India's Mysterious Manufacturing Miracle*

Albert Bollard Stanford University Peter J. Klenow Stanford University Gunjan Sharma University of Missouri

July 2011 (First draft: September 2010)

Abstract

Using data on formal manufacturing plants in India, we report a large but imprecise acceleration in productivity growth starting around the mid-1990s (e.g., 1993-2004 compared to 1980-1992). We trace the acceleration to productivity growth within large plants (200 workers or more), as opposed to reallocation across such plants. As many economists believe Indian reforms during this era improved resource allocation, the absence of a growth pickup from reallocation is surprising. Moreover, when we look across industries we fail to robustly relate productivity growth to prominent reforms such as industrial de-licensing, tariff reductions, FDI liberalization, or lifting of small-scale industry reservations. Even under a generous reading of their effects, these reforms (at least as we measure them) seem to account for less than one-quarter of overall productivity growth.

^{*}We are grateful to the Stanford Institute for Economic Policy Research (SIEPR) and the International Growth Center (IGC) for financial support, and the Indian Ministry of Statistics and Programme Implementation for access to and help with the Annual Survey of Industries. Chang-Tai Hsieh and Robin Burgess provided helpful comments, and Alejandro Molnar excellent research assistance.

1 Introduction

Given their large populations and initial poverty, rapid economic growth in India and China in recent decades may have contributed more to world welfare than all of the growth experienced by the rest of the world's population combined (see related evidence in Pinkovskiy & Sala-i-Martin (2009)). This leaves no greater priority for growth economists than to reap policy lessons from the accelerated development of India and China.

There appears to be a growing consensus about a few aspects of China's growth speed-up. It has been particularly rapid in manufacturing (Young (2003) and Bosworth & Collins (2008)), where it has been facilitated by the displacement of inefficient state-owned enterprises with new, more efficient private enterprises (Brandt, Biesebroeck & Zhang (2009) and Hsieh & Klenow (2009)).

Has growth similarly quickened in India's manufacturing sector? Did reallocation of capital, labor, and materials from less-efficient to more-efficient incumbents lift the growth rate? Did pre-existing plants experience rapid productivity growth? How important was input growth versus residual productivity growth? In turn, what quantitative role did specific Indian policy reforms, such as trade liberalization and delicensing, play in India's manufacturing growth?

The answers to these questions matter for welfare and policy. If reallocation of inputs from low to high marginal productivity plants fed growth, then reforms freeing up labor mobility or sharpening incentives for profitable lending may have been the key driver. Total Factor Productivity (TFP) growth in incumbent plants might point to investments in human capital and technology.¹

If reforms were implemented with distinct timing or to varying degree across industries or regions, then we can try to use panel data to ask whether years, industries and regions in which reforms were concentrated exhibit unusual productivity growth. Rodrik & Subramanian (2004) carry out this strategy at the aggregate level, whereas Aghion, Burgess, Redding & Zilibotti (2005) and Aghion, Burgess, Redding & Zilibotti (2008) do so at the industry and regional levels.

Tracing any growth to policy is devilishly difficult, of course. First, empirical proxies for reforms are crude and incomplete. Enforcement may differ across industries and time. Second, reforms might not be implemented randomly with respect to an industry's productivity prospects. Struggling industries might be targeted for or shielded from

¹In the context of India, Hulten & Srinivasan (1999) argue that TFP growth has been important in inducing capital accumulation as well.

reforms. Third, measurement of real industry output and inputs is far from perfect. Plants may cease to under-report output or inputs after de-licensing. Quality and variety are notoriously difficult to measure (but see Goldberg, Khandelwal, Pavcnik & Topalova (2010*a*) and Goldberg, Khandelwal, Pavcnik & Topalova (2010*a*) for efforts on both the input and output side for India). Fourth, general equilibrium forces can exaggerate or hide the gains when looking at the industry level. Skilled workers might move in or out of reformed industries, thereby affecting TFP in reformed industries more than aggregate TFP. Industries with rapid TFP growth may see declining relative prices, making it crucial to pick these up in industry deflators. Fifth, dynamic forward-looking behavior can mute or amplify gains around the years when an industry is reformed. Firms might undertake unobserved investments in intangible capital in anticipation of future reforms (or even at the height of reforms, with the TFP benefits not showing up until later). See Costantini & Melitz (2010) for an example. Taken together, it is clear that looking at the industry-year level could easily overstate or understate the productivity effects of reforms.

With these caveats in mind, we proceed to analyze micro data from the Indian Annual Survey of Industries (ASI) to decompose growth (inputs vs. productivity, different types of plants, etc.) and correlate it with a number of policy reforms. The ASI data consists of repeated cross-sections of formal manufacturing plants in India for most years from 1980 to the present.

The ASI has many shortcomings, which we will highlight shortly. Nevertheless, it has been increasingly used to analyze the effects of particular policies, such as liberalization of trade or de-licensing. Recent examples include Sharma (2008), Sivadasan (2009), Chamarbagwalla & Sharma (forthcoming), Chari (2010) and Topalova & Khandelwal (forthcoming). Many such studies use several adjacent years of the ASI. We piece together a longer time series of growth rates, from 1980 to 2004, excluding a few years in between where no sample was conducted or when the sampling frame changed markedly.

We find evidence of a large acceleration in aggregate productivity growth in formal Indian manufacturing during the sample, for example in the early 1990s. The acceleration can be seen in large incumbents in particular.² And it arises from changes in such plants over time, not reallocation from low to high marginal product incumbents.

²This is in accord with the evidence in Alfaro & Chari (2009) on the still dominant share of old, large firms in the output and employment of most Indian sectors. Their results are about levels, not about growth rates. Sharma (2008) and Chamarbagwalla & Sharma (forthcoming) also present evidence on the importance of large plants in raising levels of labor productivity and the demand for skilled workers, respectively.

Across industry-years, however, we are unable to relate much of the growth to reforms such as de-licensing, trade and FDI liberalization, or lifting of small-scale industry reservations. Even taking the high end of our estimates, which are similar to previous studies, these observable reforms account for less than one-quarter of manufacturing productivity growth in India from 1980-2004, and essentially none of the acceleration. Other studies find important effects, to be sure, but do not account for most of the growth (or growth acceleration) we see. It is as if a manufacturing miracle has occurred in India, but of some mysterious unknown origin. This echoes the qualitative conclusion of a recent book by Bardhan (2010).

Our findings (or lack thereof) must be taken with even more caution than usual. The time series is not long, and the annual growth rates are distressingly noisy. In addition to the caveats cited above, we must re-emphasize that our metrics for policy are imperfect, as is the methodology for measuring productivity growth. And the effects of policy might not show up in industry productivity growth immediately following the reforms or at all.

The rest of the paper is organized as follows. In Section 2 we describe the data used in our analysis, in Section 3 we define our measure of productivity growth and provide estimates using ASI data. In Section 4 we provide details about the reforms that took place in India in the 1980s and 1990s, as well as evidence about the effects of these reforms in India. Section 5 concludes.

2 ASI Data

The Annual Survey of Industries (ASI), which is conducted by the Indian Ministry of Statistics, is the only comprehensive annual survey of Indian manufacturing plants. We use the plant-level micro data from 1980-81 to 2004-05 (with the exception of the 1995-97 surveys, which are missing or inconsistent). Despite its coverage, and growing use by economic researchers, there are substantial caveats. We outline these here—for further details, see the Data Appendix.

The ASI sampling frame consists of all registered factories employing 10 or more workers using power, or 20 or more workers without using power. The largest plants, which we call the "Census sample", are surveyed every year. The size threshold for the Census sample varied over this period between 50 and 200 workers (see Table A.1), but all plants employing 200 or more workers are always surveyed. The remaining plants are sampled randomly, and we always weight by the inverse of the sampling probabilities.

Plants report data on the value of output, materials and fuels, although from 1996-97

onwards up to one-third of these observations are missing. Capital is measured by the book value of fixed assets, and employment and wages are divided between workers and all other employees. We construct a common industry concordance of the NIC1970, NIC1987, NIC1998 and NIC2004 coding schemes, which gives just under 100 roughly 3-digit industries with a common definition over the entire period. We focus on plants in these manufacturing industries that were operating at the time of the survey and who report these variables. There are substantial numbers of extreme outliers, especially since 1996-97, and we attempt to reduce their influence by top-coding and bottom-coding the 1% tails ("Winsorizing") of all plant-level variables immediately prior to aggregation.

Figure 1 plots the sizes of the full ASI sample, the Census sample, and the sample of plants employing 200 or more workers over the period. Vertical lines reflect publicly announced changes in the sampling methodology. There are two gaps: the first reflects the missing 1995-96 survey year; the second reflects the fact that the 1996-97 survey substantially differs from the 1997-98 survey, both in the sampling methodology and the survey form. Most importantly, the total value added captured in the 1996-97 survey is more than a quarter less than that in the 1994-95 or 1996-97 surveys (see Figure A.1). Because of this, we drop the 1996-97 survey year from the subsequent analysis (our main results are strengthened if we instead retain it).

All open manufacturing ASI plants with positive factors of production and output. Years refer to beginning year of survey. Vertical lines indicate changes in sampling methodology in 1987 and 2004. Gaps indicate missing data in 1995 and anomalous data in 1996.

As explained, we are interested in decomposing productivity growth into that

occurring within plants versus across plants. The publicly available ASI micro data contains no plant identifiers, but by comparing plant records in adjacent years in the Census sample, we are able to construct an imperfect panel. Our algorithm searches for unique matches between records on static variables such as location, and for "close" matches between year-end and year-start balance-sheet variables, such as opening and closing values of fixed assets.(See the Data Appendix for details about the plant matching algorithm.)

Table 1 presents a few statistics about the samples for all plants, Census plants and plants with 200 or more workers, respectively. The Census sample contains the largest number of linked-up plants, but Figure 1 shows that its size jumps around disconcertingly over time. By contrast, the $L \ge 200$ sample reflects only the largest plants, which are always surveyed. The average ASI plant employment is 89 people, whereas plants in the Census and $L \ge 200$ samples are much larger. The panel identification rate row shows that we are able to successfully match 76% of annual records in the Census sample to adjacent records, and this match rate rises to 87% for the largest plants. The remaining records represent plants that either entered or exited the Census sample, or were not matched due to measurement error. The final row shows that, once the plant match rate and needing two years to calculate a growth rate are taken into account, we are left with about 10,000 annual plant growth rate observations in the $L \ge 200$ sample.

	All ASI	Census plants	$L \ge 200$ plants
Annual observations	33,947	16,037	4,728
Employees per plant	89	292	831
Panel identification rate		76%	87%
Annual growth rate observations		9,994	3,414

Table 1: ASI averages

All open manufacturing ASI plants with positive factors of production and output 1980–1994 and 1997–2004.

3 ASI Productivity Growth: Trends and Decomposition

3.1 Methodology for Estimating Growth and its Decomposition

Basu, Pascali, Schiantarelli & Serven (2009) show that, under certain conditions, a key contributor to welfare is the present and future behavior of aggregate total factor

productivity (TFP). With this motivation, we try to estimate TFP growth rates in Indian manufacturing. We also decompose the growth into increased efficiency of economic units vs. growth due to reallocation of resources across economic units, following Basu & Fernald (2002), Petrin & Levinsohn (2011), Petrin, Reiter & White (2011), and others.

Aggregate TFP growth is aggregate value added growth less aggregate input growth (both deflated). It can be decomposed into growth from plant efficiency, reallocation of inputs across plants within sectors, reallocation of inputs between sectors, and returns to scale. For clarity of exposition, consider the case of one good (Y with price P_Y) and one input (X with price P_X). In this special case, aggregate TFP growth in Basu & Fernald (2002) is

$$da = dy - \sum_{i} \frac{P_X X}{P_Y Y} dx_i$$

where *i* refers to plant *i*, $dy = \sum_i \frac{Y_i}{Y} dy_i$ and $dy_i = \frac{\Delta y_i}{y_i}$ and similarly for dx. Some manipulation allows us to separate out average plant-level growth in technical efficiency:

$$da = \sum_{i} \frac{P_Y Y_i}{P_Y Y} (dy_i - dx_i) + \sum_{i} \left(\frac{P_Y Y_i}{P_Y Y} - \frac{P_X X_i}{P_Y Y} \right) dx_i$$

The first term is a value-added-weighted average of plant efficiency growth rates. We can split the second term into growth tied to the aggregate markup and growth due to reallocation, respectively:

$$da = \sum_{i} \frac{P_Y Y_i}{P_Y Y} (dy_i - dx_i) + \left(\frac{P_Y Y - P_X X}{P_Y Y}\right) dx + \sum_{i} \left(\frac{P_Y Y_i}{P_Y Y} - \frac{P_X X_i}{P_Y Y}\right) dx_i \tag{1}$$

The middle term in equation 1 reflects that input growth is "worth" more socially than it costs privately in the presence of a price markup (imperfect competition). The third term in equation 1 reflects reallocation of inputs to plants whose output share $\frac{Y_i}{Y}$ is larger than their input share $\frac{X_i}{X}$ – and hence are more productive.

