 18 section 18.2.2). By droping year dummies

and estimating eq(12) separately for each year, b"d for each t is obtained. For each year t, a
�rst order stationary auto-regressive model de�ned as

"d = �t"(d�1) + �d (13)

where �d is white noise, is estimated . By regressing b"d on b"d�1 of year t, an estimate of �t
(b�t) is obtained. The model is then transformed to have serially uncorrelated disturbances
by subtracting estimated previous day errors b"

d�1 from ed in the following manner:

e�d = ed � b�tb"d�1 (14)

By pooling estimated e�d for each t, the �nal model becomes

e�td = �0+�1MAJHtd+�2MINH td+�3RAINtd+

10X
t=1

f(ATtd)yt+

9X
t=1

�tyt+

6X
b=1

'bWD
b
td+utd

(15)

where utd are serially uncorrelated disturbances and we get consistent estimates of the coef-

�cients.
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5 Data

5.1 Electricity Consumption and Shortage

The data on daily electricity consumption of Delhi has been obtained from the operator of the

national electricity grid, the National Load dispatch centre3. In order to estimate the impact

of global warming on electricity demand it is important to recognize that unlike developed

countries (with high reliability of supply) electricity systems in India are continually inhibited

with power shortages resulting in rationing and disrupted electricity usage pattern. When

there are regular power failures, consumers are not able to consume the quantity they need,

and they either substitute it with other alternatives such as diesel and kerosene, or resort

to independent generation. As a result, electricity consumed reported by National Load

Dispatch Centre (NLDC) is constrained electricity demand, and is equal to the electricity

supplied by the utilities.

The unconstrained notional demand (sum of constrained and unmet demand) is only

known for those periods during which the existing supply potential is in excess of demand.

Thus, there is a demand function and a supply function, but demand is not always equal to

the supply and the observed quantity is equal to the minimum of ex ante demand and supply

quantity. In the past econometric disequilibrium models have been applied in various �elds.

In such situations, according to Fair and Ja¤ee (1972), the sample should either be separated

into demand and supply regimes or the observed quantity should be adjusted for the e¤ects

of the rationing and then the demand and supply schedules should be estimated. In order

to estimate true electricity demand of Nigeria (with low reliability of supply), Ojameruaye

(1988) adjusted electricity consumption under rationing with a reliability index (based on

frequency, time and power outage). In order to obtain unrestricted electricity demand for

Delhi, I adjust daily total electricity consumption of Delhi with the observed daily shortage

using daily electricity supply shortage data obtained directly from Delhi Transco Limited.

Fig. 2 plots reliability index of electricity (electricity demand met as percentage of total

demand including shortage). Apparently, the graph shows that there has been a signi�cant

improvement in the supply in post-2005 period.

5.2 Apparant Temperature and Rainfall

Data on all the climatic factors has been obtained from the website www.tutiempo.net/en/climate/India.??
This website gives the station wise data for all the major weather stations in India. I �rst

3The National Load Despatch Centre (NLDC) is a government body mandated to ensure integrated
operation of the national power system.
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constructed the apparent temperature index (AT) for Delhi using Steadman (1994) formula

adjusting dry bulb temperature with humidity and wind speed. The formula is

ATtd
�
0C
�
= Ttd + 0:33vtd + 0:07wtd � 4

vtd =
htd
100

� 6:105 + e(
17:27T
237:7+T

)

where T denotes average temperature in degree Celsius (0C), v denotes evaporation, w

denotes wind speed (m/s), and h denotes relative humidity(%). Fig. 3 shows empirical

density function of the apparent temperature by seasons, over two decades (1990-99 and

2000-2010). During this period, the empirical density function of the apparent temperature

has shifted rightwards indicating increasing warming in all seasons.

6 Results: The e¤ect of apparant temperature on elec-

tricity demand

6.1 Summary Statistics

In order to analyze the characteristics of the distributions of electricity demand and apparent

temperature, the basic summary statistics are displayed in Table 2.Over the period, the

average daily electricity demand (ED) increased from 49.76 MKWH in 2000 to 65.03 MKWH

in 2009, with its maximum increasing from 64.6 MKWH in 2000 to 94.3 MKWH in 2009.

