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Abstract 
 

This paper examines the significance of the time path of a given productivity increase 
on growth and inequality.  Whereas the time path impacts only the transitional paths 
of aggregate quantities, it has both transitional and permanent consequences for 
wealth and income distribution.  Hence, the growth-inequality tradeoff generated by a 
given discrete increase in productivity contrasts sharply with that obtained when the 
same productivity increase occurs gradually.  The latter can generate a Kuznets-type 
relationship between inequality and per-capita income.  Our results suggest that 
economies with similar aggregate structural characteristics may have different 
outcomes for income and wealth inequality, depending on the nature of the 
productivity growth path. 
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1. Introduction 

The relationship between income inequality and economic growth has been extensively 

discussed since Kuznets’ (1955) pioneering work first appeared over half a century ago.  Since then, 

the question of whether these two key economic variables are positively or negatively related has 

been extensively debated, although no definitive conclusion has been reached.  Early growth 

regressions by Alesina and Rodrik (1994), Persson and Tabellini (1994), Perotti (1996), and others, 

yield a negative growth-inequality relationship.  But more recent studies obtain a positive, or at least 

more ambiguous, relationship; see for example, Li and Zou (1998), Forbes (2000), and Barro 

(2000).1  From a theoretical perspective, this empirical controversy should not be surprising.  

Because an economy’s growth rate and its income distribution are both equilibrium outcomes, the 

growth-inequality relationship – whether positive or negative – will reflect the underlying set of 

forces to which both are simultaneously reacting.  To understand these linkages it is necessary to 

examine this relationship using a consistently specified general equilibrium framework. 

In this paper we employ such a framework to consider the impact of one of the major 

determinants of the growth-inequality relationship, namely an increase in productivity.2  The key 

result we shall establish is that the effects of a productivity increase of a given magnitude on wealth 

and income inequality depend crucially upon the time path along which the productivity increase 

accrues.  This in turn has important consequences for the growth-inequality tradeoff, and further, 

may help explain why economies with similar aggregate structural characteristics may nevertheless 

have very different income and wealth distributions.  While we focus on a productivity increase as 

being particularly salient, it will become evident that the argument in fact applies to any structural 

change that occurs over time.  Hence the issue we are addressing is quite general, and therefore 

highly significant for understanding the dynamics of the growth-inequality tradeoff.  

In a completely general setup, where the equilibrium growth rate and income distribution are 

mutually dependent, their joint determination and the analysis of their relationship becomes 

intractable; see Sorger (2000).  This paper, on the other hand, is related to a growing body of 

                                                 
1 Various explanations for these results and their differences are summarized by García-Peñalosa and Turnovsky (2006). 
2 This is one of the key factors influencing the growth-inequality relationships; see Solimano (1998) and Piketty (2006). 
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research that exploits the fact that if the underlying utility function is homogeneous in its relevant 

arguments, the aggregate economy can be summarized by a representative agent, as a result of which 

aggregate behavior becomes independent of the economy’s distributional characteristics.  Rather, the 

distributions (e.g. of wealth and income) reflect the evolution of the aggregate economy; see e.g. 

Caselli and Ventura (2000), García-Peñalosa and Turnovsky (2006, 2007), Turnovsky and García-

Peñalosa (2008), Kraay and Raddatz (2007), Carroll and Young (2009) and Barnett et al. (2009).  

While awareness of this aggregation property dates back to Gorman (1953), by rendering the 

analysis tractable, it assumes particular importance in studying the growth-inequality relationship.  

Moreover, the class of utility functions to which this aggregation applies includes the constant 

elasticity utility function that dominates contemporary growth theory.  

Inequality is necessarily associated with heterogeneous agents.  Recently, differential initial 

endowments of capital across economic agents have received a lot of attention as an underlying 

source of heterogeneity.3  A crucial mechanism generating the endogenous distribution of income is 

the relationship between agents’ relative capital stock and their relative allocation of time to leisure. 

In the long run, this relationship is positive, as wealthier agents who have a lower marginal utility of 

wealth increase their consumption of all goods, including leisure.4  In the short run, however, this 

relationship is conditioned by the time path a given productivity change is expected to follow, and 

the differences in the consumption-smoothing motives it generates for rich and poor agents.  

A key feature of this labor allocation-relative wealth mechanism is that it introduces 

hysteresis in the dynamic adjustment characterizing the relative holdings of capital.  This occurs 

because the impact of any structural change on the long-run evolution of wealth inequality, and 

subsequently on income inequality, depends critically upon the initial response of leisure (labor 

supply) to the underlying shock.  This initial response, in turn, depends upon the entire (known) time 

                                                 
3 By identifying agents’ heterogeneity with their initial physical asset endowments, we are embedding distributional 
issues within a more traditional growth-theoretic framework.  Indeed, the role of the return to capital, which is essential 
in that literature, has tended to receive less attention in much of the recent discussions of income inequality, which have 
emphasized other aspects such as human capital and growth; see e.g. Galor and Zeira (1993), Bénabou (1996b), and 
Viaene and Zilcha (2003), among others.  The argument that the return to capital is essential to understanding 
distributional differences has, however, been addressed by Atkinson (2003), and is supported by recent empirical 
evidence for the OECD [see Checchi and García-Peñalosa, 2010].  
4 This long-run negative relationship between wealth and labor supply is supported by empirical evidence, obtained from 
a variety of sources.  This is discussed by García-Peñalosa and Turnovsky (2006). 
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path that the structural change is expected to follow.  That is, not only the dynamic evolution (which 

is expected) but also the long-run distributions of wealth and income inequality become path 

dependent.  Thus, a central insight of this paper is that the effects of a productivity increase of a 

given magnitude on the long-run distributions of both wealth and income are crucially dependent 

upon the time path that the productivity increase is assumed to follow.  This is in sharp contrast to 

the dynamics of the aggregate economy.  In this case, the time path of a productivity change affects 

only the transitional path of the aggregate economy and has no impact on its steady state. 

To illustrate the role of path dependence we compare the consequences of two alternative 

specifications of the productivity increase.  The first is the conventional one, where the full 

productivity change occurs instantaneously as an unanticipated permanent discrete increase in the 

level of productivity.  The second is where the same overall increase in the level of productivity 

occurs, but is acquired gradually over a known time path, and is therefore anticipated after the first 

instant.5  These two specifications of the productivity increase have exactly opposite consequences 

for the initial responses of leisure.  In the first case leisure initially declines, while in the latter case it 

initially increases, leading to profoundly different distributional consequences.   

