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Abstract
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1 Introduction

It is widely observed in economic data that in the context of intertemporal decision making
almost all economic agents exhibit a preference towards the advancement of timing of future
satisfaction. This aspect of human behavior is aptly called impatience. This paper is concerned
with the impatience implications of representable, weakly Paretian1 intertemporal preferences.
With regards to impatience, the focus of the literature (Koopmans (1960), Koopmans et.al.
(1964)), has been to address two questions:

Existence: For what minimal conditions on a preference order on in�nite streams
of utility is there some implication of impatience?

Robustness: How �many�impatience points are there in the program space?

Time preferences in general, and impatience in particular was discussed by social scientists
at least as early as Rae (1834), Bohm-Bawerk (1891) and Fisher (1930). In contrast to the
descriptive, albeit compelling discussions along the long history of the topic, a formal analysis
on the issue of impatience was �rst made by Koopmans (1960) and extended by Koopmans
et.al. (1964)2. Following the important early contributions by Koopmans and his coauthors,
subsequent analysis developed precise impatience conditions and obtained clear answers to the
question of existence and robustness of impatience. In the words of Brown and Lewis (1981),
the basic premise of each study was to

�....impose as few restrictions as possible .... such that every complete continuous
preference relation is (in some precise sense) impatient�3.

Much of the classical literature on impatience conforms to this line of study. For instance,
focusing on the case of continuous (in the sup-metric) preference orders aggregating in�nite

1The weak Pareto condition states that on ranking in�nite utility streams we should prefer a stream x to y
whenever x is strictly better than y in every period. A formal de�nition is given in section 2.1.

2An excellent summary of the classical literature can be found in Koopmans (1972). For a more recent survey
of the literature, incorporating impatience as observed in experiments, see Frederick et.al. (2002).

3In the interest of full disclosure, the part of the quotation omitted here indicates the exact nature of the
topological restriction that Brown and Lewis is after.
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utility streams, Diamond (1965) imposed the strong Pareto4 condition as a fundamental postu-
late, and showed that if a strongly Paretian preference order is continuous (in the sup metric),
then, with an additional non-complementarity axiom, it must exhibit, what he called �even-
tual impatience�. Burness (1973) avoided imposing noncomplementarity axioms in getting his
�eventual impatience�result, but he assumed continuously di¤erentiable representation5.

We view impatience as a strictly behavioral phenomenon and abstain from making any con-
tinuity assumption to obtain existence of impatience. This is largely justi�ed by two reasons:
(i) continuity in in�nite dimensional analysis is sensitive to the choice of topology (unlike the
analysis of standard metrics on Euclidean spaces) and (ii) while continuity of a particular evalu-
ation does have behavioral implications; it is, intuitively, a �technical�assumption and as such
should be avoided in keeping with the spirit of making �as few restrictions as possible�.

To motivate our exploration of minimal sensitivity 6 requirements that guarantee robust im-
patience, we ask the reverse question. Our �rst task is to show that there indeed is a strong
link between the existence of robust impatience and sensitivity. We start with two very basic
requirements. Firstly, we say that any preference order on in�nite utility streams must satisfy
a basic monotonicity condition (that is, if every generation in one stream is as well o¤ as the
same generation in another stream, then we declare the former stream at least as good as the
latter) and secondly, that it be representable. In Proposition 1, it is shown that any preference
order satisfying these two conditions and additionally, for which the set of impatient points is
dense in the sup-metric, must satisfy uniform improvement Pareto (for a formal de�nition see
section 2.3). Having established this connection between existence of robust impatience and
sensitivity, we can now ask: what minimal sensitivity requirement needs to be assumed on a
representable order such that the set of impatient points are robust in some precise sense?

Unfortunately, orders satisfying uniform improvement Pareto do not necessarily exhibit any
impatience. This motivates looking beyond uniform improvement Pareto for the minimal
sensitivity restrictions for which we can guarantee robust impatience.

4The strong Pareto condition states that society should prefer a stream x to y whenever period utilities in
x are as good as they are in y, and for some period x gives a strictly higher utility than y. A formal de�nition
is given in section 2.1.

5Burness (1976) studied impatience for separable functions. As will be clear from our motivation and analysis,
these conditions are somewhat extraneous to addressing the issue of existence and robustness of impatience.

6Sensitivity conditions refer to monotonicity conditions, that is, whether the ranking of streams are sensitive
to the ranking of period utilities in binary comparisons. Section 2.1 formalizes all the sensitive conditions used
in the paper.
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The work of Banerjee and Mitra (2007) provides an intuitive upper bound in our search. We
know from their results that every strongly Paretian, representable order must exhibit some
impatience and that impatience is generic7. Using techniques developed in Dubey and Mitra
(2010) we are able to obtain impatience implications based on weaker restrictions than those
used in Banerjee and Mitra (2007). We establish a characterization of the domain of in�nite
utility streams that allow for the existence of some impatience for representable orders satisfying
weak Pareto (Theorem 1).

With regards to robustness of impatience we explore two concepts. We can show that the
existence result can be strengthened to show that set of impatient points have the power of the
continuum (Theorem 2).

Genericity of the set of impatient points will be further evidence of robustness. However for
representable, weakly Paretian preference orders the set of impatient points need not be dense;
hence, is not generic. This is shown by means of an example. This motivates seeking a
su¢ cient sensitivity condition (stronger than weak Pareto and weaker than strong Pareto) such
that impatience is indeed generic (Theorem 3 and Theorem 4). It is worth noting that, like
Banerjee and Mitra (2007) our existence result is topology free. We assume continuity of the
preference order only in proving that the set of impatient points is open.

