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Abstract

A partially informed expert, A, strategically transmits information to a prin-

cipal, P. The residual uncertainty faced by the expert effectively causes the bias

between P and A to be random, with two consequences. First, by misreporting

A is likely to induce a decision choice by P, after the resolution of the residual

uncertainty, that is either close to A’s ideal position or too far from it, whereas

truthful reporting keeps such variations more balanced. A convex loss function of

A thus favors truthful reporting. Second, by retaining authority of decision making

and communicating with A, P avoids exposure to risks due to A’s biased decisions.

Better information transmission and the associated insurance benefit thus often

imply P preferring control over delegation, despite A having superior information.
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1 Introduction

In many economic situations where an action affects the welfare of two parties, the formal

decision rights belong to one, say a receiver (Principal or P) whereas relevant information

lies with another, a sender (Agent or A). In many such settings, it is not possible to

write binding contracts and construct payment schemes that are contingent on chosen

actions. One possible avenue for P is to elicit information from A and then take a

decision. However, as the seminal contribution Crawford and Sobel (1982) shows, the

ability of P to elicit information from A to make an informed choice is limited as the

latter strategically controls the information she transmits. Aghion and Tirole (1997) and

Dessein (2002) explore another avenue – the value of P delegating decision rights to A.

A significant literature has since developed examining the merits of delegating authority.

An assumption implicit across this entire literature (which we shall discuss presently) is

that the sender is an expert at everything that is payoff relevant.1 We depart from this

approach by assuming that the sender is only partially informed. It turns out that not

only there is now an increased cost of delegation but also the partial knowledge of the

sender improves the quality of information transmission. We will argue therefore that

the decision authority should typically remain with the principal.

A rough intuition for the costs and benefits of delegation and authority is as follows.

We are considering a scenario where the information relevant for P’s optimal decision is

partly with A but the rest of it, that we call residual uncertainty, will become known at

a later stage when the decision is to be taken. The expert must be consulted early on

in a deliberation process. Giving the expert a control over decisions (rather than just

solicit her recommendation), and such a choice must be made in advance, would mean the

principal exposes himself to risks of residual uncertainty. By retaining control P avoids

this risk but exposes himself to potential loss of information due to strategic reporting by

A. Surprisingly, the loss of information could also be mitigated for the very fact that P’s

decision will be random due to the residual uncertainty. Basically when contemplating

misreporting her information, A weighs the possibility of triggering a decision close to

her ideal position, if P’s bias happens to be congenial, against the possibility that the

decision could go very wrong with P’s bias turning out in a different direction. The usual

concavity of the payoff function now creates an incentive for A to make her information

more precise to reduce the likelihood of these extreme decisions. As we shall see, the

tradeoffs could be such that even truthful revelation becomes a possibility.

In Section 3, we formally present a game of strategic information transmission under

uncertainty (hereafter, the SITU game). A random vector summarizing the state of the

world describes the payoff relevant uncertainty; the expert is privately informed of only

1Wolinsky (2002) is an exception.
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one dimension of the realization of the random vector. We fully characterize all the equi-

libria of the SITU game with fairly weak assumptions on the probability distributions of

the random vector. It turns out that the impact of the extraneous (or residual) uncer-

tainty on the quality of equilibrium information transmission can be captured by a single

parameter that we call the effective bias. Proposition 2 establishes that a fully revealing

equilibrium exists if and only if the effective bias is zero. We also fully characterize all

the equilibrium outcomes when the effective bias is non-zero (Proposition 3). In fact, we

show that there is an isomorphism between equilibria of a SITU game and a version of

Crawford and Sobel’s information transmission game (hereafter, the CS-game). It may

be recalled that in the CS-game, every equilibrium partitions the agent’s type space into

finitely many intervals and along the equilibrium path, P only finds out in which of these

intervals the true type lies. Put differently, Proposition 3 shows that the equilibrium be-

havior of an expert that only knows some of all relevant information is akin to an expert

in an appropriate game in which she knows all the information.

The above link between a SITU game and a CS-game is significant. For, we may now

borrow a number of comparative statics results from Crawford and Sobel (1982) and study

the costs and benefits of delegation in a SITU game, as Dessein (2002) did for the CS-

game, with relative ease. Section 4 contains this entire discussion. Through Proposition 5

- Proposition 7, we show how the costs and benefits of delegation vary in relation to the

mean and variance of the residual uncertainty and that of type uncertainty. In fact,

Proposition 7 is a fairly general result which shows that for arbitrarily small variance in

the residual uncertainty, P strictly prefers to retain control in all sufficiently informative

equilibria. This is in contrast with Dessein (2002)’s conclusion (effectively the case of zero

variance of residual uncertainty) that P should prefer delegation in all such equilibria.2

The rest of the paper is organized as follows. After a brief discussion of the literature,

in Section 2, we summarize the main results of the well-known CS-game, a somewhat

different presentation relative to the original version in Crawford and Sobel (1982), to

aid our analysis in the rest of the paper. Recall from Crawford and Sobel (1982), that the

magnitude of a parameter b determines the proximity of players’ preferences and bounds

the amount of information that is conveyed. A key question, unanswered in Crawford

and Sobel (1982) or elsewhere, that we need to resolve for our later discussion in Section

4 is whether P’s payoff in a CS-game converges to the fully revealing payoff as b converges

to zero (and preferences of P and A coincide). While it is tempting to conjecture that it

does, a formal proof of this fact is actually quite non-trivial. Proposition 1 answers this

in the affirmative when a player’s payoff in any state depends only on the distance from

an optimal action. This result should be of independent interest.3

2We are not negating Dessein (2002)’s result though; see Remark 3 following Proposition 7.
3The question of convergence to the fully revealing equilibrium payoff as the preferences of the two

players tend to coincide has also been addressed by Spector (2000). Unfortunately, preferences in his
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Literature Review

Strategic Information Transmission

The literature has seen several extensions of the CS-game. By introducing additional

elements to the basic CS-model such as multi-dimensional type uncertainty, partial veri-

fiability of actions, multiple experts reporting on the state etc., the broad objectives have

been how to improve the extent of information transmission in equilibrium, including

even full revelation of information (Gilligan and Krehbiel (1989), Seidmann and Win-

ter (1997), Krishna and Morgan (2001), Krishna and Morgan (2004), Battaglini (2002),

Levy and Razin (2007), Ambrus and Takahashi (2008), Li and Madarsz (2008) (where

the decision maker is uninformed), Chakraborty and Harbaugh (2010) etc.). Kartik et

al. (2007) (also see Kartik (2009)) modify the CS-game so that messages inherently affect

the payoffs, but now it is no longer a pure communication game. They show that if the

state space is unbounded, there is a fully revealing signalling equilibrium.

A common feature of all such extensions is that the expert or experts are fully aware

of the state of the world (but the multiple experts may differ in their preferences). Our

work differs from all these papers in that an expert knows only part of the payoff relevant

information. This feature allows for possibly full revelation in a pure communication

game with a compact state space and a single expert.

A notable exception to the aforementioned literature is Wolinsky (2002) where the

payoff relevant information is fragmented among several experts but they collectively

hold all the payoff relevant information. Thus, each individual expert is only partially

informed of the payoff relevant state, just as in this paper. At the communication stage,

each expert faces a residual uncertainty whose nature is determined by the strategic

behavior of the remaining agents.

In contrast to Wolinsky (2002) (except for a brief discussion in Section 5), we consider

the case of a single expert for at least two reasons. First, in many organizational settings

it is common to have a single expert, typically held on a retainer, and additional opinions

are sought only on an ad hoc basis. Thus, we believe that the case of a single expert

considered for most of this paper is interesting in its own right. Second, retaining the

focus on a single expert allows us to lay bare how this distribution impacts the equilibrium

outcome. Indeed, we pose very mild restrictions on the distribution of uncertainty. This

allows us to illustrate, for instance, how our analysis on full revelation can be carried

through for multiple experts in a relatively straightforward manner. (See Section 5.)

