
On Monotonicity and Monotone Di¤erences

in Mechanism Design

(PRELIMINARY)

Levent Ulku
ITAM

October 2011

Abstract: I characterize incentives in a single-dimensional private
information environment without using monotonicity or monotone dif-
ferences conditions. I apply the characterization in an example where
a seller faces a buyer whose values exhibit habit formation, i.e., current
consumption causes disutility in the future. The seller-optimal mecha-
nism of this example can be constructed even when the monotone dif-
ferences condition fails. For certain parameter values the optimal mech-
anism is nonmonotone.

1 Introduction

Monotonicity and monotone di¤erences are two key conditions in mecha-
nism design: in single dimensional private infromation environments (or
if private information belongs to a �nite set) monotone allocation func-
tions are implementable if values satisfy a monotone di¤erences prop-
erty. In this note I show that neither monotonicity, nor the monotone
di¤erences property is necessary for implementability in general. I give a
characterization result for implementation without referring to these two
conditions. I apply the characterization in a Myersonesque buyer-seller
example where buyer�s value exhibits intertemporal allocation external-
ity in the form of habit persistence: agent�s consumption today generates
disutility in the future. The existence of a habit parameter renders the
agent�s value nonlinear, in fact, nonmonotone in type. Monotone di¤er-
ences property can not be satis�ed for a large set of parameter values.
I identify the seller-optimal mechanism and show that it may be non-
monotone for certain habit parameter values.
I consider a simple single-agent setting for brevity. All proofs as well

as an outline of an extension to multiagent models with interdependent
values are collected in the appendices.
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2 Environment

Consider a standard mechanism design environment with a single agent.1

Let A be a set of allocations. An outcome is a pair (a; x) where a 2 A is
allocated to the agent in return for payment x 2 <. The agent�s resulting
utility is v(a; t) � x where t 2 T = [0; 1] is his type. I will assume that
for all a, v(a; �) is continuously di¤erentiable and denote its derivative
by v2(a; �). Importantly, v need not be monotone in t. Throughout the
text (s; t) refers to a pair of types, not necessarily distinct.
An allocation function is a function q : [0; 1]! A mapping types into

allocations. Amechanism is a pair (q; x) where x : [0; 1]! < determines
monetary transfers. q(�) is implementable if there exists x(�) such that
the agent can not gain by misreporting his type to the mechanism (q; x),
i.e., v(q(t); t)�x(t) � v(q(s); t)�x(s) for every (s; t). If this is the case,
the mechanism (q; x) is said to be incentive compatible, or payments x
implement q.2

3 Implementability

The literature contains several related results which establish su¢ cient
conditions for implementation of allocation functions. A typical such
result indicates:

Proposition 1 q(�) is implementable if there exists a binary relation �
on A such that

1. s � t implies q(s) � q(t), and

2. a0 � a implies v2(a0; t) � v2(a; t) for every t.

Note that a binary relation on A satisfying the conditions of Proposi-
tion 1 can not be empty. Furthermore its restriction to fq(t) : t 2 [0; 1]g
is complete and transitive. The �rst condition orders A in such a way
that q(�) is monotone, and the second condition requires v(�; �) to sat-
isfy monotone di¤erences with respect to this order on A and the usual
less-than-or-equal-to order on [0; 1].

1As in Chung and Ely (2002) the single-agent environment can be interpreted as
a reduction of a multiagent environment where the focus is on the incentives faced
by any one agent, given the private information of all others. The results in the next
section extend therefore to multiagent environments with interdependent values, with
the notion of incentive compatibility taken as ex post Nash incentive compatibility.
These straightforward extensions are outlined in Apendix 2.

