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1 Introduction

A growing literature attributes the importance of investment speci�c technological change

to long run growth (see Greenwood et al. (1997, 2000); Whelan (2003)). Investment speci�c

technological change refers to technological change which reduces the real price of capital

goods. Greenwood et al. (1997, 2000) show that once the falling price of real capital goods

is taken into account, this explains most of the observed growth in output in the US, with

relatively little being left over to be explained by total factor productivity. Other authors,

such as Gort et al. (1999) distinguish between equipment speci�c technological change and

structure speci�c technological change. These authors show that 15% of US economic growth

rate can be attributed to structure speci�c technological change in the post war period, while

equipment-speci�c technological progress accounts for 37% of US growth. This implies 52%

of US economic growth can be attributed to technological progress in new capital goods.1

However, investment speci�c technological change in these models is typically is assumed to

be an exogenous process.

In a series of recent papers, Hu¤man (2007, 2008) builds upon this literature by explic-

itly modeling the mechanism by which the real price of capital falls when investment speci�c

technological occurs. Such models are characterized by endogenous investment speci�c tech-

nological change. In Hu¤man (2008), the changing relative price of capital is driven by

research activity, undertaken by labor e¤ort. Higher research spending in one period lowers

the cost of producing the capital good in the next period.2 Agents equate the utility costs

of raising employment in research with the bene�ts of doing so. The return to increasing

research employment is the discounted value of the reduction in the real cost of investment in

future periods. Extra research employment also leads to higher future consumption because

of the reduction in cost of investing in capital goods because of the research.3 Investment

speci�c technological change is thus endogenous in the model, since employment can either

be undertaken in a research sector or a production sector. Hu¤man (2008) then studies a

version of the model with capital and labor taxation, and a research externality in which

agents or �rms directly bene�t from the research undertaken by others. In such an environ-

ment, Hu¤man shows that there exists a competitive equilibrium that delivers the optimal

1See Greenwood and Krusell (2007) for a careful discussion of growth accounting in the presence of
investment speci�c technological change. Cummins and Violante (2002) show that "technological gaps", i.e.,
the comparative productivity of a new machine relative to an average machine, can explain the dynamics of
investments in new technologies as well as returns to human capital.

2Krusell (1998) also builds a model in which the decline in the relative price of equipment capital is a
result of R&D decisions at the level of private �rms.

3However, if the utility cost of raising research employment is high, then all employment would be devoted
to production of output, and there would be no research employment. There would be no output growth,
and the economy converges to a steady state with constant levels of output.
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allocations.

This paper builds upon the literature on endogenous investment speci�c technological

change by incorporating public capital which � in addition to the research e¤ort supplied

by agents - assists the process of investment speci�c technological change. Hence, there is

a role for optimal public policy in generating endogenous growth. Our motivation for this

inclusion is that public sector involvement in enhancing productivity is well documented

in developing economies (see Schmitz (2001)). We therefore have in mind an environment

where the government invests in the stock of public capital �as in Barro (1990), Fischer

and Turnovsky (1997) and Eicher and Turnovsky (2000) �which in turn has a direct impact

on reducing the price of real capital goods. Public capital however does not directly a¤ect

�nal good production. In addition, we assume that investment speci�c technological change

is also assisted by learning by doing (see Arrow (1962)). In particular, we assume that the

aggregate capital-output ratio exerts a positive contribution on reductions in the future price

of real capital goods because of learning by doing. This is consistent with Greenwood et

al (1997) in which the real price of capital equipment in the US �since 1950 - has fallen

even though the US investment-GNP ratio has risen. Learning by doing therefore exerts a

separate - though positive - e¤ect on the level of investment speci�c technological change.

To keep the model analytically tractable, we focus on the balanced growth path (BGP).

We show that the balanced growth path is stable under a reasonable restriction. We charac-

terize the growth and welfare maximizing tax rates. We show that the growth and welfare

maximizing tax rate equals to the weight attached to the ratio of public capital to output

in the investment speci�c technological function. The implication of this is that if a planner

was to choose the tax rate, he could maximize long run growth and welfare as long as the

tax rate equals the relative contribution of public capital to investment speci�c technological

change.

We then derive a restriction which enables us to decentralize the planner�s allocations.

Given this condition, we show that in�nitely many combinations of factor income taxes can

replicate the planner�s allocations based on an optimal tax rule. This rule suggests that

a weighted average of factor income taxes (with the weights determined by the relative

elasticities that factors have in production) should equal the relative contribution of public

capital in investment speci�c technological change.

Since government investments involve administrative waste or costs, a natural extension

is to incorporate a variety of speci�cations in which after waste tax revenues accruing to

the government change as the incidence of taxation increases. When waste increases with

increases in the tax rate (see Perotti (1993) and Buiter (2011)) we show that there is a

level reduction in the growth rate for all tax rates, and a lower growth maximizing tax
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rate. However, as in the model without waste, the welfare and growth maximizing tax rates

coincide �although at lower tax rates. A linear waste technology induces a level downward

shift in growth for all tax rates, although it doesn�t change the growth maximizing tax rate.

In the decentralized version, we assume that individual factor income taxes are associated

with tax speci�c waste components. Our main result now �which is di¤erent from the

baseline model � is that there exists a unique ranking between taxes on capital and labor

which maximizes the steady state rate of growth. In particular, if collecting both capital and

labor income taxes are associated with a rising (but common) waste component, we show

that labor should be taxed at a higher rate than capital. However, if the waste associated

with collecting both capital and labor income taxes increases at a decreasing rate, then the

optimal tax rate on labor should be less than the tax rate on capital. In other words, a higher

tax rate on capital �relative to labor �or vice versa, can be growth enhancing, depending

on the curvature of the waste technology.

We quantify the general equilibrium e¤ect of an increase in the share of government

spending on infrastructure relative to aggregate output �in the investment speci�c techno-

logical change equation �on the equilibrium growth rate. We show that a higher share of

public infrastructure spending leads to a higher optimal tax rate. Whether higher taxes leads

to higher growth depends on the persistence of investment speci�c technological change.

Quantitatively, we show that reducing the tax on labor, while increasing the tax on

capital by an equi-proportionate amount, reduces growth marginally. However, a revenue

neutral change - which takes into account the elasticity adjusted factor income tax changes

- a rule that we characterize analytically � increases growth in comparison to the equi-

proportionate case. This result holds for large changes in the labor income tax. However, if

we reduce the tax on capital, the change required in terms of a revenue neutral increase in

the labor income tax is less than the equi-proportionate case. Hence, a reduction in the tax

on labor increases growth if we compare the equi-proportionate case to the revenue neutral

case. These results contrast with the case where we increase the tax on capital. Finally,

comparing the growth e¤ects of individual factor income taxes in partial equilibrium, we

derive an analytical condition on the marginal impact of changes in factor income taxes on

growth. We show that the e¤ect of a change in capital income taxes on growth (compared to

a change in the labor income tax) depends on the value of the share of output paid to capital.

If this share is between zero and :5; then the impact of a change in the capital income tax

rate on output growth is small. This is consistent with some of the results in this literature

(see Stokey and Rebelo (1995)) that the growth e¤ects of changes in the capital income tax

rate are not large.

In the model with administrative costs, our policy experiments show that when we have
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concave administrative costs, it is easier to increase the tax on capital to re-establish optimal

growth rates, compared to the model with convex administrative costs. We also show that

there is virtually no change in growth or welfare for a signi�cant increase in the tax on

capital that matches a given reduction in the tax on labor. From a policy standpoint, this

suggests that it may be easier to tax capital at a higher rate without changing growth or

welfare when administrative costs are concave, when the tax on labor is reduced.

Our paper is related to two strands of the literature on �scal policy and long run growth

in the neo-classical framework. The �rst literature - started by Barro (1990) and Futagami,

Morita, and Shibata (1993) �incorporate a public input �such as public infrastructure �

that directly augments production.4 However, in the large literature on public capital and its

impact on growth spawned by these papers, government investment doesn�t directly augment

investment speci�c technological change. Our model presents a tractable framework to think

about public capital, its �nancing via factor income taxes, and the role of optimal tax policy

on investment speci�c technological change. Hence, there is a role for optimal public policy.

Our results are also related to a celebrated literature started by Judd (1985) and Chamley

(1986), who �nd that capital taxation decreases welfare and a zero capital tax is thus e¢ cient

in the long-run steady state. From a growth standpoint, models analyzing the equilibrium

relationship between capital income taxes and growth also typically �nd that an increase

of the capital income tax reduces the return to private investment, which in turn implies a

decrease of capital accumulation and thus growth (see Lucas (1990) and Rebelo (1991)). In

contrast, our results are consistent with some other papers in this literature which show that

the optimal capital income tax is positive, i.e., taxation may increase growth (see Uhlig and

Yanagawa (1996) and Rivas (2003)). On normative grounds, our results suggests that policy

makers may want to measure precisely the relative waste associated with factor income tax

collection before setting factor income taxes.

The rest of the paper proceeds as follows. Section 2 develops the baseline model. Sec-

tion 3 develops the model with administrative costs. Section 4 conducts numerous policy

experiments. Section 5 concludes.

2 The Model

Consider an economy that is populated by identical representative agents, who at each period

t, derive utility from consumption of the �nal good Ct and leisure (1 � nt). The term nt

represents the fraction of time spent at time t in employment. The discounted life-time

4See Glomm and Ravikumar (1994, 1997), Fischer and Turnovsky (1997), and Eicher and Turnovsky
(2000).
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utility, U; of an in�nitely lived representative agent is given by

U =
1P
t=0

�t[logCt + log(1� nt)]. (1)

where � 2 (0; 1) denotes the period-wise discount factor. The �nal good is produced by
a standard Cobb-Douglas production function with a constant returns to scale technology.

The production function is given by

Yt = AK
�1
t n

�2
1t (�mn2t)

�3 ; (2)

Output is produced using capital, Kt; and two di¤erent sources of labor supplied by agents,

n1t and n2t, all of which are essential to production. There is no population growth. A > 0 is

the productivity parameter. The �rst part of labor input, n1, is devoted to direct production

of �nal output. The second part of agent labor e¤ort, n2; can be thought of as a more

specialized labor input required for research and development which a¤ects the level of

investment speci�c technological change, Z. In particular, we assume that a representative

�rm employs a fraction, �m 2 (0; 1); of n2 in �nal production. The remaining fraction of n2
not used directly in production of the �nal good is devoted to research e¤ort which augments

the level of investment speci�c technological change (Z) in the subsequent time period. Thus,

n2; is analogous to the research employment in Hu¤man (2008) that goes into raising Z:5 In

other words, the higher is the fraction of n2 allocated for research e¤ort, the higher is the

future value of Z. The total supply of labor by an agent at time t is given by the following

nt � n1t + n2t: (3)

The shares of capital Kt, n1t and n2t in �nal goods production are given by �i 2 (0; 1); i =
1; 2; 3 respectively. The assumption of constant returns to scale in this model ensures that

they add up to unity, that is, �1 + �2 + �3 = 1.6

Private capital accumulation grows according to the standard law of motion augmented

by investment speci�c technological change,

Kt+1 = (1� �)Kt + ItZt; (4)

where � 2 [0; 1] denotes the rate of depreciation of capital and It represents the amount of
5Other papers in the literature - such as Reis (2011) - also assume two types of labor a¤ecting production.