The nature of the enquiry in this paper demands that we study impatience implications for
a spectrum of sensitivity condition; in the same way as Brown and Lewis (1981) generated
impatience implications for continuous orders under di¤erent topologies.

The paper is organized as follows. Preliminaries, sensitivity and impatience conditions are
introduced in section 2. Existence results are presented in section 4 and the robustness of
impatience is established in section 5. We summarize our contributions and relate our �ndings
to existing results after each theorem. This makes a separate concluding section redundant.

7Genericity refers to the set of impatient points being open and dense in the sup-metric. In this paper (as in
Banerjee and Mitra), denseness does not require continuity of the representable preference but openness does.
The genericity result is stated for the case where instantaneous utilities belong to a non-degenerate interval of
the real line (for more on the applicability of this case see section 2.1).
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2 Preliminaries

2.1 Notation and Order Theoretic De�nitions

We will say that a set A is strictly ordered by a binary relation R if R is connected (if a; a0 2 A
and a 6= a0, then either aRa0 or a0Ra holds), transitive (if a; a0; a00 2 A and aRa0 and a0Ra00 hold,
then aRa00 holds) and irre�exive (aRa holds for no a 2 A). In this case, the strictly ordered
set will be denoted by A(R). For example, the set N is strictly ordered by the binary relation
< (where < denotes the usual �less than�relation on the real numbers).

We will say that a strictly ordered set A0(R0) is similar to the strictly ordered set A(R) if there
is a one-to-one function f mapping A onto A0, such that:

a1; a2 2 A and a1Ra2 ) f(a1)R
0f(a2): (OP)

We now specialize to strictly ordered subsets of real numbers. The set of natural numbers will
be denoted by N, the set of positive and negative integers by I. We will say that the strictly
ordered set Y (<) is of order type � if Y contains a non-empty subset Y 0 with the property that
the strictly ordered set Y 0(<) is similar to I(<)8.

Example 1: Let a; b 2 R with a < b. The intervals (denoted by the letter L) (a; b), [a; b],
(a; b] and [a; b) are of order type �. To see this, pick the minimum positive integer N such that
a+(1=N) < b�(1=N) and observe that the set A = fa+(1=n) : n � N and n 2 Ng[fb�(1=n) :
n � N and n 2 Ng is similar to I(<) and is contained in L.

As a matter of notation the completion of a proof is denoted by �, and the completion of a
claim is denoted by �. Proofs that are not presented in the body of the paper appear in the
appendix.

Instantaneous utilities (also called generational utilities or period utilities) will be assumed to
lie in some non-empty subset Y of R. Consequently, in�nite utility streams belong to the set
X, where X = Y N, the set of all sequences with each term of the sequence being interpreted
as one-period utility9. If the set of period utilities, Y is speci�ed, the de�nition of X uniquely

8For more details and an excellent exposition of these ideas, see Sierpinski (1965). The terminology of order
type � is from Dubey and Mitra (2010).

9Given in�nite utility streams x;y in X we write x >> y if xn > yn for all n 2 N and denote by x > y if
x � y and x 6= y.

5



determines the space of in�nite utility streams. So we will �nd it convenient to just describe
the set Y , since there should be no confusion about the context of reference.

The set of in�nite utility streams X = Y N with Y = [0; 1] will be of particular interest. We will
call this the classical domain. It is well known that period utilities in the neoclassical bounded
growth model lies in some bounded interval of the real line, see Roy and Kamihigashi (2007)
for the one-sector growth model. More generally the reduced form of several dynamic economic
models also have the above feature, see Mitra (2000) for a rich set of examples. This case
has also been the focus of analysis in the classical papers of Koopmans (1960) and Diamond
(1965). Apart from the applicability of this case, it also allows us to compare our existence and
robustness results across the spectrum of sensitivity conditions introduced in section 2.3.

An intertemporal preference order (interchangeably called a preference order on X) is a binary
relation % on X which is complete (if for any x;y 2 X either x % y or y % x holds) and
transitive. Given a preference order % on X, we indicate it�s asymmetric and symmetric parts
by � and �. Recall, for x;y 2 X, x � y implies x % y and not y % x, and the symmetric
relation x � y is de�ned as x % y and y % x.

An intertemporal preference order is representable if there is some U : X ! R such that for
any x;y 2 X, we have x % y i¤ U(x) � U(y).

2.2 Topological Preliminaries

For any preference order % on X and any x 2 X, denote by UC(x) = fy 2 X : y % xg and
LC(x) = fz 2 X : x % zg the upper and lower contour sets of % at x. An intertemporal
preference order % is continuous in a topology � of X if UC(x) and LC(x) are closed subsets
in (X;�) for every x 2 X.

The analysis of topological results will be with regard to the classical domain, that is for
Y = [0; 1]. On X = Y N, we de�ne the concept of distance between two points by the sup-
metric; that is for x;y 2 X the metric topology generated by the function d : X2 ! R given
by d(x;y) = supfjxn � ynj : n 2 Ng. We will denote the metric space by the tuple (X; d). For
any � > 0, denote the open ball around some x 2 X with radius � by B(x; �).