Finally, Harris and Raviv (2005) consider a case where P can acquire private infor-

setting differ from those typically used in applications of the CS-game and cannot be used here. The
reader will notice that the somewhat involved proof does seem not readily generalizable to more general
payoff functions and a proof for the most general payoff functions considered by Crawford and Sobel
(1982) remains open.
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mation. These two-sided private information games can be thought of as particular cases

of a SITU game (see Remark 2 in Section 3.1). Their results can be readily understood

using the notion of an effective bias that is developed here. McGee (2009) also considers

the case where P and A hold different pieces of information. His is a different framework

where P’s information affects the support of A’s type which makes a direct comparison

with our analysis difficult. Moreover, in his framework, the ex-post optimal actions of P

and A differ by a (non-zero) constant, which makes it impossible for the existence of a

fully revealing equilibrium.

On Delegation vs. Control

There is a strand of the literature that discusses the merits of delegation in two-agent

settings where the decision variable is contractible. These include Holmstrom (1984),

Armstrong (1994), Melumad and Shibano (1991), Alonso and Matouschek (2007), Alonso

and Matouschek (2008), Armstrong and Vickers (2010), among others. Unlike in this

literature, in the present model, the decision maker cannot commit ex-ante to any of the

actions.

The key papers concerning delegation and communication when the decision variable

is not contractible include Aghion and Tirole (1997), Ottaviani (2000), Dessein (2002),

and Krahmer (2006). In all of these models the agent with the superior information is

fully informed but may have possibly multi-dimensional information. In our model here,

the type uncertainty of the expert is still one-dimensional, just as in Dessein (2002).

By varying the size (i.e., the variance) of the residual uncertainty faced by our partially

informed agent, we are able to offer a wider perspective to the results in Dessein (2002)

in particular. We show how even an arbitrarily small amount of residual uncertainty is

often enough to ensure the superiority of control over delegation. An elaborate discussion

of these issues is deferred to Section 4.

2 Crawford-Sobel Game of Strategic Information Transmission

In the Crawford-Sobel game of strategic information transmission, hereafter the CS-game,

there are two players, P and A. The authority for choosing an action ξ ∈ R rests with

P, although the choice affects the payoffs of both players. Their payoffs also depend

on the realization of a real-valued random variable, denoted by θ, that is distributed

with a density f that is continuous and positive on a (non-degenerate) interval support

Θ = [θ`, θh]. Let Up(ξ, θ) and Ua(ξ, θ) denote the respective payoffs of the two agents

when ξ is chosen in state θ. Also define

xp(θ) := argmaxξ Up(ξ, θ)

xa(θ) := argmaxξ Ua(ξ, θ)
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to be the ex-post optimal actions of the two players. Assume that payoffs are strictly

concave in actions so that the above are well-defined.

The game unfolds with A privately observing θ and then recommending an action to

P. P observes A’s recommendation and chooses an action. A strategy of A is therefore a

mapping from Θ to R and a strategy of P is a mapping from R to R. Observe that, the

composition of A’s strategy with that of P in a given strategy profile yields an outcome

function x : Θ −→ R where x(θ) is the action that will be chosen in state θ if those

strategies are played out.

Remark 1 Every game that we encounter in this paper is a multi-stage game of incom-

plete information with a continuum of types. Throughout, by an equilibrium, we mean

Perfect Bayesian Nash Equilibrium (see Fudenberg and Levine (1990)). Our results re-

main unaffected if one takes the original approach of CS by looking at distributional

strategies.

An equilibrium outcome function EOF of the CS-game is an outcome function x :

Θ −→ R that is obtained from an equilibrium strategy profile of this game. An equilib-

rium is fully revealing if the state θ becomes common-knowledge prior to P’s choice. Of

course, in this case P would take his ex-post optimal action. Therefore xp is necessarily

the EOF in a fully revealing equilibrium. It is therefore clear that unless xa(θ) = xp(θ)

for (almost) all θ, i.e. preferences are essentially identical, a fully revealing equilibrium is

impossible. Crawford and Sobel’s main result involves a complete characterization of all

equilibria when the two players’ preferences differ. The main characterization theorem

can be restated, in terms of outcome functions, as follows.

First define for any a < a′,

x(a, a′) = argmaxξ

∫ a′

a

Up(ξ, θ)f(θ)dθ, (1)

the optimal action of P in the event he knows that θ lies in the interval [a, a′]. Also let

a = (a0, a1, . . . , an) denote a typical partition of Θ into n sub-intervals where θ` = a0 <

a1 < · · · < an = θh are the boundary points of the sub-intervals.

Theorem CS. (Crawford-Sobel ) Suppose xa(θ) 6= xp(θ) for all θ.

1. If x : Θ −→ R is an EOF of the CS game, then there exists a partition a =

(a0, a1, . . . , aN) of Θ such that:

x(θ) = x(ai−1, ai) ∀θ ∈ (ai−1, ai) , ∀i = 1, . . . , N (2)

Ua(x(ai−1, ai), ai) = Ua(x(ai, ai+1), ai) ∀i = 1, . . . , N − 1. (3)
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2. There exists a finite integer N∗ such that an EOF of the form described in part (1)

exists if and only if N ≤ N∗.

In words, any equilibrium of the CS-game involves partitioning the state space Θ

into some N sub-intervals. In what follows, we will refer to such an equilibrium as

the N -equilibrium and the corresponding partition as an equilibrium partition. In an

N -equilibrium, whenever A observes that θ is in the ith interval (ai−1, ai), she recom-

mends xi = x(ai−1, ai), and if θ = ai then she is indifferent between recommending

xi = x(ai−1, ai) and recommending xi+1 = x(ai, ai+1). For P, upon rationally updating

his prior, his payoff from choosing an action x following the report xi is proportional to

the maximand in the RHS of (1). Hence, choosing xi is optimal. Part (2) of the Theorem

captures the essence of the bounds on information transmission posed due to strategic

considerations. The divergence in the optimal choice of P and A causes the latter to

withhold information about the true state. The maximal number (N∗) of elements in

an equilibrium partition depends on the preferences of the two players as well as the

distribution F .

2.1 CS-game with a Fixed Bias

In virtually all applications of the CS-game in economics and political science, it is as-

sumed that Up(ξ, θ) = −`p(| ξ−θ |) and Ua(ξ, θ) = −`a(| ξ−θ−b |), for a given parameter

|b| 6= 0, where `p and `a are increasing, twice differentiable convex functions. The pa-

rameter b is referred to as the agent’s “bias” since it shifts the ex-post optimal response

of P, namely xp(θ) = θ, to xa(θ) = θ + b. We will refer to the strategic information

transmission game with the above specifications as a CS-game with a fixed bias.

Since `a(|x|) is necessarily symmetric about zero (say, if the loss function is quadratic),

we have the following easy Corollary of Theorem CS for a CS-game with a fixed bias:

Corollary 1 Consider the family of CS-games with a fixed bias in which `p is fixed.

In any such game, abN = (ab0, a
b
1, . . . , a

b
N) is an equilibrium partition when the bias is b if

and only if

abi =
x(abi−1, a

b
i) + x(abi , a

b
i+1)

2
+ b ∀i = 1, . . . , N − 1, (4)

where x(a, a′) is as defined by (1) with Up(ξ, θ) = −`p(|ξ − θ|). P’s payoff in this equilib-

rium is

πN(b) = −
n∑
i=0

∫ abi

abi−1

`p(|x(abi−1, a
b
i)− θ|) dF (θ). (5)
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Fix the loss functions in a CS-game of constant bias. The maximal number of possible

elements in an equilibrium partition of Θ, namely N∗ in Part (2), Theorem CS, is a

function of |b|. Given a bias b, let N∗b ≡ N∗. CS establish a number of comparative statics

of both the players’ payoffs and N∗b with respect to b. Some of these are reproduced in the

Appendix. In particular, they only show that N∗b is non-decreasing in |b|. However, for

our later discussion on the merits of delegation, it becomes necessary to establish two facts

for a general F and `p: First, that lim|b|→0N
∗
b =∞ and second, the size of each interval of

an N -equilibrium partition converges to zero for all N sufficiently large. Together, these

facts will imply that when |b| is small enough, loss from strategic information transmission

can be made close to zero in all sufficiently informative equilibria and consequently the

payoff of P is arbitrarily close to his payoff under full revelation. Neither of the above

facts follow directly from CS. We therefore prove the following Proposition that is crucial

for proving Proposition 7, a general result on merits of delegation.