At the same time, the standard deviation of the daily electricity demand increased from

6 MKWH in 2000 to 15 MKWH in 2009. During this period, the average daily apparent

Temperature ranges from 26.45 and 27.7, with the peak occurring in 2009 & 2002, and trough

occurring in 2005.

6.2 Main Results

Table 3 (a,b & c) summarizes the results of the estimated models. All models are estimated by

the likelihood maximization approach or the penalized likelihood maximization (for Model III

and Model IV) using mgcv package in R. For Model I and Model II usual frequestist approach

is used to calculate standard errors and p-values for model coe¢ cients. For Model III and

Model IV Bayesian p-values and standard errors are reported. Wald test of signi�cance of

each parametric and smooth term are performed.

Goodness of �t daignostics shows that Model II is an signi�cant improvement over model
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I at 99% con�dence levels. F-test based on residual values of the semiparametric model

II and parametric model I yeilds an F statistics of 43.984, which has a p-value of .0. This

implies that a local �t captures the nonlinearity between electricity demand and temperature

much more accurately than the global �t of the parametric model I ( see the appendix).

Model III estimates penalized splines with 20 knots as compared to 12 knots used for

unpenalized spline Model II. The results from Model III are not statistically di¤erent from

model II. The F-test based on residual values of the model II and model III yeilds an F

statistics of 2.04 and a p-value of 0.12294. The advantage of using penalized splines is that

the results are not in�uenced by the number of knots when fairly large number of knots are

selected While in case of model II one has to proceed on trial and error basis. Since each

knot represents additional parameters being added to the model, Eilers and Marx (1996)

recommend using Akaike�s Information Criteria (See the appendix for details).

Model IV when compared with Model III results in a signi�cant improvement at the

99% con�dence levels (with F statistics=59.9 and P-value=.000). Both GCV and AIC are

much lower for model IV. It has a high adjusted R square of .938 implying it explains 93.8

% variation in electricity demand. The Durbin Watson statistic shows that the estimated

model has no autocorrelation.

It is observed that rainfall has a signi�cant negative impact on electricity demand, with

1 millimeter increase in rainfall reducing electricity demand by 0.05 MKWH. As expected,

both holiday dummies turned out to be highly signi�cant and negative. On a major holiday,

electricity demand is estimated to be 3.32 MKWH lower than the average demand. A

minor holiday, on the other hand, reduces demand by 0.42 MKWH. Estimates of parameters

which model weekly cycle of electricity demand indicate that on Mondays, Saturdays and

Sundays electricity demand is likely to be lower than the average level (with Wednesday

as the reference day), and higher on Friday. These results might be expected as holiday

and weekend loads have quite a di¤erent response to temperature than those on weekdays.

Monday has a lower demand possibly due to the previous day holiday e¤ect (also called

holiday inertia) while Friday has a relatively higher demand, probably, due to the build up

of the work at the end of the week. Thus, most of the parametric results are in line with

previous studies done in this context.

The e¤ect of apparent temperature on the electricity demand is clearly non-linear. The

estimated degrees of freedom (edf) for the temperature smooth term estimates (bft ) and
4The test statistic is de�ned as:

F =
(RSSsmaller �RSSlarger)=[dfres,larger � dfres,smaller ]

(RSSlarger)=[dfres,larger
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their p-values support the hypothesis that the coe¢ cients are statistically signi�cant. Same

smoothing parameter (�t) is chosen for all years resulting in equal degrees of freedom (ap-

proximately 6) for each year . Fig 5 plots all the estimated temperature dependence curves

along with the Bayesian con�dence intervals (dotted curves). Fig. 6 plots marginal e¤ects

for all years along with its 95% con�dence intervals (dotted curves). Here we plot both types

of con�dence intervals obtained by normal plug in approach and Bayesian approach (See

appendix).