Given (X; d), a subset A of X is said to be generic if it is dense and open in X.
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2.3 Sensitivity Conditions

The fundamental behavioral restriction we impose on intertemporal preferences is that of sen-
sitivity to generational utilities. We present �ve sensitivity conditions. Let % be a preference
order on X, it is said to satisfy

Monotonicity: if x;y 2 X and x � y, then x % y,

Uniform Improvement Pareto: if for any x;y 2 X there is some � > 0 such that xn � yn+�,
then x � y,

Weak Pareto: if x;y 2 X and x >> y, then x � y,

In�nite Pareto: if x;y 2 X and xn � yn for all n 2 N and for some subsequence fNkg of N
the inequality is strict, then x � y,

Strong Pareto: if x;y 2 X and x > y, then x � y.

Note that in each of these conditions an inference is made about the relative ranking of two
streams from information on generational utilities. Such an aggregation re�ects the sensitivity
of the ordering to period utilities; hence the name sensitivity condition. It is easy to verify that
the sensitivity conditions, starting with uniform improvement Pareto, become more demanding
as we move down the list in the sense that a preference order satisfying Strong Pareto, must
satisfy uniform improvement Pareto, weak Pareto and in�nite Pareto.

The monotonicity condition is the most basic sensitivity requirement. It requires that we do
not reverse the natural weak dominance of vector comparability when we compare two streams.
The weak Pareto condition along with the monotonicity condition is S1 in Diamond (1965, p.
172) and the strong Pareto condition is condition S2 in Diamond (1965, p.173). The use of
the word Pareto is in reference to the social choice literature; in particular in �nite generation
social choice the weak Pareto condition has been used extensively, see Arrow (1963) and Sen
(1977) for instance. The strong Pareto condition is what is known as strictly increasing, see for
example, Benoit and Ok (2007). The in�nite Pareto condition is extensively analysed in Crespo,
Nuñez and Zapatero (2009); whereas Banerjee (2011) and Sakai (2011) make a compelling case
for the uniform improvement Pareto axiom.

We will be exclusively dealing with representable preference orders on X satisfying sensitivity
conditions. For representable preference orders there are natural analogues of each of the
sensitivity conditions expressed in terms of the function that represents the order.

7



2.4 Impatience Condition

We provide here a precise de�nition of what we mean for a preference order on X to exhibit
impatience at some x 2 X. Some auxiliary de�nitions are needed to formalize our impatience
condition. Given x 2 X, and M;N 2 N, we denote by x (M;N) the sequence x0 2 X de�ned
by,

x0M = xN ; x
0
N = xM and x0n = xn; 8n 6= N;M: (1)

An intertemporal preference order % is said to exhibits impatience at x 2 X, if there exist
M;N 2 N with M > N such that, either

(i) xM > xN and x(M;N) � x; or (ii) xM < xN and x � x(M;N): (2)

Observe that the de�nition of a new sequence x(M;N) in (1) from some x 2 X involves swap-
ping one-period utilities corresponding to periods M and N , ceteris paribus. The impatience
condition captures the intuition that the preference order % exhibits a preference towards �im-
mediate grati�cation�.

For representable preference orders on X, the information from the impatience condition (2)
can be translated to the real-valued function that represents it. If % is a representable (by a
real valued function W ) preference order on X and exhibits impatience at x 2 X, then there
exist M;N 2 N with M > N such that, either

(i) xM > xN andW (x(M;N)) > W (x); or (ii) xM < xN andW (x) � W (x(M;N)):

Alternatively, if W : X ! R represents % and exhibits impatience at x 2 X, then there exists
M;N 2 N with M > N such that,

(xN � xM)(W (x(M;N))�W (x)) < 0. (3)

3 Sensitivity Implications when Impatience is Dense

In this section, we show that there indeed is a strong link between the existence of robust
impatience and sensitivity. Precisely, if for some monotone preference order on the classical
domain, the set of impatient points pertaining to the order is dense in the sup-metric, then the
preference order must satisfy uniform improvement Pareto. Since the monotonicity condition
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is easy to justify in economic environments, Proposition 1 shows that uniform improvement
Pareto is a necessary implication of robust impatience.

Proposition 1 Suppose Y = [0; 1] and X = Y N. Let % be a preference order on X satisfying
monotonicity. Assume that the set of points of X at which % exhibits impatience

I = fx 2 X : % exhibits impatience at xg

is dense in (X; d). Then % satis�es uniform improvement Pareto.

Proof. Let � > 0 and x;y 2 X satisfy xn � yn + � for all n 2 N. We have to show that
x � y. Since % satis�es monotonicity, y � x is impossible. Assume by way of contradiction
that x � y. Consider the following subset of X

A = fz 2 X : there is � 2 (0; �=2) such that zn + � � yn + �=2 and yn + � � zn for all n 2 Ng.

The setA is open inX. To see this let z 2 A, then there is � 2 (0; �=2) such that zn+� � yn+�=2
and yn + � � zn for all n 2 N. Observe that B(z; �=2) � A. Since for w 2 B(z;�=2),
yn+ � � zn < wn+(�=2) < zn+ � � yn+�=2 implies yn+(�=2) < wn and wn+(�=2) < yn+�=2
as is required.

Now for any z 2 A we must have z � y. Since z 2 A, the monotonicity condition implies that
y � z is impossible. If however, z � y, then by transitivity of %, we have z � x, which is
impossible by monotonicity. So we must have z � y for any z 2 A. This implies that for any
z; z0 2 A the relation z � z0 is true, proving that A, an open set in X has no impatient point,
contradicting the fact that I is dense in X. Thus, we have shown that % must satisfy uniform
improvement Pareto.