Recall that the mesh of a partition a = (a0, a1, . . . , aN) is the length of its longest

sub-interval, denoted by ‖ a ‖.

Proposition 1 Consider the family of CS-game(s) with a fixed bias, indexed by the

bias b, in which `p is the loss function of P. Consider an infinite sequence (bk) such that

limk→∞ bk = 0. Then the following are true:

1. limk→∞N
∗
bk

=∞.

2. Consider any infinite sequence of integers (Nk) such that Nk ≤ N∗bk for all k and

Nk →∞. Then, for the corresponding equilibrium partitions ak = (ak0, a
k
1, . . . , a

k
Nk

),

lim
k→∞

‖ ak ‖= 0,

and lim
k→∞

πNk(bk) = `p(0).

Proof. See Appendix.

Since `p(0) is the payoff of P in a fully revealing equilibrium, in game-theoretic terms,

Proposition 1 shows the lower hemi-continuity at zero of P’s payoff in sufficiently infor-

mative equilibria of CS-games parametrized by b. The proof of Proposition 1 requires

novel argument that goes beyond Crawford-Sobel analysis and is somewhat involved. A

sketch of the argument that offers a quick insight is as follows.

In an N -equilibrium of the CS-game, before taking an action, P is only informed of

the element of equilibrium partition a = (a0, a1, . . . , aN) that the realized θ lies in. This

gives him a payoff of πN(b). Instead, suppose P could choose an arbitrary partition of Θ

(into N sub-intervals) and then he takes an action based on the knowledge of the interval
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that θ lies in. His most preferred partition, say a∗N = (a∗0, a
∗
1, . . . , a

∗
N), typically differs

from aN and leads to a payoff of say, π∗N . What we show is that the difference between a∗N
and aN is small when b ≈ 0 and consequently, πN(b) ≈ π∗N . Separate arguments are then

used to show that limN→∞ ‖ a∗N ‖= 0 (and hence limN→∞ π
∗
N = 0) and that N∗b →∞ as

b→ 0 to complete the proof.

It is useful to compare Proposition 1 with the main result of Spector (2000). First,

Spector considers payoffs in which the utility of an action ξ is U(ξ) for P and U(ξ)+bV (ξ)

for A, where U and V are sufficiently well behaved functions. Ignoring the different spec-

ification of utilities, Proposition 1 is different from his main result in the following way.

Spector’s result is that for any (bk) such that limk→∞ bk = 0, there exists a sequence of

Nk−equilibria along which the size of the largest interval in the corresponding equilib-

rium partition converges to zero. Clearly limk→∞Nk = ∞. Proposition 1 on the other

hand claims that the interval shrinks along every sequence of Nk−equilibria such that

limk→∞Nk =∞. At a later stage when we discuss the merits of retaining authority over

delegation, there is an equilibrium selection issue. The stronger claim of Proposition 1

goes some way in mitigating those considerations.

3 Strategic Information Transmission Under Uncertainty

Unlike in CS, we now allow for the possibility that there are other sources of uncertainty

in addition to the private information of A that affects the players’ payoffs. Accord-

ingly, a true state of the world is now a tuple (θ, s) where s is a realization of some

(possibly) multivariate random variable. The prior distribution however is such that θ is

distributed independently of s with a positive density f (and cdf F ) on a non-trivial in-

terval Θ = [θ`, θh], while s is drawn from an arbitrary (measurable) set S⊆ Rk according

to a probability distribution function G. We will refer to the uncertainty regarding s as

residual uncertainty and θ as type uncertainty.

The vNM utility of P and A from an action ξ ∈ R in state (θ, s) are respectively4

up(ξ, θ, s) = −`p(| ξ − θ −wp · s |),

ua(ξ, θ, s) = −`a(| ξ − θ −wa · s |)

where wa,wp ∈ Rk are given vectors of coefficients that are common knowledge. Assume

throughout that `p(.) and `a(.) are both increasing, twice differentiable convex functions.

To keep the analysis interesting, assume that wa 6= wp, which keeps the preferences of

the two players different.5

4x · y denotes the inner product between any two vectors x,y ∈ Rk.
5For instance, in the usual CS-game with a fixed bias, s,wp,wa are one-dimensional degenerate at b

and wp = 0 and wa = 1.

8



The game of strategic information transmission under uncertainty, hereafter referred

to as a SITU game, proceeds as follows. A privately observes her “type” θ ∈ Θ and sends

P a message m, chosen from a given message space M. P observes A’s report and the

realization of extraneous uncertainty s and then chooses an action, which ends the game.

Note that in terms of the timing of resolution of uncertainty, the key assumption here

is that A is unaware of the realization s at the communication stage and that P is fully

aware of s prior to taking his action. Notice A acts only once — at the communication

stage. Therefore, whether A eventually learns of the realization of s is really a moot

point insofar as A’s incentives for information transmission are concerned. That is, we

can allow s to either be privately observed by P or be publicly observable. (In Section 4

it will be necessary to specify if it is in fact publicly observed in order to compare the

costs and benefits of delegation.)

3.1 Ex-ante, Ex-post and Effective Bias

Before we formally describe the strategies (and the equilibrium) in a SITU game, we

introduce a few key concepts that are necessary for presenting our results. Observe that

the ex-post optimal choices of P and A are respectively

yp(θ, s) = θ + wp · s,

ya(θ, s) = θ + wa · s.

We will refer to

bs := (wa −wp) · s,

the difference between the ex-post optimal action of A and that of P as the ex-post bias.

Indeed, it is not hard to see that if G is degenerate at some s, then the SITU game

is effectively a CS-game with the fixed bias bs. Of course, our concern in this paper is

primarily in the case where G is non-degenerate. Let

µb = E [bs] and σ2
b = E [bs − µb]2 .

µb is the average of the ex-post bias as s varies and σ2
b > 0 is its variance. We will refer

to µb as the ex-ante bias or simply the mean bias.

With a non-degenerate G, one may be tempted to guess that the ex-ante bias µb acts as

a proxy for determining the extent of information transmission in the SITU game. It turns

out that due to strategic considerations, the relevant differences in players’ preferences

are instead captured by a statistic that in general differs from ex-ante bias. To define

9



this, we first introduce the function ϕ : R −→ R where

ϕ(ξ) =

∫
`a(|ξ − bs|) dG(s). (6)

Definition 1 (Effective Bias) The effective bias in a SITU game is

b∗ := argminξ ϕ(ξ), (7)

(which is unique since `′′a(ξ) < 0).

Note that ϕ(η − θ) is the expected loss of type θ if P were to believe that she is of

type η. Therefore, a type θ would most prefer that P believes that she is of type b∗ + θ.

Hence the term effective bias.

Remark 2 It will become clear in Proposition 2 and Proposition 3 that it is b∗ that

forms a “sufficient statistic” for determining the extent of information transmission that

can occur in an equilibrium of the SITU game. Harris and Raviv (2005) examine a case

where P can acquire private information prior to communication. Their findings that the

nature of this uncertainty does not affect equilibrium behavior can be readily explained

by looking at the implied effective bias. For instance, in Harris and Raviv’s analysis of

delegation within a firm, P, the CEO and A, the divisional manager, care about two

sources of uncertainty. P privately observes θp and A privately observes θa and their

respective losses from an action ξ are −(ξ − θa − θp)
2 and −(ξ − θa − θp − b)2 where

b is the usual bias. This specification is readily accommodated in our model by taking

θ ≡ θa, s = (b, θp), wa = (1, 1) and wp = (0, 1). With this specification, observe that the

ex-post bias (and hence effective bias) is independent of the distribution of θp. We shall

see (through Proposition 2 and Proposition 3) that only the effective bias determines the

extent of information transmission, and hence the distribution of P’s private observation

θp has no impact on equilibrium information transmission.

A point of natural interest is the coincidence of ex-ante bias and the effective bias.

Although effective and mean bias can be different, they do coincide under modeling

assumptions typically considered in various applications of CS, described by Condition

A below:

Condition A. Either (a) or (b) holds:

a. A’s loss function is quadratic, i.e. `p(ξ) = ξ2.

b. The distribution of ex-post bias bs is symmetric.
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Lemma 1 In any SITU game where Condition A holds,

1. ϕ is symmetric around µb, i.e. ϕ(µb + ξ) = ϕ(µb − ξ) for all ξ ∈ R.