The path dependence of the distributions of wealth and income inequality helps provide some 

key insights into the ambiguous empirical relationship between growth and inequality.  Given the 

analytical complexity of the theoretical framework, all our results are derived using numerical 

simulations.  The main findings are summarized below: 

1. Whereas a discrete productivity increase always leads to a monotonic decline in wealth 

inequality, its gradual introduction leads to a non-monotonic adjustment, with an initial 

increase followed by a gradual decline after some period of time.  In the long run, a gradual 

increase is likely to lead to more, rather than less, wealth inequality unless the flexibility of 

production is extremely high.  Furthermore, whereas a discrete productivity increase leads to 

an initial increase in income inequality, followed by a monotonic decline to below its initial 

                                                 
5 More specifically, consider the case of a closed economy using antiquated production techniques that decides to open 
up to the adoption of more modern technology.  In this context the question is: should this economy adopt policies that 
attain the new level of technology instantaneously or should the adoption process be more gradual? 
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level, its gradual introduction generates essentially the opposite time profile.   

2. The model permits a diversity of distributional equilibria for structurally similar countries: 

countries with similar structural conditions may end up with very different levels of 

inequality, depending on the time path of productivity changes.  This result is consistent with 

the experiences of countries in East Asia and Latin America, who have similar levels of per-

capita income but very different levels of income inequality.6   

3. A gradual productivity increase generates a Kuznets-type inverted-U relationship between 

inequality and per-capita income.  In contrast, a discrete change in productivity can generate 

only an inverse monotonic relationship. The fact that the much-debated Kuznets relationship 

can be generated in the context of a simple one-sector Ramsey model is a salient feature of 

this paper, providing a simple theoretical justification for a controversial empirical 

relationship; see Ray (1998).   

4. A country’s distance from the technological frontier has important implications for both 

inequality and its persistence. 

5. Even though the long-run outcomes for the aggregate economy are independent of the time-

path of the underlying productivity change, the transitional responses can be quite sensitive 

to it.  For example, while a discrete productivity shock leads to an instantaneous increase in 

output, a continuous change leads to exactly the opposite response, where both employment 

and output decline.  This may help explain why some countries go through difficult 

transitions following structural changes.  Mexico’s short-run experience with trade 

liberalization in the mid 1990s following the adoption of the NAFTA is a good example. 
 

Since the model is solved numerically, we conduct extensive robustness checks by varying 

the two key parameters of the model, namely the elasticity of substitution between capital and labor 

in production, and the speed of the underlying productivity change.  Our main results are robust to 

                                                 
6 The diversity of distributional equilibria prevents Deininger and Squire (1996, 1998) from finding a statistically 
significant relationship between the level of income and inequality in over 75 per cent of their cross-country sample even 
after controlling for initial differences in inequality.  There may be other reasons that economies structurally similar in 
the aggregate may have different distributional characteristics, the most obvious being differential fiscal policies; see e.g. 
García-Peñalosa and Turnovsky (2007) where this issue is discussed in the context of an endogenous growth model. 
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variations in these parameters.  Motivated by the differences in the productivity gaps of different 

countries from the technology frontier, we also present robustness results for the size of the 

productivity shock. 

The standard procedure of assuming that productivity increases occur fully on impact, rather 

than gradually, while convenient analytically, is arguably less realistic than positing some form of 

continuing adjustment.  Several examples can be given to support this view.  First, to the extent that 

productivity increases reflect government investment in infrastructure, the notion that the increases 

occur gradually over time, rather than instantaneously, seems more plausible.  Budget restrictions, 

installation costs, and bureaucratic impediments inevitably force governments to spread their 

investments over time as multi-year projects.  The US interstate highway system, initiated in the 

1950’s, is a good example and so are the recent public infrastructure policies of China and India.  

Foreign aid to developing countries, especially when “tied” to investment projects as schools, roads, 

hospitals, etc. is likely to be granted over time, and is yet another good example of a gradual 

productivity change. Second, productivity increases generally reflect the assimilation of new 

productive techniques that may require learning for complete adaptation, and this too takes time.  An 

example of this is the general purpose technologies (GPT) such as steam, railroads, lasers and, more 

recently information technology; see Aghion and Howitt (2009, ch 9). Finally, from the perspective 

of a developing economy, one can interpret the productivity increase as representing a closing of the 

‘productivity gap’ which again is likely to take years to eliminate. 

The rest of the paper proceeds as follows.  Section 2 sets out the analytical model and the 

evolution of the aggregate dynamics, while Section 3 discusses the distributional dynamics of wealth 

and income.  Since the focus is on the transitional dynamics, which are too complex to solve 

analytically, we employ numerical simulations.  These are reported in Section 4.  Section 5 discusses 

implications of our analysis for the empirical literature on growth and inequality, focusing 

specifically on the Kuznets curve, and Section 6 presents concluding remarks.  

2. Analytical framework  

We consider a decentralized economy having a single representative firm and heterogeneous 
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households.  The source of heterogeneity among consumers is the initial distribution of capital 

endowments.  For simplicity, we assume a completely laissez-faire economy which operates in the 

absence of a government or social planner. 

2.1 Technology and factor payments 

Aggregate output is produced by a single representative firm according to a standard 

neoclassical production function7 

 ( ) ( ) ( ), ( )Y t A t F K t L t  0, 0, 0, 0, 0L K LL KK LKF F F F F      (1)  

where, K, L , and Y denote the per-capita stock of capital, labor supply, and output.  In addition, 

( )A t  represents the level of productivity, which is exogenous to the firm’s decisions.   

The key feature of our analysis is that the level of productivity is assumed to increase 

gradually from its initial level, 0A , to a higher long-run level, A , both of which are publicly known.  

This is specified by the (known) deterministic growth path  

     0( ) ,  0tA t A A A e           (2) 

The parameter   thus defines the time path followed by the increase in productivity.  The 

conventional approach to specifying productivity increases is to assume that they occur 

instantaneously.  This is obtained (or at least approximated) as a special case by letting    in (2), 

so that the new productivity level is achieved virtually instantaneously.  However, the more general 

specification introduced in (2) is clearly important.  This is because, as we will demonstrate 

subsequently, there is a sharp contrast between how   affects the behavior of aggregates and 

distributions.  As one would expect, it affects the transitional path of the aggregate economy, but not 

the aggregate steady state.  In contrast, it has profound impacts on both the time paths and the 

steady-state levels of both wealth and income inequality.  

 The assumption that the increase in technology occurs at a constant proportionate rate, and is 

                                                 
7 Both factors of production have positive, but diminishing, marginal physical products and the production function 
exhibits constant returns to scale, with 0KLF   being a consequence of the latter assumption. 
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completed only asymptotically, is made purely for analytical convenience.  It is straightforward to 

generalize (2) to the case where the new level of productivity is reached in finite time, T.8  The 

analysis could also be modified to allow for the technology increase to follow a more general 

functional form, and the same general qualitative conclusions would emerge. 

The wage rate, w, and the return to capital, r, are determined by the marginal physical 

products of labor and capital: 

    ( ) ( , ) ( , )Lw t w K L AF K L        (3a)  

    ( ) ( , ) ( , )Kr t r K L AF K L        (3b) 

where we have dropped the time notation from the variables.  Note that both the wage rate and the 

return on capital reflect the current level of productivity, ( )A t . 