Remark:

Converse of Proposition 1 : Proposition 1 establishes the connection between impatience and
sensitivity. Uniform improvement Pareto is the starting point of our analysis of the minimal
sensitivity requirement that guarantees the existence of robust impatience. Unfortunately,
there is at least one example of a representable, continuous, monotone preference order on the
classical domain that exhibits no impatience; the relation x % y i¤ sup xn � sup yn is one
such example when Y = [0; 1]. For more on the possibility of pure patience and the domain
restrictions imposed by a purely patient representable preference order satisfying the uniform
improvement Pareto condition, see Banerjee (2011).
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Representability under the assumptions of Proposition 1 : If, in addition to the conditions of
Proposition 1, we assumed that % is continuous, then it is easy to show that % must also be
representable. Note that a dense I and monotonicity implies uniform improvement Pareto by
Proposition 1. Representability of % now follows from noting that the Existence Theorem in
Diamond (1965 p. 173) holds under monotonicity and uniform improvement Pareto. We do
not know whether representability follows from the assumptions in Proposition 1 alone.

4 Existence and Characterization of Impatient Domains

Proposition 1 and the remark following it indicates: (a) some sensitivity of the preference
order is directly implied by the existence of robust impatience, and (b) a sensitivity condition
stronger than uniform improvement Pareto is needed to obtain impatience implications in the
classical domain. We have been silent about whether representability is necessary in obtaining
impatience implication for a sensitive preference order.

In Svensson (1980), it was shown that absent any continuity requirement, one can de�ne pref-
erence orders on in�nite utility streams that are purely patient. Notably, such purely patient
orders are not representable, see Basu and Mitra (2003). This implies that to demonstrate a
general result on impatience, representability is indispensable. Theorem 1 shows that strong
Pareto can be dispensed with for a weaker sensitivity requirement, weak Pareto, at least when
one is concerned with impatience in the classical domain.

This section shows that existence of impatient is a necessary implication for weakly Paretian,
representable orders. Theorem 1 goes further in characterizing a precise domain restriction for
which weakly Paretian, representable preference orders are indeed impatient.

Our demonstration of the existence of an impatient point is based on the analysis of Dubey and
Mitra (2010). We discuss the proof technique informally in the remarks following Theorem 2.

Theorem 1 Suppose Y is a non-empty subset of R and let X = Y N. For any representable,
weakly Paretian preference order % onX there exists some x 2 X at which % exhibits impatience
i¤ Y is of order type �.

Remarks:
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Relation to Literature: (i) The impatience condition in our paper is the same as in Banerjee
and Mitra (2007). In the classical domain, our result is a generalization of Banerjee and Mitra
(2007) by virtue of a weaker sensitivity requirement. In contrast, Diamond (1965) proved the
existence of eventual impatience, which captures impatience in utility streams where the tail of
the stream is uniformly bounded away from the �rst period utility. He used the strong Pareto
and non-complementarity conditions to obtain his result. Our results are non-comparable to
his results on two dimensions; �rstly, impatience in our case can obtain in utility streams that
are convergent which is not the case in Diamond (1965), secondly, we do not need any non-
complementarity, continuity or strong Pareto conditions to obtain our impatience implication.
However, it is worth noting that Diamond (1965) achieves a stronger form of impatience im-
plication; he demonstrates that every stream for which �rst period utilities are bounded away
from the tail of the stream must exhibit impatience.

(ii) In a recent paper Benoit and Ok (2007) study �delay aversion�. This can be viewed as
comparative impatience, in the sense that impatience content of two representable preference
orders are compared in their paper. They also address the very interesting and intuitive pos-
sibility where a preference towards improving current consumption at the cost of diminished
future consumption need not necessarily imply impatience. In a intertemporal setting with
endowments, a preference towards the advancement of timing of consumption could be a con-
sequence of a lower endowment today. This issue is not addressed in this paper. It would be
interesting to study the questions of this paper in a general equilibrium model incorporating
this feature.

5 Robustness of Impatience

5.1 Order Theoretic Implications

We will �rst establish that the set of impatient points of a representable, weakly Paretian
intertemporal preference order has the power of the continuum.

Theorem 2 Suppose Y is a non-empty subset of R that is of order type � and let X = Y N.
Let % be a representable, weakly Paretian preference order on X. Then the set of points of X
at which % exhibits impatience

I = fx 2 X : % exhibits impatience at xg
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is uncountable.

Remarks:

Method of Proof : The nature of proofs presented so far bears a resemblance to Dubey and Mitra
(2010). They showed the impossibility of anonymous representable preference orders10 satisfying
weak Pareto. The existence of an impatient point for weakly Paretian, representable order is a
consequence of their proof technique and is not a direct corollary of their results. We exploit
a crucial feature that drive their result; that is, we explore sequences for which positive terms
appear along some subsequence in increasing order and along the complementary subsequence
negative terms appear in decreasing order. This feature along with the inductive nature of
order type � subsets to which period utilities belong, is su¢ cient to guarantee the existence of
impatience. Our method (again exploiting this feature of sequences) does more than existence;
we have shown, using order theoretic methods (without invoking any topological properties)
alone, that impatient points are in fact, uncountable.

