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Abstract

I study a model of moral hazard with soft information: the risk-averse agent takes an action

and she alone observes the stochastic outcome; hence the principal faces a problem of ex post

adverse selection. The incentive contract must include an audit. With limited instruments the

principal cannot solve these two problems independently; the ex post incentive for misreporting

interacts with the ex ante incentives for effort. The optimal transfer is option-like, the contract

leaves the agent with some ex ante rent and fails to elicit truthful revelation in all states. The

principal’s preferred action is thus necessarily lower than in the standard model. Audit and

transfer co-vary positively, which likely is a forgotten component of many real-life contracts.

Keywords: moral hazard, asymmetric information, soft information, contract, mechanism,

audit. JEL Classification: D82.

1 Introduction

The standard solution of a moral hazard problem requires the observation of some informative signal

of the agent’s action. It is then possible to design a second-best contract, which is conditioned on

that information instead of the actual action. While convenient to investigate questions such as
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the cost of moral hazard or explore properties of the solution, this model strongly relies on there

being an observable signal of the agent’s action. However performance may be difficult to observe

or noisy. When the observed signal is not very informative it may be complemented. For example,

Dye and Sridhar [11] suggests to gather additional information ex post, and thus to condition the

contract on a broader set of data. Sometimes performance is not observed at all: an accounting

report, for instance, is not a direct observation of the state of an firm. Rather it is a message that

is sent by the same self-interested agent who generated that information in the first place. Then

one may construct an audit mechanism (e.g. Kanodia [19] and Mookherjee and Png [27]). Because

truthful revelation obtains in equilibrium, the connection between the ex ante problem of providing

effort incentive and the issue of ex post adverse selection becomes moot. Then the moral hazard

problem can be solved in standard fashion.

This paper explores exactly that connection. I present a model of the moral hazard cum audit

problem, in which the agent may, optimally and rationally, not truthfully reveal her information.

I show this has significant consequences for the optimal scheme used to solve the moral hazard

problem, which is quite different from the standard second-best. Applications of this model are

broad-ranging. For example, after hiring the CEO, a board often asks of him (her) to report his

(her) results while on the job; a regulated firm may be asked to reveal its production cost after

investing in an uncertain technology. The starting premise is that the real world does not accord

with the results of Mookherjee and Png [27] or Kanodia [19]. Enron executives did not truthfully

reveal their information, neither did Merrill Lynch’s nor Lehman’s.1 As the Greek economy was

imploding it was revealed that its national accounts were not reflective of its true state of affairs.

More broadly, Reinhart and Rogoff [29] document that governments facing a sovereign debt crises

tend to not disclose the true impact of their actions. Thus a model that systematically predicts

truthful revelation has limited applicability. It also prevents the analysis of the interaction between

ex post adverse selection and ex ante moral hazard. This issue has received scant attention in

economics, possibly because the Revelation Principle (applied by Mookherjee and Png [27] and

others) is too powerful in some sense. Indeed the accounting literature roots misreporting of

information in some failure of the Revelation Principle (e.g. Arya, Glover and Sunder [2] or Demski

1Kedia and Philippon [21] develop and test a model of earnings management (a euphemism for fraudulent ac-

counting). They document how pervasive the practice is.
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and Frimor [10]). I suggest a different route that affirms and exploits the Revelation Principle.

Bar for the issue of observability, the model mirrors that of a standard moral hazard problem.

A risk-neutral principal delegates production to a risk-averse agent. The agent’s action a governs

the distribution F (·|a) of a stochastic outcome θ, which she alone observes. That information

must therefore be elicited ex post. Because the principal otherwise observes nothing, the contract

must include an audit and some (exogenous) punishment. The model is not reliant on endogenous

penalties nor rewards; that is, the principal possesses fewer instruments than in Kanodia [19] or

Mookherjee and Png [27]. Furthermore, the model attempts to be faithful to audit as a sampling

process, which is imperfect.2 This paucity of instruments generates misreporting in equilibrium. It

induces a fundamental tension between ex ante effort provision, which requires a state-contingent

compensation, and ex post information revelation, which is best addressed with a constant transfer.

The equilibrium is fully characterized and its properties are explored.

The audit function, optimal action and transfer schedule are all jointly determined. The equi-

librium contract features rents, and out of the three possible information revelation regimes that

may arise (completely truthful, partially truthful and never truthful), only the latter two may be

equilibrium outcomes. Which of these regimes prevails depends on the whole contract, not just the

audit. An ex ante rent must be left to the agent (i.e. the participation constraint is slack) because

the penalty for misreporting acts like an implicit limited liability constraint. As in Jewitt, Kadan

and Swinkels [18] the transfer function is “option-like” (see Figure 3), which accords well with many

real-life instances. Complete truth-telling can never be an equilibrium because the optimal transfer

schedule is constant (optimally at zero) below a performance threshold θa. Thus for any realisation

of the state beneath θa, the agent has nothing to lose by misreporting. So lack of observability

combined with weak punishments require a peculiar contract in response, which in turn prevents

complete truth-telling; and lack of truthful revelation induces further distortions. When truthful

revelation is possible for at least some states, the agent misreports in the worse states, where the

incentive is strongest and the cost is lowest.

Furthermore, the optimal audit and transfer co-vary positively. I suggest that together these two

sets of results bring us a step closer to real life. For example with Enron, Merrill Lynch or Lehman

Brothers (to name only a few), bankruptcy might not just have been a case of poor auditing but

2For example, financial audits are sampling processes.
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also (excessively) powerful incentives that can only lead agents to manipulate information. Indeed,

the more powerful the ex ante incentives for high effort (i.e. the steeper the transfer function), the

more attractive is the option to manipulate information ex post, especially when it is bad. Therefore

the more accurate must the audit be.

The papers closest to this one are Kanodia [19] and Mookherjee and Png [27]. Both consider

a combination of moral hazard and ex post adverse selection with no observability. Kanodia [19]

renders both information revelation and moral hazard problems vacuous by assuming constant

wages (Equation 13). Mookherjee and Png [27] combine a Grossman-Hart [13] model with an

ex post revelation mechanism, where the principal may be a tax authority. The agent’s message

conditions a payment to the principal and the probability of audit; the audit is perfect and fines

or rewards may be used. In equilibrium the principal only offers rewards for truthful revelation;

these may be arbitrarily large.3 They deliver truthful revelation, which renders the interaction with

the ex ante moral hazard problem moot. Close to Mookherjee and Png [27], Border and Sobel [3]

construct an audit mechanism with endogenous penalties as well. The optimal probability of audit

is varying in the messages sent; truthful revelation obtains. In a similar vein, Reinganum and

Wilde [28] show that a simple audit cut-off rule does at least as well as a random audit rule.

