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Abstract

This study shows that in a two-player in�nitely repeated game

where one is impatient, Pareto-superior subgame perfect equilibria can

still be achieved. An impatient player in this paper is depicted as

someone who can truly destroy the possibility of attaining any feasible

and individually rational outcome that is supported in equilibrium in

repeated games, as asserted by the Folk Theorem. In this scenario,

the main ingredient for the restoration of equilibrium is to introduce

the notion of tolerant trigger strategy. Consequently, the use of the

typical trigger strategy is abandoned since it ceases to be e¢ cient as it

only brings automatically the game to its punishment path, therefore

eliminating the possibility of extracting other feasible equilibria. I pro-

vide a simple characterization of perfect equilibrium payo¤s under this

scenario and show that cooperative outcome can be approximated.

1. Introduction

A central requirement in obtaining a cooperative outcome in repeated games,

apart from the inherent need of a credible threat of punishment, is that players

must be su¢ ciently patient. Future payo¤s need to be valued highly so as not to

induce anyone to deviate from any long-term contract. Otherwise, even those who

supposed to reprove a deviant may also �nd it less attractive to impose punishment

if the payo¤ for doing so decreases rapidly through time. Thus, it rea¢ rms why
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only minimal amount of discounting is permitted so that the Folk Theorem can

still be maintained1.

When a certain player in a game is impatient, it is easy to see that any co-

operative e¤ort is hardly sustainable through time for that player wishes only to

extract the highest gain the soonest possible. Such player does not even have to

worry about future punishments since the future is less meaningful to him. So

despite the good intentions others may have in leading the game to better re-

sults, their knowledge of the presence of the impatient player compels them not

to attempt for any risky cooperative action from the very start. Thus, the game

simply reverts to the unwanted equilibrium of the original single-stage game. This

is perhaps one reason why in the literature of repeated games, studying a game

involving an impatient player does not get so much attention. In this paper, I

address the prospect of restoring some Pareto-superior equilibria by adopting a

di¤erent strategy in such scenario where an impatient player is involved.

Imagine a two-player in�nitely-repeated game where players have di¤erent dis-

count factors or, say simply, di¤erent temperaments: one is patient and the other

is impatient. Suppose further that the impatient one is so impatient that even the

harshest punishment of penalizing him forever, in case he deviates from the typical

trigger strategy2, would not matter to him since he only cares for the current pe-

riod. He therefore cannot be trusted to cooperate since cheating in the �rst period

is always more rewarding to him. On the other end, as the patient player is aware

of this, she may simply apply at the outset a strategy that will minimize her oppo-

nent�s maximum payo¤ (i.e. minimax strategy) thus, eliminating any possibility

of achieving a cooperative outcome.

One can argue, however, that the end of this game depends so much on how the
1The Folk Theorem asserts that all feasible and individually rational outcomes (i.e. outcomes

that are Pareto-superior to the minimax payo¤ of the initial stage game) can be supported in
equilibrium in an in�nitely-repeated game. Aumann & Shapley (1976) and Rubinstein (1979)
showed that this set of equilibria is in fact subgame perfect. Abreu (1988) and Fudenberg &
Maskin (1986) later showed that this is also true when minimal discounting on future payo¤s is
applied.

2The typical trigger strategy referred here is when both players continue to play the coopera-
tive outcome for as long as no one has deviated in the past. In case either player deviates, both
respond by defecting forever.
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patient player will play the game. Being a patient person, she has the capacity to

tolerate the other player initially, even at the expense of getting a very low payo¤,

provided that this gesture makes the other player cooperate in the succeeding

stages. In this paper, I show that this set-up is subgame-perfect and that both

players are made better-o¤ than in a situation when no such tolerance is initiated.

Lehrer and Pauzner (1999) examined this case of unequal discounting between

two players, although they maintained that these players remain very patient on

the absolute scale. The expanded frontiers of the feasible set and the shape of the

set of perfect equilibria that they have pinned down are therefore not the ones

that will be obtained in the presence of an impatient player. The cooperative

outcome may no longer be attainable and in some cases of very low discount

factor, the set of feasible and (strictly) individually rational payo¤s within the

typical convex hull can be totally annihilated3. Certainly, Folk Theorem can no

longer be aspired, nonetheless we show that certain class of tolerant strategies

which uses the disparity in the time preferences of the two players can restore

some perfect equilibria that are Pareto-superior to the stage-game Nash.