5.2 Topological Implications

The set of impatience points being of the order of the continuum shows that impatience is
robust in a weak sense. In this section we pursue a stronger result.

We show that for every weakly Paretian, representable intertemporal preference order %, the
set of impatient points is not necessarily generic. Precisely, we show (by means of an example)
that a representable and weakly Paretian preference order on X exists, for which, the set of
impatient points is not dense, and consequently is not generic. However, if we strengthen the
sensitivity requirement to in�nite Pareto, genericity of the set of impatient points follow.

5.2.1 Impatience is not Generic for Weakly Paretian Orders

In this section we provide an example of a weakly Paretian, representable preference order on
X that exhibits no impatience on some open set of (X; d). In particular this implies that the
set of impatient points pertaining to this order cannot be a dense, open subset of X.

10Anonymity means that ranking of streams is indi¤erent to the �nite permutation of generational utilities
as de�ned in (1).
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Example 2: Let Y = [0; 1] and X = Y N. Consider the following class of subsets of X:

V = fV � X : V =
Q1
i=1 Vi and there exists some minimally chosen N 2 N s.t. Vi = [0; 1=2)

for all i > Ng.

In the de�nition of the class V, we choose N(V ) to correspond to the smallest natural number
such that for all integers i > N(V ) we have Vi = [0; 1=2). It is in this sense that we use the
word �minimally chosen� in the de�nition. It is important to note that for any V 2 V, and
any x 2 V , there is some t 2 N such that xt 2 [1=2; 1]. Note that the in�nite cartesian product
of [0; 1=2) does not belong to this set. Sets in the class V have the feature that at least some
(and at most �nitely many) elements are greater than or equal to (1=2).

This class of subsets is non-empty. We will �rst de�ne a sequence of subsets fUig of X which
is crucial to the demonstration and also establishes non-emptiness of V. Let

Ui = [0; 1=2)� [0; 1=2)� � � � � [0; 1=2)� (1=2; 1]| {z }
ithplace

� [0; 1=2)N (4)

be the cartesian product of the intervals [0; 1=2) and (1=2; 1] with the latter interval appearing
in the ith position. Observe that Ui \ Uj = ; for all i 6= j. From (4), it is clear that Ui 2 V for
each i 2 N. It is also easy to see that Ui is an open set in (X; d) for each i 2 N. To see this,
denote by xi = (0; 0; ::; 0; 1; 0; ::), the vector in X with 1 at the ith position and 0 elsewhere
and note that Ui = B(xi; 1=2). This implies that Ui is open in X. We will write U = [i2NUi.
Clearly, U is open in X.

To facilitate the exposition, for N 2 N denote the set f1; 2; :::; Ng by [N ].

De�ne the function W : X ! R by

W (x) =

8<:
maxfxn : n 2 [N(V )]g for x 2 V 2 V

x1 for x 2 [0; 1=2)NP1
n=1(1=2)

n�1(2 + xn) otherwise.
(5)

Now de�ne % as:
x % y i¤W (x) � W (y).

Claim 1: % satis�es weak Pareto.
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Proof: Let x0>> x for x;x0 2 X. Consider the following cases: (A) x0 2 V 0 2 V (B) x0 62 V for
any V 2 V.

In case (A), we must have either (a) x 2 V 2 V or (b) x 2 [0; 1=2)N. In (a), x0>> x implies
N(V ) � N(V 0). Let j = argmaxfxn : n 2 [N(V )]g and k = argmaxfx0n : n 2 [N(V 0)]g.
Using the appropriate range in (5), we have W (x0) = x0k and W (x) = xj. Note that x

0>> x

and N(V ) � N(V 0) implies W (x) = xj < x0j � x0k = W (x
0). In (b), x0>> x and (5) implies

W (x) = x1 < (1=2) � W (x0).

In case (B), two sub-cases are possible: (i) x0 2 [0; 1=2)N or (ii) x0 62 [0; 1=2)N. Observe that in
(i), x0>> x implies x 2 [0; 1=2)N. Using (5) we get W (x) = x1 < x01 = W (x0). In sub-case (ii),

W (x) �
1P
n=1

(1=2)n�1(2 + xn) < W (x
0)

holds, as was needed. �
Claim 2: Every point of U (an open set in X) is a patient point of %.
Proof: For any x 2 U , there is some (unique) Ui such that x 2 Ui 2 V. This implies that
maxfxn : n 2 Ng = xi. For any M;N 2 N with M > N we must have x(M;N) 2 Ui if M 6= i
and N 6= i; x(M;N) 2 UN if M = i or x(M;N) 2 UM if N = i. In each of these cases,
W (x(M;N)) = W (x) holds. �
Thus, we have demonstrated the existence of a real valued function on X that exhibits pure
patience on some open set of the program space (X; d). This shows that there is no hope of
obtaining a result of genericity of the set of impatient points for weakly Paretian, representable
preference orders.

It can also be veri�ed that the preference order % satis�es monotonicity.
We note here (without proof) that W is not continuous in the sup-metric. This observation
actually leads us to the following open question:

Open Question: Is there a (sup-metric) continuous preference order satisfying weak Pareto and
monotonicity with at least one purely patient point?