Both [3, 28] ignore the agent’s participation decision, as pointed out by Mookherjee and Png [27].4

In all these papers, auditing is perfect but the principal controls the probability of running an

audit. I depart from them in two ways. First, there are no endogenous penalties for misreporting

nor rewards for truthful revelation; the principal thus must do with fewer instruments. Second, the

audit is imperfect. That technology is closer to one of sampling, which is what most real audits

do, and has been modeled by Bushman and Kanodia [4] or Demski and Dye [9].

Others combine moral hazard and adverse selection, however not with soft information. Gromb

and Martimort [12] let (an) expert(s) search for some information by exerting some effort, who then

has (have) to disclose it to the principal. The expert(s) receive(s) a soft signal, but whether a project

is eventually successful is publicly observable. To overcome the moral hazard problem, the expert’s

incentive contract must be made state-dependent. Like in this paper, this very fact introduces

3Mookherjee and Png’s model yields a quirky byproduct: the agent strictly prefers being audited. This owes to

the construction of the revelation constraint (2), which implicitly only allows reward to be offered for truth-telling.
4In Khalil [22] truthful revelation can be obtained through a standard direct revelation mechanism. Auditing

relaxes the agent’s incentive constraint; the principal trades-off the audit cost with the information rent.
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adverse selection. However, a contract can be conditioned on the final outcome, unlike here. For

the purpose of this discussion, Krähmer and Strausz [23] adopt a similar construct in the context of

pre=project planning. Malcolmson [26] studies a problem where, as in Gromb and Martimort [12],

the agent acquires soft information and the return to the principal is publicly observable. That

soft information may be used by the agent to make a decision yielding the verifiable outcome.

The principal may have incentives to distort the decision rule away from the first-best to foster

information acquisition. In all these papers, information is exogenously given although ex ante

unknown to the agent. Here the private information emerges endogenously. Levitt and Snyder [25]

develop a contracting model in which the agent receives an early (soft) signal about the likely

success of the project, however the eventual outcome is fully observed by the principal, hence

contractible. With appropriate early information, the principal can decide whether to shut-down

or continue. To obtain this information, the principal must commit to shut-down less frequently

than the unconstrained solution prescribes.

After introducing the model, Section 3 deals with the ex post information revelation problem.

Next I characterize the optimal contract; Sections 5 explores some properties. Section 6 offers a

discussion. The proofs and some of the technical material are relegated to the Appendix.

2 Model

A principal delegates a task to an agent. She undertakes an action a ∈ A, which is a compact

subset of R+. The action’s cost c(a) is increasing and convex, and yields a stochastic outcome

θ ∈
[
θ, θ

]
≡ Θ ⊂ R with conditional distribution F (θ|a) and corresponding density f(θ|a) > 0. The

density f(θ|a) satisfies the MLRP: fa(x)/f(x) is non-decreasing, concave in x; therefore F (θ|a′)

stochastically dominates F (θ|a) in a first-order sense when a′ > a. The agent alone observes the

outcome θ and reports a message ω ∈ Ω (any message space) to the principal, whereupon she

receives a transfer t. Her net utility is given by u(t, a) = v(t) − c(a), where v : R 7→ R is a

continuous, increasing, concave function with v(0) = 0. The agent’s reservation value is 0 and I do

not exogenously impose a limited liability constraint (but I am purposefully disregarding forcing

contracts). The principal receives a net payoff S(t; θ) = θ− t. If the true state θ were observable by

the principal, this construct would be a moot point and the model would collapse to the textbook
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moral hazard problem. Throughout I make the essential assumption that the principal can commit

to the contract.

At the stage of information revelation, effort is sunk so all that matters is the utility v(t) from

the transfer t, which can only be conditioned on the message ω. Given the monotonicity of v(t),

either all types pool to the same message if t(ω) is increasing, or have no effort incentive at all if

it is constant. Auditing restores a measure of ex post observability; it breaks the monotonicity of

v(t). It has zero marginal cost (and therefore always run). However it is imperfect and uncovers

misreporting with probability p(ω−θ;α), where p : R 7→ [0, 1] is a continuous, differentiable function

in both arguments and p(0;α) = p(·; 0) = 0.5 The technology p(·;α) is costly to acquire; it is drawn

from a family of functions parametrized by an investment α at cost k(α), increasing and convex.

The parameter α affects the slope of p(·;α) at 0, that is, the precision of the audit. I presume

that ∀α, ∂p(0|α)/∂z < ∞ (where z = ω − θ), so that auditing remains imperfect. If discovered

the agent receives nothing. With this construction the expected utility function of an agent at the

revelation stage is U = v(t(ω)) [1− p(ω − θ;α)]. Hence, taking α fixed,

∂U

∂t
= v′ [1− p] ≥ 0;

∂2U

∂t∂θ
= v′p′ (2.1)

is a sorting condition on the ex post expected utility of the agent, akin to the Spence-Mirrlees

condition6. The timing is almost standard:

1. The principal offers a contract C = 〈Ω, t(ω), p(ω − θ;α)〉 made of a message space, a transfer

function and an audit technology;

2. The agent accepts or rejects the contract. If accepting, she also chooses an action a;

3. Action a generates an outcome θ ∈ Θ observed by the agent only;

4. The agent reports a message ω ∈ Ω;

5. Audit occurs;

6. Transfers are implemented and payoffs are realised.

5This is akin to a sampling process, as in Bushman and Kanodia [4].
6Further discussion of the properties of p(·;α) is postponed to the next section.

6



3 Degrees of Information Revelation

I start by showing that truthful revelation in any arbitrary state θ amounts to a condition relating

the transfer function t(·) to the probability p(·|α). This defines three regimes: complete, partial

or no information revelation. To do so I exploit two results contained in a companion paper

(Roger [30]); (i) a direct mechanism where Ω = Θ induces a measure of pooling, which is bad

for incentives and (ii) there is no loss of generality in restricting attention to a simple separating

mechanism, in which Ω = M̂ and Θ ⊂ M̂ ⊂ R.

Fix the contract 〈t, α, p〉 and consider the agent’s problem after the action a has been sunk.

She sends a message m̂ such that max
m̂∈M̂ v(t(m̂)) [1− p(m̂− θ)]. Her best reply m(θ) solves:7

v′t′(m)[1− p(m− θ)]− v(t(m))p′(m− θ) = 0 (3.1)

Let M ≡
{
m ∈ M̂|m solves (3.1)

}
– this is the set of optimal messages. For a mechanism to be

truthful, v(t(θ)) ≥ v(t(m(θ))) [1− p], that is, truth-telling corresponds to a maximum: v(t(θ)) =

max
m̂∈M̂ v(t(m̂)) [1− p(m̂− θ)]. Using (3.1), this implies

v′t′(θ) = v(t(θ))p′(0;α) (3.2)

at some θ. Because the solution to (3.1) is unique, (3.2) is sufficient at θ for truthful revelation.