2The focus here is on incentive compatibility. Given incentive compatibility, in-
dividual rationality can be attained for most mechanisms at no additional cost. See
Lemma 1 in the next section.
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As a trivial example, consider a constant allocation function q(t) =
a for all t. Let the binary relation � on A consist only of f(a; a)g.
Now the two conditions of Proposition 1 are satis�ed with respect to
�. Thus constant allocation functions are trivially implementable. Now
suppose that q(s) 6= q(t) for some s < t and that no other type gets a
third allocation. Then Proposition 1 indicates that q is implementable
if v2(q(s); y) � v2(q(t); y) for all y. This condition may or may not be
satis�ed.
Proposition 1 is related to Proposition 3 in Bergemann and Välimäki

(2002), Theorem 5.1 in Jehiel and Moldovanu (2001) and Lemma 2 in
Crémer and McLean (1985). All these papers study the implementation
of e¢ cient (i.e., ex post welfare maximizing) allocation functions in mul-
tiagent problems with interdependent values. However a close reading
of their arguments reveals that their implementability results apply to
any allocation function, including ine¢ cient ones. Appendix 2 presents
the multiagent extension of Proposition 1 and discusses its relation to
aforementioned results.3

This su¢ cient condition is not necessary for implementability how-
ever, and the next section presents an example to this e¤ect. This ob-
servation raises the question of whether there exists a su¢ cient and
necessary condition for implementability.

Proposition 2 The following are equivalent:

1. The allocation function q(�) satis�esZ t

s

v2(q(y); y)dy � v(q(t); t)� v(q(t); s) for every (s; t). (1)

2. The mechanism (q; x̂q) is incentive compatible where

x̂q(t) = v(q(t); t)�
Z t

0

v2(q(y); y)dy for every t. (2)

3. The allocation function q(�) is implementable.

The implementability condition (1) may look unappealing, but it is
a suitable generalization of well known monotonicity conditions. For
example if A = [0; 1] and v(q; t) = qt, then (1) is equivalent to the

3In my single-agent environment, values are trivially private and e¢ cient imple-
mentation is never an issue. If v(q(t); t) � v(a; t) for all a and t, then payments
x(t) = 0 for all t implement q. This is precisely a Vickrey-Clarke-Groves mechanism
in a single-agent environment.

3



condition that q(�) is nondecreasing. Furthermore, (1) gives rise to the
usual revenue equivalence result: statements 2 and 3 are equivalent.
Suppose that some payment function x implements q and de�ne x̂q as
in (2). Then x̂q(s)� x(s) = x̂q(t)� x(t) for every (s; t). Hence (q; x̂q) is
incentive compatible as well. On the other hand if (q; x̂q) is not incentive
compatible, then q is not implementable. For if q is implemented by some
x, then x and x̂q can only di¤er by a constant and (q; x̂q) would have to
be incentive compatible. Thus, for implementation purposes, restricting
attention to implementability by x̂q is without loss of generality. In
what follows, I will use the implementability of an allocation q and the
incentive compatibility of the mechanism (q; x̂q) interchangeably.
In order to economize on space, I introduce the following expressions.

For any allocation function q, and any (s; t),

Lq(s; t) : =

Z t

s

v2(q(y); y)dy, and

Rq(s; t) : = v(q(t); t)� v(q(t); s)

are the left- and right-hand sides of (1). Note that Lq(s; t) = �Lq(t; s)
and (1) is equivalent to the statement

Lq(t; s) � �Rq(s; t) for all (s; t):

Now, to make sense of (1), suppose that for some allocation function q,
the mechanism (q; x̂q) is not incentive compatible. Then there is a pair
(s; t) such that type s is better o¤ reporting type t, i.e.,

v(q(s); s)� v(q(t); s) < x̂q(s)� x̂q(t)
,

v(q(s); s)� v(q(t); s) < v(q(s); s)� Lq(0; s)� v(q(t); t) + Lq(0; t)
,

Rq(s; t) < Lq(s; t).

This is precisely the converse of the implementability condition (1).

Individual rationality An important consideration in mechanism de-
sign is participation, i.e., the issue of whether the truth-telling equilib-
rium of a mechanism gives the agent a payo¤ at least as large as his
outside option. In standard models, the outside option is taken to be
independent of the agent�s type, and it is normalized to zero. Suppose
this is the case. Then a mechanism (q; x̂q) is individually rational if for
every t, v(q(t); t) � x̂q(t) � 0. The left hand side of this inequality is
precisely Lq(0; t) and is commonly referred to as the agent�s information
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rent. In general (q; x̂q) need not be individually rational even if it is
incentive compatible.