2. The effective bias is the same as the ex-ante bias, i.e. b∗ = µb.

Proof. See Appendix.

3.2 Equilibrium

LetM be a given message space. A strategy of A in the SITU game is any (measurable)

function σa : Θ −→ M and P’s strategy is a mapping σp : M× S −→ R. Just as we

did for the CS-game, for any strategy profile (σa, σp) we associate an outcome function,

namely the mapping Y : Θ× S −→ R where

Y (θ, s) = σp(σa(θ), s).

That is, if the strategy profile (σa, σp) is played, Y (θ, s) will be the eventual action that

will be chosen when the true state is (θ, s). Using this, for an arbitrary strategy profile

(σa, σp), we can write down the expected loss of A when she is of type θ and chooses to

deviate and mimic the behavior of type θ′:

La(θ
′, θ) =

∫
`a(|Y (θ′, s)− θ −wa · s|) dG(s). (8)

Let R(σa) ⊆M denote the range of σa.

Definition 2 (Equilibrium) An equilibrium consists of a strategy profile (σa, σp)

such that

La(θ
′, θ) ≥ La(θ, θ) ∀θ, θ′ ∈ Θ, (9)

and for every m ∈ R(σa),

σp(θ, s) ∈ argminx

∫
θ′∈σ−1

a (m)

`p(|x− θ′ −wp · s|)f(θ′) dθ′, (10)

whenever σ−1
a (m) is of non-zero probability.

Y (·, ·) is said to be an equilibrium outcome function (EOF) of the SITU game if it is

the outcome function of an equilibrium (σa, σp).

Condition (9) is the usual incentive compatibility requirement on A’s behavior. Con-

dition (10) is the requirement that at every θ that is reported along the equilibrium path,

P’s choice is a best response given his updated Bayesian posterior.
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Equilibrium beliefs. Strictly speaking, (9) and (10) are only necessary conditions for

an equilibrium. In order to complete the description of an equilibrium, one must also

specify beliefs and behavior at unreached information sets. Insofar as our concern is only

in the characterization of the EOF, this is without loss of generality. For, given a strategy

profile (σa, σp) such that (9) and (10) hold, pick θ̂ arbitrarily and let m̂ = σa(θ̂). For

any m ∈ M \ R(σa), which represents an unreached node in the candidate equilibrium

(σa, σp), prescribe the beliefs of P at m to be the same as those at m̂ and redefine

σp(m, s) = σp(m̂, s). That is, P behaves at any unreached equilibrium message exactly

as he does upon hearing m̂. Since the original incentive compatibility conditions prevent

any type from mimicking the behavior of θ̂, with the above prescribed beliefs, every

type of A has an incentive to weakly report σa(θ) and makes (σa, σp) a Perfect Bayesian

Equilibrium, in the sense of Fudenberg and Levine (1990).

Observe that in any equilibrium P chooses an action only after observing s. Since

the ex-post optimal action is additively separable in θ and s, it is intuitive that an EOF

is similarly separable. The following Lemma makes this precise.

Lemma 2 For every EOF Y of the SITU game, there is a correspondingly unique

function ψ : Θ −→ R such that Y (θ, s) = ψ(θ) + wp · s.

Proof. See Appendix.

3.3 Fully Revealing Equilibrium

Before presenting the result formally, let us see how full revelation can arise. To illustrate,

suppose the extraneous uncertainty is one dimensional so that the state of the world is

a pair of real numbers (θ, s), in which case P’s ex-post optimal action is yp(θ, s) = θ+ s.

Further assume that the loss of type-θ A if P chooses an action y in state θ is independent

of s (i.e. wa = 0) and is therefore given by the symmetric U-shaped curve shown in the

diagram below, which has a minimum at θ. Also, suppose s can take on two values s0 > 0

or −s0 with equal probability.

Consider A reporting her information truthfully to P as a candidate equilibrium

strategy. What are the incentives for A of type θ to report her type truthfully? When P

hears the report θ, he becomes fully informed of the true state prior to making his decision,

causing yp(θ,−s0) and yp(θ, s0) to be selected with equal probability from A’s viewpoint

at the time of report. This leads to an expected loss of L0. Should type θ deviate and

mimic report of type θ′ > θ, the resulting actions are yp(θ
′,−s0) and yp(θ

′, s0) leading

to an ex-post loss L` and Lh respectively with equal probability. Observe that the gains

from that misrepresentation is (L0−L`) when −s0 occurs, but this is not enough to offset

the increased cost (Lh − L0) when s0 occurs, due to the convexity of the loss function,

12
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Figure 1: Full revelation in a SITU game

causing a positive net expected loss. Following such logic, it is clear that such defections

(and others) are dominated from which we can conclude that perfect revelation can be

supported as an equilibrium behavior.6,7

More formally, an equilibrium (σa, σp) is said to be fully revealing if σa(θ) = θ for

all θ ∈ Θ. An easy application of Lemma 2 combined with the definition of equilibrium

yields the following necessary and sufficient condition for the existence of a fully revealing

equilibrium.

Proposition 2 (Fully revealing equilibria) A fully revealing equilibrium ex-

ists if and only if b∗ = 0.

Proof. Suppose a fully revealing equilibrium exists. The EOF is then Y (θ, s) = θ+wp·s.

Substituting in (8) we have

La(θ
′, θ) =

∫
`a(|θ′ + wp · s− θ −wa · s|) dG(s)

=

∫
`a(|θ′ − θ − (wa −wp) · s|) dG(s)

= ϕ(θ′ − θ),
6This feature is somehow reminiscent of how it is impossible to attain ex-post efficiency in a bilateral

trade setting and yet it is possible to achieve an efficient dissolution of partnership when the share of a
partner in the organization is roughly equal. (Compare Myerson and Satterthwaite (1983) and Cramton
et al. (1987).) Intuitively, efficiency obtains in the latter case because, ex-post, a partner can either take
on the role of a “seller” or a “buyer” depending on realization of the uncertainty.

7In Koessler and Martimort (2010) decision variables are multi-dimensional. The principal, with
an upward bias in each dimension relative to the agent’s ideal actions, optimally distorts the actions in
opposite directions to create countervailing incentives to minimize his loss due to information asymmetry.
In this paper, the decision variables are non-contractible and therefore the arguments here are quite
different.
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and the equilibrium requirement (9) that La(θ
′, θ) ≥ La(θ, θ) = ϕ(0) gives b∗ = 0.

Conversely, assume b∗ = 0 and suppose that A plays σa(θ) = θ for all θ. The

equilibrium requirement (10) gives σp(θ, s) = θ + wp · s, which again gives La(θ
′, θ) =

ϕ(θ′ − θ). Again, since b∗ = 0, (9) holds as La(θ, θ) = ϕ(0) ≤ ϕ(θ′ − θ) = La(θ
′, θ) for all

θ.

Given the intuitive meaning of b∗ (following Definition 1), the necessary and sufficient

condition for full revelation presented in Proposition 2 is only natural. Full revelation of

the expert’s private information in a one sender, one receiver cheap-talk communication

game for a one-dimensional sender type contrasts with the existing results on information

revelation (such as Krishna and Morgan (2004), Battaglini (2002), or Goltsman and

Pavlov (2011), among others) that rely either on multi-dimensional type, multiple senders

or multiple audiences. Neither do messages affect the payoffs directly, as in Kartik et

al. (2007). All that is required in this pure communication game is that the expert’s

information at the stage of communication (which is also her type) is only a part of the

array of information that are going to be used in the Principal’s decision. The uncertainty

in the expert’s mind about how her recommendation will play out in the eventual decision,

given the importance of other pieces of information, makes the risk-averse expert not to

misreport. Moreover, the ex-post preferences of the two agents can be vastly different as

it is entirely possible that ex-post bias bs assumes very large values and yet the effective

bias b∗ = 0.8

3.4 Partition Equilibria

When b∗ 6= 0, full revelation is no longer possible. To provide a complete characterization

of all the possible EOF in this case, we first consider a special case of the original CS-game.