The notion of heterogenous discounting has clearly given greater possibilities

for generating perfect equilibrium outcomes as shown also in a related two-player

model of Salonen and Vartiainen (2008) and in the n-player setup proposed by

Chen (2007). A more general result by Gueron et. al. (2010) even shows that

any individually rational payo¤ that is below and thus nulli�ed by the e¤ective

minimax value (a concept introduced by Wen (1994) for n-player games) can be

restored in equilibrium. While these studies make use of unequal discounting, all

of them maintain that the players�discount factors are su¢ ciently close to one.

By the presence of an impatient player, this paper is therefore distinguished from

these studies although it is not extended to n-player games as will be discussed in

the �nal section.

Generally, the structure of a tolerant strategy along its (initial) contract path

is a deterministic sequence of pure-strategy actions. In particular, we study those

3In Theorem 1, this very low discount factor is given a lower bound.

3



types that exhibit periodic structure over time under a perfect monitoring envi-

ronment. For example, a patient player may agree to tolerate the other for two

stages provided that a cooperative play is performed in the next three stages, and

then tolerate again for the next two stages, and so on. This cyclical set-up works

continuously ad in�nitum for as long as no deviation has occurred in the past. A

deviation at any time from either player leads the game to its punishment phase

that imposes minimax strategies. We assume in this paper that such strategies

are observable if these can only be implemented through mixed-strategy actions.

When a cooperative outcome is not attained, it is true that some correlated

strategies between the two players could still approximate it despite having a

reduced set of equilibrium payo¤s caused by the impatient player. However, em-

ploying tolerant strategies do no less. It can further be shown that even in an

extreme case of �impatience�(see Section 6), when public randomization can no

longer generate individually rational equilibrium payo¤s under the normal trigger

strategy, these tolerant trigger strategies can still continue to generate some of

these equilibria.

The next section illustrates the main idea of this paper through a concrete

example. Section 3 establishes the environment governing around the problem

while sections 4-7 provide a formal analysis. Section 8 concludes by discussing

some di¢ culties in generalizing some results.

2. Example

Consider a Prisoner�s Dilemma game with the following payo¤s:

The minimax point of this game is (1,1) and for � < 1
3
, an in�nitely repeated

game cannot obtain any equilibrium other than the players�minimax point, which

in this case is also a Nash equilibrium. Hence, each player will only settle to receive

an average payo¤ of 1 in the repeated game.
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Assume now that the two players have di¤erent valuation of time: �1 < 1
3
and

�2 � 1
3
. Then, suppose that Player 2 o¤ers a strategy wherein she will always play

C provided that Player 1 alternates his actions between D and C, starting with

D. Any deviation from this strategy from either player prompts both of them to

play D forever after. In other words, Player 2 tolerates Player 1 in stage one (and

in all succeeding odd-number stages) and endures receiving 0, which is even lower

than her minimax payo¤.

The rationale behind Player 2�s o¤er is that if this strategy succeeds, she will

receive an average income4 of 3�2
1+�2

(i:e: 0 + 3�2 + 0 + 3�
3
2 + :::) which is greater

than her average income when no such o¤er is made, provided that �2 > 1
2
. On

the part of Player 1, he will accept the o¤er since this strategy promises him an

average payo¤ of 4+3�1
1+�1

(i:e: 4 + 3�1 + 4�
2
1 + 3�

3
1 + :::), which is always a lot more

than what he will get when he is not tolerated.

This strategy is a subgame perfect equilibrium and is shown in the following

manner. Observe that Player 1 will not think of deviating from playing D in the

1st stage knowing that he will be tolerated by Player 2. If he were to think of

deviating, it must be in the 2nd stage where he is bound to get a lower payo¤ by

reciprocating Player 2�s goodwill. Deviating in the 2nd stage therefore becomes

irresistible when his average income from the path (4; 4�1; �
2
1; �

3
1; :::) exceeds that of

simply sticking to the strategy, i.e. (4; 3�1; 4�
2
1; 3�

3
1; :::). This condition is presented

as:

(1� �1)
�
4 + 4�1 +

�21
1� �1

�
> (1� �1)

�
4 + 3�1

1� �21

�
) 3�21 + 3�1 � 1 < 0

Solving for �1, Player 1 will deviate when �1 <
p
21�3
6

� 0:26.