Lemma 1 Suppose that the mechanism (q; x̂q) is incentive compatible.
Then it is also individually rational if Rq(t; 0) � 0 for all t.

It is common in models of mechanism design to assume that values
are increasing in types, an assumption I have not made in this paper.
Under this assumption the su¢ cient condition in Lemma 1 trivially fol-
lows: for all t, 0 � v(q(0); t)�v(q(0); 0) = �Rq(t; 0). In problems where
v is not monotone in t, Lemma 1 indicates that an incentive compatible
mechanism (q; x̂q) is also individually rational if all types of the agent
receive the same payo¤ from the allocation of the smallest type. The
optimal mechanisms in the environment of the next section will satisfy
this rather mild condition.

4 Application: Optimal mechanism design

In this section, I will �nd the optimal mechanism for a seller in a sim-
ple parametrized environment which introduces habit formation in an
otherwise standard framework. The optimal mechanism is, of course,
incentive compatible and in order to solve for it, I will �rst need to
identify implementable allocation functions. The environment is such
that buyer�s value fails monotone di¤erences for a large set of parameter
values. Hence in order to characterize incentives for these parameters,
Proposition 1 is not of much help: there is no way to order allocations
in such a way that its condition 2 is satis�ed. (To be precise, Propo-
sition 1 only identi�es constant allocation functions as implementable.)
Moreover I will show that the optimal mechanism is nonmonotone for a
subset of these parameter values. This means that Proposition 1 would
not identify the optimal allocation function as implementable. How-
ever, Proposition 2 applies in characterizing incentives for all parameter
values.
Let A = f0; 1g be the set of allocations and

v(a; t) = at� �at2

give the agent�s values. The number � parametrizes the environment.
The type space is [0; 1]. The interpretation is as follows. The agent
is purchasing an indivisible object from a seller. The allocation a = 1
corresponds to sale and a = 0 indicates no sale. The payment x takes
place at time zero. Consumption takes place at time 1 but it generates
utilities in two periods: a at time 1 and ��a at time 2. The agent�s type
t is his discount rate and his value is the sum of discounted utilities. Thus
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if � 6= 0, the problem exhibits intertemporal allocation externalities in
the form of habit formation: consumption at time 1 generates a disutility
of �� at time 2. I will refer to � as the habit parameter and maintain
the following assumption.

Assumption: � 2 (0; 1).

Note that v is not monotone in t.
The problem of optimal mechanism design is that of �nding an in-

centive compatible and individually rational mechanism (q; x) such that
the expectation of x(�) is at a maximum. The formulation and solution
of this problem require a statistical distribution assumption on t.

Assumption: t is uniform on [0; 1].

Suppose that the seller has no costs and the buyer�s outside option is
zero regardless of his type so that the optimal mechanism design problem
is:

max
(q;x)

Z 1

0

x(y)dy

s.t.
�
q(s)(s� �s2)� x(s) � q(t)(s� �s2)� x(t) for all (s; t),
q(s)(s� �s2)� x(s) � 0 for all s.

The next proposition identi�es the optimal mechanism for every �.

Proposition 3 The seller�s optimal mechanism (q�; x̂q�) is such that

q�(t) = 1 if and only if �(�) � t � �(�)

where the cuto¤ types are given by

[�(�); �(�)] =

8>>>><>>>>:

�
1+��

p
�2��+1
3�

; 1

�
if 0 < � � 5+

p
5

10h
1��
�
; 1
i

if 5+
p
5

10
< � � 3+

p
3

6h
3�
p
3

6�
; 3+

p
3

6�

i
if 3+

p
3

6
< � < 1

and the payments x̂q� are de�ned as in (2).