Definition 3 (CS∗-game) Given a SITU game, CS∗-game is a CS-game of strate-

gic information transmission (i.e. no extraneous uncertainty) with the payoff functions

given by

Up(x, θ) = −`p(|x− θ|),

Ua(x, θ) = −ϕ(x− θ).

Observe that in the CS∗-game, the ex-post optimal actions are xp(θ) = θ and xa(θ) =

θ+ b∗, where b∗ is as defined in (7). Occasionally we will refer to the above CS∗-game as

having an effective bias b∗.

8This becomes obvious when we consider the case where Lemma 2 applies so that b∗ = µb. Clearly,
we can have µb = 0 and yet bs take arbitrarily large values.
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It is worth emphasizing that a CS∗ game is not necessarily a CS game with a fixed

bias despite the fact that xa(θ) is a fixed distance b∗ away from xp(θ). The distinction is

that ϕ, the “loss function” of A, is not necessarily symmetric. If it were the case that

ϕ is symmetric about some point p (i.e. ϕ(p − ξ) = ϕ(p + ξ) for all ξ), then from the

convexity of ϕ and the definition of b∗, we must have p = b∗ and the CS∗ game does

become CS game with the fixed bias b∗.

The following proposition offers a complete characterization of all the EOF of the

SITU game by showing them to be isomorphic to the equilibria of the CS∗-game.

Proposition 3 Suppose b∗ 6= 0. Y : Θ×S −→ R is an equilibrium outcome function

of the SITU game if and only if a = (a0, a1, . . . , aN) is an equilibrium partition of the

CS∗ game and

Y (θ, s) = x(ai−1, ai) + wp · s for all θ ∈ [ai−1, ai], s ∈ S

and for i = 1, . . . , N .

Moreover, the ex-ante equilibrium payoff of P is given by

−
N∑
i=1

∫ ai

ai−1

`p(|x(ai−1, ai)− θ|)f(θ) dθ. (11)

Proof. See Appendix.

Just as in the original CS game of strategic information transmission, with a residual

uncertainty, in an equilibrium of the SITU game the agent partitions her type space Θ into

finitely many sub-intervals a = (a1, . . . , aN) and reports the interval she has observed. P

then chooses the action x(ai−1, ai) with the correction wp · s for the residual uncertainty.

The extent of strategic information transmission clearly depends on the distribution

of the residual uncertainty. However, since the equilibrium action of P corrects for the

residual uncertainty, the equilibrium payoff of P in a SITU game is independent of the

residual uncertainty and only suffers the loss due to strategic transmission of information.

In fact, the payoff of P in an N -equilibrium of the SITU game is the same as his payoff

in the CS∗ game, given in (11).

The relation between CS game and SITU game is further simplified under Condition

A, as summarized in the following proposition.

Proposition 4 Consider a SITU game with a given `p and such that Condition A

holds. aN is an equilibrium partition of the SITU game if and only if it is an equilibrium

partition of the corresponding CS game with bias µb. In particular, P’s payoff in the

SITU game is πN(µb), as defined in (5).

15



Proof. Lemma 1 applies. The effective bias is therefore µb and ϕ is symmetric about

µb. We can now apply Corollary 1 to conclude that the equilibrium partition is the same

as the one in a CS-game with the fixed bias µb, thus completing the proof.

4 Delegation vs. Authority

The complete characterization of the SITU game given in Proposition 2 and Proposition

3 enables us to evaluate the incentives of P to delegate authority to A instead of eliciting

A’s information through communication, in the spirit of Dessein (2002).

If the hypothesis of Proposition 2 holds, there is after all a fully revealing equilibrium.

Accordingly, we may conclude that:

• It can be optimal for P, even in an ex-post sense, to retain control, despite the fact

that A is better informed than P.

• If P could choose when to seek advice from A, it is optimal for P to do so before

the public signal is realized.

In fact, we may even assume that s is privately observed by P.

However, when Proposition 2 does not hold, to evaluate the costs of delegation we

need to specify in greater detail A’s information regarding the residual uncertainty at

the time of making her choice, should P delegate authority. For most of the analysis, we

shall examine the case where, if delegated the authority, A can choose an action after

observing the realization of the residual uncertainty, just as P could in the SITU game.

Toward the end we consider some variations in the timing of resolution of uncertainty

and the delegation decision.

With the above assumption, it is clear that if P were to delegate authority, A takes

the action xa(θ, s) = θ + wa · s in state (θ, s). Hence, P’s payoff from delegation is

−E[`p(|bs|)]. Let K := minξ∈Θ `
′′
p(ξ)/2.9 Using Taylor’s expansion of `p about µb with the

Lagrange form for the remainder term, shows that P’s payoff from delegation is bounded

above by −π̄D(µb, σ
2
b ), where

π̄D(µb, σ
2
b ) = `p(|µb|) +Kσ2

b . (12)

If P keeps authority, since he takes an action after observing s, he is completely protected

from the variability in the residual uncertainty. On the other hand, once P delegates,

he has no means of insuring against the variability of A’s choice as it varies with the

9K is well-defined since `p was assumed to be twice continuously differentiable. Further, since we
assumed that `p is strictly convex, K > 0.
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residual uncertainty, as is evident from the above bound on P’s payoff from delegation.

By keeping authority however, P has to endure the loss of information regarding θ. The

extent of this loss of course depends on a number of factors, including the selection of an

equilibrium.

If, for example, the conditions of Proposition 2 were to apply, in the fully revealing

equilibrium P would choose xp(θ, s) = θ+wp ·s. There is of course no loss of information

and P is clearly strictly better off from retaining authority. Under Condition A, we have

the following simple sufficient condition, directly in terms of the residual uncertainty, for

superiority of authority. It is a direct corollary of Proposition 2 and Lemma 1.

Corollary 2 Suppose Condition A holds. µb = 0 is (a necessary and sufficient con-

dition for the existence of a fully revealing equilibrium and hence) a sufficient condition

for authority to dominate delegation.

The existence of a fully revealing equilibrium presents us with an easy case for arguing

the superiority of retaining authority over delegation from P’s point of view. More

generally, in determining the actual tradeoff between delegation and authority, we are

presented with an equilibrium selection problem.10 In the remainder of this section, we

shall focus on the case where a fully revealing equilibrium does not exist. In order to

keep the discussion tractable, we shall impose Condition A. We do emphasize, however,

that results to follow do not require its full force.11

4.1 Large Variance of Ex-Post Bias and Delegation

Condition A, via Proposition 4, tells us that P’s payoff in an N -equilibrium of the SITU

game is πN(µb), the payoff that P would have received in an N -equilibrium of a CS-game

with a fixed bias µb. Notably, this payoff does not depend on σ2
b . It is then immediate

that, for any SITU game of a given ex-ante bias µb, P strictly prefers retaining authority

provided the variability in the residual uncertainty, σ2
b is sufficiently large. Further,

the payoff P would have received from delegation in the CS-game is −`p(|µb|), which

is more than the upper bound −π̄D(µb, σ
2
b ) on the analogous payoff in the SITU game.

Therefore, all the conclusions of Dessein (2002) that establish the superiority of authority

over delegation are also now directly applicable. This includes the following analogue of

his Proposition 4.

10Note that a fully revealing equilibrium is always accompanied by many non-revealing equilibria.
Therefore, the problem of equilibrium selection remains even in this case.

11In fact, the main property that is being used here is that function ϕ defined in (6) is symmetric.
Condition A is a sufficient condition for this to be the case. Whenever symmetry of ϕ holds (even if
Condition A does not hold), one may repeat all the results to follow, ad verbatim, by replacing µb with
the effective bias b∗.
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Proposition 5 Assume that F is symmetric, |µb| < (θh − θ`)/4 and Condition A

holds. Then, in the SITU game, any informative equilibrium dominates delegation if F

is such that ∫
θ∈Θ

`p(|θ|) dF (θ) ≤ π̄D(µb, σ
2). (13)

Proof. The proof is omitted as it follows directly from Dessein (2002).

4.2 Small Variance of Ex-Post Bias and Delegation

The two salient features in the above discussion were that the variance of ex-post bias was

allowed to be sufficiently large and we were agnostic about which equilibrium is played.