In Reis (2011), one form of labor is the standard labor input, while the other labor input is entrepreneurial
labor. Our analysis considers n2 as quality enhancing labor.

6In Hu¤man, n2 doesn�t enter into the production of �nal goods directly.
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total output allocated towards private investment at time period t. Zt represents investment-

speci�c technological change. The higher the value of Zt; the lower is the cost of accumulating

capital in the future. Hence Zt also represents the inverse of the price of per-unit private

capital at time period t. Thus at every period t, Zt augments investment It. ItZt thus

represents the e¤ective amount of investment driving capital accumulation in time period

t+ 1.7

In addition to labor time deployed by the representative �rm towards R&D, the public

capital stock, G; plays a crucial role in lowering the price of capital accumulation. Typically,

public infrastructure, or public capital, is seen as directly a¤ecting �nal production (see

Barro (1990)). Rather, we assume that the presence of government support is essential to

facilitate progress in research and development.8 In every period, public investment is funded

by a proportional tax, � 2 [0; 1]; on income. A higher addition to G relative to the level

of output, Y; ensures better support for future research and development. We assume that

public infrastructure investments are subject to congestion. This implies that reductions in

G relative to the current level of output, Y; lead to lower future research and development.

We assume that public capital evolves according to

Gt+1 = (1� �)Gt + Igt Zt; (5)

whereGt+1 denotes the t+1 public capital stock, and I
g
t denotes the level of public investment

made by the government in time period t. To retain tractability, we assume that Zt augments

Igt in the same way as It since it is logical to assume that Zt is bene�ted by both private

agents and the government in an identical manner. To derive the balanced growth path,

we further assume that the period wise depreciation rate � 2 [0; 1] is same for both private
capital accumulation and public capital. The government budget constraint is given by

Igt = �Yt; (6)

where � 2 (0; 1) is the tax rate imposed by the planner to fund addition to public input for
R&D.

7Technical progress � in the form of lowering the price of capital accumulation �can be seen as being
facilitated by more learning-by-doing because of more experience that comes with using equipment and
machinery (Arrow, 1962). Higher future capital accumulation relative to current levels of output therefore
ensures more learning by doing and hence higher future values of Z thereby further lowering the cost of
capital accumulation.

8See, for instance, Agenor (2011).
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2.1 Investment Speci�c Technological Change

To capture the e¤ect of public capital on research and development, we assume that Z grows

according to the following law of motion,

Zt+1 = B((1� �m)n2t)�Zt

(�
Gt
Yt�1

���
Kt

Yt�1

�1��)1�
: (7)

Here, B stands for an exogenously �xed scale productivity parameter, 1 � �m represents

the fraction of labor input, n2t; devoted towards R&D, and � 2 (0; 1) captures the impact
of public investments on investment speci�c technological change. We assume that the

parameters, � 2 (0; 1) and  2 (0; 1), where � stands for the weight attached to research
e¤ort and  is the level of persistence the current year�s level of technology has on reducing

the price of capital accumulation in the future. The term Gt
Yt�1

represents public capital�s

in�uence in a¤ecting investment speci�c technological change in time period t + 1. For a

given �; increases in Gt relative to Yt�1 leads to increases in the future level of Z: Likewise,

for a given �;reductions in Gt relative to Yt�1 leads to decreases in future values of Z: We

further assume the existence of learning by doing e¤ects captured by the aggregate capital-

output ratio, Kt

Yt�1
. In particular, a higher aggregate stock of capital in t; Kt; relative to

Yt�1; raises Zt+1: At this stage, we make three remarks to compare our setup with that in

Hu¤man (2008).

Remark 1 Assuming  = 1; �m ! 0 and �3 = 0; in equation (7) yields Equation 2.9 in

Hu¤man (2008) describing investment speci�c technological change.

Remark 2 We require  2 (0; 1) for the equilibrium growth rate to adjust to the steady state
balanced growth path.9

Remark 3 Equation (7) is homogenous of degree 1 + �:

2.2 The Planner�s Problem

We �rst solve the planner�s problem. The resource constraint the economy faces in each time

period t is given by

Ct + It � Yt(1� �) = AK�1
t n

�2
1t (�mn2t)

�3(1� �) (8)
9This contrasts with Hu¤man (2008) where  = 1 is required for growth rates of Z and output to be along

the balanced growth path. In Hu¤man (2004),  < 1 implies that the e¤ect of research spending diminishes
over time. This generates technical innovation having immediate productive e¤ects that can be maintained
only with more spending in the future. Therefore  = 1 is not needed for balanced growth.
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where agents consume Ct at time period t and invest It at time period t. Aggregate con-

sumption and investment add up to after-tax levels of output, Yt(1��), in every time period.
The planner maximizes life-time utility of a representative agent �given by (1) �subject

to the economy wide resource constraint given by (8), the law of motion of private capital

in equation (4), the law of motion of public capital in equation, (5), the equation describing

investment speci�c technological change (7), the identity for total supply of labor given by

(3) and �nally, the government budget constraint given by (6).10

2.2.1 First Order Conditions

The Lagrangian for the planner�s problem is given by,

L =
1P
t=0

�t[logCt + log(1� n1t � n2t) + �tfAK�1
t n

�2
1t (�mn2t)

�3(1� �)� Ct � Itg]: (9)

For simplicity, we assume that � = 1. The following �rst order conditions obtain with respect

to Ct, Kt+1, n1t, and n2t; respectively11:

1
Ct
= �t (10)

1
CtZt

= �1�Yt+1(1��)
Ct+1Kt+1

+ �2It+2(1�)(1��)
Ct+2Kt+1

+ �3(1�)((1��)��1)
Kt+1

1P
j=0

�jjIt+j+3
Ct+j+3

(11)

1
1�nt +

�2�2(1�)
n1t

1P
j=0

�jjIt+j+2
Ct+j+2

= �2Yt(1��)
Ctn1t

(12)

and,
1

1�nt =
�3Yt(1��)
Ctn2t

+ ��It+1
Ct+1n2t

+ �2(���3(1�))
n2t

1P
j=0

�jjIt+j+2
Ct+j+2

. (13)

Equation (10) represents the standard �rst order condition for consumption, equating the

marginal utility of consumption to the shadow price of wealth. Equation (11) is an aug-

mented form of the standard Euler equation governing the consumption-savings decision of

the household. The �rst term on the RHS of equation (11), �1�Yt+1(1��)
Ct+1Kt+1

; corresponds to the

after tax marginal productivity of capital in t + 1. The second term, �
2It+2(1�)(1��)
Ct+2Kt+1

> 0; is

the (further) increment to the marginal productivity of capital that agents get in period t+2

by postponing consumption today. This is increasing in the investment-consumption ratio,

but adjusted by the weight, 1� �; of the aggregate capital-output ratio, in the investment
10Clearly, Ct + It + I

g
t = Yt:

11See Appendix A for details.
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speci�c technological change equation. The third term, �
3(1�)((1��)��1)

Kt+1

1P
j=0

�jjIt+j+3
Ct+j+3

; is the

discounted increase in marginal productivity of investing in capital from period t+3 onwards.

This expression is adjusted by the term ((1��)��1), which can be either positive or neg-
ative �depending on the relative importance of capital in equation (7) vis-a-vis its direct

contribution to increasing output, from (2). It is easy to see that when  = 1; the additional

terms in the Euler equation are equal to zero, yielding the standard Euler equation.

Equation (12) denotes the optimization condition with respect to labor supply (n1t): If

we reorganize (12), we get the following relationship between marginal rate of substitution

between consumption and leisure and the marginal product for n1;

Ct
1�nt +

�2�2(1�)
n1t

1P
j=0

�jjCtIt+j+2
Ct+j+2

= �2Yt(1��)
n1t

: (14)

The term on the right hand side of the above equation, �2Yt(1��)
n1t

; denotes the standard after

tax marginal product of n1: The second term on the LHS, �
2�2(1�)
n1t

1P
j=0

�jjCtIt+j+2
Ct+j+2

; is the

increment to the marginal rate of substitution between leisure and consumption. Hence,

the e¤ective marginal rate of substitution between leisure and consumption rises. Since

0 <  < 1; this term is positive. In other words, leisure is more valuable at time t because of

the indirect e¤ect that n1 has on future capital accumulation and learning by doing. This

reduces n1 relative to the standard case in which there is no investment speci�c technological

change. As such, this e¤ect acts like an additional tax on n1:

Similarly, re-arranging the terms of (13), we obtain,

Ct
1�nt =

�3Yt(1��)
n2t

+ ��CtIt+1
Ct+1n2t

+ �2(���3(1�))
n2t

1P
j=0

�jjCtIt+j+2
Ct+j+2

: (15)

Unlike n1; n2 a¤ects both production and investment speci�c technological change. The

�rst term on the RHS of (15), �3Yt(1��)
n2t

; is the standard after tax marginal product of n2.

The remaining terms are the t > 0 increment to marginal productivity that accrue in the

future because of n2�s role in assisting both research e¤ort and increasing output. However,

because n2 has a direct and indirect e¤ect (through production and investment speci�c

technological change, respectively), the future discounted gains are adjusted by the term,

� � �3(1 � ): This term re�ects the e¤ective contribution of n2 to future gains because

of its role in investment speci�c technological change function (hence the term �) vis-a-vis

the marginal productivity gains from a higher capital output ratio adjusted by n2�s share in

production (hence the term, �3(1� )). In contrast to n1; investment speci�c technological
change acts like a subsidy on n2; increasing it relative to the standard case. When  = 1;

10



the marginal productivity gains from the capital output ratio are zero for any time period

from t+ 2 onwards.

We now derive the closed form decision rules based on the above �rst order conditions.

2.2.2 Decision Rules

Lemma 1 Ct, It; nt; n1t;n2t are given by (16), (17), (18), where 0 < � < 1 is given by (19),
and 0 < x < 1 given by (20) are constants. The supply of labor is constant. Then,

Ct = �Yt(1� �); It = (1� �)Yt(1� �), (16)

nt = n =
�2[(1� �)� �2(1� )(1� �)]

(�2 + �x)(1� �)� �2�2(1� )(1� �)
; (17)

n1t = n1 = xn; n2t = n2 = (1� x)n; (18)

where � is given by

� =
(1� �)[1� �2(1� )(1� �)� �1�]� �3(1� )[(1� �)� �1]
(1� �)[1� �2(1� )(1� �)]� �3(1� )[(1� �)� �1]

, (19)

and x is given by

x =
�2(1� �)� �2�2(1� )(1� �)

[�2 + �3 + ��(1� �)](1� �) + �2(1� �)[� � �3(1� )� �2(1� )]
: (20)

Proof. These expressions follow from the �rst order conditions as shown in (10), (11), (12)

and (13). See appendix B for details.

How does a change in � a¤ect consumption and investment? While the decision rules

for consumption and investment given by (16) suggest that the levels of consumption and

investment would fall if the tax rates increases (because of the 1� � term), the actual share
of after tax income spent on consumption given by (19) rises when � rises, although for

investment it falls.12Intuitively, the representative agent does not invest as much in private

capital because of an enhanced role of public capital in augmenting investment speci�c

technological change.

We will show later that when � 6= �; the allocations from the planner�s problem are

sub-optimal, even though there is balanced growth. Here, we note that labor supply, n; is

12See Appendix F
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constant and independent of the tax rate. This is because of the assumption of log utility.