The following picture is meant to clarify the optimal mechanisms in
Proposition 3.4 For every habit parameter �, measured on the horizontal

4The boundaries �(�) and �(�) of the shaded region are plotted as constant slope
functions even though they clearly are not, with the exception �(�) = 1 if 0 < � <
3+
p
3

6 . However the slopes do not change a lot in the domain (0; 1). Thus, even
though the �gure lacks mathematical precision, it gives the right idea about how
optimal mechanisms change as a function of �.
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axis, the corresponding vertical slice of the shaded area gives the set of
types, measured on the vertical axis, that are optimally allocated the
object. This slice is given for �0 in the �gure. If some pair (�; t) is outside
the shaded region, then the optimal mechanism does not allocate the
object to type t when the habit parameter is �. Note that if � > 3+

p
3

6
,

then the optimal mechanism is nonmonotone: low and high types are
screened out.

β

t
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55 +

β
βββ

3
11 2 +−−+

β
β−1

β6
33 −
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33 +
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1

6
33 +

1

1
0β

6
33 +

FIGURE 1: OPTIMAL MECHANISMS IN PROPOSITION 3

I follow with several observations regarding the optimal mechanisms.

1. For all �, 0 < �(�) < �(�) � 1, and for � > 3+
p
3

6
, �(�) < 1.

In particular, q�(0) = 0. Hence v(q�(0); t) = 0 for all t and, by
Lemma 1, (q�; x̂q�) is individually rational whenever it is incentive
compatible.

2. Using L�Hospital�s rule, lim�!0 �(�) =
1
2
, the lowest type that

optimally receives the object in the standard model with no habit
formation.

3. Let us de�ne the agent�s virtual valuation by

u(a; t)= v(a; t)� (1� t)v2(a; t)
= a

�
(t� �t2)� (1� t)(1� 2�t)

�
= a(�3�t2 + 2(1 + �)t� 1)

The methods of Myerson (1981) can be used to show that if (1)
q�(t) solves maxa u(a; t) for every t and (2) q�(�) is implementable,
then (q�; x̂q�) is an optimal mechanism. Suppose that � 2 (0; 12 ]
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so that values satisfy monotone di¤erences when A is ordered by
0 � 1: v2(0; t) = 0 � 1 � 2� = v2(1; t) for all t. Now Propo-
sition 1 indicates that all monotone allocation functions are im-
plementable. Consequently if the allocation function de�ned by
themaximizarion of virtual utility is monotone, then it is part of
the optimal mechanism. One can easily check that this allocation
function is given by

�q(t) =

8<: 1 if 1+��
p
�2��+1
3�

� t � 1

0 if 0 � t < 1+��
p
�2��+1
3�

(3)

and is monotone. Hence the optimal mechanism can be found
using Proposition 1.

4. If 1
2
< �, then the monotone di¤erences property fails. Yet the

proof of the proposition indicates that if � 2 (1
2
; 5+

p
5

10
], the alloca-

tion function �q in (3) satis�es the implementability condition (1).
In other words, standard methods yield the optimal mechanism
using Proposition 1 even in the absence of monotone di¤erences.

5. If 5+
p
5

10
< �, then the allocation function �q in (3) fails the imple-

mentability condition (1). To see this note that

L�q(1; 0) = �(�)� �� 2(�)� 1 + � > 0 = R�q(1; 0),

in other words, type s = 1 has a strict incentive to report t = 0 to
the mechanism (�q; x̂�q). Yet, the optimal mechanism for these habit
parameters can be solved for using the observation that there is
a one-to-one relationship between implementable allocation func-
tions and allocation functions supported by take-it-or-leave-it of-
fers at some price. Solving for the optimal take-it-or-leave-it price,
then, gives rise to an equivalent direct revelation mechanism which
is optimal. If � is high enough, namely if 3+

p
3

6
< �, then the op-

timal mechanism is nonmonotone, low and high values of t are
screened out by the seller. This is intuitive: high types discount
future habit cost at a higher rate. If this cost is large enough, then
the seller is better o¤ excluding high types in favor of types with
higher discounted values.
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6. The payments in the optimal mechanism are

x̂q�(t)= v(1; �(�))

= �(�)� �� 2(�)

=

8>><>>:
1+2��2�2�(1�2�)

p
�2��+1

9�
if 0 < � � 5+

p
5

10

1� � if 5+
p
5

10
< � � 3+

p
3

6
1
6�

if 3+
p
3

6
< � < 1

and they correspond to optimal prices as the proof of Proposition
3 in Appendix 1 shows.