However, it turns out that the information that is conveyed through N -equilibria for

higher values of N , rapidly reduces the minimal size of σ2
b that is required for delegation

to be a poor strategy. To appreciate this, consider for the moment (we will consider

more general preferences later) the SITU game where P has a quadratic loss function.

By borrowing some of the calculations regarding the linear quadratic CS-game of a fixed

bias in Section 4 of Crawford and Sobel (1982), we have the following proposition.

Proposition 6 Consider a SITU game in which `p(ξ) = −ξ2, Condition A holds and

θ is uniformly distributed over [0, 1].

1. P strictly prefers to retain authority in an N-equilibrium game if and only if

σ2
b >

1

12N2
+ µ2

b(
(N2 − 4)

3
). (14)

2. P strictly prefers to retain authority in an N-equilibrium whenever

σ2
b >

(2N2 + 2N − 3)

N2(N + 1)2
σ2
θ . (15)

Proof. See Appendix.

Part 2, Proposition 6 offers a sufficient condition for dominance of authority by relating

the variance in type uncertainty with the variance in the residual uncertainty. The actual

magnitudes are interesting. For instance, if N = 2 then the ex-post bias need only be

25% more variable than type-uncertainty; with N = 4, ex-post bias needs to be only

10% more variable. In fact, the rate at which the ratio σ2
b/σ

2
θ must fall is of the order of

O(N−2). In other words, as the communication equilibrium becomes more informative,

the incentive to retain authority becomes more attractive at a fairly rapid rate. Of course,
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one needs to bear in mind that in order to ensure the existence of an N -equilibrium, µb

must be sufficiently small.

Part 1, Proposition 6 offers a comparison that is based only on parameters of the

residual uncertainty ( µb and σ2
b ). As such, it allows us to place the conclusions of

Dessein (2002) in a wider context. For, σ2
b = 0 and a bias µb > 0 is precisely the case

considered by Dessein (2002) and hence his is conclusion that authority must dominate

delegation. In fact, his conclusion continues to be valid even in the presence of some

residual uncertainty, i.e., σ2
b > 0. For example, the curve C in Figure 2 describes the

pairs (µb, σ
2
b ) such that (14) holds as an equality under the further assumption that the

players coordinate on the most informative equilibrium Nµb . Whenever (µb, σ
2
b ) lies below
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C, Dessein’s result continues to hold despite residual uncertainty. Observe however that

for any positive σ2
b , there is a threshold mean bias µb below which (i.e., for (µb, σ

2
b ) above

C), the opposite of Dessein’s conclusion holds. This observation is quite general. As

Proposition 7 below shows, even with an arbitrarily small threshold on the variance of

the bias, if the mean bias is small enough to allow a sufficiently informative equilibrium

in the communication game, P would strictly prefer authority to delegation in all such

equilibria.

Proposition 7 Choose any ε > 0. Consider the family of SITU games in which P’s

loss function `p is fixed and Condition A holds. If σ2
b > ε, then P strictly prefers to retain

authority in all sufficiently informative equilibria.

Proof. We will show that there exists an integer Nε such that P strictly prefers to retain
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authority in any N -equilibrium where N ≥ Nε. Under the given hypothesis, applying

(12), the payoff from delegation is at most −Kε. Let bε = sup
{
|b| : πN∗b (b) ≥ −Kε

}
. Note

that bε is well-defined, due to Proposition 1. Define Nε = N∗bε + 1. For the existence of

an N -equilibrium in a CS-game of fixed bias b, where N ≥ Nε, we must have12 |b| < |bε|
and by construction then πN(b) > −Kε. The proof is complete on noting that, by

Proposition 4, the payoff from retaining authority in an N -equilibrium of the SITU game

is πN(µb).

Remark 3 The above result should be interpreted carefully. It points out the “insur-

ance value” of retaining authority which is absent when there is no residual uncertainty.

That is, our model introduces an additional benefit of centralization that was absent

in Dessein (2002). This, however, should not be seen as lessening one of Dessein’s key

observation which is that as the preferences of P and A become more aligned (i.e., bias

disappears in the limit), the delegation turns out to be optimal. Recast in our setting,

Dessein’s result still holds for the following reason. While our comparative statics are per-

formed in terms of the expected bias µb = E[bs] and the variance σ2
b = E{[bs− µb]2}, the

latter being the source of the insurance motive, the two are related. In particular, since

the true ex-post bias is b = (wa−wp) ·s, therefore the ex-ante bias µb = (wa−wp) ·E[s]

and σ2
b = (wa−wp)

T ·Σs·(wa−wp), where Σs is the variance-covariance matrix of s. Now,

talking about incentive alignment à la Dessein (2002) amounts to taking ||wa−wp|| → 0

which has nothing to do with the shape of the underlying uncertainty itself. But as

||wa − wp|| → 0, both µb and σ2
b become small. Further, σ2

b converges to zero faster

than µb and the insurance motive disappears in alignment as well, confirming Dessein’s

observation. This, however, does not negate the basic point of our exercise which is that,

if we increase the diagonal elements of Σs (keeping off-diagonal terms zeros, say), the cost

of delegation increases because A would respond in a manner disliked by P.

4.3 Timing of Communication and Uncertainty

So far in our discussion of control vs. delegation, we have assumed that P elicits infor-

mation from A before s is publicly observed. A natural question is whether P, prior to

the resolution of any uncertainty, has an incentive to commit to postpone the decision to

either elicit information about θ or to delegate until after s is publicly observed. Propo-

sition 7 offers a ready answer: if the mean bias is close to zero, P has no such incentives.

For, if communication occurs after s is publicly observed, then it is as if P and A play

the CS-game with a constant bias. On the other hand, if the residual uncertainty is such

that |bs| ≈ 0 for all s, we know from Dessein (2002) that P is better off by delegating

authority giving him a loss of `p(|bs|). Therefore, the expected loss from delaying either

12See Part CS2, Lemma A in the Appendix.
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communication or delegation until after the realization of s leads to an expected loss for

P that is bounded away from zero provided σ2
b > 0 and the support of bs contains a set

of positive measure close to 0. However, if the mean bias is sufficiently close to zero, then

eliciting information on θ prior to public revelation of s allows the information loss to be

arbitrarily close to zero (see Proposition 1, Corollary 2 and Proposition 7). In this case

authority dominates delegation.

5 Concluding Remarks

In this section, we shall discuss a few future research possibilities.

Interim Delegation

We considered the question of delegation vs. control in a hierarchy with a sequential

resolution of multiple sources of uncertainty. An introduction of an additional uncertainty

arising in the post-delegation stage exposes the principal to new risks as the agent’s ex-

post optimal decisions might significantly differ from that of the principal. Even for small

ex-ante differences between agent’s preferences and that of the principal (as measured by

the average bias of the agent), the principal would like to retain authority and tolerate

loss of information due to agent’s strategic communication, thus uncovering a completely

different aspect of an important observation earlier in the literature (Dessein (2002)) that

the authority should be delegated to the agent. Given that the extraneous uncertainty

considered in this paper is a very reasonable description, the lesson from our analysis is

equally important.

A scenario that we have not covered is the case where P observes s privately and then

decides whether to delegate or elicit information. We may call this interim delegation. In

principle, the entire analysis of Section 3 can be brought to bear on this case. For, now P’s

decision to retain authority provides information to A about the former’s observation of s.

Given P’s equilibrium behavior, at any part of the game tree where he retains authority,

there is a SITU game with A’s posterior on s determining the nature of uncertainty. Our

earlier analysis in this paper helps to characterize equilibrium behavior on that sub-tree.

One may then work recursively to solve the entire game. We expect to pursue this in

future work.

Multiple Experts

Throughout we have considered only a single agent. Our analysis can be extended in

certain ways to discuss communication by multiple experts. Indeed, suppose that there

are K agents and agent i privately observes a signal si. Let wp = (1, . . . , 1) ∈ RK and

for each i = 1, . . . , K, let W be a K ×K matrix with ‘1’ as every diagonal entry. Let wi

denote the ith row of this matrix. Let G denote the joint probability distribution s on a
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compact support S ⊂ RK . Let `p(|ξ−wp · s|) and `i(|ξ−wi · s|) denote the payoffs of P

and agent i when the true state is s = (s1, . . . , sK). Assume that agents submit reports

simultaneously.