2.2 Households 

At time 0, the economy is populated by 0N  households, represented as a continuum between 

0 and 0N , each indexed by i.  Population grows uniformly across households at an exponential rate, 

n, so that at time t, household i has grown to nte  and the total population of the economy is 

0( ) ntN t N e .  Households are identical except for their given initial endowments of capital, ,0iK , so 

that the average initial stock of capital in the economy is   0

0 0 ,00
1

N

iK N K di  .  At time t, with the 

growing population and accumulation of capital, the average per-capita amount of capital is 

    
0 0

0 0
0 0

1 1
( ) ( ) ( )

N Nnt
i int

K t K t e di K t di
N e N

   . 

where ( )iK t is the per capita capital owned by household i.  From a distributional perspective, we are 

interested in household i’s relative share of the total capital stock in the economy, ( )ik t , namely 

  
   0 0

0 00 0

( ) ( ) ( )
( )

( )1 ( ) 1 ( )

nt
i i i

i N Nnt
i i

K t e K t K t
k t

K tN K t e di N K t di
 

 
 

                                                 
8 This could be done by specifying the productivity growth function, 1

0( ) ( )[ ](1 ) ,t T TA t A A A e e e t T           

( )A t A t T  , or alternatively   0( ) ( ) / ( ),A t A T t T A A t T      . 
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At all points of time, the mean of the distribution is normalized to unity, while the the initial (given) 

standard deviation of relative capital (the coefficient of variation of the level of capital) is ,0k .9   

We now consider household i, which, like all others, is endowed with a unit of time that it 

can allocate to either leisure, il , or labor, 1i iL l  .  The household chooses its rates of 

consumption, iC , and leisure to maximize lifetime utility represented by the iso-elastic function: 

  
0

1
max ( ) ( ) ,     with  1, 0, 1  t

i iC t l t e dt
    


         (4)  

where 1 (1 )  equals the intertemporal elasticity of substitution.10  This maximization is subject to 

the household’s initial endowment of capital, ,0iK , together with its capital accumulation constraint 

)())(1)(()())(()( tCtltwtKntrtK iiii      (5)  

2.3. Macroeconomic equilibrium 

Summing over all households, equilibrium in the capital and labor markets is described by   

     0 0

0 0
0 0

1 1
( ) ,   1 (1 ( ))

N N

i iK t K t di L t l t l t di
N N

        (6) 

Note that in equations (3a) and (3b), we have expressed the wage and the return to capital, w, r, as 

functions of average capital, K, and employment, L . We can equivalently write them as functions of 

aggregate leisure time, (1 l), namely, ( , )w w K l  and ( , )r r K l . 

The key elements facilitating the aggregation across households are the homogeneity of the 

utility function and perfect factor markets. The first-order conditions (see Appendix) can be used to 

derive the following relationships:11 
 

                                                 
9 We should emphasize that this formulation does not impose any particular distributional form, other than assuming the 
existence of a mean and an arbitrary measure of initial dispersion, ,0k .  As will become clear later, the distributional 

dynamics of wealth and income we derive will reflect that of the arbitrary initial endowments, ,0k . 
10 The preponderance of empirical evidence suggests that this is relatively small, certainly well below unity, so that we 
shall restrict 0  .  See, the discussion of the empirical evidence summarized and reconciled by Guvenen (2006).  
11 See Section A.1 of the Appendix for the derivation of (7). It requires taking the time derivative of (A.1a) and 
combining with (A.1b); see also Turnovsky and García-Peñalosa (2008). 
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 
     ( ) 1

( ) 1i
i

i i

K t w t
r t n l t

K t K t




  
     

  


    (7a) 

 

  
 
 

 
 

 
 

 
 

;   i i

i i

C t C t l t l t

C t C t l t l t
 

  
 for all i     (7b) 

Eq. (7a) describes the evolution of agent i’s capital stock and (7b) states that all agents choose the 

same growth rate for consumption and leisure, implying further that average consumption, C, and 

leisure, l, will also grow at the same common growth rates. 

Summing over all households, the macro-dynamic equilibrium is described by the following 

equations, expressed in terms of average capital, leisure (labor supply) and productivity, where the 

time notation has been dropped for the core dynamic variables, K, l, and A: 

  
( ) ( ,1 )

( ,1 ) LA t F K l l
K AF K l nK




         (8a) 

( ,1 ) ( ,1 )1
( ,1 ) (1 ) ( ,1 )

( , )
Kl l

K
l

F K l AF K l l
l AF K l n AF K l nK

G K l F
 


    

          
  

 (8b) 

     A A A          (8c) 

where, 
1 (1 )

( , ) (1 ) 0,  and  1 .LL

L

F
G K l L l

l F

   
       

With this aggregation, the complete dynamics of the economy can be represented by the core 

dynamic system consisting of , , , ,i il l k K A , the evolution of which is described by (7a), (7b), and 

(8a)-(8c).  There are two key points to note about the macroeconomic equilibrium of the economy.  

First, the aggregate dynamics are entirely independent of any distributional characteristics.  This is a 

consequence of the homogeneity of the underlying utility function and, as previously acknowledged, 

has been known since Gorman (1953).  Second, the dynamics of both capital and leisure depend on 

the current level of productivity, ( )A t .  At any time, this in turn depends upon the anticipated long-

run change, 0( )A A , together with its growth rate along the transitional path,  . 

The steady-state equilibrium is attained when 0K l A     in (8a)-(8c), and determines the 

steady-state values of K and l , in addition to the given and known steady-state level of productivity 
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A .  Since the steady state is independent of  , the long-run effects of an increase in productivity are 

independent of the time path by which it is achieved.  Thus, a productivity increase of a given 

magnitude, whether it occurs instantaneously as a discrete jump, or is attained only gradually, will 

lead to identical steady-state changes for the aggregate economy.  However, the transitional 

responses may be significantly different (as illustrated later in the numerical experiments).  In 

contrast, as we will see below, the rate of productivity increase,  , has fundamental consequences 

for wealth and income inequality, both in transition and across steady states.12   

3. Distributional dynamics 

To derive the distribution dynamics, we must solve for the remaining variables, namely the 

relative stock of capital and leisure ( ik  and il ), in the core-dynamic system.  A key difference 

between the distributional dynamics from the aggregate dynamics described previously is that it 

generates hysteresis, i.e., the dependence of long-run outcomes on initial conditions.  This is a direct 

consequence of (7b): the proportionality of individual and aggregate consumption and leisure along 

the transition path.13  Note that, having already solved for the path of l, the path of individual leisure,

il , is determined except for the initial jump at 0t  .  This initial jump, therefore, determines the 

labor supply for a household in the final steady state, which also determines its steady-state relative 

income and capital stock.  As we will show below, the initial response of the labor-leisure choice, in 

turn, depends critically on the time path of the underlying shock (discrete versus continuous).   