Given that t′ ≥ 0 ∀m̂, and strictly for at least some m̂, is necessary to induce a non-trivial action,

this equation can hold only if p′ ≥ 0 (and strictly for at least some values). Thus I define P as the

set of audit technologies satisfying this minimum condition. Equation (3.2) embodies a requirement

on the precision of the audit at 0; that is, it defines a subset P0(t) ⊆ P of audit functions that can

elicit truthful revelation for at least some values of θ, given the contract C. That Condition (3.2)

holds at some θ does not mean it does for all values. There may be three cases of interest.

Case 1: Truthful revelation. This occurs when Condition (3.2) is satisfied for all values of

the private information θ; more precisely, ∀θ, v′t′(θ) ≤ v(t(θ))p′(0;α). That is, jointly with the

transfer, the audit technology p(·;α) is sufficiently precise to induce truthful revelation. Call P1(t) ⊂

P0(t) ⊆ P the set of audit technologies capable of inducing truthful revelation for all types, given

some transfer t. Then ∀θ, m(θ) = θ.

7For a validation of this differentiable approach see Laffont and Martimort [24].
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Figure1: Optimal messages above and below θ̃ (left); with extended message space (right)
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Case 2: Partial truthful revelation. This corresponds to condition v′t′(θ̃) = v(t(θ̃))p′(0;α)

for some value θ̃ ∈
(
θ, θ

)
. If v(t(·)) is concave, then v′t′|θ≥θ̃ ≤ v(t(θ̃))p′(0;α) and truthtelling

obtains above θ̃ (so m(θ) = θ). Similarly, v′t′|θ<θ̃ > v(t(θ̃))p′(0;α) and truthtelling is out of reach

below θ̃ (where m(θ) > θ). The converse is true for v(t(·)) convex. The set of corresponding audit

technologies is P0 \P1. Figure 1 depicts an interior example of θ̃ when v(t(·)) is a concave function.

Case 3: No truthful revelation. Here Condition (3.2) fails to hold anywhere on the range Θ,

i.e. ∀θ ∈ Θ, v′t′(θ) > v(t(θ))p′(0;α). The corresponding family of audit functions is P \ P0.

In Cases 2 and 3, an agent who is induced to exert any effort necessarily misreports her private

information with positive probability. This owes to the fundamental tension between ex ante effort

incentives, which require a state-contingent transfer schedule, and ex post information revelation

that is best addressed with state-independent transfers. This rich array of outcomes obtains because

(i) the audit technology is allowed to be imperfect, unlike much of the audit literature; and (ii) the

principal possesses limited instruments.

One last remark is in order. There may exist many kinds of contracts satisfying t′ ≥ 0: some

may include jumps, there may be intervals on which t′ = 0 and so on, with implications for the

message m(θ). Clearly Case 1 is immune from any consequence as Θ is a compact space. In Cases

2 and 3 it is not obvious that m(θ) must be continuous, as it is depicted in Figure 1. To see why,

consider a transfer scheme t(·) that is flat on some range, say, on Θf ≡ [θ1, θ2]. If θ̃ ≥ θ2 the agent
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Figure 2: contract (left) may induce jump(s) in the optimal message (right)

misreports her information on Θf as anywhere else below θ̃. If θ̃ ≤ θ1, she may face the conditions

v′t′(θ1) ≤ v(t(θ1))p
′(0;α) but v′t′(θ2) ≥ v(t(θ2))p

′(0;α), i.e. t(·) may be steeper at θ2 than at θ1

and (3.2) is reversed. Then one moves from truthful revelation above θ̃ and below θ1 to misreporting

from θ2 on, i.e. there is a jump in the optimal message (because v(t(θ̃)) ≥ (1 − p)v(t(m(θ̃))) at θ̃

but v(t(θ2)) < (1 − p)v(t(m(θ2))). This is shown on Figure 2, where the left panel is the transfer

offered and the right one the agent’s optimal message.

4 Characterising the contract

To proceed, I first seek to understand the behaviour of the contract for some fixed audit technology

p(·;α). Then I endogenize α, to which all other endogenous variables also respond, and optimize

fully over the whole set of instruments t, a, α. I rely on the first-order approach.8

From the preceding Section we know that the equilibrium may be one of the three aforemen-

tioned configurations, each of which corresponding to a different ex post behaviour (i.e. optimal

message). The ensuing analysis may be problematic in that the agent’s utility

U =

 v(t(θ)), θ ≥ θ̃;

(1− p(ω − θ))v(t(ω)), θ < θ̃.

may not be smooth, nor even continuous, at θ̃ – which is a point of particular interest. It turns out

that it must be both (Lemma 5 in the Appendix). From this it follows that the optimal message

8See Jewitt [17], Araujo and Moreira [1] or Conlon [5] for validations; [17] specifically for necessary conditions.
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is also a smooth function of θ at θ̃ by the Theorem of the Maximum (see Figure 1). This will be a

useful property throughout. In particular, the regime change at θ̃ is “smooth”. Defining t over M̂,

i.e. t : M̂ 7→ R, the principal’s program is

Problem 1

max
α,t,a

∫ θ̃

θ
[x− (1− p(m(x)− x;α))t(m(x))] dF (x|a) +

∫ θ

θ̃
[x− t(x)] dF (x|a)− k(α)

s.t.

m(θ) = arg max
m̂∈M̂

(1− p(m̂− θ))v(t(m̂)) (4.1)

∫ θ̃

θ
v(t(m(x)))[1− p(m(x)− x)]dF (x|a) +

∫ θ

θ̃
v(t(x))dF (x|a)− c(a) ≥ 0 (4.2)

∫ θ̃

θ
v(t(m(x)))[1− p(m(x)− x)]dFa(x|a) +

∫ θ

θ̃
v(t(x))dFa(x|a) = c′(a) (4.3)

where θ̃ ≡ θ̃(p(·;α), t, a). The ex post message may be entirely truthful (only drawn from Θ), not

at all (and only drawn from M) or some of both depending on where θ̃ lies.9 From an ex ante

standpoint the principal must account for any of these possibilities, which the objective function

and the constraints reflect. Condition (4.1) is the agent’s information revelation constraint – the

novelty in this paper. Let λ be the Lagrange multiplier of the moral hazard constraint (4.3) and µ

that of the participation constraint (4.2).

4.1 Form of the contract

In this model the ex post problem may interact with the provision of ex ante incentives. This

may affect the form of the contract in possibly several ways. First, the ability to inflate one’s

performance may alter the expected cost to the principal, as well as a the choice of action by the

agent. The principal responds by distorting the transfer schedule, as shown below.