However, labor supply is a¤ected by �: This can be shown by the following lemma

Lemma 2 An increase in � leads to an increase in the share of n devoted to n1 : i.e., @x@� > 0:
Since @�

@�
> 0 from before, this implies @n

@�
< 0:

Proof. Shown in Appendix F

Lemma (2) shows that while changes in n1 due to an increase in � is ambiguous, the

actual amounts of labor supply devoted towards research e¤ort, n2; will always fall with an

increase in �. However, the latter e¤ect dominates the ambiguous e¤ect of how n1 changes,

thereby leading to an overall decrease in n: This implies that an enhanced role of public

capital induces agents to supply lesser labor (n), particularly towards research e¤ort (n2).13

2.3 Stability of the Balanced Growth Path

To obtain the balanced growth path (BGP), we substitute the above decision rules into the

law of motion for investment speci�c technological progress, (7), to characterize the balanced

growth path (BGP). Given the decision rules (16), (17), (18), (20) and (6), we can re-write

the above law of motion as

Zt+1 = cMZt Z(1�)t�1 f(�)�(1� �)1��g(1�) (21)

where cM is a constant and is expressed as

cM = B((1� �m)(1� bx)bn)�(1� b�)(1��)(1�).
If we de�ne the absolute growth rate by Zt+1

Zt
= gzt+1, then we can re-write (21) as

gzt+1 = g
�1
zt
cMf(�)�(1� �)1��g(1�). (22)

13To see this, we can decompose the total change in n because of changes in � by

@n

@�
=
@n1
@�

+
@n2
@�

:

Given @x
@� > 0 and @�

@� > 0 (and hence, @(1�x)@� < 0) @n2
@� < 0 will be true: Since the change in n1 due to a

change in � can be written as
@n1
@�

= x
@n

@�
<0|{z}

+n
@x

@�
>0|{z}
;

@n1
@� may or may not be negative. While an increase in � has an ambiguous e¤ect on n1; it reduces n2:
However, because the latter dominates the former e¤ect, n falls.

12



Using (22) and the parameter restrictions in Remark 1, we will get the same constant

growth rates along the balanced growth path (BGP) as in Hu¤man (2008). We re-write (22)

in the following way,

gzt+1 =



g
(1�)
zt

; (23)

where 
 is a constant and is expressed as


 = cMf(�)�(1� �)1��g(1�).
Under the condition 0 <  < 1 it is easy to show that we can obtain a constant growth

rate for Z, K, G and Y . This condition necessarily implies 0 < � < 1 and 0 < x < 1

(as shown in Appendix B). We therefore have the following lemma. Figure [1] shows the

dynamic adjustment to the steady state balanced growth graphically.

Lemma 3 Suppose 0 <  < 1: On the steady state balanced growth path, the gross growth
rate of Z, K, G and Y are given by (24), and (25)

bgz = 
 1
1+(1�) = [cMf(�)�(1� �)1��g(1�)] 1

2� ; (24)

bgk = bgg = bgz 1
1��1 ; bgy = bgk�1 = bgz �1

1��1 : (25)

Proof. While bgz can be computed directly from (23), the expressions for the remaining

variables are derived in Appendix C.

[INSERT FIGURE 1]

There are several aspects of the equilibrium growth rate worth mentioning.14 First, the

growth rate is independent of the technology parameter, A; as in Hu¤man (2008). Second,

the growth rate of output, bgy; is less than bgk along the balanced growth path, which is
because equation (7) is homogenous of degree 1 + �. Third, an increase in �; increases

the optimal growth rate, by skewing the growth rate schedule to the right. This happens

because an increase in � lowers the amount of labor input (n2) by agents towards research

e¤ort. Hence, in order to �nance an increased importance of public capital (a higher �) in

investment speci�c technological change, the government charges a higher tax on income.

Finally, from expression (24), the tax rate exerts a positive e¤ect on growth as well as

a negative e¤ect. This is similar to the equation characterizing the growth maximizing tax

rate in Barro (1990). The mechanism here is however di¤erent. For small values of the

tax rate, a rise in � leads to higher public capital relative to output, Yt�1: This raises the

14The parameter B > 0 can be assumed to be su¢ ciently large so as to make the gross growth factor is
greater than 1: We however use B = 1.
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future value of investment speci�c technological change, Z: An increase in Z reduces the real

price of capital, stimulating investment and long run growth. However, for higher tax rates,

further increases in the tax rate depresses after tax income, and investment. This reduces

G relative to Y , lowering Z; and depressing investment and long run growth. Hence, there

is a unique growth maximizing tax rate.

Using the expression for bgz in (24) we can characterize the growth maximizing tax rate
as follows:

Proposition 1 In the steady state, there exists a unique growth maximizing tax rate, given
by b� = �.
Proof. See appendix D.

Proposition [1] sets a benchmark for the planner to set the optimal tax rate. If the

planner wants to maximize growth, he should set the tax rate to �: The higher the weight

attached to Gt
Yt�1

in the investment speci�c technological change equation, the higher should

be the optimal tax set by the planner. This result is intuitive since it suggests that the

government would have to impose a higher tax rate on income if public capital were to play

a greater role in driving investment speci�c technological change.

INSERT TABLE [1]

Figure [2] calibrates the impact of a change in � on the long run growth rate for two

arbitrary values of �. Parameter values taken from Table 1.15 When � = 0:5; the growth

maximizing tax rate is given by t1 = 0:5: When � = 0:6; the growth maximizing tax rate

rises to t2 = 0:6. However, because � has increased, there is a level downward shift in the

growth tax curve associated with the higher value of � (the red line is lower than the blue

line). This is because of the reduction in growth due to a reduction n2: Due to this e¤ect; the

planner needs to raise taxes to maximize growth, given that now there is a higher weightage

on Gt
Yt�1

. In sum, a higher value of � tilts the growth-tax curve in a south-westerly direction,

leading to a higher growth maximizing tax rate. The net e¤ect on growth however depends

on which e¤ect (reduction in n2 versus more weightage on Gt
Yt�1

) dominates. This is sensitive

to the value of . In particular, the e¤ect of n2 on reducing growth is higher for higher values

of . Likewise, if there is a reduction in �, n2 may increase su¢ ciently leading to higher

growth depending on the value of .

[INSERT FIGURE 2]

Finally, the growth rate is decreasing in �m; the weight attached to n2 in production. In

other words, as �m increases, more n2 (specialized R&D labor) is devoted to production of

15We assume A = 1 and B = 1. The parameters which have a (�) against their values means that they
have been borrowed from Hu¤man (2008). The rest of the parameters have been assigned in order to ensure
feasibility.
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the �nal good, and less to investment speci�c technological change. This reduces the future

value of Z; and in the long run lowers optimal growth although there is no change in the

growth optimizing tax rate. This is because a higher �m leads to a level downward shift in

the growth tax curve, for all tax rates. To illustrate the quantitative impact of higher �m on

growth, we �rst increase �m arbitrarily from 0.2 to 0.3. We �nd that growth falls from 0.491

to 0.4622 (the di¤erence being 0.0288). For higher values of �m that is, increasing �m from

0.5 to 0.6, we �nd that the fall in growth is 0.3968 to 0.3587 (the di¤erence is 0.0381). This

shows that the fall in the growth rate is higher for higher values of �m. Therefore, a greater

reduction in the share of n2 available for future Z has a more detrimental, and non-linear

e¤ect on growth.

2.4 The Decentralized Equilibrium

Consider an economy that is populated by a set of homogenous and in�nitely lived agents.

There is no population growth and the representative �rms are completely owned by agents,

who supply labor for �nal goods production, n1; and R&D, n2. Agents derive utility from

consumption of the �nal good and leisure given in (1). Agents fund consumption and invest-

ment decisions from their after tax wages w1 and w2; which they receive for supplying labor

n1 and n2, pro�ts �t earned from the �nal goods production, which they take as given, and

the returns to capital lent out for production at each time period t .

The representative �rm produces the �nal good based on (2) where the law of motion of

private capital is given by (4). Technological change is again investment speci�c where public

capital, G; is assumed to play a crucial role in enhancing technology. The laws of motion

for G and investment speci�c technological change are given by (5) and (7), respectively.

The government funds public investment, Igt ; at each time period t using a distortionary tax

imposed on labor, �n 2 [0; 1]; and capital, � k 2 [0; 1] respectively. Like Hu¤man (2008), it is
assumed that pro�ts are taxed according to the same rate as capital income.

2.4.1 The Firm�s Problem

Firms solve a dynamic optimization problem which, at time t; has capital stock, Kt; and

Zt: Let v(Kt; Zt) denote the value function of the �rm at time t. The �rm�s optimization

problem, assuming full depreciation, is given by,

v(Kt; Zt) = max
Kt+1;n1t;n2t

��
Yt � [w1tn1t + w2tn2t]�

Kt+1

Zt

�
+ �v(Kt+1; Zt+1)

�
. (26)
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which it maximizes subject to (5) and (7). The inside term in brackets denotes output

minus wage income minus investment costs. The ownership of �rms by households implies

that �rms earn pro�ts, which accrues to them as consumers, who then pay factor income

taxes.16 Taking taxes and pro�ts as given, agents make their consumption-savings decisions.

From the �rm�s maximization exercise, we get the following �rst order conditions,

fKt+1g : 1
Zt
= �

 
�1Yt+1
Kt+1

+ �(1�)(1��)Kt+3

Kt+1Zt+2
+ �2(1�)((1��)��1)

Kt+1

1P
j=0

�jj
Kt+j+4

Zt+j+3

!

fn1tg : w1t = �2Yt
n1t|{z}

MPn1

� �2�
2(1�)
n1t

1P
j=0

�jjKt+j+3

Zt+j+2| {z }
D

fn2tg : w2t = �3Yt
n2t|{z}

MPn2

+ ��Kt+2

Zt+1n2t
+ �2(���3(1�))

n2t

1P
j=0

�jjKt+j+3

Zt+j+2| {z }
E

.

Because of investment speci�c technological change, factor prices are no longer equal to

the standard marginal products. In particular, the wage paid to n1 is reduced by the term

D; while the wage paid to n2 is increased by the term E: The general point to note is that,

w1 = w2 does not imply that MPn1 = MPn2 unless the restriction, D + E = 0:17 Figure

[3] shows how investment speci�c technological change acts like a tax on n1 and a subsidy

to n2:

[INSERT FIGURE 3]

2.4.2 The Agents Problem

A representative agent maximizes (1) subject to the consumer budget constraint (CBC),

Ct +
Kt+1

Zt
= [w1tn1t + w2tn2t](1� �n) + [Yt � (w1tn1t + w2tn2t)](1� � k); (27)

the laws of motion given by (4), (5) and (7), total labor supply given by (3), and takes factor

prices and pro�ts as given. The �rst term on the right hand side denotes after tax wage

income. The second term is the �rm�s capital income plus pro�ts, which is taxed at the rate,

16In the expression for the value function of the �rm in Hu¤man(2008, p. 3455), a tax on capital is imposed
on capital income accruing to the �rm. We will later show that this does not matter for the results.
17Intuitively, because investment speci�c technological change has a dynamic e¤ect on the marginal pro-

ductivity of factor inputs, we cannot restrict ourselves to the static marginal productivities to calculate factor
prices.
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� k: The following restriction required for decentralizing the planner�s allocations.