For Player 2, deviating in the 1st stage, i.e. playing D, will only bring back

the game to its minimax point which means that both players ended up playing

(D,D) in every stage thereafter. Besides, she would not opt to deviate at this stage

4Average income is computed in its discounted form over in�nite stages as (1��)
P1

t=1 �
t�1P t,

where P t is the payo¤ at stage t. Note also that the formula 1+ �+ �2+ :::+ �n�1 = 1��n
1�� will

be extensively used in this paper.
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knowing that her o¤er will be rewarding in the long run, for as long as �2 > 1
2
.

The case is di¤erent in the 2nd stage where there arises also a temptation for

her to deviate. This possible deviation is realized when the path (0; 4�2; �
2
2; �

3
2; :::)

becomes more pro�table than (0; 3�2; 0; 3�
3
2; :::). That is:

(1� �2)
�
4�2 +

�22
1� �2

�
> (1� �2)

�
3�2

1� �22

�
) 3�22 � �2 � 1 < 0

Solving for �2, Player 2 will deviate when �2 <
p
13+1
6

� 0:77.

One can check that the condition for deviating in all subsequent odd-number

stages of the repeated game is similar to the respective condition each player face

during the 1st stage. Similarly, all succeeding even-number stages establish the

same condition as in the 2nd stage, respective to each player (see Lemma 1). Thus,

the Nash equilibrium of this in�nitely repeated game exists for:

�1 2
"p

21� 3
6

;
1

3

!
and �2 2

"p
13 + 1

6
; 1

!
:

When either player deviates at any stage of the game, the strategy calls for

each player a punishment path of minimaxing each other thereafter i.e. playing

(D,D) from then on. And since (D,D) is a Nash equilibrium of the prisoner�s

dilemma game, neither player can gain by deviating from this punishment path

which establishes credibility in rendering punishment5. Therefore, the set of Nash

equilibrium points of this strategy also satis�es subgame perfection.

By inputting all the equilibrium-generating values of �1 and �2 into the av-

erage income of each player, the set of all possible perfect equilibrium payo¤s is

illustrated in Figure 1 as a rectangular block. Notice that it is outside the typical

feasible and individually rational set of payo¤s generated in a repeated game with

very patient players.

5In the example of prisoner�s dilemma, the minimax punishment inherently coincides with
the Cournot-Nash reversion, extensively used by Friedman (1971). A more general minimaxing
punishment scheme is presented in Section 7 for any two-person game.
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Figure 1: In the above example where cooperative outcome is no longer attainable,

the set of equilibrium payo¤s is depicted by the rectangular block that is outside the

typical convex hull.

3. Framework

Consider an 1�fold repeated game �1 (�M ; �P ) with two players, M (impa-

tient) and P (patient), and their respective discount factors �M and �P , where

0 < �M < �P < 1. Write (aM ; aP ) 2 SM � SP as a vector of outcomes/actions
within the pure strategy space and �i (aM ; aP ) : SM � SP ! R as the contin-

uous payo¤ function of i, where i = M;P . For convenience, we denote an un-

subscripted bold symbol as a vector of two players (e.g. a =(aM ; aP )) and de-

note �i to refer to the other player. Fix the minimax payo¤ for each player as
V̂i = min

a�i2S�i
max
ai2Si

�i (ai; a�i). For a set of feasible payo¤s F , which is also de�ned

as the convex hull of the set f(VM ; VP ) j�(a) = (VM ; VP ); for some a 2 SM � SP g,
denote a subset R to be the set of individually rational outcomes i.e. R =n
(VM ; VP ) 2 F

���Vi > V̂i; for both io. Let �V ; V � be some feasible vector payo¤
not in R since V < V̂i < Vi < V for both i; where V being the highest possible

payo¤ to i and V being the lowest. In this symmetric two-person game, we set

V̂i = V̂ and the cooperative outcome as (Vc; Vc) 2 R. Finally, we assume that
�1 (�M ; �P ) is played under a complete information environment.

The game �1 (�M ; �P ) is played throughout a discrete time denoted by t 2
f1; 2; 3; :::g. Let its outcome path be fat(�(t))g1t=1 , wherein a strategy �i(t) at
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stage t is chosen from Si based on the history of the game at t� 1, i.e. �i(1) 2 Si
and for t > 1, �i(t) : (SM � SP )t�1 ! Si. This characterizes the player�s choice

of action ati(�(t)) at stage t as a function of the information gathered from the

previous t� 1 actions. This history is public and is known to both players as each
can observe the other�s action directly at every stage.