9More comprehensively the program allows for jumps as described in Section 3; the princi-

pal’s objective is then maxα,t,a

∫ θ̃

θ
[x− (1− p(m(x)− x;α))t(m(x))] dF (x|a) +

∫ θ2
θ̃

[x− t(x)] dF (x|a) +∫ θ̂

θ2
[x− (1− p(m(x)− x;α))t(m(x))] dF (x|a) + +

∫ θ

θ̂
[x− t(x)] dF (x|a) − k(α), with a jump at θ2 and two

thresholds θ̃, θ̂–and the agent’s utility is similarly modified. The analysis extends immediately. Note that although

the problem does not specify a distribution over the message space M, F (θ|a) is still the relevant distribution

because m(θ) is injective. For details, see Roger [30].
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Lemma 1 Fix a and α. The first-order conditions of Problem 1 are given by:-

• For θ < θ̃, characterised by
1

v′(tO(m(θ)))
= µ+ λ

fa
f
; (4.4)

• For θ ≥ θ̃,
1

v′(tO(θ))
= µ+ λ

fa
f
; (4.5)

where m(θ) is determined by (4.1) and µ, λ ≥ 0.

The case of complete information revelation (Case 1) is obtained by extending θ̃ to θ. Then the

first-order condition is standard; (4.5) holds over Θ. Case 3 corresponds to θ̃ ≥ θ. Conditions (4.4)

and (4.5) closely resemble one another, bar for the exact argument of tO(·). When the agent can

report m(θ) > θ, she is being paid “too much” given a, which the principal anticipates.

The second issue speaks to the nature of the constraints of Problem 1. In the standard problem

the principal presents the agent with a transfer function of the form

1

v′(tS)
= µS + λS fa

f
(4.6)

for some action aS , and where µS , λS are both strictly positive (see [17]). Two observations must

be made. Firstly, it is immediate from (3.2) that no truthful revelation can be compatible with

a binding participation constraint (µS > 0). To see that, suppose truthful revelation obtains in

equilibrium (i.e p(·;α) = 0 and θ̃ = θ), then the first-order condition of Problem 1 is exactly (4.6).

Now (3.2) at θ implies that v(t(θ)) ≥ 0. By monotonicity of t(·) therefore
∫
Θ v(t)dF > 0 for any

action a. So the agent could accept any contract 〈t̃, ã, p̃〉, ã > min a such that
∫
Θ v(t̃)dF (·|ã)−c(ã) =

0, select a = min a at cost c(a) = 0 and receive an ex ante rent. Secondly, this reasoning holds for

any revelation (truthful or otherwise). Given the (zero) penalty specified, the principal’s reliance on

the agent’s messages to condition compensation implies that the transfers actually implemented in

equilibrium can only be strictly positive. Indeed, any transfer schedule must contain at least some

positive elements to induce participation with costly effort provision, as in the standard problem

(see Holmström [14], Rogerson [31], Jewitt [17]), but also some negative ones for the participation

constraint to bind everywhere (Rogerson [31], Jewitt [17]). Here the agent can always do better

than accepting a negative transfer. As Condition (3.1) states, she can simply take the lottery
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{p, 1− p} over 0 and some positive v(t(m)) by exaggerating her message. No message resulting

in a negative transfer will ever be sent, and no negative transfer will ever be implemented. That

is, the ex post adverse selection problem (together with the choice of punishment) introduces an

implicit and endogenous limited liability constraint in the moral hazard problem.

I draw on the work of Jewitt, Kadan and Swinkel [18], who consider exogenous bounds on pay-

ments, to characterize the transfer function. Because the ratio fa/f is monotonic and EΘ [fa/f ] = 0,

for some action a there exists some θa such that fa(θa|a)/f(θa|a) = 0. Then

Proposition 1 Fix a and α, the optimal transfer tO takes the form

1

v′(tO)
=

 κ, ∀ m(θ) ≤ θa;

κ+ λfa
f , ∀ m(θ) > θa.

where κ ≥ 0, κ 6= µ and m(θ) solves (4.1).

The next result furthers the characterization of the optimal transfer schedule.

Lemma 2 Take the “doubly-relaxed” Problem 1 where (4.3) is replaced with a weak inequality.10

The moral hazard constraint binds, i.e. λ > 0.

Therefore the optimal transfer function tO(·) is fully described by Lemma 1 and Proposition 1, and

it behaves according to the ratio fa/f . Next I complete the description of the transfer schedule.

Proposition 2 The optimal transfer function tO solving Problem 1 is continuous and non-

decreasing over Θ; in particular, it is:-

• continuous but with a kink at θa;

• non-decreasing concave for all θ above θa; and

• continuous and differentiable at θ̃.

The second part of Proposition 2 is trivially true when θ̃ = θ or θ̃ = θ, for then either (4.4) or (4.5)

prevails over the whole range Θ. When θ̃ is interior, tO is still continuous at θ̃. The reason is that

m(θ) smoothly converges to θ at θ̃ as a consequence of Lemma 5. (See the left panel of Figure 1).

Proving the first part is simple; to understand it, recall the informational value of the ratio fa/f at

10See Rogerson [31].
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θa. This is the point where Fa is the most negative, that is, where effort has the highest marginal

effect. Thus a signal θa is indicative of an effort level that is the most valuable for the principal,

who offers the agent the steepest incentives at that point (fa/f is increasing concave). This feature

of the contract accords well with practice, where boni may be observed when a hurdle is passed.11

A technical but simplifying Corollary follows from the collection of the previous results.

Corollary 1 The optimal message m(θ) is everywhere continuous on Θ; i.e. there are no jumps.

This follows from the fact that the optimal transfer function tO is monotone concave from θa on.

Consequently there can be no pair θ1 < θ2 such that v′t′(θ2) > v′t′(θ1); thus Condition (3.2) cannot

be simultaneously holding at θ1 but reversed at θ2. Consequently there can be only at most one

threshold θ̃, and the three simple regimes described in Section 3 are exhaustive.

4.2 Optimal contract

As part of the optimal contract the principal selects his audit technology p(·;α) by choice of α.

This may have two effects. First, fixing t(·) and a, it may alter the degree of information revelation,

i.e. the cutoff θ̃ (Cases 1 to 3). Second, t(·) and a are endogenous variables, so they too respond

to a change in α. The optimal contract balances all these effects. It must also account for the fact

that, left unchecked, Proposition 1 and µ = 0 imply that the agent receives an ex ante rent.