3.1 Distribution of capital (wealth) 

Wealth inequality is characterized in terms of household i’s capital stock relative to the 

average, namely by the evolution of ( ) ( ) ( )i ik t K t K t .  Combining (7a) and (8a) leads to the 

following dynamic equation for the i-th agent’s relative capital stock: 
                                                 
12 The steady-state conditions, together with the homogeneity of the production function, imply  1l    ; see 

Turnovsky and García-Peñalosa (2008).  This inequality yields a lower bound on the steady-state allocation to leisure 
that is consistent with a feasible equilibrium.  As we shall see below, this condition is critical in characterizing the 
distributional dynamics.  
13 Hysteresis arises because of the relationships  and i i i il l l l C C C C     , as a result of which il  and iC are 

proportional to l and C, respectively.  With continuous-time, this introduces a zero root into the individual-level 
dynamics.   
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( , ) 1 1

1 1 1 1L
i i i

AF K l
k l l k

K


 
     

          
      

     (9)  

 where , ,K l A  evolve in accordance with (8a)-(8c) and the initial relative capital ,0ik  is given from 

the initial endowment.  Since i il l l l   in (9), we may write i il l , where   0

0 0
1 1

N

iN di   and 

i  (relative leisure) is constant for each i, and to be determined.  Setting 0ik  , and using the fact 

that (1 )l     [see footnote 12], leads to the following positive long-run relationship between 

relative leisure and relative capital: 

     1  for each 
1i il l l k i



 
     

        (9’) 

While our simulations employ shooting algorithms to solve (9) for the time path of the 

relative stock of capital, in conjunction with the aggregate dynamics specified in (8a)-(8c), the 

intuition underlying the dynamic structure can be better understood by characterizing a linear 

approximation.  To do this, we linearize (9) around the steady state.  In the Appendix we show that 

the resulting bounded solution for the relative stock of capital is: 

    ( ) 1 ( )( 1)i ik t t k         (10) 

where, 

 ( )( )
( ) 1 1 .tL

t

AF l
t e d

K l
  

        
  




 
      

Setting 0t   in (10), we can solve for agent i’s steady-state relative capital stock: 

,0 0

( )
1 (0)( 1) 1 1 ( 1)L

i i i

AF l
k k e d k

K l
 

           
  




 
 

   (11)  

where ,0ik  is given from the initial distribution of relative capital endowments.   

Equations (10) and (11) characterize the evolution of relative capital.  First, given the time 

path of the aggregate economy, in particular ( )l  , and the distribution of initial capital endowments, 

(11) determines the steady-state distribution of capital, ( 1)ik  .  Once this is known, (10) then 
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describes the time path of relative capital, which can be expressed in the convenient form14 

    ,0

( ) 1
( )

(0) 1i i i i

t
k t k k k



 

    
       (12) 

Because of the linearity of (10)-(12), we can immediately transform these expressions into 

corresponding relationships for the standard deviation of the distribution of relative capital across 

agents, which serves as a convenient measure of wealth inequality: 

   ,0

( ) 1
( ) ( )

(0) 1k k k k

t
t

   

 

    
       (13) 

where, ( ) ( )k kt t    and ,0 (0)k k    . 

The crucial difference between this analysis and previous work lies in the evolution of the 

productivity shock A(t), which is reflected in the time path of ( )t .  In the case where the complete 

productivity increase occurs instantaneously,  ( ) (0)l l l l e     , and ( ), (0)t   simplify to 

( , ) ( , )1 ( ) 1 (0)
( ) 1 1 ; (0) 1 1L LAF K L AF K Ll t l
t

K Kl l
 

   
                        

    

   
 

where   is the negative (stable) eigenvalue corresponding to the linearized aggregate dynamic 

system  specified in (8a)-(8c).  Note that only the current allocation of time to leisure relative to its 

steady-state allocation is relevant in determining current wealth inequality relative to its long run 

level.  When the productivity increase occurs gradually over time, the entire time profile of ( )A t , as 

reflected in ( )l t ,  needs to be taken into account; see equation (A.5) in the Appendix.  

In general, the term ( )t  in (10) highlights the role played by the time path of leisure in 

determining the long-run change in wealth inequality.  For example, if during the transition ( )l l   , 

so that leisure approaches its long-run steady state from below, then ( ) 1t   and wealth inequality 

will decline over time; see (13).  As our simulations show, this is the case for a discrete productivity 

increase, where leisure increases (following an initial drop) and wealth inequality declines 

monotonically over time.  On the other hand, a gradual productivity increase leads to an initial 

increase in leisure, taking it initially above its new (lower) steady-state level.  But since the 
                                                 
14 Note also that the constant i il l   can be determined from (9’), and is given by  1 1 (1 )( (1 )) ( 1)i il k        . 
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transitional path is U-shaped, eventually approaching l  from below, whether inequality rises or falls 

over time depends upon the extent to which ( )l l    during the early phase of the adjustment.   

The other point to observe is that the closer ( )l   is to its steady state, l , the smaller is the 

subsequent adjustment in ( )l t , and hence the smaller is the overall change in the distribution of 

wealth.  This is because if the economy and therefore all individuals fully adjust their respective 

leisure times instantaneously, they will all accumulate wealth at the same rate, causing the wealth 

distribution to remain unchanged.   

3.2 Distribution of income 

Defining household i’s per capita income as  ( ) ( ) ( ) ( ) 1 ( )i i iY t r t K t w t l t   , and average 

economy-wide per capita income as  ( ) ( ) ( ) ( ) 1 ( )Y t r t K t w t l t   , we define relative income by 

( ) ( ) ( )i iy t Y t Y t .  This leads to the following equation of motion for relative income:15 

      ( ) 1 ( ) ( ) 1i iy t t k t        (14) 

where,   ( ) 1 1
( ) 1 1 ( ) 1 1

1 ( ) 1 ( )

l t
t s t

l t tl


 

  
         

      

s(t) represents the share of capital in total output.  Again, because of the linearity of (14) in 

( ( ) 1),ik t   we can express the relationship between relative income and relative capital in terms of 

corresponding standard deviations of their respective distributions, namely 

   ( ) ( ) ( )y kt t t          (14’) 

4. Numerical analysis 

The model set out in Sections 2 and 3 will be solved and analyzed numerically, using the 

following functional forms and parameterization:16 
  

                                                 
15 See Turnovsky and García-Peñalosa (2008) for details regarding the derivation of the equations of motion for relative 
income and capital. 
16 These parameters are generally standard in the literature and noncontroversial.  For an extensive discussion of the 
calibration of the Ramsey model, see Cooley (1995). 
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Preferences remain specified by a constant elasticity utility function with an intertemporal elasticity 

of substitution of 0.4, while the elasticity of leisure in utility is 1.75.  The production function is of 

the Constant Elasticity of Substitution (CES) form, where we allow the elasticity of substitution to 

vary between 0.75s   (low substitution), 1s   (Cobb-Douglas), and 1.25s   (high substitution). 