Now, suppose the cooperative payo¤Vc cannot be supported by any equilibrium

in the repeated game, such that M will always �nd it pro�table to cheat in the

�rst stage even if he has to bear the subsequent (minimaxing) punishment forever.

That is:

Vc + Vc�M + Vc�
2
M + ::: < V + V̂ �M + V̂ �

2
M + :::

, Vc < V (1� �M) + V̂ �M

, �M < ~� =
V � Vc
V � V̂

Knowing that M cannot anymore be trusted to cooperate since �M < ~�, P

on her part will simply minimax M right from the start, inducing him to get

only V̂ . And if P does not minimax M , she herself will be minimaxed by M by

virtue of M�s impatience, and so on. Notice that this �mutual�minimaxing is

enough to reduce the game to the stage-game equilibrium (V̂ ; V̂ )6. Thus, from a

sustainable Pareto optimal outcome (Vc; Vc); the game reverts to the inferior pure-

strategy equilibrium when M�s discount factor goes below ~�: If actions are made

contingent on the result of some public randomization, some individually rational

payo¤s to M may still be sustained in equilibrium despite his low discount factor

(e:g: those (VM ; VP ) where VM > Vc and VP � V̂ ). However, most of them fail

6In some cases, a binding minimaxing punishment scheme (V̂ ; V̂ ) demands that a continuously
increasing penalty at every succeeding stage is established in order that punishment is surely
in�icted to avoid being punished more severely in the next stage. This complication on higher-
order punishments was resolved by Abreu (1988) by introducing a simple punishment strategy
that does not depend on the previous sequence of deviations and which can be supported in
perfect equilibrium. Furthermore, such minimaxing actions may require mixed strategies in
general and one has to assume that they are observable to obtain the Folk Theorem result.
However this assumption is not indispensable as argued by Fudenberg and Maskin (1991) since
the same result can also be achieved by employing over time a cyclical set of alternating pure
actions with the appropriate frequency.
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particularly those VM 2 [V̂ ; Vc] since none of these payo¤s can in any way deter
M from deviating in the �rst period.

4. Tolerant Strategies

It is expected from the Folk Theorem that some individually rational payo¤s

in the stage-game cannot anymore be sustained in equilibrium in repeated games

when there exists an impatient player. This loss of equilibria is explained by the

fact that both players continue to hold on to a trigger strategy that aims for the

optimal cooperative outcome when it is no longer attainable. Consequently, the

strategy ceases to be e¢ cient since it automatically leads the game towards its

punishment path that immediately penalizes both players and only eliminates the

possibility of extracting some other feasible gains.

This scenario, however, is changed when the patient player P (with �P > ~�7)

abandons the original strategy and concedes to adopt a tolerant trigger strategy.

Although this may provide unequal and suboptimal yields (for P ) in general, the

generation of Pareto-superior equilibria is shown to be a worthwhile consolation as

this can even approximate the cooperative outcome. Formally, a tolerant trigger

strategy is de�ned as follows:

De�nition 1. A tolerant trigger strategy (TTS) is an action pro�le fat(�(t))g1t=1
in a repeated game �1 (�M ; �P ) which satis�es the following conditions:

(i) there exists a certain strategy (�M(t); �P (t)) 2 SM � SP that generates
stage payo¤s �M(a

t0) > Vc and �P (a
t0) < V̂ at some stages t0 2 f1; 2; 3:::g, where

at
0
:= at

0
(�M(t

0); �P (t
0)).

(ii) (1� �P )
P1

t=1 �
t�1
P �P (a

t) > V̂ .

(iii) once a deviation occurs at any time d, a minimaxing punishment (V̂ ; V̂ )

is played from time d+ 1 onwards.

The �rst condition requires the existence of some stage-payo¤s that are lower

than the individually rational level (which allows the other player to earn higher

7We simply apply here a strict rather than weak inequality for the purpose of simplifying our
results.
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than the cooperative yields) while the second guarantees that the average dis-

counted payo¤ of the tolerant player over the entire repeated game is above the

individually rational level. The third is the typical trigger punishment path.

I characterize every TTS pro�le fati(�(t))g
1
t=1 as a combination of contract

regime which is the phase when both players continue to play the game according

to what they have initially agreed on and a punishment regime that immediately

sets in after a breach from the contract regime or from the same punishment

regime (as will be discussed in section 7) has occurred. At this stage, it would be

convenient to focus our analysis on in�nitely repeated prisoner�s dilemma game

�1pd (�M ; �P ) whose punishment regime is stable, being always a Nash equilibrium.