Proposition 3 The optimal contract is characterised by:-

1. a continuous transfer scheme tO =

 tO(m(θ)), θ < θ̃;

tO(θ), θ ≥ θ̃.
determined by Proposition 1, and

Conditions (4.4) and (4.5) on the relevant ranges;

2. an action aO solving the first-order condition∫ θ̃

θ
[x− t(m(x))(1− p)]dFa +

∫ θ

θ̃
[x− t(x)]dFa

+λ

[∫ θ̃

θ
v′(t(m(x)))(1− p)dFaa +

∫ θ

θ̃
v′(t(x))dFaa − c′′(a)

]
= 0 (4.7)

11Jewitt, Kadan and Swinkels [18] call this kind of scheme “option contracts”.
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3. and an audit investment αO = αO
1 + αO

2 , where αO
1 solves

v′t′(θ) = v(t(θ))p′(0;αO
1 ) (4.8)

and αO ≥ αO
1 solves∫ θ̃

θ
t(m)pαdF (x|a) + λ

∫ θ̃

θ
v(t(m))pαdFa(x|a) = k′(α) (4.9)

The cut-off θ̃ ∈ [θ, θ] is determined by (3.2) given tO, aO, αO.

The cut-off θ̃ is free to lie at either boundary or to be interior; it is endogenous to the contract

and so is the regime one operates under. The first two items of Proposition 3 resemble standard

ones. The last one determines the level of investment in the audit technology. It allows for αO
2 to

be zero, that is, θ̃ = θ. If so, the technology is sufficiently inexpensive (or equivalently, precise)

for Condition (3.2) to hold at θ. Condition (4.8) then pins down the smallest investment necessary

for truthful revelation. In that case, the transfer is determined by (4.5) and (4.7) collapses to the

standard result. That is, the pair tO, αO is such that it compels truthful revelation. If αO
1 is not

sufficient, the investment may be increased from αO
1 to αO (i.e. by αO

2 ), and this entails a trade-off

given by (4.9). The total marginal benefit (LHS) includes saving on undue transfers, as well as

relaxation of the moral hazard constraint. When truthful revelation is impossible, the transfer is

determined solely by (4.4) and (4.7) is modified by extending θ̃ to θ. Importantly, truth-telling

cannot be guaranteed (as in Mookherjee and Png [27]), because tO, αO are jointly determined. That

is, whether truthful revelation obtains does not just depends on the audit procedure. The reason

is that the problems of moral hazard (ex ante) and adverse selection (ex post) are meshed: there

is no independent instrument such as fines to solve the information revelation problem. Figure 3

shows the optimal transfer scheme.

The optimal transfer function is so different from the standard one that it is difficult to perform

cross-model comparisons and comment on the level of transfers and the level of the action aO.

Suppose however that tO were fixed and exactly as the standard transfer tS on the portion above

θa. Then rewriting the agent’s moral hazard constraint (4.3) as∫ θa

θ
v(h(1/κ))[1− p(m(x)− x)]dFa(x|a) +∫ θ̃

θa

v(tS(m(x)))[1− p(m(x)− x)]dFa(x|a) +
∫ θ

θ̃
v(tS(x))dFa(x|a) = c′(a)

14
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tS(θ)
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Figure 3: FOC (4.4) and (4.5) above and below θ̃ and optimal transfer scheme

tSB(m(θ))

θ θ

t(m(θ))

Θ

tS(θ)

θ̃

tSB(m(θ))

tO(·)

θa

where h ≡ (v′)−1 and κ is a constant, I can point to two effects. First, because the agent is

presented with a constant
∫ θa
θ v(h(1/κ))[1− p]dF > 0, she has some incentives to reduce her effort.

Second,
∫ θ̃
θa
v(tS(m(x)))[1− p]dF >

∫ θ̃
θa
v(tS(x))dF (otherwise she would report truthfully), so she

simultaneously has incentives to increase her action. Which of these dominates is not clear. What

is clear is that if aS is the principal’s preferred action in the standard model, then aO < aS .

4.3 Equilibrium properties of the optimal contract

Now that a solution to Problem 1 has been derived, I explore some of its characteristics. It is

already known that the optimal contract features ex ante rents, but I have remained silent as to

the fixed component below θa. This is important because it directly affects the cost of the contract

as well as the agent’s ex ante incentives for effort and her ex post incentives to reveal information.

Proposition 4 The optimal transfer tO pays zero below θaO .

This is a fairly intuitive result. Anything below zero is not binding, as argued before. Anything

above zero is too costly for two reasons. One, it induces a lower action from the agent because it

insures her against failure. Two, it not improve on information revelation (the threshold θ̃). To

see why, start from 0. In this case θa < θ̃ necessarily by (3.2). Suppose θ̃ is interior; decreasing the

threshold from θ̃ to the next type down, say θ̂ costs some γ > 0 to be offered to all agents. But

that change from θ̃ to θ̂ has zero measure. A consequence of Proposition 5 is that:

Corollary 2 Completely truthful revelation (Case 1) can never occur in equilibrium: P1 = ∅.
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Given the penalties specified, the optimal contract that offers the agent some incentives to exert

costly effort cannot simultaneously induce her to be completely truthful. Furthermore, because the

optimal transfer function is concave, misreporting occurs “at the bottom” (see Case 2). Indeed, the

agent whose private information is the worst is the one with the strongest incentives to misreport

when facing a concave transfer, and also with the lowest cost of misreporting.

5 The relationship between audit and transfers

From the agent’s best response (4.3) one readily sees that a better audit (higher α) decreases

effort.12 Thus audit and transfer could be construed as strategic substitutes, since a higher action

is associated (at least weakly) with a higher transfer. This would not be a correct statement as

they move in the same direction.

Proposition 5 Transfer tO and audit investment αO co-vary positively.

Therefore high-power contracts are necessarily accompanied with a large enough investment in the

audit technology. Conversely, it is because the audit is sufficiently precise that the contract is

high-powered. Increasing t in isolation in response the the moral hazard problem is destructive. It

requires a simultaneous increase in audit. This may be slightly counterintuitive; as α increases, the

agent’s choice a∗ decreases. This is because the ability to misreport enhances the marginal benefit

of a high action, but the audit curtails that. So the principal’s expected cost of a given action

decreases and in response he increases the transfer (in each state).

From a practical standpoint, Proposition 5 together with Condition (3.2) suggest it may not

be the lack of audit that is the culprit in high-profile scandals such as Enron or Lehman Brothers.

There is little doubt that firms of that nature are subject to audit. Rather the audit may not have

been sufficient given the incentives offered. It is well documented that Enron executives engaged

in information manipulation in spite of being audited. I am willing to add it was because the

incentives were so powerful.

The next result highlights what makes t and α co-vary. The primitives of the problem are: (i)

the properties of the distribution F (θ|a), (ii) the agent’s risk-aversion, (iii) the cost of effort and

(iv) the principal’s payoff function (here trivially linear in the state).