Another way to express the gain from reallocation is in terms of marginal product gaps. Let the value of the marginal product of input *X* for plant *i* be $VMP_i = \frac{P_Y Y_i}{X_i}$, and the average value of this marginal product for the whole economy be $VMP = \frac{P_Y Y}{X}$. Then the reallocation term can be re-written as:

$$\sum_{i} \left(\frac{P_{Y}Y_{i}}{P_{Y}Y} - \frac{P_{X}X_{i}}{P_{Y}Y} \right) dx_{i} = \frac{\sum_{i} (VMP_{i} - VMP)\Delta x_{i}}{P_{Y}Y}$$

If inputs increase for plants with higher-than-average marginal products, then aggregate TFP increases.

We can further split the reallocation term into reallocation of inputs across plants within a sector and reallocation of inputs between sectors. Let $VMP_j \equiv \frac{P_Y Y_j}{X_j}$ denote the average value the of marginal product of input *X* in sector *j*. Then if we add and subtract $\left(\frac{P_Y Y_j}{X_j}\right) \left(\frac{\Delta x_i}{P_Y Y_i}\right)$ from the reallocation term we get the following:

$$\sum_{i} \left(\frac{P_{Y}Y_{i}}{P_{Y}Y} - \frac{P_{X}X_{i}}{P_{Y}Y} \right) dx_{i}$$

$$= \sum_{j} \sum_{i \in j} \left(\frac{P_{Y}Y_{i}}{X_{i}} - \frac{P_{Y}Y_{j}}{X_{j}} \right) \frac{\Delta x_{i}}{P_{Y}Y} + \sum_{j} \sum_{i \in j} \left(\frac{P_{Y}Y_{j}}{X_{j}} - \frac{P_{Y}Y}{X} \right) \frac{\Delta x_{i}}{P_{Y}Y}$$
(2)

$$= \sum_{j} \frac{P_Y Y_j}{P_Y Y} \sum_{i \in j} \left(\frac{P_Y Y_i}{X_i} - \frac{P_Y Y_j}{X_j} \right) \frac{\Delta x_i}{P_Y Y_j} + \sum_{i} \left(\frac{P_Y Y_j}{X_j} - \frac{P_Y Y}{X} \right) \frac{\Delta x_j}{P_Y Y}$$
(3)

where $\Delta x_j = \sum_{i \in j} \Delta x_j$. The first term in equation 3 is reallocation of inputs across plants within a sector while the second term is reallocation of inputs across sectors.

=

Having described the general way in which we calculate aggregate TFP growth and its components, we now provide a few details about our implementation. First, in the ASI, entry and exit is conflated with unmatched continuing plants. If we aggregate "entrants" and "exiters", the resulting changes due to net entry are extremely noisy. We therefore focus only on incumbent plants in each period.

Second, to avoid double-counting of output and understatement of aggregate manufacturing TFP growth, we work with value added rather than gross output. Nominal value added of plant *i* is $P_i^Y Y_i = P_i^Q Q_i - P_i^M M_i - P_i^F F_i$, where Q_i is gross output, M_i are materials inputs (other than fuels), and F_i are fuel inputs.

Third, we have 2-digit gross output price deflators, which we use to deflate gross output and construct materials deflators at the 2-digit industry level. We use an economy-wide deflator for capital, and number of employees for labor (white collar and blue collar, respectively).

Fourth, we follow Basu & Fernald (1997) in calculating Divisia real value added growth as

$$dy_i = \frac{dq_i - \beta_{st}^M dm_i - \beta_{st}^F df_i}{1 - \beta_{st}^M - \beta_{st}^F},\tag{4}$$

where β_{st}^{M} is the share of materials expenditure in nominal output for the sector-year.³

³We exclude shares outside the unit interval when calculating the average. As a robustness check, we also calculated Divisia value added using total input costs (materials, fuels, capital and labor) instead of nominal output in the denominator of β_{st}^M . This has the effect of dramatically increasing the observed productivity growth acceleration.

Finally, we calculate plant efficiency growth as

$$da_i = dy_i - \sum_k \alpha_{st}^k dx_i^k, \tag{5}$$

where α_{st}^k are sector-year input cost shares, assuming a 15% rental price of capital. There are three inputs: fixed assets, skilled labor and unskilled labor. We calculate all growth rates as 100 times the log difference, and all weights as Tornquist shares: $0.5 \times (w_t + w_{t-1})$. See the Data Appendix for more details.

3.2 Estimated Growth and its Acceleration

Using manufacturing totals from ASI plant-level data and economy-wide totals from the World Development indicators, Figure 2 plots manufacturing's share of economy-wide value added (GDP) and employment. Economy-wide employment includes the informal manufacturing sector, while our ASI data only includes the formal manufacturing sector. Some of the decline in the employment share of manufacturing could be due to growth in informal sector employment, as Hsieh & Klenow (2011) find in the Survey of Unorganized Manufacture.

Both series graphed as logarithms. *Sources:* GDP and labor force from World Development Indicators. Manufacturing totals from ASI micro-data.

Now we proceed to growth accounting exercises. The decomposition of aggregate TFP growth outlined in Section 3.1 involves averaging plant-level growth rates of value added and inputs. But a common way to calculate aggregate TFP growth is to first sum *levels* of value added and inputs across plants and then calculate growth rates on

aggregates. For robustness and comparability to other studies, we start with the latter calculation in Table 2. The table reports annual rates of growth for aggregate gross output, value added and factor inputs in Indian manufacturing for the period 1980-2004. The three columns cover different samples: all plants in column 1 (including smaller sampled plants), Census panel plants in column 2 (those sampled with probability 1), and the panel of plants that employ 200 or more workers in column 3 (a subset of the Census panel plants). As mentioned in Section 2 and illustrated in Figure 1, the L \geq 200 subsample is likely to be more reliable since these plants are always surveyed irrespective of changes in sampling methodology. Across the three samples, value added growth ranges from 8.6% to 10.7%, input growth ranges from 3.0% to 3.9%, and TFP growth ranges from 5.6% to 7.0%. TFP growth is faster for the bigger plants, suggesting they contribute disproportionately relative to smaller plants.

	00	0 ,	
	All plants	Census panel	$L \ge 200$ panel
Output	7.3	9.1	8.9
Value added	8.6	10.7	10.6
Fixed assets	8.0	7.9	7.6
Unskilled labor	0.7	2.1	1.6
Skilled labor	0.9	1.9	1.4
Total factor inputs	3.0	3.9	3.6
Aggregate productivity	5.6	6.8	7.0

Table 2: Growth of aggregates, 1980–2004 (%)

Source: ASI—see Data Appendix for panel construction details.

In Table 3 we look at the growth of aggregates in Indian manufacturing across two sub-periods: 1980-92 and 1993-2004.⁴ The table reports a substantial increase in the rate of growth of TFP across the two-sub periods. Using all ASI plants, the growth rate of TFP rose from 3.5% to 8.4% from 1980-92 to 1993-2004 (columns 1 and 4). An even bigger acceleration is seen in Census plants (from 4.3% to 10.3%) and in the L≥200 plants (from 4.3% to 10.6%).

⁴We choose the year 1992-93 as the break year for two reasons. First, in the context of the industrial and trade policy reforms that took place in 1991 (following a balance of payments crisis), it is interesting to compare the growth of the manufacturing in the 1980s to that in the 1990s. Second, tests show that an era dummy variable which switches on in 1992-93 explains the largest fraction of the growth rate of TFP. In particular, we regress aggregate productivity growth in year t on $ERA_t^p = 1$ if $t \ge p, p = 1980$2004 and we get the largest R^2 when p = 1992 - 93 (see Figure B.1 and Tables B.4 and B.5). Thus, the data locally prefers 1992-93 as the year in which the break in TFP growth occurred. There is some evidence of another break in 2002-03 but it is hard to tell given our data ends in 2004.

		00 0		1	. ,	
	1980 – 1992			1993 - 2004		
	All plants	Census panel	$L \ge 200$ panel	All plants	Census panel	$L \ge 200$ panel
Output	7.8	7.3	7.5	6.6	11.4	10.9
Value added	7.0	7.4	7.6	10.8	15.2	14.5
Fixed assets Unskilled labor Skilled labor	10.1 0.5 1.7	9.0 0.4 1.0	9.0 0.6 1.0	5.2 1.0 -0.2	6.4 4.3 3.1	5.7 3.0 2.0
Total factor inputs	3.5	3.1	3.3	2.4	4.9	3.9
Aggregate productivity	3.5	4.3	4.3	8.4	10.3	10.6

Table 3: Growth of aggregates over two periods (%)

Source: ASI—see Data Appendix for panel construction details.

In the next growth accounting exercise we first calculate plant-level growth rates of key variables (value added, inputs and technical efficiency) before aggregating them using plant shares in aggregate value added. This method allows us to decompose aggregate TFP growth into plant-level efficiency growth, between- and within-sector reallocation, and an aggregate markup term, as described in Section 3.1 above. Table 4 shows that TFP growth averaged around 6.2% from 1980-2004 among census plants in the ASI, and 6.7% among plants with 200 or more workers. Reassuringly, these TFP growth rates are not far from those calculated on growth rates of aggregates (6.8% and 7.0%, respectively).

As also shown in Table 4, the primary source of TFP growth is growing productivity of individual plants over time: 4.8% per year at Census plants and 5.3% for L \geq 200 plants. Reallocation of inputs from low to high productivity plants *within* three-digit industries contributed 1.1% annually among Census plants and 1.0% annually among L \geq 200 plants. Reallocation of inputs *across* three-digit industries contributed comparatively little (0.2 percentage points per year), as did average input growth interacted with increasing returns (0.1-0.2% per year).

Table 5 shows that we continue to see a sharp increase in the growth rate of TFP from the 1980s to the 1990s when we look at averages of growth rates from ASI plant-level data. The TFP growth rate jumped from 4.0% to 9.2% for census plants and from 4.0% to 10.3% for large plants (those with employment greater than or equal to 200). No matter which method of aggregating or which sample of plant we use, we estimate much faster TFP growth in the mid-1990s onward than earlier.

Panel A of Figure 3 illustrates the growth pick-up. When we plot the growth rates of

00 0	0 1 0	, ()
	Census panel	$L \ge 200$ panel
Value added	6.2	6.7
Total factor inputs	-0.0	0.0
Aggregate productivity	6.2	6.7
Plant efficiency	4.8	5.3
Within-sector reallocation	1.1	1.0
Between-sector reallocation	0.2	0.2
Aggregate markup	0.1	0.2

Table 4: Aggregated averages of plant-level growth rates, 1980–2004 (%)

Source: ASI—see Data Appendix for sample construction details.

	1980 -	- 1992	1993 – 2004		
	Census panel	$L \ge 200$ panel	Census panel	$L \ge 200$ panel	
Value added	4.2	4.3	8.9	10.0	
Total factor inputs	0.2	0.3	-0.3	-0.2	
Aggregate productivity	4.0	4.0	9.2	10.3	
Plant efficiency	2.4	2.5	8.0	9.2	
Within-sector reallocation	1.2	1.0	1.1	1.0	
Between-sector reallocation	0.1	0.1	0.3	0.3	
Aggregate markup	0.3	0.4	-0.3	-0.2	

 Table 5: Aggregated averages of plant-level growth rates over two periods (%)

Source: ASI—see Data Appendix for sample construction details.

TFP and its components over time, we find that the slope of the graph is higher from the mid-1990s onwards. The Figure also makes it clear that the TFP growth rate is volatile from year to year. This will show up in estimated standard errors shortly.