We adopt the following strategy.  We consider the aggregate and distributional consequences 

of a 50% increase in productivity ( A  increases from its benchmark value of 0 1A   to 1.5A  ), 

which we allow to take effect in two alternate ways: (i) an immediate one-time unanticipated jump in 

productivity from 1 to 1.5.  This represents a discrete increase in A, and corresponds qualitatively to 

much of the previous literature, and (ii) the same increase in A ( 0 1A   to 1.5)A  taking place 

gradually over time, where ( )A t  adjusts at the (known) rate   10 % per period (year).  In the latter 

case, the higher productivity level is achieved asymptotically.  As a result, the instant it starts to 

increase, the subsequent levels of productivity are fully anticipated along the transition path.  For 

each of these scenarios, we numerically characterize the economy’s aggregate and distributional 

dynamics for the three specified values of the elasticity of substitution in production to demonstrate 

the robustness of our results for this important parameter of the model. 

4.1. Solution Algorithm 

Intertemporal models grounded in optimizing behavior typically give rise to saddle-point 

solutions, the exact numerical computation of which is often difficult.  Many papers, therefore, 

obtain linear approximations to the “true” dynamics.  One alternative to deriving exact solutions for 

non-linear dynamic systems is to use some type of “shooting” algorithm (forward or reverse) to 

locate the path that lies on the stable manifold.17  The choice between forward and reverse shooting 

                                                 
17 See Atolia and Buffie (2009b) for other alternatives. 

Utility function:                   1.5,  =0.04, 1.75      

Production function:            1( (1 ) )Y A K L        ;  0 1,  0.4A    

Elasticity of substitution:     0.75,1,1.25;  1 1s s     

Productivity level:              1,  1.5oA A   

Productivity growth:           0.1   
Population growth:              0.015n   
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depends on many factors, including the nature of the dynamic system and the type of shock under 

consideration (Atolia and Buffie, 2009b). Forward shooting computes the equilibrium path by 

searching over the initial values of the jump variables, whereas in reverse shooting the search is 

conducted over the terminal values of the state variables.  For a unit-root system, where final steady-

state values are not known, the forward shooting algorithm is the appropriate solution technique. 

In a series of papers, Atolia and Buffie (2009a, 2009b) have developed a set of shooting 

algorithms that identify the global saddle path much more efficiently by using a new distance 

mapping.  Atolia and Buffie (forthcoming) develop a set of innovative forward-shooting algorithms 

for unit-root systems that combine the new distance mapping mentioned above with the insight that 

there exists a one-to-one relationship between guesses for the initial values of jump variables in the 

dynamic system and the consistent guess for the new steady state. As our complete dynamic system 

consisting of , , , , and i il l K k A  has two jump variables, we use the circle-search algorithm of Atolia 

and Buffie (forthcoming) that underlies their UnitRoot-Circle program to obtain an exact solution to 

the dynamics of our unit-root system.18 As this algorithm allows solving for unit-root problems with 

two jump variables, we have the benefit of solving the complete dynamic system consisting of both 

the aggregate and the individual-level dynamics in a single step.19  

4.2 An increase in productivity: Discrete versus continuous adjustment 

4.2.1. Aggregate dynamics 

Fig. 1 depicts the transition paths for the aggregate variables, K and  l, corresponding to the 

two specifications of the productivity increase.  To demonstrate robustness, paths are depicted for 

                                                 
18 Although we employ non-linear solution techniques for our numerical analysis, the first-order linearization procedure, 
albeit an approximation, is useful in guiding our intuition, particularly in the role of the initial response in leisure. 
Therefore, the linearized solutions for both the aggregate economy and the distributions are set out in the Appendix. This 
exposition and equation (A.7) in particular, highlights the role played by the initial response of leisure in the aggregate 
dynamics, as it internalizes the information regarding the time profile of the productivity increase. Elsewhere, we have 
investigated the accuracy of conventional linearization procedures in characterizing the dynamics of a standard aggregate 
Ramsey model; see Atolia, Chatterjee, and Turnovsky (2010).  For a model having the structure here, linearization can 
accommodate quite large structural changes without committing unacceptably large errors, at least for moderate values 
of the elasticity of substitution (less than unity).  For large values (around 1.25) the errors become more significant. 
19 Alternatively, because of the block-recursive structure one can solve the problem sequentially, first solving for the 
aggregate dynamics using a reverse-shooting procedure in Atolia and Buffie (2009b) and then using this solution to solve 
for the “individual-level” dynamics using a unit-root forward-shooting algorithm. 
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the three values of the elasticity of substitution in production, s .  Although the long-run responses of 

leisure (labor supply), capital, and output are identical for both specifications of the productivity 

increase, their short-run responses and transitional paths are dramatically different.  Irrespective of 

the elasticity of substitution, we see that a discrete productivity increase causes leisure to decline 

instantaneously (and labor supply to increase), after which it immediately reverses and increases 

monotonically to its new steady-state level, which lies above or below its original pre-shock level, 

depending upon whether 1s 


.  By contrast, a continuous (gradual) productivity increase causes an 

immediate increase in leisure, which is then quickly reversed, causing leisure to overshoot its long-

run equilibrium during the subsequent decline to steady state.  Similar differences are displayed in 

the initial phases of the transitional path for capital.  While a discrete productivity increase leads to a 

gradual monotonic accumulation of capital to the new steady-state, a continuous increase actually 

leads to a short-run decumulation (for about 10 years), before capital accumulation begins.  This 

gives the time-path of the capital stock a U-shaped trajectory, the depth of which increases as s  

declines.  These differences in the adjustments of leisure (labor supply) and capital translate directly 

into differences in the dynamic adjustment of output (not shown).  A discrete productivity increase 

causes output to increase instantaneously followed by a further rise during transition, while a 

continuous shock causes output to fall on impact.  For the reasons discussed in Section 3.1 [see eq. 

(11)], and as we shall illustrate soon, these transitional differences, and in particular the adjustment 

of leisure, have a critical impact on the economy’s distributional dynamics. 

Why does the dynamic response of the aggregate economy differ so dramatically for the two 

types of productivity change?  The explanation lies in the information being revealed to the agent on 

impact of the shock, relative to the time path of the higher productive capacity associated with the 

long-run realization of the shock.  For a one-time discrete increase in A , the enhanced long-run 

productivity is fully realized instantaneously by the agent, and immediately raises the marginal 

product of both labor and capital.  Consequently, labor supply immediately increases on impact of 

the shock, and the enhanced productivity of capital generates immediate incentives for capital 

accumulation, and the stock of capital begins to rise.  Output increases instantaneously, and can 

accommodate the increase in consumption associated with the higher level of permanent income 
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resulting from the productivity increase. 

In contrast, if the productivity increase occurs only gradually, the enhanced productive 

capacity necessary to support the increase in consumption will take effect only over time.  In the 

short run, the long-run change in the level of productivity is fully anticipated by the agent, thereby 

increasing permanent income, and raising aggregate current consumption.  But the increase in 

productive capacity is immediately reflected only as an increase in its growth rate, 0(0) ( )A A A   .  