Over time it is observed that the minimum temperature threshold is falling and the

temperature dependence curves of Delhi are moving leftwards. During the period of analysis

it has shifted from about 20-230C in 2000-2005 to about 17-210C in 2006-2009. This can

be explained by the growing number of air conditioners and coolers with rising incomes.

In other words, with higher a¤ordability people�s sensitivity towards hot temperatures is

likely to increase, and they are expected to switch on cooling devices at a relatively lower

temperatures.

In addition to the leftward shift of the TEC, it is observed that the rising part of the

TEC is getting steeper over time, implying ever increasing cooling demand per unit increase

in summer temperature. While the heating demand is declining per unit increase in winter�s

temperature the e¤ect is much lower as compared to the increase in cooling demand in

summers. For instance, a 1 0C increase in temperature at 30 0C increased electricity demand

by 3.2 MKWH in 2009 as compared to only 1.2 MKWH in 2000. On the other hand, a 1
0C increase in temperature at 15 0C decreased electricity demand by .8 MKWH in 2009 as

compared to .7 MKWH in 2000.

Previously, Carcedo and Otero (2005) estimated threshold transition model and found

15.5 0C as the upper heating demand threshold and 18.4 0C as the lower cooling demand

threshold for Spain. The smooth transition model obtained 15.4 0C as an optimal threshold

temperature. Bessec and Fouquau (2008) found threshold temperature to be about 16 0C for

the whole sample of European countries and 14 0C for the sample of cold European countries

and 22.4 0C for the sample of hot European countries. Although thresholds obtained in

this paper are not directly comparable to previous studies (which are based on average

temperature in contrast to apparent temperature used in the study), they give a fairly

good idea about how threshold temperatures may vary both spatially and temporally with

economic growth and cannot be assumed to be static.
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7 Forecasting electricity demand and model evaluation

The above model has been used to forecast the impact of 1 0C, 2 0C and 3 0C increase in ap-

parent temperature on the electricity demand of Delhi in 2015 and 2021. Fig. 7 extrapolates

marginal e¤ects curves until 2021. It shows that threshold temperature is likely to shift from

210C in 2000 to 170C in 2021. The results are displayed in Table 4. A 1 0C increase in ap-

parent temperature (over average apparent temperature 2000-2009) increases net electricity

demand5 by about 405 MKWH (1.7%) in 2009 over its base electricity demand of 23809, 496

MKWH (1.82%) in 2015 over its base electricity demand of 27225 and 630 MKWH (2.05%)

in 2021 over its base electricity demand of 30737. A 2 0C increase in apparent temperature

(over average apparent temperature 2000-2009) increases net electricity demand by about

822 MKWH (3.45%) in 2009, 1022 MKWH (3.75%) in 2015 and 1305 MKWH (4.25%) in

2021. Similarly, 3 0C increase in apparent temperature (over average apparent temperature

2000-2009) increases net electricity demand by about 1248 MKWH (5.24%) in 2009, 1570

MKWH (5.77%) in 2015 and 2008 MKWH (6.53%) in 2021.

In addition Table 4 disaggregates the impacts by months. Higher temperature increases

electricity demand in summers (led by April and May), monsoon (led by September) and

post monsoons (led by October) and decreases demand in winters (led by January). It is

observed that the maximum impact is likely to be felt in the hot month of April with average

apparent temperature of 30 0C, followed by, October and May. Marginal e¤ect curve peaks

at about 30 0C indicating maximum sensitivity of electricity demand to temperature at this

level. It is important to note that the average apparent temperature in April has shown

maximum increase of 2.21 0C in past years (see Table 5). Although a 1 0C increase in

temperature increases net electricity demand by 1.7% in 2009, demand increases by 4.2%

in April, by 4% in October, by 2.3% in September and by 2% in May and March. On the

other hand, a 10C increase in temperature decreases electricity demand by 1.5% in January,

0.5% in February and 1.2% in December. Since, electricity saved in winters cannot be stored

and used in summers, global warming could result in serious disequilibrium in some of the

months in the future.