The bottom half of Table 5 decomposes the acceleration. Most of the TFP growth speed-up is attributable to rising plant-level efficiency. Within-sector reallocation continued at the same pace in the two sub-periods, however, at about 1.1% per year. This result may be surprising given various industrial and trade policy reforms that occurred during the mid-1980s and early-1990s. One might have expected reforms to reallocate factors from less to more productive plants within industries. The reforms may have done so, but evidently did not contribute to a faster rate of TFP growth from within-sector reallocation in the second half of our sample. The Table does indicate a slightly quicker pace of gains from *between*-sector reallocation, from 0.1% to 0.3% per year. But this is small in the context of a roughly 6 percentage point growth acceleration. Meanwhile, the last row of the Table indicates that input growth slowed in these samples,

so that economies of scale actually shaved roughly half a percentage point off the speedup. Panels B and C of Figure 3 plot the decomposition year-by-year for the census plants and larger plants, respectively. The figure makes it clear that reallocation within industries has been a non-trivial source of growth, cumulating to almost 25% higher TFP in 2004 than in 1980. But this is not the bulk of the story overall (125% or more total growth) or in the second vs. first half of the sample.

It is useful to compare our estimates of TFP growth to other studies. Productivity growth estimates from selected studies are reported in Table B.1. For the earlier period, our estimates of roughly 4% average annual TFP growth are somewhat higher than the 2.2% of Hulten & Srinivasan (1999) or the 2.5% of Bosworth & Collins (2003) for similar periods. Hulten & Srinivasan (1999) use published ASI aggregates, but they use double deflation method whereas we calculate real value added using a Divisia index. Our estimate is closer to the 3.2% of Unel (2003). For the later period, our TFP growth of 9-10% is much higher than the 1.9% reported by Bosworth & Collins (2003) or even the 4.7% estimated by Unel (2003). Bosworth & Collins (2003) use data on agriculture, industry and services rather than just manufacturing. Industry includes construction and utilities in addition to manufacturing. According to GDP by sector data, manufacturing averaged 69.5% of nominal industry value added from 1980-2000, and *formal* manufacturing averaged just 44% of nominal industry value added. Finally, the Bosworth-Collins deflators differ from ours. The divergence of our estimates from Bosworth-Collins stem from some combination of sector coverage, deflators, and time period. Our later sample of 1993-2004 does not overlap much with the 1991-1997 sample in Unel (2003), which could be particularly important given some high growth rates in the 2000s. ⁵

To gauge the statistical significance of the acceleration of TFP growth, we regress the growth rate of TFP on a dummy variable that takes on a value of 1 for years from 1993 onwards. Table 6 reports the results for the L \geq 200 sub-sample of plants, and Table 7 for all matched census plants. The roughly 6 percentage point acceleration, while large economically, is only marginally significant statistically in the first column of Panel A. The p-values are between 5 and 10% due to standard errors on the order of 3 percentage points. Note we can aggregate TFP growth to the annual level before running these regressions , or instead run regressions at the sectoral or plant level. The coefficients are identical, but the standard errors differ a little, with significance mostly at the 5% level.

⁵Rodrik & Subramanian (2004) use the Unel (2003) estimates for manufacturing from 1980-1997. Our sample extends seven more years, in which growth appears notably faster. Also, Rodrik and Subramanian mostly use data for the whole economy from Bosworth and Collins when arguing that TFP growth picked up in the 1980s and stayed high in the 1990s.

Figure 3: Cumulative productivity growth and its components A. Aggregate productivity growth

Series re-initiated in 1997 at 1994 levels due to missing 1995 and 1996 data.

In each case we cluster by year, in the sectoral case by sector as well, and in the plant case also by plant.

Because of the sizable standard errors, our estimates are far from precise. The most generous interpretation of Column 1 of Tables 6 and 7 is that the data show a large but inexact acceleration in productivity growth starting around the mid-1990s. We also note that the growth acceleration is a little smaller once we include smaller plants (those that were of the census sector of the ASI but smaller than 200 workers).

In Panel B of Table 6 and Table 7 we report the significance of the speed-up in plantlevel efficiency growth. As the standard errors are a little smaller and the growth pick-up a little larger, these are typically significant at the 5% level. Panels C and D of the Tables show that the non-acceleration of reallocation is estimated more precisely.

In Columns 2-4 of Tables 6 and 7 we test for a growth acceleration after making corrections for heteroscedasticity. Our motivation is to try to obtain more precise estimates of any acceleration, but these will also serve as robustness checks. We implement three alternative weighting schemes. First, we are worried that plant-level data is particularly noisy in some years. In Column 2, we weight each year by the inverse of the cross-sectional variance of plant growth rates in that year.⁶. Second, we are concerned about sector-specific noise. So in Column 3 of Tables 6 and 7, we use FGLS techniques to estimate the time series variance of sectoral TFP growth around its sectoral mean for the whole time series, and use the inverse of that to weight each sector-year growth rate observation.⁷ In Column 4, we weight each observation by the inverse of both plant and sectoral noise.

Columns 2-4 reveal that noise correction gives modestly more precise estimates. While the magnitude of our estimate of the productivity speed-up bounces around a little, our basic result continues to hold. That is, there seemed to be a large acceleration in productivity growth in Indian manufacturing starting in the mid-1990s of around six percentage points. This was typically significant at the 5-10% level, and occurred mainly at the plant-level as opposed to via reallocation of inputs across plants.

⁶That is, the weight is $\frac{1}{E[Var_t(g_{it}-\hat{g}_t)]/N_t}$, where g_{it} is the growth rate of TFP of plant *i* and \hat{g}_t is the average growth rate of TFP in year *t*.

⁷To apply the GLS technique, we regress the growth rate of TFP on the era dummy variable in an ancillary regression and obtain the corresponding residuals. Then we project the log of square of those residuals on sector fixed effects as variance predictors. The predicted values from this regression are the variance estimates used to obtain the FGLS estimator. Finally, we re-estimate the pick-up equation, but now weighting by the inverse of the variance estimate. Note that we can implement this technique using either plant-level or sectoral data, not annual data.

	(1)	(2)	(3)	(4)					
Noise weighting:	None	Plant Noise	Sector Noise	Both					
A. Aggregate productivity									
Annual data	6.23	6.24							
	(3.38)*	(3.43)*							
	B. Plant efficiency								
Annual data	6.70	6.96							
	(3.26)*	(3.41)*							
Sectoral data	6.70	6.96	5.60	5.44					
	(2.72)**	(3.09)**	(2.74)*	(2.73)*					
Plant data	6.70	6.96	7.24	7.16					
	(2.72)**	(3.09)**	(2.83)**	(3.06)**					
	C. Be	etween-sector realloc	ation						
Annual data	0.13	0.18							
	(0.17)	(0.14)							
Sectoral data	0.13	0.18	0.15	0.22					
	(0.17)	(0.17)	(0.09)	(0.11)*					
Plant data	0.13	0.18	0.02	0.07					
	(0.17)	(0.17)	(0.09)	(0.09)					
	D. V	Vithin-sector realloca	ation						
Annual data	-0.01	0.11							
	(0.23)	(0.19)							
Sectoral data	-0.01	0.11	0.15	0.15					
	(0.21)	(0.19)	(0.18)	(0.14)					
Plant data	-0.01	0.11	-0.04	0.02					
	(0.21)	(0.19)	(0.20)	(0.18)					
	Ι	E. Aggregate markuj	p						
Annual data	-0.61	-1.01							
	(0.48)	(0.42)**							
Sectoral data	-0.61	-1.01	-0.66	-0.96					
	(0.48)	(0.40)**	(0.42)	(0.40)**					
Plant data	-0.61	-1.01	-0.61	-0.91					
	(0.48)	(0.40)**	(0.36)	(0.37)**					

Table 6: Estimates of the pick-up in productivity growth since 1993, $L \ge 200$ panel

* p < 10%, ** p < 5%. The dependent variable is $100 * (log TFP_{jt} - log TFP_{jt-1})$. Heteroscedasticity-robust standard errors, clustered by year and sector in sectoral data, and by year, sector and plant in plant data. (In the annual data, conventional standard errors are substantially smaller.) All *p*-values evaluated from *t*-distribution with 19 degrees of freedom. Sectoral and plant data regressions weighted by Basu-Fernald aggregation weights.

	(1)	(2)	(3)	(4)				
Noise weighting:	None	Plant Noise	Sector Noise	Both				
A. Aggregate productivity								
Annual data	5.18	5.96						
	(2.99)*	(2.75)**						
B. Plant efficiency								
Annual data	5.68	6.49						
	(2.83)*	(2.73)**						
Sectoral data	5.68	6.49	5.11	6.85				
	(2.31)**	(2.34)**	(2.25)**	(2.85)**				
Plant data	5.68	6.49	6.37	6.97				
	(2.31)**	(2.34)**	(2.53)**	(2.62)**				
	C. Be	etween-sector realloc	ation					
Annual data	0.16	0.21						
	(0.15)	(0.13)						
Sectoral data	0.16	0.21	0.04	0.09				
	(0.14)	(0.15)	(0.06)	(0.09)				
Plant data	0.16	0.21	0.01	0.02				
	(0.14)	(0.15)	(0.07)	(0.08)				
	D. V	Vithin-sector realloca	ation					
Annual data	-0.03	0.12						
	(0.23)	(0.17)						
Sectoral data	-0.03	0.12	0.17	0.27				
	(0.22)	(0.17)	(0.22)	(0.14)*				
Plant data	-0.03	0.12	0.00	0.16				
	(0.22)	(0.17)	(0.20)	(0.14)				
	Η	E. Aggregate markuj	2					
Annual data	-0.63	-0.85						
	(0.48)	(0.47)*						
Sectoral data	-0.63	-0.85	-0.49	-0.70				
	(0.46)	(0.44)*	(0.38)	(0.35)*				
Plant data	-0.63	-0.85	-0.57	-0.74				
	(0.46)	(0.44)*	(0.40)	(0.39)*				

Table 7: Estimates of the pick-up in productivity growth since 1993, Census panel

* p < 10%, ** p < 5%. The dependent variable is $100 * (log TFP_{jt} - log TFP_{jt-1})$. Heteroscedasticity-robust standard errors, clustered by year and sector in sectoral data, and by year, sector and plant in plant data. (In the annual data, conventional standard errors are substantially smaller.) All *p*-values evaluated from *t*-distribution with 19 degrees of freedom. Sectoral and plant data regressions weighted by Basu-Fernald aggregation weights.

4 Reforms and Productivity Growth

Given the results of the previous section, we turn to the following question: what may have caused the large, statistically significant pick-up in TFP growth in Indian manufacturing? Recent research (such as Sharma (2008), Sivadasan (2009), and Topalova & Khandelwal (forthcoming)) has stressed the importance of a series of industrial and trade policy reforms which began in the mid-1980s. In Section 4.1 we provide details about these reforms and the mechanisms by which they might affect TFP growth and its components (reallocation and within-plant growth). In Section 4.2 we attempt to explain the productivity pick-up with these reforms, exploiting their pace and timing across industries.

4.1 Industrial Policy In India

After independence India adopted or continued industrial licensing, tariff and non-tariff barriers on imports, and restrictions on foreign direct investment. Later, a number of industries were "reserved" for small firms. Topalova & Khandelwal (forthcoming), Sivadasan (2009), and Sharma (2008) provide details about the trade policy regime, the controls on FDI, and the license "raj" respectively. Panagariya (2008) provides a thorough review of the Indian growth experience and government policies. Below we provide a brief overview of some of the key policies and reforms affecting manufacturers.

The license "raj" refers to a system of controls on the entry of firms into the manufacturing sector commencing in 1956. Each and every plant that wanted to produce a manufactured good needed to receive permission (i.e., a license) from the central government. The issue of a license was conditional on certain conditions that the plant needed to fulfill. These conditions included limits on output that could be produced, raw materials that could be imported, intermediates that could be purchased, the technology that could be used to produce, and the location of the plant.⁸ The license regime arguably affected both the incentive and the ability of Indian plants to be productive. Complaints about the resulting high costs and low productivity in Indian manufacturing began building from the first decade of the licensing regime (Sharma (2008)). But the first serious attempt to deregulate the system only came about in the 1980s. This was a

⁸As Panagariya (2008) and Sharma (2008) discuss in detail, the purpose of licensing was to direct capital into desirable industries. Every five years, the Planning Commission would issue demand projections for various sectors and commodities. The Ministry of Industry was then supposed to allocate capacity via the licensing system in a way that was consistent with these projections. This meant that some plants were output-constrained at some point in almost all industries. That is, they wished to produce more but they were not allowed to do so.

piecemeal approach, in which a handful of industries were de-licensed in 1984, another handful in 1985 and so on. In 1991, the Indian economy faced a balance of payments crisis and received loans from the IMF and other international organizations. Under pressure from these organizations, the biggest de-licensing episode occurred. Almost all industrial licensing was removed – by 1994 all but 16% of manufacturing output had been de-licensed. Studies have linked de-licensing reforms to increases in the productivity of some plants (Sharma (2008)), though there was no discernible impact at the industry level. De-licensing also appeared to raise the demand for skilled labor in Indian industry (Chamarbagwalla & Sharma (forthcoming)), and may have contributed to growth differences across regions (Aghion et al. (2005) and Aghion et al. (2008)).