This saves us from worries about the credibility of punishment and allows us to

put more attention on the inherent di¢ culty that the contract regime of a TTS

brings. One can see that unlike in the normal trigger strategy, the contract or the

initial path of TTS no longer constitutes of playing the same action throughout

its phase and can even take many di¤erent forms. Consequently, the continuation

strategies at every subgame can di¤er since payo¤s within the contract regime are

not anymore the same. A simple classi�cation of TTS pro�les is presented below

where we de�ne payo¤s during tolerant stages as �M(a
t0) = V and �P (a

t0) = V ,

where again V < V̂ < Vc < V .

De�nition 2.
(a) A periodic tolerant trigger strategy

�
�
hk;ji
M ; �

hk;ji
P

�
(or PTTS) is a TTS

pro�le that has a contract regime of playing alternately k stages of tolerance with

stage payo¤ �(at
0
) = (V ; V ) and then j stages of cooperation with stage payo¤

(Vc; Vc) over the game �1pd (�M ; �P ). We write
�
�
hj;ki
M ; �

hj;ki
P

�
to denote a PTTS

that starts with cooperative stages.

(b) A non-periodic tolerant trigger strategy is a TTS pro�le that starts

with either k stages of tolerance followed by in�nite stages of cooperation or with

j stages of cooperation followed by tolerant stages thereafter.

As our analysis is con�ned only on discrete time between stages, we shall set

k and j to be �nite elements of the set of positive integers, Z+.
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Proposition 1. For any �M < ~� and �P < 1 in �1pd (�M ; �P ), it is impossible

to sustain a non-periodic tolerant trigger strategy in equilibrium.

Proof:
Suppose it is possible. Then, in any of the following two cases, there exists a

scenario when both players prefer to stick to the non-periodic TTS than to deviate

from it.

Case A: (Tolerance before cooperation)

Examine M�s behavior. Notice that if M were to deviate, it has to be in the

stage of cooperation since deviating when he is tolerated will only give him a lower

payo¤ (i.e. Vc < V ). Thus, for M to remain faithful to the strategy, his payo¤

must be at least as much as the payo¤he gets when he deviates at any cooperative

stage.

(1��M)
 

kX
t=1

V �t�1M +
1X

t=k+1

Vc�
t�1
M

!
� (1��M)

 Pk
t=1 V �

t�1
M +

Pk+q
t=k+1 Vc�

t�1
M +

V �k+qM +
P1

t=k+q+2 V̂ �
t�1
M

!
;

for all q 2 f0; 1; 2; :::g and k 2 Z+, where q is the number of stages of coopera-
tion just before defecting. This implies now the following:

) Vc�
k
M � Vc�kM(1� �

q
M) + V �

k+q
M (1� �M) + V̂ �k+q+1M

) �k+q+1M (V � V̂ ) � �k+qM (V � Vc)

) �M � V � Vc
V � V̂

= ~�; a contradiction.

Case B: (Cooperation before tolerance)

Examine P�s behavior. For P to stick to the (non-periodic) tolerant strategy,

the payo¤must be at least as much as the payo¤ she gets in any possible stage of

deviation. Consider the possible deviation at the stage when P is about to start

tolerating M (i.e. at t = j + 1 and that no deviation has occurred in the past).
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We see that the condition not to deviate at this stage, i.e.

(1� �P )
 

jX
t=1

Vc�
t�1
P +

1X
t=j+1

V �t�1P

!
� (1� �P )

 
jX
t=1

Vc�
t�1
P +

1X
t=j+1

V̂ �t�1P

!

cannot hold since
P1

t=j+1 V �
t�1
P <

P1
t=j+1 V̂ �

t�1
P , for all j 2 Z+ and �P < 1.

Remark. The proof in case A is general since it considers all ofM�s possible

deviation in any of the cooperative stages, whereas case B picks up only a stage

where P�s defection is imminent. In both cases, it is shown that non-periodic TTS

breaks down within a given player, independent of the other player�s capacity to

hold on to the strategy.

In the succeeding subsections, it is presented that perfect equilibrium can be

generated under PTTS.