Remark 4 Dn1 = En2 is a necessary and su¢ cient condition required to decentralize the
planner�s allocation.

This means a reduction in the total wage bill paid to n1 due to investment speci�c techno-

logical change gets o¤set by an equivalent increase in the wage bill paid to n2. This ensures

that the total wage bill paid by the �rm to n does not depart from the marginal productiv-

ities paid to each type under investment speci�c technological change for any combination

of factor income taxes.18

Under Remark (4), the CBC �from equation (27) �can be written as

Ct +
Kt+1

Zt
= �Yt

where � = (1� �1)(1� �n) + (�1)(1� � k). This implies the government budget constraint
(GBC) is given by

Igt = (1��)Yt: (28)

In general, any factor income tax combination decentralizes the planner�s allocations as

long as Remark (4) is imposed, because of the o¤setting e¤ects on the total wage bill of the

�rm.19

2.4.3 The Agent�s First Order Conditions

The Lagrangian given below for the agent�s problem is given by

L =
1P
t=0

�t[logCt + log(1� n1t � n2t) + �tf�Yt � Ct � Itg]. (29)

The optimization conditions with respect to Ct, Kt+1, n1t, and n2t; are given by equations

(30), (31), (32) and (33) respectively:
1
Ct
= �t (30)

18Even if Hu¤man�s (2008) framework was to be augmented with infrastructure in the manner considered
in this paper, a similar restriction would need to be placed to decentralize the planner�s allocation. From
Remark (1), augmenting Hu¤man�s (2008) model with infrastructure would imply that �3 = 0, n2 fully
entering into Zt+1 but  6= 1: From the �rm�s �rst order conditions above, because  6= 1; a term similar to
term D would exist in the FOC with respect to n1. However, because n2 doesn�t enter into direct production,
the marginal product term with respect to n2 would not exist, and the payment to n2 would be a term similar
to term E capturing the productivity gains to n2 from the investment speci�c technological equation: It can
now easily be seen that w1 = w2 requires that a similar restriction be placed, as in our model.
19If we follow Hu¤man (2008, p. 3455), then, w1 = MPn1 � D

(1��k) and w2 = MPn2 +
E

(1��k) : Remark (4)

ensures that the consumer budget constraint evaluated at these factor prices yields the resource constraint
of the planner.
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1
CtZt

= �1�Yt+1�
Ct+1Kt+1

+ �2(1�)(1��)It+2
Ct+2Kt+1

+ �3(1�)((1��)��1)
Kt+1

1P
j=0

�jjIt+j+3
Ct+j+3

(31)

1
1�nt +

�2�2(1�)
n1t

1P
j=0

�jjIt+j+2
Ct+j+2

= �2Yt�
Ctn1t

(32)

1
1�nt =

�3Yt�
Ctn2t

+ ��It+1
Ct+1n2t

+ �2(���3(1�))
n2t

1P
j=0

�jjIt+j+2
Ct+j+2

. (33)

The above �rst order conditions can be derived in the same way as the planner�s version as

shown in Appendix A. Their interpretation is also the same as before, except that 1 � � is
replaced by �. The closed form decision rules are characterized by the following lemma.

Lemma 4 In the decentralized equilibrium, the expressions for Ct, It; nt; n1t;n2t are given
by the same decision rules derived in (34), and (17), (18) respectively, where 0 < � < 1 is

given by (19) and 0 < x < 1 is given by (20), with

Ct = �Yt� and It = (1� �)Yt�. (34)

Proof. The above expressions can be constructed from the �rst order conditions given by

equations (30), (31), (32) and (33), as explained in Appendix B for the planner�s version.

The �rst order conditions governing the planner�s allocations can be easily be seen to

be replicated by the decentralized equilibrium, once we assume � k = �n = � . In this case,

� = 1 � � ; and the �rst order conditions characterizing the planner�s allocations obtain.
Hence, the comparative statics of consumption, investment, and labor input vis-a-vis changes

in � remain unchanged. The gross growth rate of Z, K, G and Y at the steady state can

also be derived in a similar fashion. As in the planner�s version, the condition for dynamic

stability is the same, i.e., 0 <  < 1. We therefore have the following lemma

Lemma 5 In the steady state of the decentralized economy, the gross growth rate of Z, is
given by (35) while the gross growth rates for K, G and Y are given by (36)

bgz = 
 1
2� , where 
 = cMf(1��)�(�)1��g(1�), cM = B((1� �m)(1� bx)bn)�(1� b�)(1��)(1�)

(35)bgk = bgg = bgz 1
1��1 ; bgy = bgk�1 = bgz �1

1��1 : (36)

Proof. These are derived in the same way as in the planner�s version.

Note that the expressions for the equilibrium long run growth rate are identical to those

in the planned economy, except that the growth rates di¤er because � need not equal 1� � :
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We want to check under what conditions the growth maximizing allocations from the

planner�s problem can be replicated by the decentralized economy. From the steady state

growth rate given by (35), this leads to a second proposition.

Proposition 2 If factor income taxes are chosen such that a linear combination of factor
income taxes is equal to �;i.e.,

(1� �1)(c�n) + �1( b� k) = � = b� . (37)

then the decentralized allocations can replicate the growth maximizing allocations from the

planner�s problem.

Proof. Shown in Appendix E.

The proposition above suggests that there is no unique combination of labor and capital

income taxes which maximizes growth. However, if the condition speci�ed in the proposition

holds, the planner�s allocations can be achieved from the solutions of the agent�s version.

Since there does not exist any unique growth optimizing tax rate combination forc�n and b� k
the planner could choose from a set of tax/subsidy schemes such that the convex combination

will always equal the planner�s growth optimizing tax rate of �. Under this condition, the

solution to the agent�s version replicates the planners optimization solution. We therefore

have the following proposition

Proposition 3 c�n R b� = �)c�n R b� = � R b� k
Proof. This is obtained from equation (37).

From equation (37), it follows that if one of the factors receives a subsidy, the other factor

must be su¢ ciently taxed such that the optimality rule given by (37) is satis�ed.20

2.5 Welfare

We are interested in evaluating whether the optimality results for taxes vary when the rule

is to maximize welfare and not growth. Since consumption is a �xed fraction of after tax

income, it grows at the same gross growth rate of output at the steady state as shown in

Lemma 1 and Lemma 3. The total labor supplied is also constant at each time period t.

Using this information, we can re-write the life-time utility given in (1) in the planner�s

version as

� = � + 	 log[(�)�(1� �)1��] (38)

20We have shown in Lemma 1 and in Lemma 4 that 0 < � < 1 given by (19), 0 < x < 1 given by (20) and
the supply of labor given by (17) are constants.
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where � and 	 denote all other terms independent of the �at tax rate � . We show this in

appendix G. It is clear from the above expression for welfare that the optimal tax rate for the

planner�s model coincides with the growth optimizing tax rate. This gives us the following

result.

Proposition 4 The welfare and growth maximizing taxes coincide, that is, �w = b� = �:
Proof. This can be obtained by di¤erentiating (38) with respect to � . It can be seen that we
get the same optimal tax rate �w = b� = �.
In the agent�s version, the life-time welfare function can be expressed as

� = �+	 log[(1��)�(�)1��] (39)

where � and 	 all other terms independent of the tax rates �n and � k. We get the same

result as in the case of the planner�s version, as shown in the following proposition

Proposition 5 There is no unique welfare optimizing combination of labor and capital in-
come tax rates. We however get the same condition as we obtained in the agent�s growth

optimizing tax rates; that is (1� �1)(c�nw) + �1( b� kw) = � = b� = �w
Proof. We get the above equation by partially di¤erentiating (39) with respect to �n and � k.

In sum, we have characterized both the planner�s and agent�s problem. We have shown

that there exists a unique growth maximizing tax rate, which also maximizes long run welfare.

We have also shown that the planner�s allocation can be decentralized by in�nitely many

tax/subsidy combinations (as long as both are not subsidies) on either factor, so as to

generate the planner�s growth rate. In the next section, we consider an environment where

it can be shown that it is possible to uniquely characterize factor income taxes to replicate

the planner�s allocations.

3 The Model with Administrative Costs

The presence of administrative costs during tax collection is one of the major reasons (the

other being the dead-weight loss of imposing the tax), for the government�s inability to

change (particularly increase) tax rates with ease for the purpose of raising revenue (see

Bovenberg and Goulder (1986), Yitzhaki (1979), Yang (1989)). We provide speci�c condi-

tions under which the tax rate di¤ers at the optimum �compared to the benchmark model

�when administrative costs for implementing public investment occur. In particular, as
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long as administrative costs are not linear, we show that there will always exists a unique

combination of distortionary tax rates on labor income and capital income.

3.1 The Planner�s Model with Administrative Costs

As before, the government collects taxes by imposing a proportional tax rate on income to

fund G to contribute to investment speci�c technological change. It however incurs admin-

istrative costs with respect to tax collection. The government budget constraint takes the

following form

Igt = (� � !(�))Yt

where !(�) represents continuously varying administrative costs with respect to the tax rate

� : Here, !0(�) > 0, which implies that the administrative waste is assumed to be increasing

in the tax rate. In what follows, we will assume that these costs could be linear, convex,

or concave with respect to the tax rate, and show that these assumptions have di¤erent

implications for the steady state balanced growth path.

3.1.1 Case 1: Convex Administrative Costs

Suppose that administrative costs are strictly convex with respect to the tax rate (e.g.,

Perotti (1993), Buiter and Sibert (2011)), i.e., !00(�) > 0. By strict convexity we mean

that a proportional increase in the tax rate causes a more than proportional increase in the

collection costs and that governments experience greater di¢ culty in imposing a higher tax

rate on income as compared to a lower tax rate. In such a scenario, if achievable growth rates

are much lower than as compared to the case where such costs are absent, the government,

at an optimum, would consider imposing a lower tax rate on income.

We parametrize the function, !(�) = c��; where 0 < c � 1 is like a "�xed level cost"

parameter and � > 1 is the degree of convexity. The government budget constraint takes

the form

Igt = (� � c��)Yt: (40)

We assume that agents who are subject to these tax rates are una¤ected by the administrative

costs the government incurs for imposing taxes. It is like as if the government incurs an

additional expenditure towards enhancing investment speci�c technological change. For this

reason the �rst order conditions are the same as in the baseline model and are therefore

given by (10), (11), (12) and (13).The decision rules are also the same and are given by (16),

(17), (18), (19) and (20) as shown in Lemma 1.

Given the government budget constraint in (40), the law of motion for investment speci�c
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technological change according to (7) and the decision rules for consumption, investment and

the labor supplies as (16), (17), (18), (19), (20), we can rewrite (7) in terms of the steady

state growth rate,

bgz = [B((1� �m)(1� bx)bn)�(1� �)(1��)(1�)f(� � c��)�(1� �)1��g(1�)] 1
2� : (41)

As before, the growth rate, with administrative costs, is increasing in B; decreasing in �m;

and increasing in n2: Further, an increase in c reduces the growth rate. We now get the

following proposition.