5 Conclusion

In this paper, I give a characterization of incentive compatibility that is
especially useful when values are not monotone in private information
and put it to use in a buyer-seller example featuring habit formation.
The characterization builds on the usual envelope condition and is inde-
pendent of monotonicity and monotone di¤erences conditions commonly
assumed in the literature. The characterization result can be used to es-
tablish individual rationality of most mechanisms, this is the content of
Lemma 1. It is also useful, as the parametrized example of Section 4
shows, to show that standard methods of mechanism design may apply
when values fail monotone di¤erences and the resulting mechanisms can
be nonmonotone.
The model I analyze is one with a single agent. This restriction is

mostly for brevity. Results of Section 3 extend to multiagent environ-
ments and these extensions are in Appendix 2.
A multiagent version of the environment in Section 4 may also be of

interest. Proposition 3 trivially extends to such a multiagent environ-
ment only in part. To solve for the optimal mechanism when � > 5+

p
5

10
, I

make use of an equivalence between an optimal mechanism design prob-
lem and an optimal pricing problem, which fails to hold in multiagent
environments.

References

[1] Bergemann, D. and J. Välimäki (2002): "Information acquisition and
e¢ cient mechanism design," Econometrica 70, 1007-1034.

[2] Chung, K.-S. and J Ely (2002): "Ex post incentive compatible mech-
anism design," working paper.

[3] Crémer, J. and R. P. McLean (1985): "Optimal selling strategies
under uncertainty for a discriminating monopolist when demands
are interdependent," Econometrica 53(2), 345-361.

9



[4] Jehiel, P. and B. Moldovanu (2001): "E¢ cient design with inderde-
pendent valuations," Econometrica 69, 1237-1259.

[5] Milgrom, P. and I. Segal (2001): "Envelope theorems for arbitrary
choice sets," Econometrica 70(2), 583-601.

[6] Myerson, R. (1981): "Optimal auction design," Mathematics of Op-
erations Research 6, 58-73.

Appendix 1: Proofs

Proof of Proposition 1 Using Proposition 2 -whose proof is to follow-
I need only show that if there is an order � on A such that (i) s � t
implies q(s) � q(t), and (ii) a0 � a implies v2(a0; t) � v2(a; t) for every t,
then the implementability condition (1) follows. Suppose such � exists
and take s < t. ThenZ t

s

v2(q(y); y)dy �
Z t

s

v2(q(t); y)dy = v(q(t); t)� v(q(t); s):

Similarly if t < s. Thus q satis�es (1) and the proof is complete. �

Proof of Proposition 2 (1 ) 2) Suppose that q satis�es (1). Then
the mechanism (q; x̂q) is incentive compatible as for every (s; t)

x̂q(t)� x̂q(s) = v(q(t); t)� v(q(s); s)�
Z t

s

v2(q(y); y)dy

� v(q(t); s)� v(q(s); s):

(2) 3) This trivially follows from de�nitions.
(3 ) 1) To see that (1) is necessary for implementation, suppose

that for some payment function x, (q; x) is incentive compatible. By the
envelope theorem (Milgrom and Segal 2002)

v(q(t); t)� x(t) = v(q(s); s)� x(s) +
Z t

s

v2(q(y); y)dy

for every (s; t). Rearranging and using incentive compatibility,

v(q(t); t) = v(q(s); s)� x(s) + x(t) +
Z t

s

v2(q(y); y)dy

� v(q(t); s) +
Z t

s

v2(q(y); y)dy

and (1) follows. �
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Proof of Lemma 1 Suppose that (q; x̂q) is incentive compatible and
that v(q(0); t) � v(q(0); 0) for all t. Then for all t

v(q(t); t)� x̂q(t) = Lq(0; t) � �Rq(t; 0) � 0

where the equality follows from the de�nition of payments x̂q in (2), the
�rst inequality follows from the implementation condition (1) and the
second from hypothesis. �

Proof of Proposition 3 First note that q�(0) = 0 for all �. Thus, by
Lemma 1, (q�; x̂q�) is feasible in the optimal mechanism design problem
if it is incentive compatibile.
I will divide the proof into three parts depending on the value of �.

Part 1 Suppose that � 2 (0; 1=2]. As noted in the main text,
monotone di¤erences property is satis�ed when 0 � 1, as v2(0; t) = 0 �
1�2�t = v2(1; t) for all t. Now the allocation function (3) de�ned in the
main text is nondecreasing and therefore implementable by Proposition
1. This shows feasibility. To see that (q�; x̂q�) is optimal, note that the
allocation functions in Proposition 3 and in equation (3) coincide for
this parameter range. Thus q� maximizes virtual utility. Optimality
now follows from the de�nition (2) of payments x̂q�.

Part 2 Suppose that � 2 (1=2; (5 +
p
5)=10]. Note that q� maxi-

mizes virtual utility for this parameter range as well. Hence q� is part of
an optimal mechanism if it is implementable. I will show that q� satis�es
(1) and is therefore implementable.
To begin, note that

0 < �(�) < 1=2� < 1 < 1=�:

In order to apply the characterization result, �rst take (s; t) such that
s < �(�) � t. It follows that

Lq�(s; t)=

Z t

�(�)

(1� 2�y)dy

= t� �(�)� �t2 + �[�(�)]2

<t� s� �t2 + �s2

=Rq�(s; t)

where the inequality follows because s < �(�) < �1=2�.
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Now take (s; t) such that t < �(�) � s so that

Lq�(s; t) =

Z �(�)

s

(1� 2�y)dy

= �(�)� s� �[�(�)]2 + �s2

� 0
=Rq�(s; t).

The weak inequality follows from the following observations: let f(y) =
y� �y2 on [0; 1]. I need to show f(�(�)) � f(s). Note that f is concave
and maximized at 1=2�. Hence if �(�) � s � 1=2�, the inequality
follows trivially. Otherwise, note that

min
1
2�
<y�1

f(y) = f(1) = 1� �:

Thus, it su¢ ces to show that f(�(�)) � f(1). But this follows as � �
(5 +

p
5)=10. Thus q� satis�es (1) and is therefore implementable.

Part 3 If � > (5+
p
5)=10, then the allocation function in equation

(3) is no longer implementable. I will derive the optimal mechanism by
solving an optimal pricing problem. I need some preparations.
Let p � 0 be a price for the object. If the seller makes a take-it-

or-leave-it o¤er at p, then any type whose value weakly exceeds p will
purchase the object. (See the �gures in Appendix 4.) Hence each p gives
rise to an allocation function qp de�ned by

qp(t) =

�
1 if t� �t2 � p,
0 otherwise.

Obviously, if p > 1
4�
= maxt t� �t2, then qp(t) = 0 for all p. Such prices

earn the seller a revenue of zero. I will concentrate on prices p 2 [0; 1
4�
].

In this case qp becomes

qp(t) =

(
1 if 1�

p
1�4�p
2�

� t � 1+
p
1�4�p
2�

,
0 otherwise.

Calculating the payments x̂qp as in (2), I get

x̂qp(t) =

(
p if 1�

p
1�4�p
2�

� t � 1+
p
1�4�p
2�

,
0 otherwise.