12Fix t and let a∗ solve the agent’s first-order condition (4.3) and differentiate with respect to α, da∗

dα
≡ da∗

dp
dp
dα

< 0.

16



Proposition 6 Transfer tO and audit investment αO both:-

1. decrease in the dispersion of the distribution (in the sense of SOSD);

2. decrease in the agent’s risk-aversion;

3. decrease as the cost of effort (c(a)) increases;

4. increase in the principal’s payoffs.

6 Discussion

6.1 Other penalties

The model could allow for penalties −l < 0. Then the first-order condition (3.1) would become

v′t′(1 − p) − p′(m − θ) [v(t(m))− v(−l)] = 0 and clearly (i) there would be less exaggeration in

equilibrium and (ii) for some l large enough, m(θ) = θ ∀θ (no misreporting). In the latter case, one

would revert to model closer to that of Mookherjee and Png [27].13 If l were not large enough, the

problem would remain as here, albeit muted. The only significant difference is that the threshold

θaO would be such that fa/f would be negative.

6.2 Audit: modeling choice

According to most accounting standards (e.g. US GAAP or the AASB in Australia), an audit

seeks to provide a reasonable assurance that statements are free from material errors. As a result,

a sampling procedure is usually adopted by financial auditors, who can verify the details of the

transaction(s).14 Statistical sampling is also followed by ISO-accredited companies for the purpose

13Noting that here truthful revelation would obtain immediately from the exogenous penalty.
14“If controls are assessed as appropriate and operating as expected then lower levels of substantive testing is

expected. [...] appropriate sampling (either statistically -in total or stratified - or judgementally when a small

number of items make up much of the volume) is performed and transactions and account balances verified. The

steps involved include tracing transactions from the general ledger back to supporting documents or from initiating

documents through to the ledger to ensure that they are appropriately included.” Mark Pickering, Auditor at Deloitte

Touche Tohmatsu, 1986-91
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of quality assurance.15 But in either case, the audit is always performed. The technology p(·;α) I

have chosen displays exactly these two characteristics.

Furthermore, absent additional (possibly unbounded, as in Mookherjee and Png [27]) punish-

ments or rewards, the construction of Border and Sobel [3] or Mookherjee and Png [27] cannot

deliver separation, let alone truthful revelation. To see why, observe that the audit technology can

be rewritten p(ω;α) and interpreted as a probability of running the audit, given some message ω –

as in those papers. Then truthtelling requires v(t(θ)) = maxω∈Θ v(t(ω)) [1− p(ω)], i.e. v′t′(θ) = 0;

hence the need for fines or rewards in [3, 27].

6.3 Commitment

Commitment to the contract is an assumption that is both standard and very strong, even more

so in this model where the principal commits himself to accept a lie and still compensate the

agent according to her message. Absent this commitment, the game becomes one of cheap talk à

la Crawford and Sobel (1982) at the stage of information revelation. Ignoring the possibility of

babbling equilibrium, auditing becomes no longer essential but may assist in improving information.

I conjecture that the equilibrium of this subgame replicates that of Crawford and Sobel (1982), in

which case the agent’s optimal action become discrete (in spite of the range being continuous).

7 Conclusion

When a principal cannot observe the outcome of his agent’s action in a moral hazard framework

and needs to elicit this information from that very agent, he faces a problem of ex post adverse

selection as well. This introduces a fundamental tension between ex ante incentive, for which a

contingent transfer is necessary, and ex post incentives, best addressed with a state-independent

transfer. Type separation (not necessarily truthful revelation) requires the use of an ex post audit

and penalties.

The ex post adverse selection problem is costly to the principal in three ways: first, the agent

is able to exaggerate her actual performance and thereby may receive an inflated transfer. The

principal’s response introduces a first set of distortions. Second, because penalties are weak, they

15ISO: International Organization for Standardization.
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act as an implicit limited liability constraint. As a result the participation constraint cannot bind

(there are rents) and the contract resembles an option. Last, the very fact that the contract

entails a region with constant transfer implies that complete truthful revelation can never arise

in equilibrium. There may be partial truthful revelation below a threshold; that is, the agent

misreports her information in the worse states because the incentive is the strongest and the cost

the lowest.

A key result of this paper is that the audit investment and the level of transfer co-vary. That is,

the stronger the incentives offered to the agent, the more she must be audited to be kept in check.

If thinking of real-life events (bankruptcies) of the past decade, it seems that this relationship may

have been forgotten at times.

8 Appendix: Proofs

8.1 Preliminaries

I begin with a series of Lemmata that address the potential lack of smoothness of the agent’s

expected utility function U , and others that the will be useful throughout.

Lemma 3 The function U is a.e. differentiable over Θ.

Proof: By application of the Theorem of Lebesgue to a monotonically increasing function; i.e.

by (3.2), U is monotonically increasing.

Then naturally:

Lemma 4 Suppose a solution m(t; θ) of FOC (3.1) exists, then

1. this solution is unique;

2. m(θ) is a.e. differentiable and

3. dm
dθ > 0

Proof: Directly from the sorting condition ∂2U
∂t∂θ = v′p′ > 0, we know that condition (3.1) ad-

mits a unique maximiser when it binds. That m(θ; t) is increasing in θ is immediate from

observing that the agent’s optimisation problem is supermodular. I will need more that this
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statement though. Continuity of the solution m(t; θ) follows from the Theorem of the Maxi-

mum. To show that m(θ, t) is monotonically increasing, re-arrange (3.1) as v′t′/v = p′/1 − p,

i.e. d ln(v(t(m)))/dm = −d ln(1 − p)/dm. Take some θ′ > θ and suppose m(θ′) ≤ m(θ). Then

p′(m(θ′) − θ′)/1 − p′(m(θ′) − θ′) < p′(m(θ) − θ)/1 − p′(m(θ) − θ), so that d ln(v(t(m(θ′))))/dm <

d ln(v(t(m(θ))))/dm. Therefore v(t(m(θ′))) > v(t(m(θ))) and since v(·) and t(·) are monotone

increasing, m(θ′) > m(θ), a contradiction. The same can be shown if taking some θ′ < θ and

supposing that m(θ′) ≥ m(θ). It follows that m(θ, t) is a.e. differentiable, by application of the

Theorem of Lebesgue, except at most for a finite set of points. Differentiate (3.1) with respect to

θ and rearrange.

In spite of Lemma 3, there may still exist problematic discontinuities, especially at θ̃, and this

point is one of particular interest.