Proposition 6 The growth maximizing tax rate, �AC (tax with administrative costs) in a
model with convex administrative costs is always less than the growth maximizing tax without

such costs, that is, b� = �. The optimal tax is obtained from the following expression

(1� �AC)�[1� c�(�AC)��1] = (1� �)(�AC � c(�AC)�); (42)

where,

�AC = b� = � when c = 0 or when � = 1: (43)

Proof. Shown in Appendix H
Given that administrative costs with respect to the tax rates are convex, the steady state

optimal growth rate given by (41) will be lower than the steady state optimal growth rate in

the baseline model. This is shown in Figure [3] where t is the optimal tax rate as derived in

the baseline model. The tax rate t1 is the growth optimizing tax rate when the government

faces convex administrative costs.

[INSERT FIGURE 4]

Some papers - such as Perotti (1993) and Buiter and Sibert (2011) - assume that convex

administrative costs are quadratic in nature (� = 2). Assuming c = 1; the optimal tax is

now given by the following equation

(1� �AC)�(1� 2�AC) = (1� �)(�AC � (�AC)2) (44)

which gives us

�AC =
�

1 + �
< b� = �: (45)

Therefore the general result in a model with convex administrative costs is that the planner

will choose to charge a lower tax rate compared to the case when there are no administrative

costs. These costs hamper the availability of resources for funding public expenditure thereby
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leading to lower growth rates. But the planner would choose to charge a lower tax rate at

the optimum since the costs of imposing higher tax rates are increasing in the tax rate.

3.1.2 Case 2: Concave Administrative Costs

The government budget constraint for the planner�s version is again given by equation (40)

but now instead of having strict convexity in administrative costs with respect to the tax rate,

we assume strict concavity (!00(�) < 0) in administrative costs, i.e., � < 1. Anecdotally, strict

concavity of administrative costs is suggestive of a more e¢ cient administrative machinery

compared to the previous case with convex costs.21 Such administrative costs increase with

a higher tax rate but at a decreasing rate. Therefore at optimum, the government has an

incentive to impose a higher tax on income as compared to the case of the baseline model

even though the steady state growth rates is lower because of the loss due to administrative

costs. This again is shown in Figure [3] where now t2 is the growth optimizing tax rate when

the government faces concave administrative costs.

3.1.3 Case 3: Linear Administrative Costs

Linear administrative costs simply cause a level downward shift in the optimal growth rate.

The optimal tax however remains the same. This is shown in Figure [5].

[INSERT FIGURE 5]

3.2 The Decentralized Equilibrium

There are two separate factor income taxes imposed on labor and capital income, i.e., �n and

capital � k respectively. The administrative costs incurred by the government for imposing

tax rate on labor and capital are assumed to be di¤erent, in terms of the �xed level costs

although not in terms of the degree of convexity or concavity. Hence the cost of imposing

� k is c1�
�
k while that for �n is c2�

�
n. The following is the government budget constraint

22

Igt = [�1� k + (1� �1)� k � c1��k � c2��n]Yt. (46)

The rest of the speci�cation remains the same, just as in the baseline agent�s model. The

�rst order conditions are given by equations (30), (31), (32) and (33) and the decision rules

21This may be due to employing better computerized technology that may assist in revenue collection. See
Slemrod (1990).
22This equation is derived in the same way as in the baseline model, where the �rm�s pro�t maximization

solutions are substituted into wages and rate of return on capital. In addition, there are also administrative
costs of imposing each tax rate.
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by (16), (17), (18), (19) and (20) as shown in Lemma 3. We now substitute the decision

rules given by equations (17), (18), (19) and (20) as in Lemma 3 and the government budget

constraint given by equation (46) into the investment speci�c technological change equation

given by (7) to obtain the following steady state growth rate for Z

bgz = [B((1� �m)(1� bx)bn)�(1� �)(1��)(1�)f(1��� c1��k � c2��n)�(�)1��g(1�)] 1
2� , (47)

where, � = 1 � �1� k � (1 � �1)�n. Unlike in the baseline framework where administrative
costs were absent, we show that there exists a unique combination of the tax on labor income

and on capital income given by the following proposition.

Proposition 7 There exists a unique combination of positive tax rates �n and � k which
maximizes the steady state growth rate given by�

� �n
� �k

���1
=

�
1� �1
�1

��
c1
c2

�
(48)

such that

� ? 1 and c1 = c2 ) � �n =

(�
1� �1
�1

� 1
��1
)
� �k ? � �k

Proof. Shown in Appendix I

This inequality result holds for 0 < �1 < 0:5. The proposition suggests that if the scale

constant, c; and variable costs are identical, the government could maximize e¢ ciency by

charging a higher tax on labor income.23 The tax on capital income could therefore exceed

the tax on labor income only under the special case when the �xed level costs of imposing

� �n relative to �
�
k su¢ ciently exceeds the relative share of total labor to capital in production.

In other words, capital income could be subject to a higher tax rate rate compared to that

on labor provided it is less costly to impose a higher tax on capital.

This speci�cation also allows us to recover uniqueness, which was absent in the baseline

model. This happens because � a¤ects the �rst order conditions � relating the growth

rate to the optimal factor income tax rates �symmetrically (see equations (49) and (50 in

Appendix I). The ratio of factor income taxes, as seen in (48), is therefore independent of

�: However, individual factor income taxes still depend on � .

Finally, in the baseline version, where the optimality results suggest that there could

exist in�nitely many combinations of distortionary tax rates on labor and capital, having

23In fact for similar reasons even the recent OECD�s Current Tax (2011) agenda suggests that from the
point of view of e¢ ciency that capital must be taxed at lower rates as compared to labor and this calls for
a major restructuring of the tax models.
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a �at tax rate is a feasible solution. As long as both tax rates were charged based on the

degree of public congestion, a �at tax system cannot be sustained within this framework at

the optimum. However, when � ! 1, the two tax rates become perfectly identical. Hence
at the optimum, the possibility of having a �at tax system on all sources of income, is only

possible as a limiting case.

Concave administrative costs are suggestive of a more e¢ cient tax collecting system.

Costs do tend to increase for imposing higher tax rates. However, these might be more to do

with tax evasions and not as much with administrative issues. In such a scenario, the model

suggests that it is optimal to charge a higher tax on capital income than on labor income.

4 A Numerical Example

In this section, we calibrate the model to quantify the growth and welfare e¤ects of factor

income tax changes.24 We calibrate our results using parameter values from the US in Hu¤-

man (2008), and other parameters from the literature. We use arbitrary values of �, , and

�m because of the lack of clear empirical estimates for these parameters. Table [1] contains

the parameter values used in the calibration exercise. We are interested in two di¤erent pol-

icy experiments: the e¤ects of 1) equi-proportionate changes in factor income taxes and 2)

revenue neutral changes on growth and welfare. We then augment these estimates assuming

di¤erent waste technologies.

We �rst analyze the impact of changing the tax on capital on the growth rate for a given

value of the labor income tax in the decentralized model using the optimality condition (37),

or

(1� �1)(c�n) + �1( b� k) = � = b� :
We earlier quanti�ed the e¤ect of an increase in the share of government spending on in-

frastructure relative to aggregate output � in the investment speci�c technological change

equation �on the equilibrium growth rate. We showed that a higher share of public in-

frastructure spending leads to a higher optimal tax rate, and a higher growth rate. This

e¤ect on growth can be decomposed into two e¤ects: the e¤ect of a higher government

infrastructure share on labor e¤ort devoted to research, and the direct e¤ect of a higher

government infrastructure share on increasing the level of investment speci�c technological

change. The quantitative results show that an increase in the government spending share re-

duces the labor input devoted to research e¤ort which reduces growth, but increases the level

of technological change which increases growth. Hence, the net change in growth depends

24All calibration exercises were done in Matlab. The programs are available from the authors on request.
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on the magnitude of these two e¤ects.

The above dynamics are replicated when there are tax changes in the decentralized equi-

librium, except that at the optimum, there does not exist any unique combination of tax

rates on capital and labor income which maximizes growth (and welfare). For illustrative

purposes, we arbitrarily pin down a particular value for the tax on labor, c�n = 0:4. Accord-
ing to (37) �where � = 0:5 and �1 = 0:35 �which yields b� k � 0:6857.25 This can also be

replicated if we plot the growth schedule of gz ��xing c�n at 0:4 � and varying b� k.
[INSERT FIGURE 6]

This is shown in Figure [6] where the optimum combination of c�n and b� k is given by
(0:4; 0:6857); corresponding to t1. Suppose we decrease the tax rate on labor income and

increase the tax rate on capital by 0:1 in comparison to this combination at the optimum;

that is, �n and � k are now given by (0:3; 0:7857):26 These tax rates no longer satisfy (37).

Growth is no longer at its highest value, although in comparison to the growth maximizing

factor income tax mix, (0:3; 0:87143) �given by t3�which satis�es (37); the gross growth

rate is marginally (though not signi�cantly) less: by a magnitude of � 3:303� 10�4. Hence,
deviating from the optimal rule by changing factor income taxes in equal proportions has a

negligible e¤ect on long run growth and welfare. The reason why this happens is because of

the assumed share of output accruing to capital in the �nal goods production, �1 where we

assume that 0 < �1 < :5: Under this restriction, the absolute rate of change in growth rate

due to a change in the tax rate on capital income will strictly be less than the absolute rate

of change in the growth rate due to a change in the tax on labor. That is����@gz@� k

���� < ���� @gz@�n

���� :
This means, deviating away from the tax rate on capital according to an optimal tax rule

will only have a moderate e¤ect on the growth rates. This result is consistent with the

results of the policy experiments in Hu¤man (2008) relating the e¤ect of capital income tax

changes on growth. He �nds that changes in factor income taxes have a minimal e¤ect on

the growth rate. However, as evident from Figure [6], depending upon whether changes to

the capital income tax rate are equi-proportionate or revenue neutral, the e¤ect on growth

rate would be negative (but marginal), or zero, respectively. This contrasts with Hu¤man

(2008) where a change in the tax on labor income has a negative e¤ect on the growth rate.27

25The revenue neutral rule for changes in factor income taxes is given by, �c�k�c�n = � (1��1)
�1

:
26The value of �k = 0:7857 is given by the point t2.
27For a large arbitrary change in taxes, our calibrated results show that the "growth-gap" between equi-

proportionate and revenue neutral changes is still not large, but larger than the case for small changes in
taxes. For instance, a reduction in �n from 0:6 to 0:3 implies that �k rises from 0:315 to 0:87143. In contrast,
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If now we reverse the exercise by �rst �xing � k at the arbitrary value of 0:6 and then lower

it to 0:3; and then calibrate the equi-proportionate increase and revenue neutral increase

in �n, we �nd that changes in growth are of the same order when we compare an equi-

proportionate change to a revenue neutral change when we �xed tax �n and varied � k.

However, there is an important di¤erence. An equi-proportionate change in �n means that

now we increase the tax on labor from 0:44615 (when � k is 0:6) to 0:74615 (when � k is

0:3) which is signi�cantly higher than the revenue neutral value (at 0:607). Since the equi-

proportionate change in �n exceeds the revenue neutral value of �n; reducing �n would

increase growth.

We now conduct a similar policy experiment with administrative costs. For simplicity

we have assumed that the �xed level cost parameter c and the variable cost parameter �

are the same for both tax rates on labor income and on capital income. We �rst consider

the case with convex administrative costs, and assume (arbitrarily) that c = 0:4 and � = 2.

Plugging the value of c and � into equation (48), and then substituting out the resulting

value of �n in terms of � k into the �rst order condition (49) in Appendix I, the optimal tax

rate on capital income � �k is found to be approximately 0:23. Using this value for �
�
k, and

using the equation (48) we get � �n = 0:42. We now get Figure [7].