Thus the indirect mechanism of a take-it-or-leave-it price at p is identi�-
able with the direct revelation mechanism (qp; x̂qp). On the other hand,
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if a mechanism (q; x̂q) is implementable, then it satis�es the following
monotonicity property:

if q(s) = 1 and t� �t2 > s� �s2 then q(t) = 1: (*)

For otherwise for some (s; t) such that q(s) = 1, q(t) = 0 and t� �t2 >
s� �s2, we would have

Lq(s; t) � Rq(s; t) = 0

and

0 � �Lq(s; t) = Lq(t; s) � Rq(t; s) = s� �s2 � t+ �t2 < 0;

a contradiction to implementability of q. The monotonicity property (*)
in turn implies that the allocation function q is supported by a take-it-or-
leave-it price at p = t0+�t20 where t0 = infft : q(t) = 1g. But t0+�t20 is
precisely x̂q(t) for any t such that q(t) = 1. In other words, any incentive
compatible mechanism (q; x̂q) is virtually a take-it-or-leave-it o¤er.
In order to solve for the optimal mechanism, then, I need only solve

for the optimal price p for the seller and then convert it to the equivalent
direct mechanism. In order to formulate the optimal pricing problem,
�rst �x any habit parameter � 2 (

p
5+5
10
; 1). Using the uniformity of t,

for every price p � 0, the expected revenue becomes

R(pj�)= pPrft� �t2 � pg

=

8><>:
p
�
1� 1�

p
1�4�p
2�

�
if 0 � p � 1� �,

p
p
1�4�p
�

if 1� � < p � 1
4�
,

0 if 1
4�
< p.

Note that 0 < 1 � � < 1
4�
so the expected revenue function is well

de�ned. Also note that R(�j�) is continous. To show this I need only
check continuity at the break points p = 1 � � and p = 1

4�
. To check

continuity at p = 1 � � �x any �. Continuity from the left is obvious.
Note

lim
p#1��

R(pj�)= lim
p#1��

p
p
1� 4�p
�

=
(1� �)

p
1� 4�(1� �)
�

=
(1� �)(2� � 1)

�

=R(1� �j�):
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R(pj�) is also continuous at p = 1
4�
as R( 1

4�
j�) = 0 = R(pj�) for all

p > 1
4�
.

Now I will solve
max
p
R(pj�)

piece-by-piece, �rst on [0; 1� �], and then on (1� �; 1
4�
].

I claim that
f1� �g = arg max

0�p�1��
R(pj�):

To see this, �rst note that R(0j�) = 0. Moreover for every p 2 [0; 1��],
the �rst and second derivatives of expected revenue with respect to price
are

R0(pj�)= 1 + 1

2�

�p
1� 4p� � 1

�
� pp

1� 4p�

R00(pj�)=�2p �

(1� 4p�)
3
2

� 2p
1� 4p�

= �2 < 0

ThusR(�j�) is strictly concave on [0; 1��]. The �rst derivative evaluated
at p = 0 is R0(0j�) = 1 > 0, and therefore the expected revenue is
increasing around 0. Finally the �rst derivative evaluated at p = 1 � �
is

R0(1� �j�) = � � 1
�

� 1� �
2� � 1 + 1 > 0.

(In fact R0(1� �j�) = 0 if � =
p
5+5
10
.) Thus R(�j�) is strictly increasing

on [0; 1� �] and is maximized at p = 1� �.
Next, I note that

� 2
 p

3 + 3

6
; 1

!
) arg max

1��<p� 1
4�

R(pj�) =
�
1

6�

�
, and

� 2
 p

5 + 5

10
;

p
3 + 3

6

#
) R(1� �j�) = sup

1��<p� 1
4�

R(pj�).

Consequently the expected revenue maximizing price is

p�(�) =

(
1
6�

if
p
3+3
6
< � < 1, and

�� + 1 if
p
5+5
10

< � �
p
3+3
6
.