If the answer to the above open question is a no, then it would have been established that for
continuous preference order satisfying weak Pareto and monotonicity, every non-constant stream
exhibits impatience. In particular this would make the analysis in section 5.2.2 redundant. We
hope that our construction above provides some direction in search of an answer to the open
question.
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5.2.2 Su¢ cient Condition for Genericity

In this section, we prove that for representable preference orders satisfying in�nite Pareto,
impatience is indeed generic. On the one hand, Example 2 demonstrates that genericity is not
implied by a weakly Paretian, representable preference order and the analysis in Banerjee and
Mitra (2007) guarantees that if we strengthen sensitivity all the way to strong Pareto, then
impatience is indeed generic. We are able to establish genericity for representable orders which
satisfy a sensitivity requirement between weak and strong Pareto, generalizing the Banerjee-
Mitra genericity result.

We �rst show that the set of impatient points of a representable intertemporal preference order
satisfying in�nite Pareto must be dense in (X; d).

Theorem 3 Suppose Y = [0; 1] and X = Y N. Let % be a representable intertemporal preference
order satisfying in�nite Pareto. Then the set of impatient points of X at which % exhibits
impatience

I = fx 2 X : % exhibits impatience at xg

is a dense subset in (X; d).

To show that set I is generic, in addition to Theorem 3 we need to show that I is an open
set in (X; d). We will make the additional assumption that % is continuous in (X; d), that
is for each x 2 X, the upper and lower contour sets UC(x) and LC(x) are both closed in
(X; d). The proof of this fact is identical to Theorem 3 in Banerjee and Mitra (2007). In fact,
the assumption of continuity of % allows us to drop the representability requirement, since by
the Existence Theorem proven in Diamond (1965, p. 173) a continuous preference order on X
satisfying in�nite Pareto can be represented by a continuous (on (X; d)) function. We state
this result without proof.

Theorem 4 Suppose Y = [0; 1] and X = Y N.Let % be a preference order on X satisfying
in�nite Pareto. Then the set of impatient points of X at which % exhibits impatience

I = fx 2 X : % exhibits impatience at xg

is an open subset in (X; d).

15



6 Appendix: Existence

This section is dedicated to the proof of Theorem 1. Following the method in Dubey and Mitra
(2010), the proof is in two steps. We �rst establish the existence of an impatient point for
weakly Paretian, representable intertemporal orders on X = Y N with Y = I. The next step
extends this result to domains of in�nite utility streams where the period utilities belong to
non-empty subsets of R of order type �. The characterization result, Theorem 1, follows from
noting the existence of purely patient preference orders when period utilities belong to a subset
of R that is not of order type �.

To facilitate the proof of the robustness results, we �nd it convenient to establish existence of
an impatient point in a particular subset of X = IN. We introduce some auxiliary notation to
present this result.

Let us denote (0; 1) by Z and �x some enumeration of the rationals in Z as

Q = fq1; q2; q3; � � � :g: (6)

For any real r 2 (0; 1) de�ne the sequence han(r)i by

an(r) =

�
n if qn 2 (0; r)
�n if qn 2 [r; 1).

(7)

and denote the set fa1(r); a2(r); :::g by I(r). Note that I(r) contains in�nitely many positive
integers and in�nitely many negative integers. We can decompose I(r) into pairwise disjoint
sets I+(r) = fn 2 I(r) : n > 0g and I�(r) = fn 2 I(r) : n < 0g. Moreover, since I+(r) is
a subset of positive integers, we can de�ne a unique sequence of integers hms(r)i such that
I+(r) = fm1(r);m2(r); :::g and m1(r) < m2(r) < � � � 11. Similarly, since I�(r) is a subset of
negative integers (implying I�(r) and every subset of I�(r) has a maximum element), we can
de�ne a unique sequence of integers hps(r)i such that I�(r) = fp1(s); p2(s); :::g and p1(s) >
p2(s) > � � � .

Proposition 2 Suppose Y = I and X = Y N. Let % be a representable, weakly Paretian
preference order on X. Then the set of points of X at which % exhibits impatience

I = fx 2 X : % exhibits impatience at xg
11Set m1(r) = minfn : n 2 I+(r)g and de�ne recursively for s > 1, ms(r) = minfn : n 2

I+(r)=fm1(r); :::;ms�1(r)gg. Note that at every stage we are taking the minimum over a set of positive in-
tegers which exists.
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is non-empty.

Proof. Denote byW : X ! R the function that represents % and I(r)N byX(r). We will prove
a stronger result. Suppose by way of contradiction, that the weakly Paretian % (represented
by W ) exhibits no impatience in X(r).

Recall that Q is an �xed enumeration of the rationals in Z given by (6). For any real number
t 2 Z, there are in�nitely many rational numbers from Q in (0; t) and in [t; 1). For each real
number t 2 Z, we can then de�ne the set L(t) = fn 2 N : qn 2 (0; t)g and the sequence hns(t)i
such that n1(t) < n2(t) < n3(t) < � � � and L(t) = fn1(t); n2(t); � � � g [as in footnote 11].

Similarly, for each real number t 2 Z, we can de�ne the set U(t) = fn 2 N : qn 2 [t; 1)g and
the sequence hvs(t)i such that v1(t) < v2(t) < v3(t) � � � and U(t) = fv1(t); v2(t); � � � g.

For each real number t 2 (0; 1), we note that L(t) \ U(t) = ;, and L(t) [ U(t) = N. Then, for
each r 2 Z de�ne the sequence hxrn(t)i1n=1 = xr(t) as follows:

xrn(t) =

�
m2s�1(r) if n = ns(t) for some s 2 N
p2s0+1(r) if n = vs0(t) for some s0 2 N.