A number of studies have analyzed the complicated web of tariff and non-tariff barriers that were used to restrict foreign trade in order to pave the way to national selfsufficiency. As Topalova & Khandelwal (forthcoming) describes, the regime consisted of high tariffs, a complex import licensing system, an "actual user" policy that restricted imports by intermediaries, restrictions of certain exports and imports to the public sector, phased manufacturing programs that mandated progressive import substitution, and government purchase preferences for domestic producers. There were some attempts to liberalize the system in the late 1980s. It was the 1991 balance of payments crisis, however, that led to major changes in both tariff and non-tariff barriers. Non-tariff barriers were rationalized and scaled down (for example, Topalova & Khandelwal (forthcoming) finds that 26 import licensing lists were removed and one "negative" list was established). Tariffs fell by 43 percentage points between 1990 and 1996, and the standard deviation of tariffs dropped by 50% as well. The rationalization of tariff and non-tariff barriers continued into the late 1990s - early 2000s. Topalova & Khandelwal (forthcoming) and Das (2003) are the only two studies that have used detailed data on tariff and non-tariff barriers to assess the impact on productivity in Indian manufacturing. Using data on listed firms from 1987 to 2001, Topalova found that a 10% fall in tariffs lead to a 0.5% increase in total factor productivity of the average firm calculated using the Olley-Pakes methodology. But Das did not find any positive impact of the trade reforms on TFP at the industry level. In fact, productivity performance worsened as the pace of trade reform increased.⁹

The third aspect of the industrial policy regime operational in India from 1970s onwards was control of foreign direct investment. As Sivadasan (2009) reports, prior to 1991 foreign ownership rates were restricted to below 40% in most industries. In addition, restrictions were placed on the use of foreign brand names, on remittances

⁹Note that Das (2003)'s results are based on correlations between productivity and the trade regime.

of dividends abroad, and on the proportion of local content in output. After the 1991 balance of payments crisis, foreign ownership of up to 51% was allowed for a group of industries and the restrictions on brands, remittances and local content were relaxed. Sivadasan (2009) finds mean industry-level aggregate productivity growth of 22% following FDI and 59% following tariff liberalization (in the 1994-95 period compared to the pre-reform 1987-90 period).¹⁰. The growth of average plant productivity was the single largest contributor to the increase in aggregate productivity growth, contributing 25% in FDI-liberalized industries and about 55% in tariff-liberalized industries. That is, intra-industry reallocation played only a small role in the change in aggregate productivity between the 1994-95 and pre-reform periods.

Another Indian policy was the promotion of small-scale industry (SSI). In 1967 the government began a policy of reserving the manufacture of certain products exclusively for small producers (a plant was defined as "small" if its capital stock was under a certain threshold). Once a product was placed on the SSI list, no new medium or large enterprises were allowed to enter, and the production capacity of existing medium and large enterprises was capped. Panagariya (2008) points out that the bulk of SSI items were labor-intensive products, in which India presumably had a comparative advantage. SSI reservations may have kept India out of the world market for these products, and may have reduced the incentive of SSI plants to produce high-quality products. The SSI list began with 47 items but steadily expanded until tens of thousands of products were reserved. The market-oriented reforms of the 1980s and 1990s did not do much to dismantle this reservation policy, and it was in the early part of the twenty first century that de-reservation of industries began in earnest.

4.2 Policy regressions

Each of the industrial and trade policy reforms that took place during the 1980s and 1990s had the potential to boost aggregate productivity. De-licensing of industry created the opportunity for productive plants to raise their market share. And de-licensing may have induced plants to invest more in raising their productivity as they could more easily scale up production if such investments paid off. Trade and FDI reforms could have increased aggregate productivity through a number of channels. Examples include reallocation as in Melitz (2003), endogenous innovation of incumbents as in Atkeson & Burstein (2010), and increased availability of high quality imported inputs as in Goldberg et al. (2010*a*). More controversially, the presence of FDI on Indian soil may

¹⁰The source of tariff data is the WITS database.

have been generated productivity spillovers from foreign-owned plants to competing domestic plants or to vertically related Indian suppliers/buyers of their products. Dereservation of SSI industries could have reaped scale economies, reallocated inputs from less to more efficient plants, and promoted innovation.

With this motivation in mind, in this section we regress the log level of industry productivity (TFP) on five policy measures, controlling for both year and industry fixed effects. De-licensing of the textile industry in 1991, for example, might show up in higher TFP in the textile industry in 1991 (relative to other industries in that year and relative to the norm for that industry). The policies are measured as the fraction of industry output licensed (which lies between 0 and 1), the tariff rate (a 100% tariff corresponding to 1), the fraction of the industry open to FDI (between 0 and 1), the fraction of the input tariff rate (weighted average nominal tariffs on sectors that supply inputs, where the weights are input-output coefficients).

Tables 8 through 12 present these results. In Column 1 of each table we present results without correction for heteroscedasticity. Column 2 shows results once the inverse of plant-level noise is used to weight each year, Column 3 shows estimates once the inverse of sector-level noise is used to weight each sector, and Column 4 shows results with correction for both plant and sector noise. In Column 5 we test the robustness of our results to removal of outliers. In particular, we censor cumulative productivity such that we only allow plant TFP to rise or fall by at most 100% per year.

In most entries, the reforms do not have a statistically (as opposed to economically) significant relation to industry productivity or its components (plant efficiency, reallocation, etc.). There are notable exceptions where the effects seem large both economically and statistically. In Table 10, fully opening an industry to FDI is associated with 21-44 percentage points higher sectoral TFP, with standard errors sometimes less than 10 percentage points. This is mostly via growth in existing plant efficiency, not reallocation. In Table 11, freeing up a fully reserved industry seems to *lower* sectoral TFP (30-60 percentage points lower resulting TFP, with standard errors on the order of 20 percentage points) by inducing high marginal product industries to shed inputs. Finally, in Table 12 lowering *input* tariffs goes along with 20-30 percentage points higher sectoral productivity (standard errors around 11-13 percentage points), predominantly through higher plant efficiency.

Of course, it could take time for the policy reforms to affect industry productivity. And the reformed industries could have had lower productivity growth to begin with. But we obtain similar results to Tables 8 through 12 when we include several annual lags of the policy variables, or change the dependent variable from industry-year productivity *levels* to *growth rates*. Industry productivity trends apart from the reforms should be absorbed in the industry fixed effects when the dependent variable is industry productivity growth.

In Tables 13 and 14, we regress industry log productivity levels on all five reform variables simultaneously rather than one by one. Multi-collinearity is obviously a potential pitfall, especially given many reforms took place around 1991 in many industries. Still, statistical significance continues to hold for FDI liberalization (associated with higher plant efficiency), de-reservation (associated with *worse* allocative efficiency across sectors), and input tariff reductions (higher plant efficiency). Surprisingly, in no cases are reforms significantly associated with efficient reallocation across or within industries.

Now, absence of evidence is not evidence of absence. The standard errors are sizable (tens of percentage points). We often cannot reject the hypothesis of substantial benefits of a reform through a number of channels. We therefore set aside the issue of statistical insignificance, and calculate the magnitude of the effects of policy changes between 1980 and 2004 (between 1987 and 2004 for tariffs) implied by the point estimates in Tables 13 and 14. This presumes causality. As a robustness check, we also consider the impact implied by the coefficients plus one standard error. This seems generous, probability wise, in that we do this for all of the coefficients at once.

Table 15 reports these calculations. For example, opening up 38% of output to FDI between 1980 and 2004 was arguably responsible for an 8-10 percentage point increase in aggregate TFP over that period. If we add up the estimated effects of all the policy changes together, in this fashion, the point estimate is a cumulative 12 or 22 percentage point boost to aggregate TFP, depending on whether one looks at the L \geq 200 or census panel. If we simultaneously add one standard error to each of the policy effects, the combined boost is more substantial at 37 or 41 percentage points in the Table. This would certainly be substantial economic effects of reforms, and in line with previous studies of individual reforms.

As Figure 4 shows, the context is around 140% points of cumulative TFP growth from 1980 to 2004 (135.9% in the Census panel and 141.0% in the L \geq 200 panel). And if we omit growth from reforms in the 1995-1997 interval in which we are missing data on productivity growth, the point estimates from the regressions become 16.9% and 7.3%. Thus policy reforms seem to account for less than one-eighth of cumulative TFP growth between 1980 and 2004. Essentially none through allocative efficiency. If we add one standard error to all coefficients, we get bigger policy contributions of 32.8% (Census panel) and 28.6% (L \geq 200 panel). Even so, less than a quarter of aggregate TFP growth.

It is in this sense that most of India's manufacturing miracle remains mysterious to us.

An important caveat here is that for our full 1980–2004 sample we only have 2-digit industry deflators. It is possible that 3-digit reforms raise productivity at the 3-digit level, but also lower the 3-digit deflator. Having policy measures more disaggregated (3-digit) than our industry deflators (2-digit) could be attenuating our estimated policy effects. To gauge the potential importance of this bias, we estimate policy effects on the 1980–1994 subsample for which we have 3-digit deflators. The results are little affected: the estimated effects of policy continue to be small relative to cumulative productivity growth.

We finish by comparing our findings to Harrison, Martin & Nataraj (2011), who also use ASI unit-level data to calculate aggregate TFP and its components and measure the magnitude of effect of major policy reforms. Their sample (1985-2004) is similar to ours (1980-2004). Like us, they find relatively little growth from reallocation among existing plants. They estimate much lower TFP growth than we do, however – on the order of 25% rather than 140%. Most of this discrepancy appears to stem from their use of a grossoutput based measure without Domar weights.¹¹ They find *all* of their (lesser) growth can be explained by policy reforms, in particular declining input tariffs. Prompted by their results we added input tariffs to our analysis above. While we find input tariffs important, their inclusion does not solve our mystery that one-quarter or less of India's TFP growth can be attributed to major reforms.

¹¹When we mimic their time sample and use gross output with plant counts, we get close to their results in terms of growth to be explained (30% points for 1985-2004) and the fraction explained by policies (92%). The remaining differences presumably arise from their inclusion of entrants and exiters based on the methodology in Aw, Chen & Roberts (2001), any differences in data cleaning and panel construction, and data on policy variables.

Figure 4: Average sectoral productivity, and estimated policy contribution A. $L \ge 200$ balanced panel

"Estimated policy effect" plots the sum of cumulative aggregate changes in each policy multiplied by the effect estimated in Tables 13 and 14. "Estimated policy-effect + 1 S.E." does the same, except it takes as it's "effect" the point estimate plus one standard error. Series re-initiated in 1997 at 1994 levels due to missing 1995 and 1996 data. All aggregate policy averages are weighted by the same annual value-added shares used to aggregate productivity (1980 observations weighted by 1980–1981 shares, and 1997 policy observations weighted by 1997–1998 shares). Policy effect series differ slightly from totals in Table 15 due to missing 1994–1997.