4.1. Tolerance before cooperation

De�nition 3. In a game �1pd (�M ; �P ), any PTTS
�
�
hk;ji
M ; �

hk;ji
P

�
is supported

by a subgame perfect equilibrium, if for any strategy �0i(d) 2 Si that di¤ers from
strategy �hk;jii at time d onwards, for all k; j 2 Z+ and i 2 fM;Pg; we have:

(1� �i)
1X
t=1

�t�1i �i
�
at
�
�hk;ji

��
� (1� �i)

dX
t=1

�t�1i �i

�
at
�
�0i(d); �

hk;ji
�i

��
+(1� �i)

1X
t=d+1

�t�1i �i
�
'i; '�i

�
;

where
�
'i; '�i

�
is the action vector of minimaxing punishment.

This de�nition of subgame perfection su¢ ces to hold for prisoner�s dilemma

since its minimaxing punishment path is always Nash equilibrium. Thus, there is

indeed no incentive for players to deviate during the punishment regime at any

subgame. This allows us now with the task of ensuring only that deviation from

the contract path at any stage is never pro�table.
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However, complexity still arises since continuation payo¤s at any time d vary

over the in�nite period and most subgames within the contract regime are no

longer identical to the original game. Apart from this, the stage payo¤s of the

two players are non-symmetric which impels us to deal with each one�s payo¤

incentives separately before pinning down the set of perfect equilibrium points.

When the PTTS
�
�
hk;ji
M ; �

hk;ji
P

�
is followed consistently over the entire game,

the respective average discounted payo¤ to M and P are:

�
hk;ji
M = (1��M)

1X
T=0

 
kX
t=1

V �t�1M +

k+jX
t=k+1

Vc�
t�1
M

!
�
T (k+j)
M =

�
V � Vc

� �
1� �kM

�
1� �k+jM

+Vc

(1)

and

�
hk;ji
P = (1� �P )

1X
T=0

 
kX
t=1

V �t�1P +

k+jX
t=k+1

Vc�
t�1
P

!
�
T (k+j)
P =

(V � Vc)
�
1� �kP

�
1� �k+jP

+ Vc

(2)

In order for the strategy
�
�
hk;ji
M ; �

hk;ji
P

�
to be sustained in the game �1pd (�M ; �P ),

�
hk;ji
i must be at least as much as the average discounted payo¤ of i over the entire

game when he/she decides to deviate at some time d 8. Although this requires us

to identify the condition for the possible deviation at each and every stage of the

in�nite game, the following lemmas (1-3) allow us to simplify our investigation.

The �rst limits our investigation from in�nite number of stages into just the �rst

k+j stages. The second asserts that deviation cannot occur during tolerant stages

(k stages) while the third shows the monotonic property of payo¤s when deviating

during the cooperative stages (j stages).

Lemma 1.
The condition not to deviate at the nth stage of a PTTS, where n is an integer

from 1 to k + j, is the same condition that holds for any n + T (k + j)th stage,

where T is any positive integer.

8This method of comparing the entire-game yield between the no-deviation and the dth period-
deviation case should provide same result as when comparing only their continuation payo¤s from
d, since their average discounted payo¤ before d are the same. I refrain from the typical use of
continuation payo¤s for computational simplicity.

13



Proof:
Let



x(s)
�k+j
s=1

be an arrangement of payo¤s for the �rst k + j stages with a

discounted sum of Shk;ji = x(1) + x(2)� + ::: + x(k+j)�
k+j�1. When no deviation

occurs from the periodic tolerant strategy,


x(s)
�k+j
s=1

is repeated in�nitely times

and has a discounted sum of Shk;ji + Shk;ji�
k+j + Shk;ji�

2(k+j) + ::: . A deviation at

nth stage, where n � k + j, has a payo¤ pro�le of
D

x(s)
�n�1
s=1

; x(n);


x̂(s)
�1
s=n+1

E
,

where x(n) is the payo¤ from deviating at n and x̂ is the subsequent punishment

payo¤ the deviant receives. Denoting the discounted sum of this deviation path

as SD, we write the condition for sticking to the strategy at stage n as Shk;ji +

Shk;ji�
k+j + Shk;ji�

2(k+j) + ::: � SD.
Now, observe that when deviation occurs at n+(k+ j)th stage, the discounted

sum of the deviation path is Shk;ji + SD�
k+j; while at n + 2(k + j)th stage, it is

Shk;ji + Shk;ji�
k+j + SD�

2(k+j); and so on. Thus, the condition for not deviating at

n+ T (k + j)th stage, for any positive integer T , is as follows:

Shk;ji+Shk;ji�
k+j+Shk;ji�

2(k+j)+::: � Shk;ji + Shk;ji�
k+j + :::+ Shk;ji�

(T�1)(k+j)| {z }
T number of terms

+SD�
T (k+j):

Cancelling the �rst T terms on both sides, we get:

Shk;ji�
T (k+j) + Shk;ji�

(T+1)(k+j) + Shk;ji�
(T+2)(k+j) + ::: � SD�T (k+j):

Then, by dividing both sides by �T (k+j), we obtain the same condition Shk;ji +

Shk;ji�
k+j + Shk;ji�

2(k+j) + ::: � SD.