Thus, since the instantaneous level of productivity remains unchanged, current output cannot rise, 

and the increase in consumption resulting from the anticipation of higher future income is achieved 

through reduced investment and a decline of the capital stock.  In fact, the increase in short-run 

consumption and lower productivity (relative to the long-run) causes the agent to increase leisure, 

which causes output to also decline on impact of the shock. 

Fig. 1 also provides some insights as to why certain countries have difficult transitions when 

they adopt policies such as liberalization that induce gradual structural changes. One particular 

example to which the results from figure 1 can be related to is Mexico’s trade liberalization through 

the adoption of NAFTA in 1994, which led to a collapse in output and an increase in unemployment 

(proxied by leisure in our setup). 

4.2.2 Distributional dynamics: Diversity of transitory and long-run outcomes 

Fig. 2 illustrates the dynamic responses of the distributions of capital (wealth) and income to 

the two specifications of the productivity increase, corresponding to the three values of the elasticity 

of substitution, 0.75, 1, 1.25s  .  Specifically, we plot the evolution of the standard deviation of 

wealth and income relative to their respective initial (pre-shock) standard deviations. The most 

striking feature of these distributional time paths is that not only do the two specifications of 

productivity increases have contrasting effects on the short-run distributions of capital and income, 

but contrary to the aggregate economy in fig. 1, the long-run effects are also dramatically different.  

In other words, while the aggregate economy reaches identical steady-states, irrespective of whether 

the productivity change occurs discretely or gradually, the distributions do not.  This reflects the fact 

that the long-run distributions of wealth and income are path dependent, depending critically on the 
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underlying process through which the steady-state equilibrium is attained (i.e., whether the 

productivity increase occurs discretely or gradually).  

The contrasts between the dynamic adjustments in wealth and income distributions in 

response to the two types of productivity increase are sharpest for low values of s .  Focusing first on 

s 0.75 and 1 (in fig. 2), we see that a discrete productivity increase generates a gradual monotonic 

decline in wealth inequality over time.  Income inequality increases instantaneously in the short run, 

before declining monotonically to an equilibrium value that is below its pre-shock level.  By 

contrast, a gradual increase in productivity of the same magnitude increases wealth inequality in 

transition.  However, the time path of wealth inequality is non-monotonic and follows an inverted U-

shaped trajectory.  On the other hand, income inequality falls instantaneously on impact of the 

shock, before it rises in transition to an equilibrium that exceeds the pre-shock benchmark.  Like 

wealth inequality, the transitional adjustment of income inequality also follows a non-monotonic 

inverted U-shaped trajectory, peaking at around 15 years.  For high values of the elasticity of 

substitution, such as s 1.25 (the third panel of fig. 2), the differences in the responses are less 

pronounced.  The instantaneous and transitional responses of wealth and income inequality remain 

as above.  But now in the long-run, both wealth and income inequality decline for the two types of 

productivity increases, though the continuous productivity shock still leads to higher levels of long-

run wealth and income inequality relative to the discrete shock. 

An important dimension of variation of the growth and development experience across 

countries is the rate of productivity growth   (e.g. arising from the speed of reforms).  Fig. 3 

presents sensitivity analysis for the dynamics of wealth and income inequality for alternative values 

of  , given 0.75s  .20  In particular, the following patterns can be detected: 

(i) The slower the rate at which a given increase in productivity is achieved (longer is the 

“catch-up” time), the greater are the long-run increases in wealth and income inequality. 

(ii) Our previous result that wealth and income inequality worsens in the short and the 

medium run is robust to the rate of productivity growth, but slower productivity growth 

                                                 
20 As in fig. 2, we plot the evolution of the standard deviation of wealth and income relative to their respective initial 
(pre-shock) standard deviations. 
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increases the persistence of both wealth and income inequality. 

The experiments illustrated in fig. 3 indicate that countries that experience a faster “catch-up” 

process will also experience smaller increases in inequality, which in turn are also less persistent 

over time, compared to countries that experience slower catch-up speeds.  These results are 

consistent with the fact that Asian economies that have been developing at faster rates than Latin 

American economies also have substantially less wealth and income inequality.21,  We should note 

that we have performed these experiments for much larger values of   and do indeed find that as   

becomes large, the time paths of wealth and income distributions converge to those associated with 

the discrete productivity increase. 

More generally, we can conclude that a diverse range of distributional outcomes are possible 

along transitional paths as well as in the long run, depending on the time path followed by the 

underlying productivity shock.  In particular, two countries starting with the same initial distribution 

of wealth, and having the same per-capita income today may have very different degrees of wealth 

and income inequality, if they have experienced the same overall productivity increase but at 

different rates.  Thus, the diversity of growth experiences of different countries may be reflected in 

the cross-sectional diversity of wealth and income inequality.  

As stressed above, the critical element in determining the evolution of the distributions is the 

time path followed by average leisure, ( )l t  and its implications for the rates of factor return.  To 

assist in understanding the intuition underlying these diverse time paths, it is convenient to recall the 

steady-state condition (9’), which when combined with (10) at 0t  , yields 

    ,0

1
1

(0) 1i il l l k


 
 

     
       (9’)  

A discrete increase in productivity raises the return to both labor and capital.  On impact, 

average leisure, (0)l , falls as agents substitute toward labor supply.  This decrease in average leisure 

increases (0) in (11), implying an overall monotonic reduction in wealth inequality over time.  This 

happens because the amount of leisure time chosen by agents with above (below) average wealth 

                                                 
21 Gini coefficients for income are typically 10 or more points higher for Latin American countries than they are for 
Asian countries. 
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declines (increases).  That is, wealthier people initially increase their work time, while poorer people 

work less, and income inequality increases.  Over time, as average leisure increases, the relative 

income of agents having above-average wealth declines, and income inequality declines accordingly. 

In contrast, a continuous increase in productivity leads to an initial increase in (0)l , taking it 

above l .  This increase in the initial average leisure decreases (0) , implying an increase in wealth 

inequality in the long-run; see (13).  This initial increase in leisure is, however, immediately reversed 

and falls below l  during the subsequent transition.  The net effect of this on the evolution of wealth 

inequality depends on whether the positive amounts of ( )l l    during the early phase dominate the 

negative amounts in the latter phase.  This depends upon the elasticity of substitution.  If 1,   we 

see that the early excesses dominate  (0) 1  , implying a non-monotonic inverted-U time path for 

the distribution of wealth, as it approaches its higher steady-state level.   

As a consequence of the increase in long-run wealth inequality, the amount of leisure time 

chosen by people with above (below) average wealth increases (decreases), causing income 

inequality to decline.  Over time, as average leisure decreases, the relative income of agents having 

above average wealth increases, and income inequality increases accordingly, although it also 

reflects the inverted-U time path of wealth inequality.  In the case of a high elasticity of substitution, 

1.25s  , most of the time ( )l l   , so that the downward pressure on wealth inequality dominates 

and except for a brief period at the start of the transition, wealth inequality declines over time.  As a 

consequence of this, income inequality also declines, albeit slightly over time. 