[INSERT FIGURE 7]

Here t1 represents the point (� �n; �
�
k) = (0:42; 0:24).

28 This gives us the growth maximizing

tax mix with convex administrative costs. Therefore, any change in the tax on labor such

that �n 6= � �n; such as at point t3; where we arbitrarily reduce �n by 0:1 to 0:32; and also

re-calibrate � k according to (48) reduces growth to a sub-optimal value. This is because the

new tax mix at t3 does not satisfy optimality.29 However, if the choice of � k corresponding

to �n = 0:32 were to satisfy optimality (hence � k satis�es
@gz
@�k
j�n=:32 = 0); then the optimal

tax on capital would have to be signi�cantly higher than � �k:This is denoted by point t2;

where growth has marginally fallen (by roughly 3:6 � 10�3), but by an amount greater
than the growth fall in the model without administrative costs. In sum, because of convex

administrative costs, deviating from the tax rule, (48), will lead to a greater fall in long run

growth and welfare.30

We now look at the case with concave administrative costs. With c = 0:01 and � = 0:1

we can show that the optimal tax rate on capital income � �k � 0:73.31 Using this value for

an equiproportionate change in �k is 0:61. The growth di¤erence is still roughly 3:303� 10�4:
28Note that there are two solutions but the second solution ��k = 0:69 and �

�
n = 1:28 is not feasible.

29Here, @gz@�k
> 0:

30If we allow �n to fall by 0:2 to 0:22 - a large arbitary amount, we �nd that a decrease in �k �from (48)
�is 0:1209. For �n = 0:22; �k = 0:345. There is larger reduction in the growth rate.
31This choice of c and � ensures feasibility.
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� �k and using the equation (48) we can show that �
�
n � 0:4013. This is shown in Figure [8].

[INSERT FIGURE 8]

Here t1 is given by (� �n; �
�
k) = (0:4013; 0:714).

32 We conduct a similar exercise of lowering

the tax on labor income by 0:1 and back out the value for the corresponding tax (shown as

t2) on capital income from the equation (48). This will give us a tax rate on capital income

equal to 0:594 which does not give us the optimal growth rate. However a tax rate on capital

income, much higher than t1, and given by t3 in Figure [8] will ensure optimal growth rates.

The di¤erence in the growth rates by moving from a tax on capital income of 0:594 as in t3
to 0:908 (moving to t2) is roughly around 3:4� 10�3 which is also not large. Hence, having
concave administrative costs suggests that there is no change in the optimal growth rate

when the tax on capital income is increased.33 Given concave costs, on normative grounds, a

planner could charge a higher tax rate on capital without changing the optimal growth rate

when there is a fall in the tax on labor income compared to � �n.

5 Conclusion

This paper can be seen as building upon the frameworks of Hu¤man (2007, 2008) by consid-

ering an environment where the public sector plays a major role in the process of endogenous

investment speci�c technological change. This channel - to the best of our knowledge - with

its implications for optimal public policy and endogenous growth, has not been developed in

the literature. We characterize the optimal tax rate in the economy that maximizes welfare

and growth when the planner allocates resources. We also formalize a mechanism through

which administrative waste and leakages associated with public investment can in�uence en-

dogenous investment speci�c technological change. Our results focus on the balanced growth

path of the economy. The main methodological innovation is to provide a tractable model in

which public capital accumulates, and in�uences the incidence of investment speci�c tech-

nological change.

Our analysis leads to several results. First we characterize the growth and welfare maxi-

mizing tax rates. We show that the growth and welfare maximizing tax rates coincide. We

derive a restriction relating to the e¤ect of investment speci�c technological change on the

wage bill of the �rm, which decentralizes the planner�s allocations. Under this restriction,

in�nitely many combinations of factor income taxes can replicate the planner�s allocations.

32The second solutions to ��k and �
�
n are approximately close to 0 which means that the funding available

for the public input will be close to zero. We therefore ignore this solution.
33This result is broadly consistent with the results in Hu¤man (2008) and Stokey and Rebelo (1995)

who show that growth rates are una¤ected by a deviation of tax rates on capital income away from their
equilibrium values.
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We then add administrative waste or leakages into the model. Our main result here is that,

under certain assumptions relating to the curvature of the waste function, higher capital

income taxation - relative to labor income taxation - maximizes the steady state rate of

growth. These results are consistent with some other papers in this literature which shows

that capital income taxation may increase growth. On normative grounds, this suggests that

policy makers may want to measure precisely the relative waste associated with factor tax

collection before setting factor income taxes. In a calibrated version of the model, the main

message that emerges is that the growth e¤ects of sub-optimal capital income tax policy are

not large.

In terms of future work, in the current analysis we have assumed that the government can

commit to a sequence of actions, making policy time consistent. An interesting question is

how would the absence of government commitment a¤ect the provision of public capital and

thereby, the incidence of investment speci�c technological change. Future work could there-

fore consider the optimal �nancing of productive public capital, and calculate the welfare

losses from being unable to commit to the Ramsey policy in our framework (see Azzimonti,

Sarte, and Soares (2009)).
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Appendix

The appendix contains all the proofs of propositions made in the paper.

Appendix A: The planner�s FOCs for the baseline model

The following is the FOC with respect to Ct

�t
1

Ct
� �t�t = 0:

Hence, we get

fCtg :
1

Ct
= �t.

This gives us equation (10). The FOC with respect to Kt+1 is as follows:

fKt+1g :
��t
Zt

+ ��t+1
�1Yt+1(1� �)

Kt+1

� ��t+1
@

@Kt+1

(
Kt+2

Zt+1
)� �2�t+2

@

@Kt+1

(
Kt+3

Zt+2
)� ::: = 0:

Note that

@Zt
@Kt+1

=
@Zt+1
@Kt+1

= 0,
@Zt+2
@Kt+1

= (1�)(1��)Zt+2
Kt+1

,
@Zt+3
@Kt+1

=
Zt+3
Zt+2

@Zt+2
@Kt+1

��1(1�)
Zt+3
Kt+1

:

We therefore have
@Zt+3
@Kt+1

= (1� )Zt+3
Kt+1

((1� �)� �1):

And hence for any other future time period

@Zt+3+j
@Kt+1

= j(1� )Zt+3+j
Kt+1

[(1� �)� �1]; forj = 0:

Therefore, substituting the above values in {Kt+1}, considering 1
Ct+j

= �t+j and It+j =
Kt+1+j

Zt+j
; j = 0 and assuming full depreciation (that is � = 1), we obtain the following FOC

for {Kt+1} which is shown in equation (11)

fKt+1g : 1
CtZt

= �1�Yt+1(1��)
Ct+1Kt+1

+ �2It+2(1�)(1��)
Ct+2Kt+1

+ �3(1�)((1��)��1)
Kt+1

1P
j=0

�jjIt+j+3
Ct+j+3

.

Next, the FOC with respect to n1t is given by
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�1
1�nt +

�t�2Yt(1��)
n1t

��t @
@n1t

(Kt+1

Zt
)���t+1 @

@n1t
(Kt+2

Zt+1
)��2�t+2 @

@n1t
(Kt+3

Zt+2
)� ::: = 0: Given that

Zt+1 =
B(1� �m)�n�2tZ


t (G

�
t )
(1�)(K1��

t )(1�)(K��1
t�1 )

(1�)(n��21t�1)
(1�)(���3m n��32t�1)

(1�)

A(1�)
;

this implies
@

@n1t
(
Kt+1

Zt
) =

@

@n1t
(
Kt+2

Zt+1
) = 0:

We further have
@

@n1t

�
Kt+3

Zt+2

�
=
�2(1� )Kt+3

n1tZt+2
;

and similarly,

@

@n1t

�
Kt+4

Zt+3

�
=

�2(1� )Kt+4

n1tZt+3
@

@n1t

�
Kt+5

Zt+4

�
=

�2(1� )2Kt+5

n1tZt+4

for all future time periods. Therefore, substituting the above expressions into the expression

for {n1t} we get

1

1� nt
+ �2�t+2

�
�2(1� )Kt+3

n1tZt+2

�
+ �3�t+3

�
�2(1� )Kt+4

n1tZt+3

�
+ ::: =

�t�2Yt(1� �)
n1t

:

Recall that for every t, 1
Ct
= �t: Since � = 1; It+j =

Kt+1+j

Zt+j
; for all j = 0: This gives us the

�nal expression of the FOC for n1t, as shown in equation (12)

fn1tg :
1

1� nt
+
�2�2(1� )

n1t

1P
j=0

�jj
It+j+2
Ct+j+2

=
�2Yt(1� �)
Ctn1t

:

The FOC with respect to n2t is given by

fn2tg : �1
1�nt +

�t�3Yt(1��)
n2t

��t @
@n2t

(Kt+1

Zt
)���t+1 @

@n2t
(Kt+2

Zt+1
)��2�t+2 @

@n2t
(Kt+3

Zt+2
)::: = 0: Given

@Zt
@n2t

= 0;
@Zt+1
@n2t

=
�Zt+1
n2t

;

@Zt+2
@n2t

=
Zt+2
Zt+1

�Zt+1
n2t

� �3(1� )
Zt+2
n2t

this means a change in n2 on Z has two e¤ects - a direct e¤ect and an indirect e¤ect. The

expression, Zt+2
Zt+1

�Zt+1
n2t

; is the direct e¤ect, while the expression, ��3(1�)Zt+2n2t
; is the indirect
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e¤ect. Therefore,
@Zt+2
@n2t

= (� � �3(1� ))
Zt+2
n2t

:

Similarly, the derivative of Z with respect to n2 at time period t+ 3 is

@Zt+3
@n2t

= (� � �3(1� ))
Zt+3
n2t

:

Hence, for any future time period t+ j + 2, the derivative is as follows

@Zt+j+2
@n2t

= j(� � �3(1� ))
Zt+j+2
n2t

:

Substituting the above expressions into the above expression for fn2tg, we get

�1
1� nt

+
�t�3Yt(1� �)

n2t
+ ��t+1

Kt+2

Z2t+1

�Zt+1
n2t

+ �2�t+2
Kt+3

Z2t+2
(� � �3(1� ))

Zt+2
n2t

+ ::: = 0:

Again, for every t, 1
Ct
= �t: Since � = 1; It+j =

Kt+1+j

Zt+j
; for all j = 0: This implies that

�1
1� nt

+
�t�3Yt(1� �)

n2t
+ ��

�t+1Kt+2

Zt+1n2t
+
�2(� � �3(1� ))

n2t

1P
j=0

�jj
It+j+2
Ct+j+2

= 0:

Hence the �nal expression for {n2t} is as follows and as shown in equation (13)

fn2tg :
1

1� nt
=
�3Yt(1� �)
Ctn2t

+ ��
It+1

Ct+1n2t
+
�2(� � �3(1� ))

n2t

1P
j=0

�jj
It+j+2
Ct+j+2

:

Appendix B: Decision rules for the planner�s problem for the base-

line model

We �rst show that �, x and n are constants, and have feasible values. Feasibilty requires

that 0 < �; x; n < 1: We also derive a condition that ensures that the balanced growth rate

is stable, i.e.,

gzt+1 = gzt = gz:

We have shown earlier

{Kt+1}: 1
CtZt

= � �1Yt+1(1��)
Ct+1Kt+1

+ �2 It+2
Ct+2Kt+1

(1� )(1� �) + �3(1�)((1��)��1)
Kt+1

1P
j=0

�jj
It+j+3
Ct+j+3

) 1
�Yt(1��)Zt = �

�1Yt+1(1��)
�Yt+1(1��)(1��)Yt(1��)Zt+�

2 (1��)
�(1��)Yt(1��)Zt (1�)(1��)+

�3(1�)((1��)��1)
(1��)Yt(1��)Zt ( 1

1�� )
(1��)
�
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) (1� �) = �1�(1� �)
(1� �)[1� �2(1� )(1� �)]� �3(1� )[(1� �)� �1]

) � =
(1� �)[1� �2(1� )(1� �)� �1�]� �3(1� )[(1� �)� �1]
(1� �)[1� �2(1� )(1� �)]� �3(1� )[(1� �)� �1]

;

as shown in (19).