1			1		
	(1)	(2)	(3)	(4)	(5)
Noise weighting:	None	Plant	Sector	Both	Censored
		noise	noise		[-100, 100]
	A. $L \ge 2$	200 balanced	panel		
Sectoral productivity	-12.62	-15.41	-20.34	-21.30	-12.52
	(13.60)	(15.63)	(13.42)	(14.26)	(13.62)
Plant efficiency	-14.47	-18.31	-25.23	-26.83	-14.39
	(13.88)	(15.44)	(12.73)*	(12.62)**	(13.95)
Between-sector reallocation	3.21	3.95	1.77	1.76	3.21
	(0.96)**	(1.11)**	(0.72)**	(0.60)**	(0.96)**
Within-sector reallocation	0.69	0.41	3.20	3.11	0.69
	(3.32)	(3.49)	(1.97)	(1.93)	(3.32)
Aggregate markup	-2.05	-1.46	-4.37	-3.63	-2.05
	(3.45)	(4.12)	(1.55)**	(1.56)**	(3.45)
Sector FEs	72	72	72	72	72
Year FEs	22	22	22	22	22
Observations	1584	1584	1584	1584	1584
	B. Cens	us balanced p	oanel		
Sectoral productivity	-7.40	-8.19	-12.00	-9.58	-7.53
	(11.29)	(11.27)	(13.05)	(10.80)	(11.26)
Plant efficiency	-10.58	-11.90	-8.48	-11.79	-10.77
	(12.09)	(12.12)	(12.75)	(10.68)	(12.08)
Between-sector reallocation	2.61	2.65	1.59	1.52	2.61
	(1.00)**	(1.04)**	(0.72)**	(0.66)**	(1.00)**
Within-sector reallocation	2.58	2.56	4.68	3.25	2.58
	(2.93)	(2.86)	(2.09)**	(2.18)	(2.93)
Aggregate markup	-2.00	-1.50	-3.01	-3.52	-2.00
	(2.91)	(2.87)	(1.88)	(2.11)*	(2.91)
Sector FEs	86	86	86	86	86
Year FEs	22	22	22	22	22
Observations	1892	1892	1892	1892	1892

Table 8: Log Productivity on De-licensing Independent variable: Fraction of sectoral output de-licensed

* p < 10%, ** p < 5%. Standard errors clustered by sector in parentheses. Six regressions per column each row is a new dependent variable. Dependent variables are cumulative growth rates, in percentage points, from 0 in 1980. All regressions weighted by sectoral value-added share (1980 observations weighted by 1980–1981 shares and plant growth variances).Independent variable is output-weighted sectoral average of 4-digit NIC1987 de-licensing indicator from **?**.

		ő			
	(1)	(2)	(3)	(4)	(5)
Noise weighting:	None	Plant	Sector	Both	Censored
	110110	noise	noise	2001	[-100, 100]
	A. $L \ge 2$	200 balanced	panel		
Sectoral productivity	-21.23	-22.66	-14.66	3.55	-20.82
	(15.70)	(17.86)	(13.72)	(17.09)	(15.72)
Plant efficiency	-15.98	-18.67	-3.53	12.89	-15.77
	(15.95)	(18.33)	(13.03)	(15.48)	(16.03)
Between-sector reallocation	-0.24	-0.54	-1.06	-1.04	-0.24
	(1.71)	(1.42)	(1.02)	(0.88)	(1.71)
Within-sector reallocation	-0.19	0.61	0.86	1.45	-0.19
	(2.23)	(1.87)	(1.76)	(1.77)	(2.23)
Aggregate markup	-4.82	-4.05	-2.47	-2.08	-4.82
	(3.70)	(3.08)	(1.59)	(1.68)	(3.70)
Sector FEs	72	72	72	72	72
Year FEs	11	11	11	11	11
Observations	792	792	792	792	792
	B. Cens	us balanced p	panel		
Sectoral productivity	-12.20	-10.28	-8.68	17.09	-12.04
	(11.57)	(11.95)	(9.97)	(12.05)	(11.55)
Plant efficiency	-7.44	-6.95	-0.80	11.22	-7.30
	(11.40)	(12.23)	(8.88)	(10.38)	(11.41)
Between-sector reallocation	-0.57	-0.20	-1.32	-0.85	-0.57
	(1.20)	(1.00)	(0.46)**	(0.22)**	(1.20)
Within-sector reallocation	-0.84	-0.81	-0.29	3.69	-0.84
	(2.79)	(2.07)	(1.04)	(1.22)**	(2.79)
Aggregate markup	-3.35	-2.31	-3.25	-1.55	-3.35
	(3.02)	(2.47)	(1.70)*	(1.37)	(3.02)
Sector FEs	86	86	86	86	86
Year FEs	11	11	11	11	11
Observations	946	946	946	946	946

Table 9: Log productivity on Tariffs, 1987 – 2000 Independent variable: Average nominal tariff fraction

* p < 10%, ** p < 5%. Standard errors clustered by sector in parentheses. Six regressions per column each row is a new dependent variable. Dependent variables are cumulative growth rates, in percentage points, from 0 in 1980. All regressions weighted by sectoral value-added share (1980 observations weighted by 1980–1981 shares and plant growth variances).Independent variable is negative of output-weighted sectoral average of 3-digit NIC1987 average nominal tariff from Topalova & Khandelwal (forthcoming).

-								
	(1)	(2)	(3)	(4)	(5)			
Noise weighting:	None	Plant	Sector	Both	Censored			
	itone	noise	noise	Dour	[-100, 100]			
A. $L \ge 200$ balanced panel								
Sectoral productivity	21.84	28.66	39.71	43.41	21.57			
	(14.81)	(16.77)*	(8.83)**	(9.14)**	(14.72)			
Plant efficiency	28.98	36.94	38.16	47.68	28.86			
	(14.65)*	(16.09)**	(8.52)**	(10.49)**	(14.56)*			
Between-sector reallocation	-5.14	-5.37	-3.45	-3.44	-5.14			
	(1.50)**	(1.88)**	(1.01)**	(0.99)**	(1.50)**			
Within-sector reallocation	-0.37	-0.12	-3.16	-3.48	-0.37			
	(3.98)	(4.00)	(1.74)*	(1.45)**	(3.98)			
Aggregate markup	-1.63	-2.79	0.45	-0.42	-1.63			
	(5.16)	(5.84)	(2.17)	(2.35)	(5.16)			
Sector FEs	72	72	72	72	72			
Year FEs	22	22	22	22	22			
Observations	1584	1584	1584	1584	1584			
	B. Cens	us balanced p	anel					
Sectoral productivity	28.46	31.50	41.11	44.44	28.27			
	(11.95)**	(12.58)**	(8.13)**	(7.18)**	(11.91)**			
Plant efficiency	32.62	35.92	39.21	38.32	32.49			
	(12.95)**	(13.45)**	(8.38)**	(8.38)**	(12.94)**			
Between-sector reallocation	-4.09	-4.21	-2.55	-3.03	-4.09			
	(1.45)**	(1.77)**	(0.80)**	(0.99)**	(1.45)**			
Within-sector reallocation	1.17	1.45	-1.93	-2.19	1.17			
	(3.79)	(3.91)	(1.67)	(2.21)	(3.79)			
Aggregate markup	-1.24	-1.66	-1.11	-2.01	-1.24			
	(4.70)	(5.04)	(2.30)	(2.62)	(4.70)			
Sector FEs	86	86	86	86	86			
Year FEs	22	22	22	22	22			
Observations	1892	1892	1892	1892	1892			

Table 10: Log productivity on FDI liberalization Independent variable: Fraction of sectoral output open to FDI

* p < 10%, ** p < 5%. Standard errors clustered by sector in parentheses. Six regressions per column each row is a new dependent variable. Dependent variables are cumulative growth rates, in percentage points, from 0 in 1980. All regressions weighted by sectoral value-added share (1980 observations weighted by 1980–1981 shares and plant growth variances).Independent variable is output-weighted sectoral average of 4-digit NIC1987 indicator of being opened to FDI in 1992 from Sivadasan (2009).

1			1				
	(1)	(2) Plant	(3)	(4)	(5)		
Noise weighting:	None	noise	noise	Both	[-100, 100]		
A. $L \ge 200$ balanced panel							
Sectoral productivity	-93.78	-115.34	-83.67	-85.27	-95.39		
	(43.72)**	(56.49)**	(41.76)**	(38.54)**	(45.63)**		
Plant efficiency	-48.23 (50.92)	-64.04 (67.52)	-22.84 (30.67)	-17.77 (23.83)	-49.94 (53.26)		
Defense and an available of the	05.17	20.05	(00.07)	(20.00)	05.20)		
Between-sector reallocation	-25.17 (5.36)**	-30.05 (6.42)**	-20.33 (7.37)**	-26.11 (8.36)**	-25.17 (5.36)**		
Within-sector reallocation	-9.54	-9.60	-26 97	-18 55	-9 53		
Whith beetor realised ton	(6.74)	(8.93)	(14.07)*	(5.80)**	(6.74)		
Aggregate markup	-10.85	-11.65	-10.87	-12.17	-10.85		
	(7.71)	(9.00)	(2.40)**	(2.05)**	(7.71)		
Sector FEs	72	72	72	72	72		
Year FEs	22	22	22	22	22		
Observations	1584	1584	1584	1584	1584		
	B. Cens	us balanced p	panel				
Sectoral productivity	-70.13	-81.19	-60.24	-64.22	-71.49		
	(28.41)**	(30.19)**	(22.75)**	(33.08)*	(28.47)**		
Plant efficiency	-36.77	-42.29	-11.00	-15.05	-38.01		
	(35.45)	(42.21)	(24.90)	(16.41)	(36.21)		
Between-sector reallocation	-20.87	-25.29	-12.28	-14.48	-20.87		
	(7.84)**	(9.23)**	(7.34)*	(8.86)	(7.84)**		
Within-sector reallocation	-7.82	-8.26	-15.67	-15.48	-7.82		
	(5.61)	(7.65)	(6.26)**	(3.68)**	(5.61)		
Aggregate markup	-4.67	-5.36	-13.52	-16.23	-4.67		
	(9.55)	(10.96)	(4.92)**	(5.94)**	(9.55)		
Sector FEs	86	86	86	86	86		
Year FEs	22	22	22	22	22		
Observations	1892	1892	1892	1892	1892		

Table 11: Log productivity on De-reservation Independent variable: Fraction of sectoral output de-reserved

* p < 10%, ** p < 5%. Standard errors clustered by sector in parentheses. Six regressions per column each row is a new dependent variable. Dependent variables are cumulative growth rates, in percentage points, from 0 in 1980. All regressions weighted by sectoral value-added share (1980 observations weighted by 1980–1981 shares and plant growth variances).Independent variable is output-weighted sectoral average of 5-digit ASICC product code—see Data Appendix for details.

1		0		1	
	(1)	(2)	(3)	(4)	(5)
Noise weighting:	None	Plant	Sector	Both	Censored
8 8 8		noise	noise		[-100, 100]
	A. $L \ge 2$	200 balanced	panel		
Sectoral productivity	-27.67	-21.11	-22.57	-19.24	-27.26
	(13.11)**	(11.67)*	(12.77)*	(10.79)*	(12.81)**
Plant efficiency	-27.25	-20.77	-26.19	-12.99	-26.82
	(13.22)**	(11.62)*	(11.18)**	(9.36)	(12.90)**
Between-sector reallocation	2.43	1.78	1.68	1.80	2.43
	(1.36)*	(1.07)*	(0.77)**	(0.77)**	(1.36)*
Within-sector reallocation	-2.60	-0.49	0.48	0.23	-2.61
	(2.02)	(1.96)	(1.66)	(1.02)	(2.02)
Aggregate markup	-0.26	-1.63	0.33	0.23	-0.26
	(2.79)	(2.66)	(1.16)	(1.49)	(2.79)
Sector FEs	72	72	72	72	72
Year FEs	10	10	10	10	10
Observations	720	720	720	720	720
	B. Cens	us balanced p	oanel		
Sectoral productivity	-27.75	-13.82	-30.86	-32.95	-28.45
	(9.75)**	(8.24)*	(8.50)**	(13.80)**	(9.60)**
Plant efficiency	-28.35	-13.52	-33.33	-16.23	-29.04
	(9.72)**	(8.00)*	(11.85)**	(6.87)**	(9.57)**
Between-sector reallocation	1.95	1.42	0.79	0.64	1.95
	(0.70)**	(0.64)**	(0.55)	(0.54)	(0.70)**
Within-sector reallocation	-0.99	-0.16	-0.28	0.85	-0.99
	(1.08)	(0.96)	(0.96)	(1.22)	(1.08)
Aggregate markup	-0.36	-1.56	-0.27	-1.88	-0.36
	(2.02)	(1.71)	(0.46)	(1.04)*	(2.02)
Sector FEs	86	86	86	86	86
Year FEs	10	10	10	10	10
Observations	860	860	860	860	860

Table 12: Log productivity on input tariffs, 1987 – 1999 Independent variable: Average nominal tariff on sector inputs

* p < 10%, ** p < 5%. Standard errors clustered by sector in parentheses. Six regressions per column each row is a new dependent variable. Dependent variables are cumulative growth rates, in percentage points, from 0 in 1980. All regressions weighted by sectoral value-added share (1980 observations weighted by 1980–1981 shares and plant growth variances).Independent variable is an input-output table weighted average of tariffs on inputs, calculated as weighted sectoral averages of 3-digit NIC 1987 average nominal tariffs—see Data Appendix for details.