To evaluate the forecasting performance, the actual demand of two years (2008-2009)

has been compared with the predicted demand. In this evaluation predicted demand for

the two years is calculated using coe¢ cients of the estimated model (based on 2000-2007

data) and known temperatures and information on other drivers in these years. Data from

the forecast period are not used for the model estimation. Fig. 8 illustrates the di¤erence

5Net electricity demand increase means increase in electricity demand due to climate warming net of
decrease in electricity demand in winters.
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between observed and predicted electricity demand in year 2008, and 2009. These graphs

demonstrate that the model predicts demand in both years remarkably well.

The above model can be used by electricity supply companies to predict electricity de-

mand, both, in the short run (day to day basis) and in the long run (plan to plan basis).

It is important to note that the electricity demand data used in the paper for establishing

temperature-electricity correlation does not include electricity demand in industries out of

captive generation and transmission and distribution losses6 . Therefore, the projections of

electricity demand are lower than the forecasts of the Seventeenth Electric Power Survey of

India7, which makes an adjustment for both in electricity demand data. For instance, the

above survey forecasts total electricity demand (based on pre- 2005 annual data) for 2021-22

as 58759 MKWH as against 30737 MKWH in the current study (as no adjustment is made

for transmission and distribution losses, and captive generation). Nonetheless, estimated

temperature elasticities can be applied to the adjusted data for obtaining the impact of cli-

mate change under all three scenarios discussed above for managing and planning for future

electricity supply .

8 Conclusions

Changing lifestyles and economic conditions make electricity demand increasingly more sen-

sitive to temperatures over a period of years. This paper provides valuable insights regarding

potential interactions between increasing cooling degree days and increasing incomes and the

nature of resulting long term adjustments (such as higher stauration of air conditioners) in

the electricity sector. The results from semiparametric variable coe¢ cient model indicate

that the variation in the slope of the TEC and threshold temperature is needed to allow

for socio-economic dynamics in future electricity demand projections. An important con-

tribution of the paper is the estimation of climate impacts by months. The model projects

that the climate change can cause serious increase in future demand, particularly, during

hot months such as May and April. These results can be extrermely useful for managing

seasonal electricity disequilibrium situation in Delhi.

Further, the estimated threshold temperature in this paper can be used by HVAC8 (Heat-

ing, Ventilation and Air Conditioning) designers to improve e¢ ciency of electricity use. At

6On average, distribution and transmission losses account for about 30% of the electricity demand.
7The electric Power Survey Committee conducts surveys for the power demand, and makes demand

forecasts for use in power sector planning.
8HVAC (Heating, Ventilation, and Air Conditioning) refers to technology of indoor or automotive envi-

ronmental comfort. HVAC is important in the design of medium to large industrial and o¢ ce buildings such
as skyscrapers and in marine environments such as aquariums, where safe and healthy building conditions
are regulated with temperature and humidity, as well as "fresh air" from outdoors.
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present, the comfort standard practiced by HVAC designers is the same that is followed in

the US for cooling the buildings (Air conditioned buildings). Large amount of electricity

is consumed by HVAC systems in buildings and designing HVAC (for comfort) as per the

changing climatic conditions in India can bring down the electricity demand drastically.

Important measures will be required to meet increased electricity demand due to climate

change. For instance, there is a need to make a choice between fossil fuels and renewable

sources for electricity generation. The results achieved in this work can be put to vari-

ous practical uses by electricity production and sales companies, among which could be

1) understanding existing temperature-electricity sensitivity so as to manage risks related

to unpredictable change in the energy demand under the extreme weather events, e.g., a

heat wave, 2) quantifying the impact of projected climate change on electricity use and 3)

forecasting required future capacity investments in the electricity sector.

Further, comprehensive assessment of impacts requires not only sound empirical research,

but also more geographical coverage, especially in areas where severe climate change is likely

to occur. Any work in the future should seek to extend the approach to other states within

India to get an overall estimate of climate change on total electricity demand of India. It

is extremely important to estimate state-wise TECs as states possess special socio-economic

factors resulting in di¤erent TEC. Nonetheless, it is hoped that this analysis contributes to

a better understanding of dynamic non linear TEC.
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