For 0 < � < 1; we require that

(1� �)[1� �2(1� )(1� �)� �1�]� �3(1� )[(1� �)� �1] > 0

and

1� � > 0)  <
1

�

Note that  < 1
�
the condition for stability. From the FOC for n1t;

fn1tg :
1

1� nt
+
�2�2(1� )

n1t

1P
j=0

�jj
It+j+2
Ct+j+2

=
�2Yt(1� �)
Ctn1t

) nt
1� nt

=
�2
�x

� �
2�2(1� )(1� �)
x(1� �)�

) n =
�2[(1� �)� �2(1� )(1� �)]

(�2 + �x)(1� �)� �2�2(1� )(1� �)

which is the expression in equation(17), and � is derived above. Note, when

�2[(1� �)� �2(1� )(1� �)] > 0

and when

0 < �; x < 1;

then

0 < n < 1:

Next, we derive the expression for x:We know the FOC with respect to fn2tg is given by

1
1�nt =

�3Yt(1��)
Ctn2t

+ �� It+1
Ct+1n2t

+ �2(� � �3(1� ))
1P
j=0

�jj
It+j+2
Ct+j+2

) (1� x)
�

n1
1�nt

�
= �3

�
+ ��

�
1��
�

�
+ �2(� � �3(1� ))

�
1

1��

� �
1��
�

�
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)
�
1� x
x

�
=
�3(1� �) + ��(1� �)(1� �) + �2(� � �3(1� ))(1� �)

�2(1� �)� �2�2(1� )(1� �)

) x =
�2(1� �)� �2�2(1� )(1� �)

[�2 + �3 + ��(1� �)](1� �) + �2(1� �)[� � �3(1� )� �2(1� )]

which is the expression for x in equation (20). When 0 < � < 1, 0 < x < 1 is automatically

satis�ed. This means feasible values of x require no other additional assumption other than

0 <  < 1: We �rst verify that 0 < � < 1: This means we need to check whether the

following two inequalities are satis�ed:

(i)(1� �)[1� �2(1� )(1� �)� �1�]� �3(1� )[(1� �)� �1] > 0

(ii)1� � > 0)  <
1

�

Since 0 <  < 1; we have 0 <  < 1 < 1
�
: This means (ii) is trivially satis�ed when 0 <  < 1:

To check (i), we must check whether (1� �)[1� �2(1� )(1� �)��1�]� �3(1� )[(1�
�)� �1] > 0; or (1� �)(1� �1�)� �2(1� )(1� �� �1�) > 0;

) (1� �)(1� �1�) > �2(1� )(1� �� �1�):

We know (1��1�) > (1����1�) because 0 < � < 1: Further, (1��) > �2(1� ) if and
only if (1��)��2(1�) > 0: Clearly, (1��)(1+���) > 0: Hence, (1��)��2(1�) > 0:
This implies

(1� �)(1� �1�)� �2(1� )(1� �� �1�) > 0:

Hence, (i) is satis�ed and 0 < � < 1. We now verify that 0 < x < 1:We know that

x =
�2(1� �)� �2�2(1� )(1� �)

[�2 + �3 + ��(1� �)](1� �) + �2(1� �)[� � �3(1� )� �2(1� )]
:

To show the above expression for 0 < x < 1; it is su¢ cient to show that �2[(1� �)�
�2(1 � )(1 � �)] > 0, since we have already shown, 0 < � < 1: We also have to show the
denominator in the above expression is greater than the numerator so as to ensure that x is

a fraction. As shown earlier,

(1� �)� �2(1� ) > 0

which implies (1� �)� �2(1� )(1��) > 0 since we have already shown 0 < � < 1 (and
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so 0 < (1 � �) < 1). This implies that, �2[(1 � �) � �2(1 � )(1 � �)] > 0 is true. The
denominator is given by the expression

[�2 + �3 + ��(1� �)](1� �) + �2(1� �)[� � �3(1� )� �2(1� )];

which on re-arranging yields �2[(1��)��2(1�)(1��)]+�3[(1��)��2(1�)(1��)]+
��(1��)(1��)+�2(1��)�:We earlier showed that, �2[(1��)��2(1�)(1��)] > 0:
Similarly, we can obtain

�3[(1� �)� �2(1� )(1� �)] > 0:

Also,

��(1� �)(1� �) + �2(1� �)� > 0

follows from above and the restriction that (1� �) > 0: Hence the denominator of x is the
numerator plus a sum of two positive terms. This shows that 0 < x < 1.

Finally, we need to check that 0 < n < 1: Recall that,

n =
�2[(1� �)� �2(1� )(1� �)]

(�2 + �x)(1� �)� �2�2(1� )(1� �)
:

This means if we just show the numerator is greater than zero, 0 < n < 1 is true. This

is because the denominator is simply the numerator + �x(1 � �): From above, this term

(�x(1��)) is positive. We have also seen that �2[(1��)��2(1� )(1��)] > 0: Hence,
0 < n < 1 is true.

Therefore, 0 < �; x; n < 1.

Appendix C : Growth optimizing tax rate in the planner�s problem

In the planner version,

Zt+1 = B((1� �m)n2t)�Zt

(�
Gt
Yt�1

���
Kt

Yt�1

�1��)(1�)
:

Since under full depreciation Kt = It�1Zt�1 and Gt = I
g
t�1Zt�1; we can substitute for G and

K in the law of motion and further substitute the decision rules for I and Ig; leading to

It = (1� �)Yt(1� �)
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and

Igt = �Yt:

Further,

n2 = (1� x)n

Hence,

Zt+1 = B((1� �m)(1� x)n)�Zt

(�
�Yt�1Zt�1
Yt�1

���
(1� �)Yt�1(1� �)Zt�1

Yt�1

�1��)(1�)
) Zt+1 = cMZt Z(1�)t�1 f(�)�(1� �)1��g(1�)

where cM = B((1� �m)(1� x)n)�(1� �)(1��)(1�)

is a constant. This implies

Zt+1
Zt

= gzt+1 = cMZ�1t

Z�1t�1
Z
(1�)+�1
t�1 f(�)�(1� �)1��g(1�)

) gzt+1 = g
�(1�)
zt

cMf(�)�(1� �)1��g(1�):
The assumption 0 <  < 1, makes the system de�ned by

gzt+1 =



g
(1�)
zt

(where 
 = cMf(�)�(1 � �)1��g(1�) is a constant) dynamically stable. Any deviation from
the point of intersection of the 45-degree line with the plot for gzt+1 =




g
(1�)
zt

will eventually

result in the system converging to the 45-degree line. This is shown in Figure [1]. Note

that (1 � ) = 1 will give an oscillating system which will never ever converge. Likewise

(1� ) > 1 will lead to an explosive system. In our model, it is therefore su¢ cient to have
0 <  < 1 to ensure a steady state BGP.

At the steady state therefore,

gzt+1 = gzt = bgz
and hence, bgz = 
 1

1+(1�) = [cMf(�)�(1� �)1��g(1�)] 1
2�

is the steady state growth rate, where cM = B((1��m)(1�x)n)�(1��)(1��)(1�) is a constant.
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To derive the growth rates of the other variables on the BGP, note that

Kt+1 = ItZt

) Kt+1

Kt

=
ItZt

It�1Zt�1

) bgk = (1� �)Yt(1� �)Zt
(1� �)Yt�1(1� �)Zt�1

=
YtZt

Yt�1Zt�1
= bgy:bgz:

Now,

Yt = AK�1
t n

�2
1t (�mn2t)

�3

) Yt
Yt�1

= bgy = AK�1
t n

�2
1t (�mn2t)

�3

AK�1
t�1n

�2
1t�1(�mn2t�1)

�3
=
K�1
t

K�1
t�1

= bgk�1
) bgy = bgk�1
) bgy = bgk�1 = bgz �1

1��1 :

Appendix D - Optimal tax rate in the baseline model - the planner�s

problem

@ bgz
@�

=
@[cMf(�)�(1� �)1��g(1�)] 1

2�

@�
= 0

) cM 1
(2�)

(1� )
(2� ) [(�)

�(1� �)1��]
�1

(2�)
@[(�)�(1� �)1��]

@�
= 0

) (1� �)1���(�)��1 = (�)�(1� �)(1� �)��

) (1� �)� = (�)(1� �)
) b� = �:

Hence the steady state growth optimizing tax rate in the planner version is b� = �:
Appendix E - Optimal tax rate in the baseline model - the agent�s

version

f�ng :
@cgz
@�n

=
@[cMf(1��)�(�)1��g(1�)] 1

(2�)

@�n
= 0

) cM 1
(2�)

(1� )
(2� ) [(1��)

�(�)1��]
�1

(2�)
@[[(1��)�(�)1��]]

@�n
= 0

) (�)1���(1��)��1@[(1��)]
@�n

+ (1��)�(1� �)(�)��@[(�)]
@�n

= 0:
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Since

@[(1��)]
@�n

=
@[(�2 + �3)(�n) + �1(� k)]

@�n
= �2 + �3;

@[(�)]

@�n
=

@[(�2 + �3)(1� �n) + �1(1� � k)]
@�n

= �(�2 + �3):

Substituting the above expressions yields,

) (�)1���(1��)��1 � (1��)�(1� �)(�)�� = 0

) �

1� � =
1��
�

) \1�� = �:

Likewise

f� kg :
@cgz
@� k

=
@[cMf(1��)�(�)1��g(1�)] 1

(2�)

@� k
= 0:

Since

@[(1��)]
@� k

=
@[(�2 + �3)(�n) + �1(� k)]

@� k
= �1;

@[(�)]

@� k
=

@[(�2 + �3)(1� �n) + �1(1� � k)]
@� k

= �(�1):

Substituting the above yields the same FOCs just as in the case of f�ng: This implies, both
{�ng and {� kg give the same FOC

\1�� = �

) (�2 + �3)(c�n) + �1( b� k) = � = b�
Appendix F - Comparative statics - the planner�s problem

We know from equations (17) and (19)

n =
�2[(1� �)� �2(1� )(1� �)]

(�2 + �x)(1� �)� �2�2(1� )(1� �)
:

And

� =
(1� �)[1� �2(1� )(1� �)� �1�]� �3(1� )[(1� �)� �1]
(1� �)[1� �2(1� )(1� �)]� �3(1� )[(1� �)� �1]

:
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Further b� = �:
We shall �rst see how � changes with �. This implies, the relationship between 1 � � and
� gets reversed.