	(1)	(2)	(3)	(4)	(5)
NT · · · · · ·	N	DI	.	D d	Censored
Noise weighting:	None	Plant noise	Sector noise	Both	[-100, 100]
	4	Sectoral prod	luctivity		
	1	. Sectoral proc	luctivity		
Fraction de-licensed	-6.96	-7.61	-12.04	-9.48	-6.96
	(11.53)	(13.04)	(7.00)*	(8.99)	(11.57)
Tariff fraction	-2.30	-8.21	1.35	0.60	-2.72
	(9.17)	(11.59)	(6.86)	(9.37)	(9.11)
Fraction open to FDI	19.19	24.72	35.26	40.51	18.90
	(13.55)	(15.16)	(6.43)**	(7.53)**	(13.43)
Fraction de-reserved	-77.65	-94.18	-48.04	-59.16	-79.53
	(43.78)*	(55.61)*	(41.37)	(40.71)	(45.48)*
Input tariffs fraction	-33.65	-29.80	-59.99	-45.67	-32.98
	(15.34)**	(15.56)*	(19.41)**	(17.70)**	(15.16)**
		B. Plant effici	iencv		
	. = 0	=			
Fraction de-licensed	-6.70	-7.94	-9.83	-4.05	-6.66
	(13.31)	(14.87)	(7.99)	(11.45)	(13.44)
Tariff fraction	-0.45	-5.90	5.63	5.76	-0.87
	(8.93)	(11.12)	(7.80)	(10.31)	(8.87)
Fraction open to FDI	26.83	33.37	37.91	43.16	26.70
	(14.53)*	(16.02)**	(6.81)**	(9.02)**	(14.45)*
Fraction de-reserved	-26.65	-35.64	7.82	10.06	-28.52
	(48.31)	(63.24)	(34.00)	(30.63)	(50.49)
Input tariffs fraction	-37.44	-34.62	-80.82	-45.21	-36.87
	(14.73)**	(14.63)**	(22.09)**	(21.22)**	(14.56)**
	C. B	etween-sector 1	reallocation		
	0.5		cunocunon		
Fraction de-licensed	1.89	2.52	1.08	1.39	1.89
	$(1.06)^*$	(1.23)**	(0.69)	(0.82)*	(1.06)*
Tariff fraction	0.29	-0.13	0.60	0.10	0.29
	(0.89)	(1.03)	(0.66)	(0.59)	(0.89)
Fraction open to FDI	-4.82	-4.93	-3.12	-3.99	-4.82
	(1.43)**	(1.77)**	(0.95)**	$(1.28)^{**}$	(1.43)**
Fraction de-reserved	-28.83	-34.39	-24.24	-31.91	-28.83
	(4.65)**	(5.73)**	(6.49)**	(7.23)**	(4.65)**
Input tariffs fraction	2.47	1.85	1.68	1.55	2.47
	(0.99)**	(1.03)*	(0.90)*	(0.85)*	(0.99)**
	C. 1	Nithin-sector re	eallocation		
T 1 1. 1	0.44	0.40	4.49	0.00	0.44
Fraction de-licensed	0.64	0.40	1.62	0.89	0.64
T	(4.14)	(4.33)	(1.86)	(2.01)	(4.14)
Tariff fraction	-0.25	-0.66	0.12	-0.39	-0.25
	(1.26)	(1.21)	(0.98)	(1.27)	(1.26)
Fraction open to FDI	-0.27	-0.13	-2.96	-3.42	-0.27
	(4.74)	(4.79)	(1.84)	(1.54)**	(4.74)
Fraction de-reserved	-9.63	-9.76	-28.07	-22.55	-9.63
	(7.04)	(9.32)	(13.49)**	(6.93)**	(7.04)
Input tariffs fraction	-2.70	-1.33	-1.69	-1.70	-2.71
	(2.27)	(2.04)	(2.33)	(2.44)	(2.27)
		C. Aggregate n	narkup		
T 1	0.50		1 2 (4.04	0.70
Fraction de-licensed	-2.79	-2.59	-4.26	-4.31	-2.79
	(2.68)	(3.08)	(1.61)**	(1.51)**	(2.68)
Tariff fraction	-1.90	-1.52	-2.33	-1.39	-1.90
-	(2.01)	(2.29)	(2.11)	(1.87)	(2.01)
Fraction open to FDI	-2.55	-3.59	-0.38	-1.20	-2.55
	(4.60)	(5.20)	(1.64)	(1.84)	(4.60)
Fraction de-reserved	-12.54	-14.38	-8.40	-10.16	-12.54
	(10.44)	(12.61)	(2.56)**	(2.76)**	(10.44)
Input tariffs fraction	4.02	4.30	4.87	5.31	4.03
	(2.38)*	(2.35)*	(2.07)**	(1.90)**	(2.38)*
Sector FEs	72	72	72	72	72
Year FFs	22	22	22	22	22
Observations	1584	1584	1584	1584	1584
CESCI VALIO115	1001	1001	1001	1001	1001

Table 13: Log productivity on all policies, $L \ge 200$ balanced panel

* p < 10%, ** p < 5%. Standard errors clustered by sector in parentheses. Six regressions per column each row is a new dependent variable. Dependent variables are cumulative growth rates, in percentage points, from 0 in 1980. All regressions weighted by sectoral value-added share (1980 observations weighted by 1980–1981 shares and plant growth variances).Dummy variables (not shown) are included for all missing policy values, which are replaced with zeroes.

	(1)	(2)	(3)	(4)	(5)
Noise weighting:	None	Plant noise	Sector poise	Both	Censored
Noise weighting.	ivone	T lant Holse	Sector hoise	Dour	[-100, 100]
	A	. Sectoral prod	luctivity		
Fraction de-licensed	-0.16	-0.88	-4.05	-4.36	-0.36
	(8.87)	(9.05)	(6.80)	(7.44)	(8.87)
Tariff fraction	-2.19	-4.14	0.68	7.17	-2.26
	(6.55)	(7.87)	(6.70)	(8.85)	(6.53)
Fraction open to FDI	27.88	30.23	42.07	40.94	27.63
Total de accord	(11.22)**	(11.96)**	(6.34)**	(6.87)**	(11.17)**
Fraction de-reserved	-50.04	-37.94	-46.36	-39.50	-51.49
Input tariffs fraction	(30.32)	-30.23	(23.61)	(29.91)	-39.09
input tarins fraction	(10.46)**	(11.32)**	(11.43)**	(12.08)**	(10.35)**
	()	R Plant offici	()	()	(
		D. Flant effici	ency		
Fraction de-licensed	-2.39	-3.65	-4.85	-5.66	-2.63
TT : ((();	(10.88)	(11.23)	(8.04)	(9.18)	(10.93)
lariff fraction	-1.09	-2.66	11.25	3.36	-1.19
Enables on the EDI	(6.21)	(7.10)	(9.61)	(7.32)	(6.18)
Fraction open to FDI	31.79 (12 79)**	34.33 (12 E1)**	37.49	33.73	31.58 (12.76)**
Fraction de-recorved	(12.78) ^{**} -13.54	(13.31) ^{**} _15.21	(0.36) ⁴⁴	(0.01)***	(12.76) ^{***}
raction de-reserved	(33.19)	(37.74)	(21.82)	(25.94)	(33.70)
Input tariffs fraction	-42 44	-34 63	-70.50	-51 96	-43.04
	(10.18)**	(10.60)**	(12.21)**	(11.29)**	(10.08)**
	() C R	etween-sector :	reallocation	()	()
	С. Б	etween-sector i	eanocation		4 4 9
Fraction de-licensed	1.69	1.79	2.17	2.31	1.69
TT 166.6	(0.96)*	(1.04)*	(0.49)**	(0.60)**	(0.96)*
Tariff fraction	0.38	0.23	0.11	0.37	0.38
Exaction on on to EDI	(0.96)	(0.99)	(0.54)	(0.61)	(0.96)
Fraction open to FDI	-3.80	-4.05	-3.04	-2.98	-3.80
Fraction do-recorved	-23 70	(1.08)	-20.00	(1.01)	-23 70
Praction de-reserved	(7 20)**	(8 46)**	(7 79)**	(9 70)**	(7.20)**
Input tariffs fraction	1 74	1.35	2 02	1 16	1 74
nip ut unito fruction	(0.70)**	(0.69)*	(0.69)**	(0.69)*	(0.70)**
	CI	Within-sector re	allocation		
Exection do licenced	2.07	2.06	2.00	2.45	2.07
Fraction de-licensed	3.07	3.06	3.09	3.43 (1.73)**	3.07
Tariff fraction	-0.21	-0.45	1 50	0.32	-0.21
iaimi macuon	(1.56)	(1.67)	(1.75)	(1.76)	(1.56)
Fraction open to FDI	1.91	2.15	-1.02	-1.01	1.91
eren to i Di	(4.17)	(4.23)	(1.92)	(2.02)	(4.17)
Fraction de-reserved	-7.07	-7.27	-14.75	-18.50	-7.07
	(5.72)	(7.97)	(4.86)**	(5.73)**	(5.72)
Input tariffs fraction	-0.96	-0.75	-1.97	-1.16	-0.96
	(1.30)	(1.40)	(2.68)	(2.31)	(1.30)
		C. Aggregate n	narkup		
Fraction de-licensed	-2 54	-2.08	-3 44	-3 34	-2 54
i raction uc-neenseu	(2 37)	(2 33)	(1.91)*	(2 11)	(2 37)
Tariff fraction	-1.28	-1.26	-2.74	-3.24	-1.28
ium machon	(1.52)	(1.48)	(1.65)	(1.95)	(1.52)
Fraction open to FDI	-1.95	-2.20	-2.28	-3.26	-1.95
ĩ	(4.22)	(4.65)	(2.14)	(2.44)	(4.22)
Fraction de-reserved	-5.73	-6.80	-13.23	-14.82	-5.73
	(10.86)	(12.65)	(3.68)**	(4.30)**	(10.86)
Input tariffs fraction	3.08	3.81	3.94	5.68	3.08
	(1.81)*	(1.76)**	(1.85)**	(2.32)**	(1.81)*
Sector FEs	86	86	86	86	86
Year FEs	22	22	22	22	22
Observations	1892	1892	1892	1892	1892

Table 14: Log productivity on all policy measures, Census balanced panel

* p < 10%, ** p < 5%. Standard errors clustered by sector in parentheses. Six regressions per column each row is a new dependent variable. Dependent variables are cumulative growth rates, in percentage points, from 0 in 1980. All regressions weighted by sectoral value-added share (1980 observations weighted by 1980–1981 shares and plant growth variances).Dummy variables are included for all missing policy values, which are replaced with zeroes.

			Table 15	5: Aggreg	ate effec	cts of poli	cy refor	sm				
	Policy	mean	Sect produ	toral ctivity	Tech effici	nical ency	Between	n-sector cation	Within reallo	-sector cation	Aggre marl	igate cup
	1980	2004	$\Delta\cdoteta$	$\Delta \cdot (eta + \sigma)$	$\Delta \cdot eta$	$\Delta \cdot \\ (\beta + \sigma)$	$\Delta\cdoteta$	$\Delta \cdot \\ (\beta + \sigma)$	$\Delta\cdoteta$	$\stackrel{\Delta}{(\beta+\sigma)}$	$\Delta \cdot eta$	$\Delta\cdot \\ (\beta+\sigma)$
				A. $L \ge$	200 bala	nced pane						
Fraction de-licensed	0.126	1.000	-11.0	0.9	-12.6	-0.5	2.8	3.6	0.6	3.5	-1.8	1.2
Tariff fraction*	0.906	0.311	12.6	22.0	9.5	19.0	0.1	1.2	0.1	1.4	2.9	5.1
Fraction open to FDI	0.000	0.386	8.4	14.1	11.2	16.8	-2.0	-1.4	-0.1	1.4	-0.6	1.4
Fraction de-reserved	0.965	0.973	-0.7	-0.4	-0.4	0.0	-0.2	-0.2	-0.1	-0.0	-0.1	-0.0
Input tariff fraction*	0.451	0.161	8.0	11.8	7.9	11.8	-0.7	-0.3	0.8	1.3	0.1	0.9
All policies			11.8	37.4	15.4	42.6	-1.3	1.0	1.3	8.2	-3.6	2.5
				B. Cen	sus balar	nced panel						
Fraction de-licensed	0.114	1.000	-6.6	3.4	-9.4	1.3	2.3	3.2	2.3	4.9	-1.8	0.8
Tariff fraction*	0.924	0.314	7.5	14.5	4.5	11.5	0.3	1.1	0.5	2.2	2.0	3.9
Fraction open to FDI	0.000	0.365	10.4	14.8	11.9	16.6	-1.5	-1.0	0.4	1.8	-0.5	1.3
Fraction de-reserved	0.962	0.969	-0.5	-0.3	-0.2	-0.0	-0.1	-0.1	-0.1	-0.0	-0.0	0.0
Input tariff fraction*	0.450	0.160	8.0	10.9	8.2	11.0	-0.6	-0.4	0.3	0.6	0.1	0.7
All policies			22.2	41.4	22.3	43.6	-0.8	1.4	3.8	9.7	-3.1	2.1
* For Tariffs, presenting m regression tables. "All po value added shares, and 2	neans for 1 licies" coe 2004 mean	987 and 15 ifficients ta s by 2003	99 (input: ken from 2004 share	s) 2000 (out first colum es.	put), and n of mult	$\Delta \cdot eta - \Delta \cdot \sigma$ i-policy reg	. Policy c ressions	coefficients in Tables 13	taken froi 3-14 1980	m first colu means wei	mn of sing ghted by	gle-policy 1980-1981

5 Conclusion

Using the Annual Survey of Industries, we document a substantial speed-up in manufacturing TFP growth in India: our point estimate is over 6 percentage points for 1993-2004 vs. 1980-1992. This estimate is imprecise, as the standard errors are 2.5-3 percentage points, depending on the exact correction for heteroscedasticity. Almost all of this pickup arises from changes in plant efficiency over time, as opposed to reallocation of inputs across plants. And it can be seen in large, incumbent plants (over 200 workers) rather than coming disproportionately from smaller plants.