Lemma 2.
Both players will not �nd it pro�table under PTTS to deviate during any stage

of tolerance.

Proof:
By de�nition, player P�s average payo¤ in sticking to the strategy is higher than

the minimax level, V̂ . Clearly, to deviate during any of the prescribed tolerant

stages will give her an average payo¤of at most V̂ , that is, (1� �P ) (
Pk0

t=1 V �
t�1
P +P1

t=k0+1 V̂ �
t�1
P ) � V̂ , where k0 � k is the number of tolerant stages conceded before

deviating in the next stage. If k0 = 0, then the game reverts to the minimax

14



equilibrium where P gets exactly V̂ . For player M , to deviate at the stage when

he is tolerated only gives him a lower payo¤ Vc < V . Moreover, the fact that his

future stage payo¤s are reverted to the minimax level after such deviation only

deprives him of getting higher average income.

The moment P deviates during one of these tolerant stages, she loses the pos-

sibility of getting the cooperation of M in the future which could give her higher

payo¤, enough to even cover her losses during those tolerant stages. Similarly, M

would not think of deviating during periods of tolerance since he is being tolerated

to get high returns. Hence, we are left with the cooperative stages as the only

possible periods where deviation can occur. In particular, we look for the highest

payo¤ one can derive from all those possible deviations during the cooperative

stages. This is presented formally as follows:

D
hk;ji
M = (1� �M)

kX
t=1

V �t�1M + max
q2f0;1;:::;j�1g

�M

�
Vc(q); V ; V̂ ; �M

�
; (3)

where �M(�) = (1� �M)
 

k+qX
t=k+1

Vc�
t�1
M + V �k+qM +

1X
t=k+q+2

V̂ �t�1M

!

D
hk;ji
P = (1� �P )

kX
t=1

V �t�1P + max
r2f0;1;:::j�1g

�P

�
Vc(r); V ; V̂ ; �P

�
; (4)

where �P (�) = (1� �P )
 

k+rX
t=k+1

Vc�
t�1
P + V �k+rP +

1X
t=k+r+2

V̂ �t�1P

!
:

The function �i(�) depicts the average discounted payo¤ from deviating during
the cooperative stages while the imbedded parameters q and r are the players�

respective number of stages given to cooperation just before deviating from the

strategy. Note that when q and r are equal to j, this means that deviation occurs

at the stage of tolerance which was already ruled out in Lemma 2. Lemma 3 allows

us to determine the maximum entire-game payo¤ one can obtain from deviating

at any time during these cooperative stages.
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Lemma 3. (Monotonicity)
(i) �M(�) is monotone decreasing in q.
(ii) �P (�) is monotone increasing in r.

Proof:

(i) �M(�) = (1� �M)
 

k+qX
t=k+1

Vc�
t�1
M + V �k+qM +

1X
t=k+q+2

V̂ �t�1M

!
= Vc�

k
M (1� �

q
M) + V �

k+q
M (1� �M) + V̂ �k+q+1M

= Vc�
k
M + (V � Vc)�

k+q
M � (V � V̂ )�k+q+1M

= Vc�
k
M + �

k+q
M

h
(V � Vc)� (V � V̂ )�M

i
= Vc�

k
M + �

k+q
M (V � V̂ )(~� � �M):

Both terms in the last equation are positive. And since 0 < �M < 1, �k+qM

decreases in q and so as �M(�).

(ii) �P (�) = (1� �P )
 

k+rX
t=k+1

Vc�
t�1
P + V �k+rP +

1X
t=k+r+2

V̂ �t�1P

!
= Vc�

k
P (1� �rP ) + V �k+rP (1� �P ) + V̂ �k+r+1P

= Vc�
k
P + �

k+r
P

h
(V � Vc)� (V � V̂ )�P

i
= Vc�

k
P + �

k+r
P (V � V̂ )(~� � �P )

Given that 1 > �P > ~�, the last term is always negative and therefore any

increase in r reduces the negative value of the last term which increases �P (�).