Lemma 5 Suppose v(t(·)) is at least weakly concave, then the function U is continuous and dif-

ferentiable at θ̃ when θ̃ ∈ (θ, θ)

Proof: I show that U cannot be discontinuous at θ̃ and that by Condition (3.2) it must be also

differentiable. Consider some transfer function t(·) defined over Θ. Since only upward deviations

are of concern, the trouble is that we may have v(t(θ̃)) < [1− p(m(θ̃− ε)− (θ̃− ε))]v(t(m(θ̃− ε)))

for ε > 0, ε → 0. Suppose so, then truth-telling cannot be an optimal response at θ̃. So there must

exist some value θ0 < θ̃ (possibly θ) such that v(t(θ̃)) ≥ [1− p(m(θ)− θ)]v(t(m(θ))) for θ ∈ [θ0, θ̃).

Let θ → θ̃, this is exactly the definition of continuity. Now notice that

v′t′(θ̃) = v(θ̃)p′(0;α) ⇔ ∂

∂θ
v(t(θ))|θ̃ =

∂

∂θ
[1− p(m(θ)− θ)]v(t(m(θ)))|θ̃

or ∂
∂θU |R = ∂

∂θU |L at θ̃. So U is differentiable. Condition (3.2) is a pasting condition at θ̃.

Lemma 6 The mapping m : Θ 7→ M is piece-wise weakly convex in θ.

Proof: Take first θ̃ ∈ (θ, θ). m(θ) is increasing and a.e. differentiable by application of Lemma 1,

with m(θ) > θ for any θ̃ > θ. Because U is continuous and differentiable, limθ↑θ̃ m(θ) = θ. Suppose

now that m(θ) − θ were increasing; then dm(θ)/dθ > 1 and limθ↑θ̃ m(θ) 6= θ; so m(θ) − θ must

be decreasing, and consequently, dm(θ)/dθ < 1. Therefore m(θ) is convex when θ̃ ∈ (θ, θ). Now

extend θ̃ to θ to obtain Case 3.
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8.2 Proofs

Proof of Lemma 1: By pointwise optimization of Problem 1. Below θ̃ m(θ) > θ, so the transfer

tSB ≡ t(m(θ)), while above θ̃, tS ≡ t(θ). Notice that θa ≤ θ̃, otherwise there exists an interval

[θ̃, θa] where tO is constant and the agent reports truthfully. But this cannot be optimal by (3.1).

Proof of Proposition 1: The existence, sufficiency and uniqueness of such contract is shown

in Jewitt, Kadan and Swinkels [18] (in particular, they show the multipliers µ, λ exist and are

non-negative). To construct the contract, fix some action aO and take the first-order condition.

We know µ = 0 necessarily, so below θa the transfer must be such that 1/v′ remains non-negative.

Proof of Lemma 2: Fix some a. Integrate 1/v′ over Θ:

Eθ

[
1

v′(tO)

]
= κ

∫ θ

θ
dF (x|a) + λ

∫ θ

θa

fa
f
dF (x|a) = κ+ λ

∫ θ

θa

fa(x|a)dx.

That is,

0 < Eθ

[
1

v′(tO)

]
− 1

v′(tO(θ))
|θ≤θa = λ

∫ θ

θa

fa(x|a)dx.

(unless v′ = ∞ for some t and that t is a constant). For any increasing tO on some measure of Θ,

the inequality must hold as 1/v′ is increasing. Because fa/f ≥ 0 on
[
θa, θ

]
and strictly for at least

a positive measure, λ > 0 necessarily.

Proof of Proposition 2: Fix a. To show continuity rewrite the first-order condition as

v′(tO) = (κ+ λfa/f)
−1; let h ≡ (v′)−1. The function h(·) is continuous because v′ is also contin-

uous, so tO ≡ h
(
[κ+ λfa/f ]

−1
)

is a continuous function. To show continuity at θa, recall that

λfa
f |θa = 0 and fa/f is continuous in θ, so continuity at θa follows. For the second part of the

Proposition, first define τ(θ) ≡ tO ◦ m(θ). Then rewrite the FOC as v′(τ) −
(
κ+ λfa

f

)−1
= 0,

where τ(θ) is a.e. differentiable;differentiate w.r.t. θ to find v′′τ ′ + λ d
dθ

(
fa
f

)
/
(
κ+ λfa

f

)2
= 0.

This verifies τ ′ > 0 and therefore t′ > 0 as required since dm
dθ > 0. Re-arrange this expression and

redefine the variables

τ ′ = −λ
1

v′′︸︷︷︸
Y

d
dθ

(
fa
f

)
(
κ+ λfa

f

)2

︸ ︷︷ ︸
X
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Then τ ′′ ≥ 0 ⇔
(
dY
dθ X + dX

dθ Y
)
≤ 0. With Y < 0, rewrite the second condition as

dY

dθ
X ≤ −dX

dθ
Y ⇔ d

dθ
ln−Y ≤ d

dθ
lnX,

d

dθ
ln− 1

v′′
≤ d

dθ
ln

 d
dθ

(
fa
f

)
(
κ+ λfa

f

)2


Since the ratio fa

f is increasing concave, the RHS is negative. It is immediate to verify by differenti-

ation that the LHS is positive, so the necessary and sufficient condition cannot hold. Hence τ ′′ < 0

(where it is differentiable), that is, the effective transfer τ(θ) is concave in the type. To show it

is concave in the message, call on Lemma 6 and observe that τ is the composition of the function

t(·) and the convex function m(θ). Therefore t(·) must be concave in m. For the last item, observe

that at θ̃, m(θ̃) = θ̃ by (3.2) – the agent is truthful. Thus, under tO(·):-

v(tO(θ̃)) = [1− p(m(θ̃)− θ̃)]v(tO(m(θ̃))) = v(tO(m(θ̃)))

⇔ tO(θ̃) = tO(m(θ̃)) (8.1)

directly from (3.2). From Lemma 1, tO(m(θ)) = tSB(m(θ)) for θ ≤ θ̃ and tO(θ) = tS(θ) for θ > θ̃.

Both these transfer functions are continuous on their respective domains. Thus by (8.1) I have

shown that limθ↑θ̃ t(m(θ)) = tO(m(θ̃)) = tO(θ̃) = limθ↓θ̃ t(θ), which is the definition of continuity.

Last, the right-derivative of tO at θ̃ can be denoted dtO

dθ |θ̃, while the left-derivative is
dtO

dm
dm
dθ |θ̃, where

dm/dθ|θ̃ = 1 since m(θ) = θ at this point. Using this one more time, dtO

dm
dm
dθ |θ̃ =

dtO

dθ |θ̃; i.e. the left-

and right-derivative are identical at θ̃, which defines differentiability.