(8)

Fix r 2 Z for the rest of the analysis. For any t 2 Z, and n 2 N we must have xrn(t) 2 I(r). So
xr(t) 2 X(r) for any t 2 Z. By way of contradiction we have assumed that W does not exhibit
impatience at xr(t) for any t. The proof of Proposition 4 in Dubey and Mitra (2010) shows
that there is an impatient point12 in the set

X̂(r) = fx 2 X(r) : x = xr(t) as in (8) for some t 2 Zg. (9)

In conclusion, there is some x 2 X̂(r) � X at which the representable, weakly Paretian pref-
erence order % must exhibits impatience.

We can show that when period utilities belong to an order type � subset of R, the conclusion
of Proposition 2 continues to hold.

12For a �xed r 2 Z and any t 2 Z, note that in the sequence xr(t) de�ned in (8) positive terms appear along
some subsequence of N in increasing order of magnitude, and along the complementary sequence negative terms
appear in decreasing order of magnitude. It is this feature of xr(t) that is crucial in generalizing the proof of
Proposition 4 in Dubey and Mitra (2010). The equality (26) in the proof of Proposition 4 in Dubey and Mitra
(2010), holds with an inequality here. However, this modi�cation leaves the �nal contradiction una¤ected. For
the sake of brevity, we omit the details here.
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Proposition 3 Suppose Y is a non-empty subset of R and is of order type � and let X = Y N.
Let % be a representable, weakly Paretian preference order on X. Then the set of points of X
at which % exhibits impatience

I = fx 2 X : % exhibits impatience at xg

is non-empty.

Proof. Denote by W : X ! R the function that represents %. Since Y is of order type �, it
contains a non-empty ordered subset Y 0(<) which is similar to I(<). This implies that there
is a one-to-one and onto function f : I!Y 0 that is order-preserving in the sense of condition
(OP). Let J = IN and de�ne V : J ! R by

V (z1; z2; :::) =W (f(z1); f(z2); :::) (10)

It is easy to show that V satis�es weak Pareto. Proposition 2 implies that there is some z 2 J
at which V exhibits impatience. We will show that W exhibits impatience at (f(z1); f(z2); :::).
With some abuse of notation we will denote the sequence (f(z1); f(z2); :::) in X by f(z). Since
V exhibits impatience at z 2 J , w.l.o.g, there is some M;N 2 N with M > N such that zM >

zN and V (z(M;N)) > V (z). This information on z directly translates to f(z) as the function
f is an order preserving map from I onto Y 0. Hence, f(zM) > f(zN) and W (f(z)(M;N)) =
V (z(M;N)) > V (z) =W (f(z)), showing that W exhibits impatience at f(z) 2 X.

Proposition 4 (Proposition 1 in Dubey and Mitra (2010)) Suppose Y is a non-empty
subset of R and is not of order type � and let X = Y N. Then the representable, preference
order % de�ned by

x % y i¤ W (x) � W (y)

where W : X ! R is given by

W (x) = � inffxngn2N + (1� �) supfxngn2N

with � 2 (0; 1) as a parameter, does not exhibit impatience at any x 2 X and satis�es weak
Pareto.

The results in Proposition 3 and 4 imply the characterization result in Theorem 1.
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7 Appendix: Robustness

This section is dedicated to proving the uncountability and genericity results of section 5. For
two sets A;B if there is an injective map with domain A and range B, then we will write
A �c B. If there is a bijection (a one-to-one and onto map) with domain A and range B, then
we say the sets are of the same cardinality and denote it by A =c B. The Cantor-Bernstein
Theorem states that A �c B and B �c A implies A =c B.

Proposition 5 Suppose Y = I and X = Y N. Let % be a representable, weakly Paretian
preference order on X. Then the set of points of X at which % exhibits impatience

I = fx 2 X : % exhibits impatience at xg

is uncountable.

Proof. Let I(X̂(r)) be the set of impatient points of % in the set X̂(r), where X̂(r) is given
by (9). Clearly from Proposition 2, for each r 2 Z the set I(X̂(r)) is non-empty. We will �rst
show that for r; r0 2 Z and r 6= r0, we must have I(X̂(r)) \ I(X̂(r0)) = ;.

Suppose x(r) = xr(�) 2 I(X̂(r)) and x(r0) = xr0(�) 2 I(X̂(r0)) for some �; � 2 Z. There are
two possible cases: (A) � 6= � and (B) � = �. We need to show that in both cases x(r) 6= x(r0).

In case (A), assume w.l.o.g � > �. Since there are in�nitely many rationals in the interval
(�; �) from (8) it follows that there are in�nitely many natural numbers n for which

xr
0

n (�) > 0 > x
r
n(�).

In particular, we must have x(r) 6= x(r0).

In case (B), assume w.l.o.g r < r0. Let

N = minfn 2 N : qn 2 [r; r0)g.