5. The growth-inequality relationship 

As noted in the introduction, the relationship between growth and inequality has been 

extensively discussed.  This paper belongs to a growing strand of research that contends that these 

processes are endogenous outcomes in the course of economic development.  The critical issue then 

concerns the underlying mechanisms or shocks that affect the joint evolution of growth and 

inequality.  A comprehensive survey by Solimano (1998) identifies several factors, such as the 

national savings rate, investment in physical or human capital, productivity growth, education, 

capital markets, and public policy that can significantly influence the growth-inequality relationship.  
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Viewed in this context, can we address the consequences of productivity growth (technological 

change) for the growth-inequality relationship, both during the transition and in the steady-state?  

In considering this issue, we focus on two aspects: (i) the relationship between the evolution 

of per-capita income and income inequality in the face of a productivity increase.  In particular, we 

ask the question what are the consequences (if any) of the nature of productivity change for the well-

known empirical Kuznets’ curve?  (ii) Whether the distance from the technology frontier has 

implications for inequality and its persistence.  In other words, do countries that require a lot of 

“catching-up” with regard to technology also generate more inequality in the process? 

5.1. Per-capita income and inequality: The Kuznets curve revisited 

The celebrated Kuznets curve is an inverted U-shaped relationship between income 

inequality and a country’s level of development, say the level of per-capita income.  The idea 

underlying this relationship is that in the initial stages of development the accumulation of physical 

capital is important and, therefore, capital-rich agents gain disproportionately relative to the capital-

poor.  Hence, at low levels of per-capita income, income inequality rises.  After a certain income 

level is attained, physical capital becomes less important for development (possibly due to the 

emergence of human capital and knowledge), and income inequality declines with further increases 

in per-capita income.22  Clearly, such a relationship cannot be generated by an unanticipated discrete 

increase in productivity.  This is because after the initial jumps in output and income inequality, the 

subsequent increases in income are associated with a monotonic decline in income inequality.   

On the other hand, our more flexible specification where the level of productivity increases 

gradually is more promising.  As we have already noted in figs. 2 and 3, after an initial decline on 

impact, income inequality does indeed follow an inverted U-shaped trajectory over time.  Therefore, 

fig. 4 plots takes the same transition paths as in figs. 2 and 3, but plots wealth and income inequality 

against the (normalized) per-capita income, for the three values of the elasticity of substitution in 

production.23  As is evident, elements of a Kuznets curve emerge for both wealth and income 
                                                 
22 Galor and Moav (2004) develop an elegant theory of growth in which human capital accumulation replaces physical 
capital accumulation as the prime engine of growth in the process of development.  They argue that their theory offers a 
unified explanation for the effect of income inequality on the process of economic growth. 
23 The time range considered in fig. 4 starts from the period after the instantaneous adjustments are complete.   
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inequality during the transition, after the initial adjustments have been completed.  Thus, our 

flexible, more general specification of productivity change not only allows a diversity of 

distributional outcomes, depending on the growth experiences, but also generates a Kuznets type 

relationship during transition that is robust to the ease of substitution between factors of production. 

It is important to stress that the inverted U-shaped relationship between inequality and per-

capita income generated by our model relies on a mechanism that is very different from the 

traditional explanations of the Kuznets curve.  While the sectoral composition of capital, labor, and 

knowledge is the traditionally understood mechanism behind the Kuznets curve, we focus on the role 

of differences in the consumption-smoothing responses of the rich and the poor to a gradual, but 

anticipated, change in productivity, and its effects on investment and the choice of labor and leisure.  

Recently, Piketty (2006) has discussed the role of “waves” of technological change (such as general 

purpose technologies) that can generate waves of an inverted U-shaped relationship between 

inequality and income over time.  Our findings fit nicely into that story. 

To consider the robustness of the Kuznets curve to other parameters, fig. 5 reports further 

sensitivity analysis with respect to the speed with which the productivity change is introduced.  

Specifically, we consider the following experiment: for a given increase in the level of productivity 

(50% increase in A from 1 to 1.5), we consider three alternative rates of change, i.e.,   0.05, 0.1, 

and 0.2.  These three cases characterize scenarios where a given “catch-up” in productivity occurs 

slowly (  0.05), at the benchmark rate (  0.1), or quickly (  0.2).  Wealth and income 

inequality are plotted relative to normalized per-capita income.  The corresponding time paths are 

drawn in fig. 5 for the case of an elasticity of substitution in production equal to 0.75.  As we can 

see, the essence of the Kuznets curve that is generated by a continuous productivity change is robust 

with respect to the speed of productivity growth during transition. 

5.2. Productivity gaps and inequality 

An important area of differences in the development experiences of different countries relates 

to the size of productivity increases, due, for example, to the range or magnitude of their economic 

reforms or the possibility of “catch up” due to the distance from the technology frontier.  While there 
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are differences in magnitude of the responses, this section shows that the short-run and medium-run 

rises in wealth and income inequality (and the concomitant emergence of the Kuznets’ curve) is a 

robust feature of the development experience, irrespective of the size of the necessary “catch up”. 

This can be seen from fig. 6 which depicts the sensitivity of the distributional dynamics for 

different levels of productivity “catch-up,” for any given rate of productivity growth.  Specifically, 

for a given productivity growth rate (  0.1), we consider three magnitudes of “catch-up,” i.e., 

0 0( )A A A  0.25, 0.5, and 1.  In other words, these characterize cases where the difference 

between the initial and steady-state levels of productivity are small (25%), at the benchmark (50%), 

or large (100%).  The following patterns can immediately be identified: 

(i) The larger the initial gap in productivity, the greater is the long-run rise in wealth and 

income inequality. 

(ii) The higher the initial productivity gap, the larger is the short-run increase (following 

the instantaneous responses) in wealth and income inequality, relative to their initial 

(pre-shock) levels. 

These results indicate that the further away a country is from its long-run technology or 

productivity frontier, the larger will be the inequality generated in converging to the frontier.  

Countries that are closer to their long-run technology frontier will have less persistent inequality than 

countries that are further away.   

6. Conclusions 

The relationship between growth and inequality is one of the most fundamental (and elusive) 

ones in development economics.  We employ a general-equilibrium heterogeneous-agent growth 

model with certain well-known aggregation properties that generates hysteresis in the dynamics of 

wealth and income inequality, but not in the aggregate dynamics.  This is manifested in dynamic 

adjustments of distributional variables being dependent on the initial response of leisure (labor 

supply), following a structural change.  Since with forward-looking agents, the initial response is 

dependent upon future anticipations of these structural changes, this implies further that their long-
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run effects on the distributions of wealth and income are path-dependent.   

This paper, therefore, examines the consequences of the time path of a productivity change 

on the distributions of wealth and income.  As a benchmark, we have considered an increase in 

productivity of a given magnitude, and compared the distributional implications when (i) it is 

introduced gradually, with (ii) the more conventional situation where it all occurs instantaneously.  

The main conclusion is that the time path along which a productivity increase of a given magnitude 

is introduced has dramatic consequences for both wealth and inequality.  In general we find that the 

gradual introduction of a given productivity increase has adverse distributional consequences, and 

certainly much more adverse than when they are introduced instantaneously.   