As this rapid TFP growth occurred amidst a number of policy reforms in India, a natural question is whether reforms produced the manufacturing miracle. The truth may well be yes, but we could not confirm it. Those industries experiencing more liberalization (of licensing, tariffs, FDI, and size reservations) do not display much faster TFP growth. Even if we raise all our policy impact estimates by one standard error at once, these reforms account for less than one-quarter of cumulative TFP growth from 1980-2004, and none of the acceleration.

It is possible that liberalization made the miracle happen, but not in ways seen in measured growth at the industry level using our incomplete and imperfect reform indicators. This is our presumption. For example, growth outside the sector – say in human capital per worker or the service sector – may have fueled manufacturing's success. The wave of reforms may have triggered investments in skills or technology well in advance of their implementation in specific industries, and with benefits reaped well afterward. Even earlier policies protecting the manufacturing sector may have laid the groundwork by building a manufacturing base primed for a miracle. Our hope is that additional evidence on policies and productivity will clarify the role played by liberalization, which we very much presume to be positive.

References

- Aghion, Philippe, Robin Burgess, Stephen J. Redding & Fabrizio Zilibotti. 2005. "Entry liberalization and inequality in industrial performance." *Journal of the European Economic Association* 3(2-3):291–302.
- Aghion, Philippe, Robin Burgess, Stephen J. Redding & Fabrizio Zilibotti. 2008. "The unequal effects of liberalization: Evidence from dismantling the License Raj in India." *American Economic Review* 98(4):1397–1412.
- Alfaro, Laura & Anusha Chari. 2009. "India Transformed? Insights from the Firm Level 1988-2005.". NBER working paper 15448.

- Atkeson, Andrew & Ariel Burstein. 2010. "Innovation, Firm Dynamics, and International Trade." Journal of Political Economy 118(3):433–484.
- Aw, Bee Yan, Xiaomin Chen & Mark J. Roberts. 2001. "Firm-level evidence on productivity differentials and turnover in Taiwanese manufacturing." *Journal of Development Economics* 66(1):51–86.
- Bardhan, Pranab. 2010. Awakening Giants, Feet of Clay: Assessing the Economic Rise of China and India. Princeton University Press.
- Basu, Susanto & John G. Fernald. 1997. "Returns to Scale in U.S. Production: Estimates and Implications." *Journal of Political Economy* 105(2):249–283.
- Basu, Susanto & John G. Fernald. 2002. "Aggregate productivity and aggregate technology." *European Economic Review* 46(6):963–991.
- Basu, Susanto, Luigi Pascali, Fabio Schiantarelli & Luis Serven. 2009. "Productivity, Welfare and Reallocation: Theory and Firm-Level Evidence.". NBER working paper 15579.
- Bosworth, Barry P. & Susan M. Collins. 2003. "The Empirics of Growth: An Update." *Brookings Papers on Economic Activity* 34(2):113–207.
- Bosworth, Barry & Susan M. Collins. 2008. "Accounting for growth: comparing China and India." Journal of Economic Perspectives 22(1):45–66.
- Brandt, Loren, Johannes Van Biesebroeck & Yifan Zhang. 2009. "Creative Accounting or Creative Destruction? Firm-Level Productivity Growth in Chinese Manufacturing.". NBER working paper 15152.
- Chamarbagwalla, Rubiana & Gunjan Sharma. forthcoming. "Industrial Deregulation, Trade Liberalization, and Skill Upgrading in India." *Journal of Development Economics*.
- Chari, A.V. 2010. "Identifying the Aggregate Productivity Effects of Entry and Size Restrictions: An Empirical Analysis of License Reform in India.".
- Costantini, James & Marc J. Melitz. 2010. The Dynamics of Firm-Level Adjustment to Trade Liberalization. In *The Organization of Firms in a Global Economy*, ed. Elhanan Helpman. Harvard University Press.
- Das, Dilip K. 2003. "Manufacturing Productivity Under Varying Trade Regimes: India in the 1980s and 1990s.". ICRIER Working Paper 107.
- Goldberg, Pinelopi K., Amit Khandelwal, Nina Pavcnik & Petia B. Topalova. 2010a. "Imported intermediate inputs and domestic product growth: Evidence from india." *Quarterly Journal of Economics* 125(4):1727–1767.
- Goldberg, Pinelopi K., Amit Khandelwal, Nina Pavcnik & Petia B. Topalova. 2010b. "Multi-Product Firms and Product Turnover in the Developing World: Evidence from India." *Review of Economics and Statistics* 92(4):1042–1049.
- Harrison, Ann, Leslie A. Martin & Shanthi Nataraj. 2011. "Learning versus Stealing: How Important are Market-Share Reallocations to India's Productivity Growth?". NBER Working Paper 16733.

- Hsieh, Chang-Tai & Peter J. Klenow. 2009. "Misallocation and Manufacturing TFP in China and India." *Quarterly Journal of Economics* 124(4):1403–1448.
- Hsieh, Chang-Tai & Peter J. Klenow. 2011. "The Life Cycle of Plants in India and Mexico.".
- Hulten, Charles R. & Sylaja Srinivasan. 1999. "Indian Manufacturing Industry: Elephant or Tiger? New Evidence on the Asian Miracle.". NBER working paper 7441.
- Melitz, Marc J. 2003. "The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity." *Econometrica* 71(6):1695–1725.
- Panagariya, Arvind. 2008. India: The Emerging Giant. USA: Oxford University Press.
- Petrin, Amil & James A. Levinsohn. 2011. "Measuring Aggregate Productivity Growth Using Plant-Level Data.".
- Petrin, Amil, Jerome Reiter & Kirk White. 2011. "The Impact of Plant-level Resource Reallocations and Technical Progress on U.S. Macroeconomic Growth." *Review of Economic Dynamics* 14(1):3–26.
- Pinkovskiy, Maxim & Xavier Sala-i-Martin. 2009. "Parametric Estimates of the World Distribution of Income.". NBER working paper 15433.
- Rodrik, Dani & Arvind Subramanian. 2004. "From "Hindu Growth" to Productivity Surge: The Mystery of the Indian Growth Transition." *IMF Working Papers* 2004(77):1–42.
- Sharma, Gunjan. 2008. "Competing or Collaborating Siblings? Industrial and Trade Policies in India.".
- Sivadasan, Jagadeesh. 2009. "Barriers to Competition and Productivity: Evidence from India." The BE Journal of Economic Analysis & Policy 9(1):42.
- Topalova, Petia B. & Amit Khandelwal. forthcoming. "Trade Liberalization and Firm Productivity: The Case of India." *Review of Economics and Statistics*.
- Unel, Bulent. 2003. "Productivity Trends in India's Manufacturing Sectors in the Last Two Decades." *IMF Working Papers* 2003(22):1–25.
- Young, Alwyn. 2003. "Gold into Base Metals: Productivity Growth in the People's Republic of China during the Reform Period." *Journal of Political Economy* 111:1220–1261.

A Data Appendix

The ASI sampling population is all factories registered under Sections 2m(i) or 2m(ii) of the 1948 Factories Act: factories using power employing 10 or more (permanent, production) workers, and factories without power employing 20 or more workers. The Chief Inspector of Factories in each state maintains a list of registered factories, from which the ASI sampling frame is drawn.

All plants employing more than a threshold number of workers, along with plants in certain other categories, are surveyed each year—we call this the "census sample". Smaller plants are sampled randomly. Table A.1 outlines how the census sample criteria changed over the period of our data. An observation is single plant for the fiscal year from April to March, with the

	_
1980-81 to 1986-87:	100 or more workers 50 or more workers with power All plants in 12 industrially backward states
1987-88 to 1996-97:	100 or more workers (with or without power) All plants in (same) 12 industrially backward states
1997-98 to 2003-04:	200 or more workers Selected "Significant Units" with fewer than 200 workers which "contributed significantly to the Value of Output" in ASI data between 1993-94 and 1995-96 All plants in (same) 12 industrially backward states All public sector undertakings
2004-05:	100 or more workers All plants in 5 industrially backward states

Table A.1: ASI census sample criteria

exception that an owner of two or more establishments located in the same state, industry group and survey division (ie, census sample or not) is permitted to submit a single consolidated return.

To link-up annual plant observations into a panel, we algorithmically link up census sample observations in adjacent years pair-by-pair. To be matched, any two observations must be in the same state-by-industry cell (using 1975 state boundaries). Within each cell, we then attempt to find unique matches on the eight variables which are reported on a consistent basis in every year from 1980 to 2004. There are two static plant characteristics which we expect to remain constant over time: the year of initial production, and four plant ownership categories. We take one match variable as the interaction of these. (No other static plant characteristics are reported using the same definition in every year: fixed assets, working capital, raw materials, outstanding loans, finished goods and semi-finished goods. We try to match closing values to the opening values in the next year, rounded initially to six significant figures. Observations are never matched on the basis of sharing zero or missing values.

The algorithm proceeds as follows. For each year-to-year transition, within each state-byindustry cell, try to match observations which match uniquely on all seven matching variables. Next drop one matching variable at a time, starting with the variable with the most missing or zero values, and attempt to uniquely match remaining observations on six matching variables. Iteratively continue, dropping more variables (in the same order), but never match observations on fewer than four non-missing, non-zero variables (including state and industry). Next, round all opening/closing variables to one fewer significant figure, and repeat the above. In total, there are 720 iterations for each year-to-year transition.

All deflators come from the Reserve Bank of India's Handbook of Statistics on the Indian Economy. We use 2-digit output deflators together with a primary-sector deflator to construct industry-specific material deflators. To do this, we develop a concordance between our industry codes and the ASICC product codes reported for major inputs and outputs of each plant from 1996-97 onwards, and then use the information on the value of input products to construct input-output tables. For each industry-pair we take the median input-output share for these years, and then use this information together with the manufacturing output deflators and a deflator for

non-manufacturing primary-sector output to construct an industry-specific materials deflator as a weighted average.

Total compensation—including benefits, bonuses and any in-kind payments—is only reported for all employees, and so we assign all non-wage compensation between skilled and unskilled workers in proportion to the plant's wage payments to each of these groups. Fixed assets growth is calculated from the difference between opening and closing balance sheet values.

All open manufacturing ASI plants with positive factors of production and output. Vertical lines indicate changes in sampling frame in 1987 and 2004. Gaps indicate missing data in 1995 and anomalous data in 1996.