The above informational setting is precisely the one found in Wolinsky (2002). How-

ever, the specification of preferences is different. In Wolinsky (2002) all the experts are

biased in the same direction whereas here, two experts may be biased in different direc-

tions relative to P depending on the realization of the uncertainty. In terms of the SITU

game, in the current setting, given the behavior of remaining agents, it is as if agent i

knows her type si (which is θ in our earlier notation) but has a residual uncertainty about

s−i. We can therefore proceed just as we did in Section 3 and define the ex-post bias of

i and the ϕi function:

bis = (wi −wp) · s (16)

ϕi(ξ) =

∫
s∈S

`i(|ξ − bs−i |)dG(s). (17)

Finally, define the effective bias of agent i as

b∗i = arg min
ξ
ϕi(ξ). (18)

Proceeding exactly as in Section 3.2, we may now readily conclude that

Proposition 8 A necessary and sufficient condition for full revelation in the above

game is that b∗i = 0 for all i = 1, . . . , K.

One may also, possibly with further restrictions, extend the analysis of Section 3.2.

Appendix

Many of the proofs in this Appendix rely on some of the comparative statics results for

the CS-games with a fixed bias. These results, available from Crawford and Sobel (1982),

are collected as Lemma A below and stated without proofs.

Lemma A Consider the family of CS-game(s) with a fixed bias, indexed by the bias

b, in which `p is the loss function of P. Then,

CS1. πN−1(b)<πN(b) whenever N ≤ N∗b . (Theorem 3, CS)

CS2. N∗b ≤ N∗b′ whenever |b′| < |b|. (Lemma 6, CS)

CS3. πN(b) < πN(b′) whenever |b′| < |b|. (Theorem 4, CS)
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In order to prove Proposition 1, we will first establish two auxiliary results, Lemma 3

and Lemma 4. Lemma 3 considers what payoffs P can achieve in a CS-game with constant

bias if his information about θ is not constrained by strategic considerations but instead

he could choose any partition of Θ into N sub-intervals. Lemma 4 then relates these

payoffs in an N -equilibrium when the bias is small.

Let ∆N represent all possible ways of dividing Θ into at most N sub-intervals. That

is, setting a0 := θ`,

∆N =
{

(a1, . . . , aN) ∈ ΘN : ai−1 ≤ ai, i = 1, . . . , N and aN = θh
}
.

Given aN ∈ ∆N and any vector x = (ξ1, . . . , ξN) ∈ RN let

ΠN(x, aN) = −
N∑
k=1

∫ ak

ak−1

`p(|ξk − θ|)f(θ) dθ. (19)

ΠN(x, aN) is the ex-ante payoff of P if his information upon realization of θ is given by

aN and he chooses according to x. Since `p is continuous and convex, and ∆N is compact,

each of the following is well-defined:

hN(aN) := arg max
x

ΠN(x, aN), a∗N := arg max
aN∈∆N

ΠN(h(aN), aN). (20)

Set ΠN(h(a∗N), a∗N) = Π
∗
N . In words, if P were given the option of dividing Θ into at

most N sub-intervals with the knowledge that it would be revealed later which of these

sub-intervals that θ lies in, he would cut Θ according to a∗N .

Lemma 3 lim
N→∞

Π∗N = −`p(0).

Proof. Let ΠN(aN) = ΠN(hN(aN), an). Since, `p is uniformly continuous on Θ, for any

ε > 0, there exists a δ > 0 such that `p(|ξ|) < `p(0) + ε whenever |ξ| < δ. Consequently,

for any partition aN with a norm ‖ aN ‖< δ, we must have maxξ
∫ ai
ai−1

`p(|ξ− θ|)f(θ)dθ <

(F (ai)−F (ai−1))(`p(0)+ε) and hence ΠN(aN) > −`p(0)−ε. Further, since `p(|ξ|) ≥ `p(0)

for all ξ, we also have ΠN(aN) ≤ −`p(0). In other words, for any sequence of partitions

(aN), ‖ aN ‖→ 0 implies ΠN(aN)→ 0. Therefore, the proof is complete on showing that

limN→∞ ‖ a∗N ‖= 0.

Given any α < ξ < β, define

L(ξ, α, β) = min
ξ1

∫ ξ

α

`p(|ξ1 − θ|)f(θ) dθ + min
ξ2

∫ β

ξ

`p(|ξ2 − θ|)f(θ) dθ. (21)

Observe that L is continuous and for a fixed ξ, it is strictly decreasing in α and strictly
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increasing in β. Therefore, given any ε > 0, define

δ(ε, ξ) = max
θ`≤α≤ξ−ε,ξ+ε≤β≤θh

(
L(ξ, α, β)− L(α, α, β)

)
.

Observe that L(ξ, α, β) < L(α, α, β) for any such α, ξ, β and hence δ(ε, ξ) < 0.

Now suppose, by way of contradiction, that limN→∞ ‖ a∗N ‖> 0. It follows that there

must exist a ξ and ε > 0 such that the interval [ξ − ε, ξ + ε] is contained in some sub-

interval of a∗N , say [a∗k−1, a
∗
k]. Now cut this interval in two at ξ and let â∗N denote the

obvious partition of N + 1 sub-intervals obtained from a∗N . Then,

Π∗N = ΠN(a∗N) = −
k−1∑
i=1

L(a∗i−1, a
∗
i−1, a

∗
i )−

N∑
i=k+1

L(a∗i−1, a
∗
i−1, a

∗
i )

−L(a∗k−1, a
∗
k−1, a

∗
k)

≤ −
k−1∑
i=1

L(a∗i−1, a
∗
i−1, a

∗
i )−

N∑
i=k+1

L(a∗i−1, a
∗
i−1, a

∗
i )

−L(ξ, a∗k−1, a
∗
k) + δ(ε, ξ)

= ΠN+1(â∗N+1) + δ(ε, ξ)

≤ Π∗N+1 + δ(ε, ξ).

Not that (Π∗N) is a non-decreasing sequence bounded above by 0 and hence its limit exists.

Taking the limit as N → ∞ on both sides of the above inequality, we readily arrive at

the contradiction that δ(ε, ξ) < 0.

Lemma 4 Consider the family of CS-game(s) with a fixed bias, indexed by the bias b,

in which `p is the loss function of P. Then,

lim
b→0

πN(b) = Π∗N . (22)

Furthermore, given any integer N , for all b sufficiently close to zero, an N-equilibrium

of the corresponding CS game with the bias b exists.

Proof. The N -equilibrium of the CS-game with a fixed bias 0 (see Corollary 1), if it

exists, is fully characterized by the partition a0 = (a0
1, . . . , a

0
N) given as the solution to

the following system of equations for all i = 1, . . . , N − 1 :

ξ0
i = arg min

ξ

∫ a0i

a0i−1

`p(|ξ − θ|)f(θ) dθ, (23)

a0
i =

ξ0
i + ξ0

i+1

2
. (24)
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Now let hN(a∗N) = (ξ∗1 , . . . , ξ
∗
N). Given the definition of a∗N (in (20)), upon applying the

envelope theorem, we have

ξ∗i = arg min
ξ

∫ a∗i

a∗i−1

`p(|ξ − θ|)f(θ) dθ, (25)

a∗i =
ξ∗i + ξ∗i+1

2
, (26)

where (26) is merely the first-order condition for maximizing ΠN(h(aN), aN) with respect

to aN . In addition, following Theorem 2 of CS, for any N , there is at most one solution

satisfying (23) and (24). This implies a∗N = a0
N and hence πN(0) = Π∗N . Hence an

N -equilibrium exists when the bias is zero. Comparing abN , the equilibrium partition

described in Corollary 1, with (23) and (24), it is clear that abN ≈ a0
N when b ≈ 0. The

Lemma now follows from these observations and CS2, Lemma A.