There are two possibilities: (i) N = 1 and (ii) N > 1. Consider N = 1. In this case,
m1(r

0) = 1 < m1(r). Since by assumption r < r0, if qn < r for some n, then qn < r0. Hence
the dominance of m1(r

0) over m1(r) carries over to every term, that is mt(r
0) < mt(r) for all

t. Since some n = ns(�) exists, we must have xr
0
n (�) = m2s�1(r

0) 6= m2s�1(r) = xrn(�). So
x(r) 6= x(r0) is established when N = 1.
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Suppose N > 1. Then for i = 1; :::; N � 1 it must be that either qi 2 (0; r) or qi 2 [r0; 1). Let
there be exactly J � 0 non-negative integers qJi 2 (0; r) for i = 1; :::; J and K � 0 non-negative
integers for which qKi

2 [r0; 1) for i = 1; :::; K. Of course, J +K = N � 1. This immediately
implies that mj(r

0) = mj(r) for j = 1; :::; J and pk(r0) = pk(r) for k = 1; :::; K. However,
mJ+1(r

0) = N < mJ+1(r), and the inequality registers for all mj(r
0) and mj(r) for j > J . So,

mj(r
0) < mj(r) for all j � J + 1. This implies that x(r) 6= x(r0) when N > 1.

Since I(X̂(r)) \ I(X̂(r0)) = ;, we can use the axiom of choice to de�ne a choice function
g : Z ! X such that

g(r) 2 I(X̂(r)) for each r 2 Z. (11)

So g is an injective function from g onto g(Z) � I. This shows that Z �c I. It is well known
that Z =c R and R =c RN. These last two equivalences are well known (see Kolmogorov and
Fomin 1970, p. 15 and p. 20). These equivalences imply, RN �c I. Also, RN has a subset I
which (trivially) has the same cardinality as I, Hence, I �c RN. Thus by the Cantor-Bernstein
theorem, I =c RN, that is I is of the power of the continuum.

Proof of Theorem 2. Denote by W : X ! R the function that represents %. Let J = IN
and de�ne V : J ! R by (10), and note that V satis�es weak Pareto. Using Proposition 2, we
can claim that for each r 2 Z = (0; 1) there is some x 2 X such that % exhibits impatience
at f(x) (recall, for any x 2 IN, f(x) =(f(x1); f(x2); :::) 2 X), that is f(x) 2 I. Denote the set
of impatient points of V by IV . For any x 2 IV , we have f(x) 2 I and by (OP) the function
F : IV ! I de�ned by F (x) = f(x) is one-to-one and onto on its image set, F (IV ), and
F (IV ) � I. So I has a subset, F (IV ), that has the same cardinality as IV , so IV �c I: Since by
Proposition 5, IV =c RN we must have RN �c I. Also, RN has a subset I which (trivially) has
the same cardinality as I, so I �c RN. By the Cantor-Bernstein theorem, I =c RN, that is I is
of the power of the continuum.

Proof of Thorem 3. We have to show that for any x 2 X and � > 0 the open ball of radius
� and center x (denoted B(x; �)) has non-empty intersection with I. Let �x 2 X and � > 0 we
need to show B(�x; �) \ I 6= ;. Let a � lim infn!1f�xng.

Given a �xed � > 0 assume w.l.o.g, (a��=2; a+�=2) � Y and denote the interval (a��=2; a+�=2)
by Y 0. From the de�nition of a it follows that there is some N such that for all k > N we must
have

a� (�=2) < �xk. (12)

20



Choose N to be the smallest such natural number for which (12) holds and �x it. We will
now recursively de�ne a particular subsequence of the natural numbers fN1; N2; :::g such that
�xNk < a + (�=2) for all k 2 N. As step 1, set N1 = N and �nd the smallest natural number
N2 > N such that �xN2 < a+(�=2). In step 2, start withN2 and �nd the smallest natural number
N3 > N2 such that �xN3 < a + (�=2). Proceed recursively to obtain the sequence fN1; N2; :::g
such that

�xNk < a+ (�=2) for all k 2 N. (13)

Claim 3. If b 2 Y 0, then �xNk � � < b < �xNk + � for all k 2 N: Observe that by subtracting
� from both sides of (13) and comparing with b, we get �xNk � � < a� (�=2) < b for all k 2 N.
Furthermore, by adding � to both sides of (12) and comparing with b we get b < a+(�=2) < �xk+�
for all k 2 N as was needed. �

Denote X 0 by (Y 0)N and let g : X 0 ! X be de�ned as g(y) = (gk(y))k2N where,

gk(y) =

�
yi if k = Ni for some i
�xk otherwise.

(14)

De�ne the function U : X 0 ! R as U(y) =W (g(y)) for y 2 X 0.

We show �rst that U satis�es weak Pareto on X 0. To verify weak Pareto, take y0>> y for
y;y0 2 X 0 and note that (14) implies gk(y0) > gk(y) for k = Ni for i 2 N. Since W satis�es
in�nite Pareto, the following must be true

U(y0) =W (g(y0)) > W (g(y)) = U(y),

establishing that U satis�es weak Pareto on X 0. As Y 0 is a set of order type �, Theorem 1
implies that there exists some y0 2 X 0 at which U exhibits impatience. So, there is some
m;n 2 N with m > n such that

(y0n � y0m)(U(y0(m;n))� U(y0)) < 0: (15)

The information in (15) can be translated to obtain an impatient point in B(�x; �). From the
de�nition of g we must have Nn < Nm, gNn(y

0) = y0n and gNm(y
0) = y0m. Using (15) we get

(gNn(y
0)� gNm(y0))[W (g(y0)(Nm; Nn))�W (g(y0))] < 0.

Hence, W must exhibit impatience at g(y0) 2 B(�x; �) (by Claim 3, and (14) we must have
g(y) 2 B(�x; �) for all y 2 X 0) as was required.
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