This has important consequences for a range of issues.  First, it suggests that if the 

government introduces some productivity-enhancing policy, such as investment in infrastructure, 

with the objective of stimulating economic growth, it should do so rapidly.  While delay and gradual 

implementation will have no adverse permanent effects on the aggregate performance of the 

economy, they will generate expectational effects on the labor-leisure choice that will lead to a 

worsening of wealth and income inequality in the long-run. 

The paper also has some interesting implications for the empirical relationship between 

inequality and growth.  We show that a gradual productivity change can indeed generate a Kuznets-

type inverted U-shaped relationship between inequality and per-capita income, with a diverse set of 

possible long-run outcomes for inequality across structurally similar countries.  This is also shown to 

be a very robust finding.  As Ray (1998, chapter 7) points out, one problem with the generally 

inconclusive empirical literature on the Kuznets curve is the lack of an underlying theory that can 

generate a testable specification of this relationship.  By articulating an explicit mechanism through 

which per-capita income and inequality can be linked – namely the differences in the dynamic 

responses of the labor-leisure choice between rich and poor in conjunction with the time profile of 

structural changes – and in the context of the simple one-sector neoclassical growth model, our 

results provide a step in that direction, one that may provide a useful basis for future empirical work.   

Further, we show that a country’s distance from the technology frontier has important 

implications for inequality and its persistence.  This relates to the issue of “economic backwardness” 
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pioneered by Gerschenkron (1962), who in his seminal work hypothesized various consequences of 

increasing backwardness.  Our analysis contributes to this important discussion by suggesting that, at 

a given rate of convergence, the more backward an economy initially is, the more inequality, both 

short-run and long-run, will be generated in the process of catching up to the technology frontier.   

In light of the significance of the path-dependence characteristic and the fact that we have 

relied on numerical simulation methods, it is important to return to the question of robustness.  This 

issue has several dimensions, including the assumed functional forms, the source of the underlying 

heterogeneity, the nature of the shocks, and the chosen parameter values.  The key factor generating 

the path dependence of distributions is the proportionality of individual and aggregate consumption 

and leisure during the transition [eq. (7b)].  This in turn is a consequence of the homogeneity of the 

utility function, and as Turnovsky and García-Peñalosa (2008) show, this generalizes beyond the 

constant elasticity utility function employed here.  Any homogeneous utility function will generate 

the path-dependence property.  Within that widely-employed class of model, our sensitivity analysis 

has shown that our results are robust with respect to a wide range of parameter values.  Although we 

choose to focus on the time path followed by a productivity increase, the issue is in fact a generic 

one, applying to any form of structural change.  Moreover, though we have chosen to focus on one 

source of heterogeneity, namely the initial endowments of capital, work by Caselli and Ventura 

(2000) and more recently García-Peñalosa and Turnovsky (2011) indicates that a similar structure 

can emerge for other sources of heterogeneity as well, such as differential skill levels in labor.  The 

point is that as long as the time path for wealth inequality depends upon the initial response of 

leisure, its subsequent time path, and in turn that of income inequality, will depend on the path 

followed by the structural change.  On the other hand, if the utility function does not have the 

homogeneity property we are assuming, so that aggregate behavior and distributions are 

simultaneously determined rather than having the recursive structure that we are exploiting here, we 

cannot in general characterize the transitional dynamics.  The extent to which, if at all, path-

dependence may exist in this case remains an open question. 
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Appendix:  Linearized Solution for Dynamic System for a Gradual Increase in Productivity 

A.1 Dynamics of aggregate economy 

The first-order conditions corresponding to the household maximization problem in (4) and 

(5) give rise to the following key relationships: 
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where i  is agent i’s shadow value of capital.  Equation (A.1a) equates the marginal rate of 

substitution between consumption and leisure to the price of leisure, while (A.1b) is the Euler 

equation modified to take into account the fact that leisure changes over time.  Using (A.1a), we may 

write the individual’s accumulation equation, (5), in the form 
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Aggregating (A.1c) over the individuals and using (3a) and (3b), we can derive the 

macroeconomic equilibrium and the dynamics of the aggregate economy, reported in (8a)-(8c): 
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Linearizing (A1.d) and (A1.e) around the steady state equilibrium and A , yields 
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This is a third order system with two stable eigenvalues; (i) ,  where 0   is the negative 

root to 2
11 22 11 22 12 21( ) ( ) 0a a a a a a       and (ii)  .  Using standard solution procedures, the 

general form of the stable solution is 
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where C  is arbitrary and  
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and 11 22 12 21( )( )a a a a      .  As long as the two stable eigenvalues are distinct – a very weak 

restriction – 0  .24  Imposing the initial condition, 0(0)K K  by setting 0t   in (A.3a) yields 
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24 The case where    can also be easily solved. 
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The solution (A.5a)-(A.5b) represents a general form, which covers all ranges of  , 

including the conventional case where the full change in productivity occurs as a discrete change at 

time zero.  This is obtained by letting     in which case 1 2, 0   , and the solution reduces to:  
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In the long-run, as t  , ( ) , ( )K t K l t l    independently of the path as defined by  . 

 To see the role of the initial adjustment in leisure, consider (A.5b) at time 0t  , namely 
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Thus the initial response of leisure to a productivity increase at that time is: 
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where the role of the time path is contained in 1 2and  .   

 (i) If the productivity increase occurs as a discrete jump at time zero, 1 2, 0   , and the 

instantaneous response of leisure is the standard expression 
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which implies an initial decline in (0)l .   

(ii) If the increase in productivity A  occurs gradually, at the rate  , as in (A.1f), we find 

that  11 12 1 2( ) 0a a     , implying an initial increase in (0)l , as suggested by our simulations. 

A.2 Dynamics of the relative capital stock  

To obtain the dynamics of individual capital we linearize equation (9) around the steady-state 

, , iK l k  , il
~

.  This is given by 
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Combining the steady-state conditions corresponding to (8a) and (8b) we get 
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and rewriting equation (9’) as  
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enables us to express (A.9) in the more compact form 
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The stable solution to this equation is 
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Setting 0t   in (A.10) and noting that .0ik  is given, we obtain 
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Thus, having determined ,K L  , and the time path for ( )l t  from (A.5), equation (A.11) determines ik

, and knowing ik , (A.10) in turn determines the entire time path for ( )ik t .   

In the case of the discrete productivity shock, when the aggregate economy follows (A.5’), 

we find ( ) ( (0) )l l l l e      and (A.10), (A.11) reduce to  
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                                                                   Figure 1 : Aggregate Dynamics
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                                                              Figure 2 : Distributional Dynamics
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                     Figure 3 : Robustness of Distributional Dynamics
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                           Figure 4 : Kuznets' Curve
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                    Figure 5 : Robustness of Kuznets' Curve
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                               Figure 6 : Productivity Gaps, Catch up, and Distributional Dynamics
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