Proof of Proposition 1. Part 1 of the Proposition follows from Lemma 4. To prove

Part 2, let (Nk) and (bk) be as given in the Proposition. For any integer m, define

nm = inf
k≥m

Nk. (27)

Since nm ≤ Nk ≤ N∗bk for all k ≥ m, we know that for all such k, an nm-equilibrium

exists when the bias is bk with the property that

πNk(bk) ≥ πnm(bk) (by CS1, Lemma A), (28)

and therefore lim inf
k→∞

πNk(bk) ≥ Π∗nm (by Lemma 4). (29)

Now take the limit as m→∞ in the above inequality to deduce from Lemma 3 that the

above RHS converges to −`p(0), since πNk(bk) ≤ −`p(0).

Proof of Lemma 1. First suppose Condition A holds because A has quadratic

preferences. Then, ϕ(x) = (x − µb)2 + σ2
b . Clearly, ϕ achieves a minimum at µb and is

symmetric about it.

Now consider the case where Condition A holds because G is a symmetric probability

distribution. Then, the density satisfies g(µb + b) = g(µb − b). Let µb − B and µb + B

denote the end points of the support of G. Then write

ϕ(µb + x) =

∫ µb+B

µb−B
`a(|µb + x− b|)g(b) db

=

∫ B

0

(`a(|x− t|) + `a(|x+ t|))g(µb + t) dt

and ϕ(µb − x) =

∫ B

0

(`a(| − x− t|) + `a(| − x+ t|))g(µb + t) dt.
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Due to symmetry of `a around zero, `a(|−x−t|) = `a(|x+t|) and `a(|−x+t|) = `a(|x−t|).
Hence ϕ(µb − x) = ϕ(µb + x), i.e. ϕ is symmetric about µb. That b∗ = µb now follows

from the fact that ϕ is symmetric about µb and convex (because `a(.) is convex).

Proof of Lemma 2. Choose any equilibrium strategy profile (σa, σp). At θ, P hears

the report m = σa(θ). The support of his posterior is σ−1
a (m). His expected loss from

selecting an action ξ′ after observing s is proportional to∫
θ∈σ−1

a (ξ)

`p(|ξ′ − θ −wp · s|)f(θ) dθ.

The best-response property requires choosing an action that minimizes the above expres-

sion. Now define ψ as follows:

ψ(θ) := arg min
ξ′

∫
θ∈σ−1

a (ξ)

`p(|ξ′ − θ|)f(θ) dθ. (30)

Comparing the minimand expression in (30) with the payoff of P given above, we have

σp(m, s) = ψ(θ) + wp · s.

The proof Proposition 3 and Lemma 5 below require the following preliminaries.

Fixing P’s equilibrium behavior, the payoff of A of type θ from mimicking to be type θ′

and sending a signal ξ′ = ψ(θ′) is −ϕ(ξ′ − θ).

For any ξ1 = ψ(θ1) < ψ(θ2) = ξ2, write

D(θ, ξ1, ξ2) =
ϕ(ξ2 − θ)− ϕ(ξ1 − θ)

ξ2 − ξ1

. (31)

Therefore, a type θ would prefer to mimic being type θ2 instead of type θ1 provided

(ξ2− ξ1)D(θ, ξ1, ξ2)≤0 and conversely otherwise. D(θ, ξ, ξ′) is the slope of ϕ between the

points ξ − θ and ξ′ − θ. Since ϕ is strictly convex, this slope must be decreasing in θ.

Lemma 5 Consider an equilibrium where ψ(θ1) = ξ1 and ψ(θ2) = ξ2 are such that

ξ1 6= ξ2. Then |ξ1 − ξ2| ≥ |b∗|.

Proof. Assume, with no loss in generality, that ξ1 < ξ2. Given P’s behavior described

by Lemma 2, the payoff of a type θ from reporting ξi is −ϕ(ξi− θ). By incentive compat-

ibility of equilibrium behavior of θ1, we must have D(θ1, ξ1, ξ2)(ξ2 − ξ1)≥0, and similarly

incentive compatibility of θ2 requires (ξ2−ξ1)D(θ2, ξ1, ξ2)≤0. By continuity of D(·, ξ1, ξ2),

there must exist some θ∗ ∈ [θ1, θ2] such that D(θ∗, ξ1, ξ2) = 0. By monotonicity, those

types to the right of θ∗ would strictly prefer to report ξ2 and those to its left strictly prefer

to report ξ1. Therefore, when P hears ξ1 or ξ2, he knows the true type is respectively
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bounded above or below by θ∗. Looking at the definition of ψ in (30), we can readily

conclude that

ξ1 ≤ θ∗ ≤ ξ2. (32)

Furthermore, since ϕ is convex with a minimum at b∗, for D(θ∗, ξ1, ξ2) to be zero, we

must have

ξ1 − θ∗ < b∗ < ξ2 − θ∗. (33)

Combining (32) and (33), we obtain

ξ1 < θ∗ < θ∗ + b∗ < ξ2 for b∗ > 0,

ξ1 < θ∗ + b∗ < θ∗ < ξ2 for b∗ < 0,

implying ξ2 − ξ1 ≥ | b∗ |. Since b∗ 6= 0 and Θ is a compact set, it follows that there can

only be finitely many outcomes in any equilibrium.

Proof of Proposition 3. Pick an EOF Y . It follows from Lemma 5 and Lemma

2 that in any EOF, there are finitely many values, say ξ1 < ξ2 < · · · < ξN , such that

Y (θ, s) = ξi+wp ·s for 1 ≤ i ≤ N . Each ξi is a possible report that will be sent by some

θ in the equilibrium. We now determine which types send a given report ξi. To this end,

with no loss in generality assume that N ≥ 2 and first define ai by the equation

ϕ(ξi − ai) = ϕ(ξi+1 − ai) for i = 1, . . . , N − 1. (34)

Next, recall that the loss of a type θ from reporting ξi, given the behavior of P, is ϕ(ξi−θ)
and hence (ξi+1 − ξi)D(θ, ξi, ξi+1) is the difference in type θ’s payoff from reporting ξi+1

instead of ξi. Since D(·, ξi, ξi+1) is decreasing, all the types in [θ`, ai) would strictly prefer

reporting ξi instead of ξi+1 whereas the opposite is true for types in (ai, θh] and type

ai, by its definition above, is indifferent between either report. Consequently (ai−1, ai)

is the set of types that strictly prefer to report ξi to any of the other reports. Type

ai is indifferent between reporting ξi and ξi+1, and strictly prefers those over any other

report. Therefore, (30) reduces to

ξi = arg minξ

∫ ai

ai−1

`p(ξ − θ)f(θ) dθ ∀ i = 1, . . . , N. (35)

The proof of the Proposition is now complete upon recalling that (34) and (35) are

precisely the conditions that describe an N -equilibrium in the CS-game with the stated

payoff functions.

Proof of Proposition 6. By virtue of Lemma 1, Corollary 1 and Proposition 3, the

payoff from retaining authority and playing the SITU game is the same as P’s payoff
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in the CS-game with quadratic loss functions. In an N -equilibrium of the latter, the

expected loss of P is simply the residual variance of θ that P expects after hearing A’s

report. That is, if ξ∗N : Θ −→ R denotes the equilibrium outcome function of the CS-

game, then P’s loss from retaining authority, as shown in Section 4 of CS with the bias

b = µb, is

E [`p(ξN(θ))] =
1

12N2
+ µ2

b

(N2 − 1)

3
.

On the other hand, if P delegates, A chooses the action θ + wa · s in state (θ, s) leaving

P with an ex-post payoff of `p(bs). Given that `p is assumed to be quadratic, the loss

from delegation is µ2
b + σ2

b . Retaining authority is therefore a superior choice whenever

µ2
b + σ2

b >
1

12N2
+ µ2

b

(N2 − 1)

3

⇔ σ2
b >

1

12N2
+ µ2

b(
(N2 − 4)

3
). (36)

(36) establishes Part 2. For Part 1, recall that CS show that the existence of an

equilibrium which divides Θ into N sub-intervals requires that

N ≤ −1

2
+

1

2
(1 +

2

µb
)1/2 or equivalently, µb ≤

2

(2N + 1)2 − 1
.

Therefore

σ2
b >

1

12N2
+ (

2

(2N + 1)2 − 1
)2 (N2 − 4)

3

=
(2N2 + 2N − 3)

N2(N + 1)2
σ2
θ ,

which completes Part 1.
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