B Robustness Appendix

	Fievious estimates o	Si productivity growt	11 (70)
	A. Hulten & Srinivas	an (1999 <i>,</i> Table 6)	
	1973–1992	1973–1982	1983–1992
Real Value Added	7.1	6.8	7.5
Labor	2.1	2.8	1.4
Capital	6.8	5.9	7.7
Total Factor Input	5.0	4.6	5.3
Total Factor Productivity	2.2	2.2	2.1
B. Bosy	worth & Collins (2008	, Table 3 Industry series	6)
	1978–2004	1978–1993	1993–2004
Output	5.9	5.4	6.7
Employment	3.4	3.3	3.6
Output per worker	1.4	1.3	1.5
Contribution to output per	worker:		
Physical capital	1.5	1.4	1.7
Education	0.3	0.4	0.3
Factor productivity	0.6	0.3	1.1
B. Bosworth &	Collins (2008, Unpubl	ished Estimates: Indust	try series)
	1980–1990	1990–2000	2000–2008
Output	6.2	5.6	8.1
Employment	3.6	2.2	3.7
Output per worker	2.5	3.3	4.2
Contribution to output per	worker:		
Physical capital	1.6	1.9	1.6
Education	0.3	0.4	0.2
Factor productivity	0.5	1.1	2.4

Table B.1: Previous estimates of productivity growth (%)

In the World Development Indicators, the share of manufacturing in industry value added averaged only 61% from 1980 to 2007.

Figure B.1: R^2 of single breaks in aggregate productivity growth, by first post-break year A. $L \ge 200$ panel

Graphing R^{2} 's from regressions of annual aggregate productivity growth on dummy for year $\geq x$ and a constant.

	(1)	(2)	(3)	(4)
Noise weighting:	None	Plant Noise	Sector Noise	Both
	A	Aggregate productiv	vity	
Annual data	0.36	0.40		
	(0.21)	(0.20)*		
		B. Plant efficiency		
Annual data	0.42	0.46		
	(0.20)**	(0.19)**		
Sectoral data	0.42	0.46	0.39	0.39
	(0.18)**	(0.20)**	(0.17)**	(0.17)**
Plant data	0.42	0.46	0.44	0.47
	(0.18)**	(0.20)**	(0.17)**	(0.18)**
	C. Be	tween-sector realloc	ation	
Annual data	0.02	0.02		
	(0.01)	(0.01)*		
Sectoral data	0.02	0.02	0.01	0.02
	(0.02)	(0.01)	(0.01)	(0.01)**
Plant data	0.02	0.02	0.00	0.00
	(0.02)	(0.01)	(0.01)	(0.01)
	D. W	Vithin-sector realloca	ation	
Annual data	-0.01	-0.00		
	(0.01)	(0.01)		
Sectoral data	-0.01	-0.00	0.00	0.00
	(0.02)	(0.01)	(0.01)	(0.01)
Plant data	-0.01	-0.00	-0.02	-0.01
	(0.02)	(0.01)	(0.01)	(0.01)
	Ε	E. Aggregate markuj	2	
Annual data	-0.07	-0.08		
	(0.03)**	(0.03)**		
Sectoral data	-0.07	-0.08	-0.07	-0.07
	(0.03)**	(0.03)**	(0.03)**	(0.03)**
Plant data	-0.07	-0.08	-0.06	-0.07
	(0.03)**	(0.03)**	(0.03)**	(0.03)**

Table B.2: Estimates of the annual trend in productivity growth, $L \ge 200$ panel

* p < 10%, ** p < 5%. The dependent variable is $100 * (log TFP_{jt} - log TFP_{jt-1})$. Heteroscedasticity-robust standard errors, clustered by year and sector in sectoral data, and by year, sector and plant in plant data. (In the annual data, conventional standard errors are substantially smaller.) All *p*-values evaluated from *t*-distribution with 19 degrees of freedom. Sectoral and plant data regressions weighted by Basu-Fernald aggregation weights.

	(1)	(2)	(3)	(4)
Noise weighting:	None	Plant Noise	Sector Noise	Both
	A	Aggregate productiv	vity	
Annual data	0.26	0.31		
	(0.19)	(0.17)*		
		B. Plant efficiency		
Annual data	0.31	0.36		
	(0.18)*	(0.17)**		
Sectoral data	0.31	0.36	0.30	0.34
	(0.14)**	(0.15)**	(0.12)**	(0.12)**
Plant data	0.31	0.36	0.35	0.39
	(0.14)**	(0.15)**	(0.15)**	(0.15)**
	C. Be	tween-sector realloc	ation	
Annual data	0.02	0.02		
	(0.01)	(0.01)*		
Sectoral data	0.02	0.02	0.01	0.01
	(0.01)	(0.01)	(0.01)	(0.01)
Plant data	0.02	0.02	0.00	0.00
	(0.01)	(0.01)	(0.01)	(0.01)
	D. V	Vithin-sector realloca	ation	
Annual data	-0.01	-0.00		
	(0.01)	(0.01)		
Sectoral data	-0.01	-0.00	0.01	0.02
	(0.01)	(0.01)	(0.02)	(0.02)
Plant data	-0.01	-0.00	-0.01	0.00
	(0.01)	(0.01)	(0.01)	(0.01)
	Η	E. Aggregate markuj	0	
Annual data	-0.07	-0.07		
	(0.03)**	(0.03)**		
Sectoral data	-0.07	-0.07	-0.04	-0.06
	(0.03)**	(0.03)**	(0.03)	(0.03)*
Plant data	-0.07	-0.07	-0.06	-0.06
	(0.03)**	(0.03)**	(0.03)**	(0.03)*

Table B.3: Estimates of the annual trend	n productivity	growth, Census p	panel
--	----------------	------------------	-------

* p < 10%, ** p < 5%. The dependent variable is $100 * (log TFP_{jt} - log TFP_{jt-1})$. Heteroscedasticity-robust standard errors, clustered by year and sector in sectoral data, and by year, sector and plant in plant data. (In the annual data, conventional standard errors are substantially smaller.) All *p*-values evaluated from *t*-distribution with 19 degrees of freedom. Sectoral and plant data regressions weighted by Basu-Fernald aggregation weights.

					Automatic l	oreak-points	5
	Mean	Trend	1993	1	2	3	4
Constant	6.70 (1.72)**	2.78 (2.42)	4.03 (1.94)*	5.01 (1.71)**	5.74 (1.95)**	4.18 (1.90)**	5.16 (1.86)**
Year - 1981	` ,	0.36 (0.21)	· · ·	× ,	· · ·	· · ·	
1993 onwards			6.23 (3.38)*				
2002 onwards				11.83 (2.50)**			
1999 to 2000					-7.86 (2.49)**		
2001 onwards					8.94 (3.14)**		
1994 to 1998						11.75 (2.02)**	
1999 to 2000						-6.29 (2.48)**	
2001 onwards						10.51 (3.16)**	
1992 to 1992							-13.56 (1.86)**
1993 to 1998							7.44 (3.66)*
1999 to 2000							-7.27 (2.48)**
2001 onwards							9.52 (3.21)**
<i>R</i> ²	0.00	0.11	0.16	0.29	0.34	0.53	0.62
BIC	148.4	149.0	147.8	144.3	145.8	141.6	137.5

Table B.4: Estimates of changes in aggregate productivity growth, $L \ge 200$ panel

* p < 10%, ** p < 5%. Heteroscedasticity-robust standard errors in parentheses. 22 observations. Each regression has 22 observations. "BIC" is Bayesian Information Criterion—smaller numbers are better.

					Automatic l	oreak-points	5
	Mean	Trend	1993	1	2	3	4
Constant	6.21 (1.54)**	3.35 (2.28)	3.99 (1.86)**	4.83 (1.58)**	5.60 (1.78)**	3.99 (1.97)*	5.05 (1.81)**
Year - 1981	()	0.26 (0.19)	~ /	()	~ /	~ /	()
1993 onwards			5.18 (2.99)*				
2002 onwards				9.63 (2.34)**			
1999 to 2000					-7.78 (2.07)**		
2001 onwards					7.08 (2.78)**		
1993 to 1998						8.05 (2.07)**	
1999 to 2000						-6.17 (2.25)**	
2001 onwards						8.69 (2.95)**	
1992 to 1992							-12.75 (1.81)**
1993 to 1998							6.99 (1.92)**
1999 to 2000							-7.23 (2.13)**
2001 onwards							7.63 (2.90)**
<i>R</i> ²	0.00	0.08	0.14	0.24	0.32	0.47	0.62
BIC	143.6	145.0	143.5	140.8	141.7	139.2	132.1

Table B.5: Estimates of changes in aggregate productivity growth, Census panel

* p < 10%, ** p < 5%. Heteroscedasticity-robust standard errors in parentheses. 22 observations. Each regression has 22 observations. "BIC" is Bayesian Information Criterion—smaller numbers are better.

		Census panel		j	$L \ge 200$ panel	l
	All years	1980–92	1993–04	All years	1980–92	1993–04
		F	raction public			
Plants	0.12	0.13	0.11	0.22	0.26	0.18
Value added	0.23	0.27	0.19	0.29	0.34	0.23
		Average p	lant efficiency	y growth		
Private	4.6	2.0	8.1	5.0	2.2	8.8
Public	6.6	3.6	10.5	7.1	3.0	12.5
	A	verage within	-sector reallo	cation growth		
Private	1.1	1.1	1.0	1.0	1.0	1.0
Public	1.4	1.2	1.7	1.2	1.2	1.3
	Av	erage betwee	n-sector realle	ocation growth	l	
Private	0.2	0.2	0.3	0.2	0.2	0.2
Public	0.1	-0.0	0.4	0.1	-0.0	0.3
		Average ag	gregate mark	up growth		
Private	0.3	0.5	-0.0	0.4	0.6	0.1
Public	-0.7	-0.1	-1.5	-0.4	0.1	-1.0

Table B.6: Publicly- versus privately-owned plants

Panel plants categorized as at least partially publicly owned based on first year report, except 1988 and 1987 year reports not considered.

	Ta	ble B.7:	Aggrega	te effects	of polic	y reform	s, multi	variate ve	rsion			
	Policy	mean	Sect produ	oral ctivity	Tech effici	nical ency	Between	n-sector cation	Within reallo	-sector cation	Aggre marl	egate kup
)		4			,						-
	1980	2004	$\Delta \cdot eta$	$\Delta\cdot (eta+\sigma)$	$\Delta\cdoteta$	$\Delta\cdot (\beta+\sigma)$	$\Delta\cdoteta$	$\Delta\cdot \\ (\beta+\sigma)$	$\Delta\cdoteta$	$\Delta\cdot (\beta+\sigma)$	$\Delta\cdoteta$	$\stackrel{\Delta\cdot}{(\beta+\sigma)}$
				A. $L \ge$	200 bala	nced pane	I					
Fraction de-licensed	0.126	1.000	-6.1	4.0	-5.9	5.8	1.7	2.6	0.6	4.2	-2.4	-0.1
Tariff fraction*	0.906	0.311	1.4	6.8	0.3	5.6	-0.2	0.4	0.1	0.9	1.1	2.3
Fraction open to FDI	0.000	0.386	7.4	12.6	10.3	15.9	-1.9	-1.3	-0.1	1.7	-1.0	0.8
Fraction de-reserved	0.965	0.973	-0.6	-0.3	-0.2	0.2	-0.2	-0.2	-0.1	-0.0	-0.1	-0.0
Input tariff fraction*	0.451	0.161	9.8	14.2	10.9	15.2	-0.7	-0.4	0.8	1.4	-1.2	-0.5
All policies			11.8	37.4	15.4	42.6	-1.3	1.0	1.3	8.2	-3.6	2.5
				B. Cen	sus balar	iced pane	1					
Fraction de-licensed	0.114	1.000	-0.1	7.7	-2.1	7.5	1.5	2.4	2.7	5.7	-2.2	-0.1
Tariff fraction*	0.924	0.314	1.3	5.3	0.7	4.5	-0.2	0.4	0.1	1.1	0.8	1.7
Fraction open to FDI	0.000	0.365	10.2	14.3	11.6	16.3	-1.4	-0.9	0.7	2.2	-0.7	0.8
Fraction de-reserved	0.962	0.969	-0.3	-0.1	-0.1	0.1	-0.2	-0.1	-0.0	-0.0	-0.0	0.0
Input tariff fraction*	0.450	0.160	11.2	14.2	12.3	15.2	-0.5	-0.3	0.3	0.7	-0.9	-0.4
All policies			22.2	41.4	22.3	43.6	-0.8	1.4	3.8	9.7	-3.1	2.1
* For Tariffs, presenting multi-policy regressions i	means for n Tables 1:	1987 and 3-14 1980 1	1999 (inț means wei	ighted by 1	output), a 980-1981	and $\Delta \cdot \beta$ + value adde	$- \Delta \cdot \sigma.$	All policy and 2004 n	coefficier neans by	tts taken fr 2003-2004 s	om first c shares.	olumn of