The optimal price and the allocation function it supports is presented

14



in the next two �gures.
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FIGURE 3: OPTIMAL PRICE when
p
3+3
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All that remains to show is that the allocation function q� in Propo-
sition 3 is such that for every � � 5+

p
5

10
by q�(t) = 1 if and only if

t � �t2 � p�(�). I skip this straightforward step and the proof is com-
plete. �

Appendix 2: Extension to multiple agents with
interdependent values

Consider the following standard multiagent model with interdepen-
dent values. Let A be a set of allocations and N be a set of agents,
both �nite. Endow each i 2 N with the type space Ti = [ti; ti] and
valuation function vi : A � T ! < where T = �j2NTj. Assume that

15



each vi is continuously di¤erentiable in ti and denote the derivative by
v0i(a; �; t�i). An allocation function is a map q : T ! A. A mechanism is
a list (q; (xi)i2N) where xi : T ! < for every i.
A mechanism (q; (xi)i2N) is ex post Nash incentive compatible if for

every i, for every pair (si; ti) of i�s types, and for every type pro�le t�i
of the rest of the agents,

vi(q(si; t�i); ti; t�i)� xi(si; t�i) � vi(q(ti; t�i); ti; t�i)� xi(ti; t�i).

An allocation function q is ex post Nash implementable if for some
(xi)i2N , the mechanism (q; (xi)i2N) is ex post Nash incentive compatible.

Proposition 4 (Extension of Proposition 1 to a multiagent environ-
ment) An allocation function q(�) is ex post Nash implementable if for
every i and t�i, there exists a binary relation �t�i on A such that

1. si � ti implies q(si; t�i) �t�i q(ti; t�i) and

2. a0 �t�i a implies v0i(a0; ti; t�i) � v0i(a; ti; t�i) for every ti.

The proof uses Proposition 5 below and is identical to the proof of
Proposition 1 except for the necessary changes in notation.
If we make the additional assumption that q is e¢ cient, then Proposi-

tion 4 is an exact analog of Theorem 5.1 in Jehiel and Moldovanu (2001)
and Proposition 3 in Bergemann and Välimäki (2002).
In the linear model of Jehiel and Moldovanu, vi(a; t) =

P
j2N �ij(a)tj

and monotone di¤erences property takes the following form: for every i
and t�i, a0 �t�i a ) �ii(a

0) � �ii(a). Jehiel and Moldovanu start with
an arbitrary unordered allocation set A and order it for every i and t�i
such that monotone di¤erences property is satis�ed. They are interested
in implementing the e¢ cient allocation rule qE(�), which is obtained by
choosing

qE(t) 2 argmax
a2A

X
i2N

X
j2N

�ij(a)tj

for every t. The e¢ cient allocation, of course, need not satisfy the
monotonicity property. Jehiel and Moldovanu further impose the condi-
tion

for all i and t�i, a0 �t�i a)
X
j2N

�ji(a
0) <

X
j2N

�ji(a).

If this condition is satis�ed then for every i and t�i, the map

(a; ti) 7!
X
i2N

X
j2N

�ij(a)tj
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satis�es the single crossing property. Consequently qE is monotone and
implementation follows.
In Bergemann and Välimäki (2002) values are nonlinear in types

and therefore the monotone di¤erences property is more involved. Their
Proposition 3 is precisely Proposition 4 above for e¢ cient allocation
functions. Crémer and McLean (1985) give an analogous result using a
mechanism tailored to their setting with �nite type spaces.
The multiagent version of Proposition 2 is as follows.

Proposition 5 (Extension of Proposition 2 to a multiagent environ-
ment) The following statements are equivalent:

1. The allocation function q(�) satis�esZ ti

si

vi(q(y; t�i); y; t�i)dy � vi(q(ti; t�i); ti; t�i)�vi(q(ti; t�i); si; t�i)

for every (i; t�i; si; ti):

2. The mechanism (q; (x̂iq)i2N) is ex post Nash incentive compatible
where

x̂iq(ti; t�i) = vi(q(ti; t�i); ti; t�i)�
Z ti

ti

vi(q(y; t�i); y; t�i)dy

for every (i; ti; t�i).

3. The allocation function q(�) is ex post Nash implementable.

The proof is identical to the proof of Proposition 2 except for the
necessary changes in notation.
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