@�

@�
=

@

@�

�
(1� �)[1� �2(1� )(1� �)� �1�]� �3(1� )[(1� �)� �1]
(1� �)[1� �2(1� )(1� �)]� �3(1� )[(1� �)� �1]

�
=

@

@�

�
1� �1�(1� �)

(1� �)[1� �2(1� )(1� �)]� �3(1� )[(1� �)� �1]

�
=

�1�(1� �)
f(1� �)[1� �2(1� )(1� �)]� �3(1� )[(1� �)� �1]g2

�

@f(1� �)[1� �2(1� )(1� �)]� �3(1� )[(1� �)� �1]g
@�

=
�1�(1� �)[(1� �)�2(1� ) + �3(1� )]

f(1� �)[1� �2(1� )(1� �)]� �3(1� )[(1� �)� �1]g2
> 0

Hence
@�

@�
> 0;

and therefore
@(1� �)
@�

< 0:

Since

Ct = �Yt(1� �)

) @Ct
@�

< 0:

Now we take the partial derivative of

x =
�2(1� �)� �2�2(1� )(1� �)

[�2 + �3 + ��(1� �)](1� �) + �2(1� �)[� � �3(1� )� �2(1� )]

with respect to �: We will use @�
@�
> 0 in our analysis. Suppose we consider the value of 1

x
;

1

x
= 1 +

�3(1� �)� �2�3(1� )(1� �)
�2(1� �)� �2�2(1� )(1� �)

+
��(1� �)

�2(1� �)� �2�2(1� )(1� �)

)
@
�
1
x

�
@�

=
@

@�

�
�3(1� �)� �2�3(1� )(1� �)
�2(1� �)� �2�2(1� )(1� �)

�
+
@

@�

�
��(1� �)

�2(1� �)� �2�2(1� )(1� �)

�

42



On opening up the brackets and simplifying the above expression, we get

)
@
�
1
x

�
@�

=
�2(1� �)�� @@�(1� �)

(�2(1� �)� �2�2(1� )(1� �))2
< 0

because
@�

@�
> 0 and so

@(1� �)
@�

< 0:

Hence,

@
�
1
x

�
@�

< 0

@ (x)

@�
> 0:

We now look at the partial derivative of n with respect to �. We have shown earlier that

n =
�2[(1� �)� �2(1� )(1� �)]

(�2 + �x)(1� �)� �2�2(1� )(1� �)
:

Hence, on applying the quotient rule and on re-arranging the terms, we get

@

@�
(n) =

[�2�
2(1� )�x(1� �)]@�

@�

[�2(1� �)� �2�2(1� )(1� �) + �x(1� �)]2

�
[�2(1� �)� �2�2(1� )(1� �)](1� �)� @x

@�

[�2(1� �)� �2�2(1� )(1� �) + �x(1� �)]2

�
[�2(1� �)� �2�2(1� )(1� �)](1� �)x@�@�
[�2(1� �)� �2�2(1� )(1� �) + �x(1� �)]2

Given that @x
@�
> 0 we can easily see that the second term in the above expression

�
[�2(1� �)� �2�2(1� )(1� �)](1� �)� @x

@�

[�2(1� �)� �2�2(1� )(1� �) + �x(1� �)]2
< 0:

This is because from an earlier exercise we have shown that �2(1��)��2�2(1�)(1��) >
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0: Clubbing the other two terms, we get,

@

@�
(n) =

��2x[(1� �)2 � �2(1� )�(1� �)� �2(1� �)(1� )(1� �)]@�@�
[�2(1� �)� �2�2(1� )(1� �) + �x(1� �)]2

�
[�2(1� �)� �2�2(1� )(1� �)](1� �)� @x

@�

[�2(1� �)� �2�2(1� )(1� �) + �x(1� �)]2
:

If [(1� �)2� �2(1� )�(1� �)� �2(1� �)(1� )(1��)] > 0 then @n
@�
< 0: To see this,

we re-arrange

[(1� �)2 � �2(1� )�(1� �)� �2(1� �)(1� )(1� �)]

to get

(1� �)[(1� �)� �2(1� )�� �2(1� )(1� �)]

which is equal to

(1� �)(1� �)[1� � + �] > 0

because we have shown earlier that [1� � � �2(1� )] > 0. Hence

@n

@�
< 0:

We now need to verify whether, @n1
@�
< 0: Note that

@

@�
(n1) =

@

@�
(xn) = x

@

@�
(n) + n

@

@�
(x);

the sign of which is ambiguous because x is increasing in � while n is decreasing in �.

Therefore whichever term dominates will determine the way n1 behaves with �: However we

can show
@

@�
(n2) < 0;

since
@

@�
(n2) =

@

@�
((1� x)n) = (1� x) @

@�
(n) + n

@

@�
(1� x) < 0:

Now under the special case of equal wages, we have 0 < x = �2
�2+�3

< 1: This will always

guarantee
@

@�
(n1) < 0 and

@

@�
(n2) < 0:
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Appendix G: Welfare analysis

In the planner�s problem, we know

Ct = �Yt(1� �)

) Ct
Ct�1

=
�Yt(1� �)
�Yt�1(1� �)

= bgy
) bgc = bgy:

Since bgc is a constant, Ct = C0 bgct: On the BGP, the supply of labor is the same across time.
We denote welfare by �; where,

� =
1P
j=0

�t[logCt + log(1� nt)]

� =
1P
j=0

�t logCt +
log(1� bn)
1� �

) � = logCo + � logC1 + �
2 logC2 + �

3 logC3 + �
4 logC4 + :::::::::+

log(1�bn)
1��

) � =
logCo
1� � +

�2

1� � log bgc + log(1� bn)1� �

) � = logCo
1�� +

�2�1
(1��)(1��1) log[

cMf(�)�(1� �)1��g(1�)] 1
2� + log(1�bn)

1��

) � = � + 	 log[(�)�(1� �)1��];

where � is independent of the tax rate and

	 =
�2�1(1� )

(1� �)(1� �1)(2� )
:
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In the agent�s version, we denote welfare by �:

� =
1P
j=0

�t[logCt + log(1� nt)]

) � =
1P
j=0

�t logCt +
log(1� bn)
1� �

=
logCo
1� � +

�2

1� � log bgc+ log(1� bn)1� �

) � = logCo
1�� +

�2�1
(1��)(1��1) log[

cMf(1��)�(�)1��g(1�)] 1
2� + log(1�bn)

1��

) � = �+	 log[(1��)�(�)1��]; where � is independent of the tax rates and

	 =
�2�1(1� )

(1� �)(1� �1)(2� )
:

Appendix H - The model with administrative costs: growth opti-

mization in planner�s version

bgz = [B((1� �m)(1� x)(n))�(1� �)(1��)(1�)f(� � c��)�(1� �)1��g(1�)]
1

2�

) @cgz
@�

=
@[f(� � c��)�(1� �)1��g]

(1�)
(2�)

@�
= 0

) (� � c��)�@(1� �)
1��

@�
+ (1� �)1��@(� � c�

�)�

@�
= 0

) �(1� �)(� � c��)�(1� �)�� + �(1� �)1��(� � c��)��1(1� c����1) = 0

) �(1 � �AC)[1 � c�(�AC)��1] = (1 � �)(�AC � c(�AC)�) as shown in equation (42).
Substituting c = 0, we get

�(1� �AC) = (1� �)�AC

) �AC = �:

Substituting � = 1

�(1� �AC)[1� c] = (1� �)(�AC � c�AC)
) �(1� �AC) = (1� �)�AC

) �AC = �
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Appendix I - The model with administrative costs: growth opti-

mization in the agent�s version

We have,

bgz = [B((1� �m)(1� x)(n))�(1� �)(1��)(1�)f(1��� c1��k � c2��n)�(�)1��g(1�)] 1
2�

where 1�� = �1� k + (1� �1)�n: Substituting for (1� �) in bgz we get,bgz = [B((1 � �m)(1 � x)(n))�(1 � �)(1��)(1�)f(�1� k + (1 � �1)�n � c1��k � c2��n)�(1 �
�1� k � (1� �1)�n)1��g(1�)]

1
2� :

The FOC of bgz with respect to �n is given by
f�ng :

@cgz
@�n

= 0

) @f(�1� k + (1� �1)�n � c1��k � c2��n)�(1� �1� k � (1� �1)�n)1��g
@�n

= 0

) (1��� c1��k � c2��n)�
@(1��1�k�(1��1)�n)1��

@�n
+ (�)1��

@(�1�k+(1��1)�n�c1��k�c2�
�
n)
�

@�n
= 0

) �(1� �1 � c2����1n )(�) = (1� �1)(1� �)(1��� c1��k � c2��n): (49)

Similarly, the FOC with respect to � k is given by

f� kg :
@cgz
@� k

= 0

) @f(�1� k + (1� �1)�n � c1��k � c2��n)�(1� �1� k � (1� �1)�n)1��g
@� k

= 0

) (1��� c1��k � c2��n)�
@(�)1��

@� k
+ (�)1��

@(1��� c1��k � c2��n)�
@� k

= 0

) �(�1 � c1����1k )(�) = �1(1� �)(1��� c1��k � c2��n): (50)
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Using FOC (a) and FOC (b), we have

�(1� �1 � c2����1n )(�)

�(�1 � c1����1k )(�)
=

(1� �1)(1� �)(1��� c1��k � c2��n)
�1(1� �)(1��� c1��k � c2�

�
n)

) (1� �1 � c2����1n )

(�1 � c1����1k )
=
(1� �1)
�1

) �1(1� �1 � c2����1n ) = (1� �1)(�1 � c1����1k )

) �1c2��
��1
n = (1� �1)c1����1k

) ���1n

���1k

=
(1� �1)c1
�1c2

)
�
�n
� k

���1
=

�
1� �1
�1

��
c1
c2

�
as shown in equation (48). We now summarize the results for linear administrative costs.

The following is the FOC with respect to �n

f�ng : �(1� �1 � c2����1n )(�) = (1� �1)(1� �)(1��� c1��k � c2��n)

and the following is the FOC with respect to � k

f� kg : �(�1 � c1����1k )(�) = �1(1� �)(1��� c1��k � c2��n):

Substituting � = 1, we now get the following as the FOCs with respect to �n and � k
respectively

f�ng : �(1� �1 � c2)(�) = (1� �1)(1� �)(1��� c1� k � c2�n)

f� kg : �(�1 � c1)(�) = �1(1� �)(1��� c1� k � c2�n):

This suggests that there does not exist any unique solution to the combination of tax rates

on labor and capital.
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Table 1: Parameter Values

�1 0.35�
�2 0.4

�3 0.25

� 0.95�
 0.67

� 1�
�m 0.2

� 0.5

� 0.2�

�
2 in the model with convex costs

0.1 in the model with concave costs

c
0.4 in the model with convex costs

0.01 in the model with concave costs
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Figures

Figure 1: The dynamic adjustment process to a steady state BGP
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Figure 2: Comparing optimal taxes for di¤erent weights on the public input

Figure 3: The E¤ect of ISTC on n1 and n2
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Figure 4: Optimal tax rates across di¤erent model - with and without administrative costs

Figure 5: Baseline model versus the model with linear costs
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Figure 6: Impact of a change in the tax on capital - baseline model

Figure 7: Policy analysis in the model with convex costs
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Figure 8: Policy analysis in the model with concave costs
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