Proof of Corollary 1: Take any two θ1 < θ2 and suppose that truthful revelation holds at θ1,

i.e. v′t′(θ1) ≤ p′(0)v(t(θ1). Because tO is everywhere non-decreasing and concave (and so is v(·)),

it must therefore be that v′t′(θ2) ≤ v′t′(θ1) ≤ p′(0)v(t(θ1) ≤ p′(0)v(t(θ2). Therefore the agent also

reveals herself truthfully at θ2; she does not jump away from truth-telling.

Proof of Proposition 3: Construct the Lagrangian with the objective function and the

constraints (4.1)-(4.3). Apply the Envelop Theorem to the first constraint. Because θ̃ ≡ θ̃(α, t),

Leibnitz rule gives an additional term (e.g. p(m(θ̃)− θ̃;α)t(m(θ̃))f(θ̃|a) dθ̃dα). But it is naught at θ̃,

where m(θ̃) = θ̃. This gives the first-order conditions found in Lemma 1, as well as (4.9). When

θ̃ = θ, this latter condition is meaningless. In this case the level of investment is determined by (3.2)

at θ, i.e. (4.8).
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Proof of Proposition 4: Any amount lower than zero is not binding. Take tO to be zero

below θaO . Then necessarily by application of (3.2), θ̃ > θaO . All things otherwise equal, having θ̃

interior is costly to the principal in that the expected transfer is higher (otherwise the agent would

not misreport) and so is the agent’s optimal action. So the principal may have incentives to lower

θ̃. The smallest possible change, dθ, requires a fixed γ > 0 to be paid for all types (not just below

θaO). So the increase in expected cost is γ > 0, and because dθ has measure zero, it alters neither

the agent’s moral hazard constraint (4.3) nor her information revelation problem (4.1). Calling on

continuity completes the argument for any measure
∫
dθ.

Proof of Proposition 5: Let a∗ solve the agent’s moral hazard constraint (4.3). Differentiate

(4.3) and with respect to α:

0 = −
∫ θ̃

θ
vpαdFa(x|a) (8.2)

+

[∫ θ̃

θ
v(t(m(x)))[1− p(m(x)− x)]dFaa(x|a) +

∫ θ

θ̃
v(t(x))dFaa(x|a)− c′′(a)

]
da∗

dα

Since the term in the brackets is the agent’s second-order condition, it is negative. Therefore

da∗

dα < 0. Next, take the first-order condition (4.4) (or (4.5), as necessary), multiply by f and v′

and differentiate with respect to a:

fa − v′λfaa(·|a)− v′′dt/daλfa(·|a) = 0.

Divide by v′ and integrate from θa to θ, where SOC is v′′λfa(·|a) < 0:∫ θ

θa

1

v′
dFa − λ

∫ θ

θa

dFaa −
∫ θ

θa

SOC

v′
dt

da
dx = 0,

whence dt
da < 0 (from the perspective of the principal). Because a = a∗, combining these steps gives

dt
dα > 0.

Proof of Proposition 6: The following will be useful in several instances. Let a∗ solve the

agent’s moral hazard constraint (4.3). Differentiate (4.3) with respect to t:

0 =

∫ θ̃

θ
v′[1− p]dFa(x|a) +

∫ θ

θ̃
v′dFa(x|a) (8.3)

+

[∫ θ̃

θ
v(t(m(x)))[1− p(m(x)− x)]dFaa(x|a) +

∫ θ

θ̃
v(t(x))dFaa(x|a)− c′′(a)

]
da∗

dt
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Since the term in the brackets is the agent’s second-order condition, it is negative. Therefore

da∗

dt > 0. To prove item (i), consider two distributions F 1(θ|a) and F 2(θ|a), where F 2 is a mean-

preserving spread of F 1 (see Rothschild and Stiglitz [32]). Fix t; because F 1 dominates F 2 in the

second order sense, it follows from (4.3) that at a∗∫ θ̃

θ
v[1− p]dF 2

a +

∫ θ

θ̃
vdF 2

a <

∫ θ̃

θ
v[1− p]dF 1

a +

∫ θ

θ̃
vdF 1

a (8.4)

by application of the envelop theorem (to the messages). Now define the following variable θ2 =

θ1 + ε, where θ2 ∼ F 2 and θ1 ∼ F 1 (so θ2 is more risky than θ1, and (8.4) follows). Consider

again (4.3), as under F 1, and differentiate with respect to ε at ε = 0:[∫ θ̃

θ
v(t(m(x)))[1− p(m(x)− x)]dF 1

aa(x|a) +
∫ θ

θ̃
v(t(x))dF 1

aa(x|a)− c′′(a)

]
da

dε

+
d

dε

[∫ θ̃

θ
v[1− p]dF 1

a +

∫ θ

θ̃
vdF 1

a

]
= 0

By (8.4) the last term is negative, so from (8.3) da
dε < 0. Letting da

dε ≡ da
dt

dt
dε ,

dt
dε < 0 as claimed.

To show (ii), consider a family of utility functions v(t; r) parametrized by r; risk aversion (i.e. the

concavity of v(·; ·)) increases in r. Suppose for simplicity that v(t; r) is continuous and differentiable

in r (as well as t). For a fixed action a, we know that

d

dr

[∫ θ̃

θ
v(t; r)[1− p]dF (x|a) +

∫ θ

θ̃
v(t; r)dF (x|a)

]
< 0

using the envelop theorem again. That is, equivalently, for any two r2 > r1,
∫ θ̃
θ v(t; r2)[1 −

p]dF (x|a) +
∫ θ
θ̃ v(t; r2)dF (x|a) <

∫ θ̃
θ v(t; r1)[1 − p]dF (x|a) +

∫ θ
θ̃ v(t; r1)dF (x|a). It then follows

from (4.3) that a∗(r2) < a∗(r1); equivalently, differentiating (4.3)

0 =
d

dr

[∫ θ̃

θ
v(t; r)[1− p]dFa(x|a) +

∫ θ

θ̃
v(t; r)dFa(x|a)

]
(8.5)

+
da

dr

[∫ θ̃

θ
v(t; r)[1− p]dFaa(x|a) +

∫ θ

θ̃
v(t; r)dFaa(x|a)− c′′(a)

]

Because the first term of (8.5) is negative it follows that da
dr < 0 as well. Making use of the fact

that da
dt > 0 completes the argument. To prove (iii), consider two cost functions c1(a), c2(a) such

that ∀a, c2 > c1. Because c′i, c
′′
i , c′′′i > 0, c2 > c1 ∀a implies c′2 > c′1 ∀a. Fix t, from (4.3) we have

that a∗(c2) < a∗(c1). By (8.3) therefore t(θ, c2) < t(θ, c1) ∀θ (with obvious notation). For the last

24



item, suppose the principal’s payoff is some increasing function π(θ). From (4.7) it follows that aO

increases, and from (8.3) so does the transfer t. To complete the proof, apply Proposition 5.
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