By Lemma 3, we obtain the highest values of �M(�) and �P (�) when q = 0 and
r = j � 1, respectively, hence:

D
hk;ji
M = V � (V � V̂ )�k+1M and (5)

D
hk;ji
P = V � (V � Vc)�kP + (V � Vc)�

k+j�1
P � (V � V̂ )�k+jP : (6)
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Thus, the no-deviation condition for the strategy
�
�
hk;ji
M ; �

hk;ji
P

�
, for any k; j 2

Z+, is characterized by the inequality �hk;jii � Dhk;ji
i , for both i. Consequently, this

condition provides a range of values of �M and �P that can support the �delity of

players to a periodic tolerant contract parameterized by k and j. Caution however

should be made since some outcomes induced by these periodic contracts may even

fail to be individually rational.

4.2. Cooperation before tolerance

An impatient player can also be made to cooperate initially despite having

�M < ~�, provided that the contract ensures that he be tolerated afterwards, in a

periodic fashion i.e.
�
�
hj;ki
M ; �

hj;ki
P

�
. An immediate question that can arise is how

di¤erent is this strategy from the previously discussed
�
�
hk;ji
M ; �

hk;ji
P

�
in character-

izing the set of no-deviation outcomes. One can observe immediately that their

payo¤ yields are di¤erent in the sense that when a PTTS
�
�
hj;ki
M ; �

hj;ki
P

�
is followed

faithfully over the entire game, the respective average discounted payo¤ to M and

P are:

�
hj;ki
M = (1� �M)

1X
T=0

 
jX
t=1

Vc�
t�1
M +

j+kX
t=j+1

V �t�1M

!
�
T (j+k)
M =

�
Vc � V

� �
1� �jM

�
1� �j+kM

+V

(7)

and

�
hj;ki
P = (1� �P )

1X
T=0

 
jX
t=1

Vc�
t�1
P +

j+kX
t=j+1

V �t�1P

!
�
T (j+k)
P =

(Vc � V )
�
1� �jP

�
1� �j+kP

+ V

(8)

Notice that these results are di¤erent from the values of �hk;jiM and �hk;jiP ; as

seen from (1) and (2). Interestingly however, the conditions that allow the strategy�
�
hj;ki
M ; �

hj;ki
P

�
to generate no-deviation outcomes are the same with the strategy�

�
hk;ji
M ; �

hk;ji
P

�
. In brief, we say that �hk;jii � Dhk;ji

i and �hj;kii � Dhj;ki
i are identical,

as shown in the following proposition.

Proposition 2. (Equivalence) For any k; j 2 Z+, the PTTS
�
�
hk;ji
M ; �

hk;ji
P

�
17



and
�
�
hj;ki
M ; �

hj;ki
P

�
constitute the same range of values of �M and �P that can

support the no-deviation condition during the contract regime of the repeated game.

These values are de�ned by the following conditions:

For player M : �jM �
~� � �M
~� � �k+1M

(9)

For player P : �jP � ��kP + A
1� �kP

�k�1P

�
�P � ~�

� , where A = V � Vc
V � V̂

< 0 (10)

Proof: Appendix

From the results of Lemmas 1-3 and Proposition 2, the characterization of the

set of perfect equilibrium outcomes can now be expressed in the following theorem.

Theorem 1. In a game �1pd (�M ; �P ), where �M < ~� < �P and where ~� is the

minimum level of discount factor that can support a cooperative outcome, there

exists a (subgame) perfect equilibrium characterized by PTTS
�
�
hk;ji
M ; �

hk;ji
P

�
and�

�
hj;ki
M ; �

hj;ki
P

�
, where k; j 2 Z+,

(a) for all �M 2
�
�M ;

~�
�
and �P 2 (�P ; 1), where �M 2

�
~�
1+~�
; ~�
�
and

�P 2
�
~�; 1
�
and

(b) with average discounted payo¤s of �hk;jiM , �hj;kiM 2 (Vc; V ) and �hk;jiP ,

�
hj;ki
P 2 (V̂ ; Vc).

Clearly, by the assertion of Theorem 1(b), the classic Folk Theorem result is not

obtained here since payo¤s between V̂ and Vc are not feasible to M . Nonetheless,

for those payo¤s restored in perfect equilibrium, the theorem depicts well the range

of discount factors that can support them.

Proof:
(a)

(Step 1) Recall �rst that any deviation at any stage of a prisoner�s dilemma

game is responded by a minimaxing Nash punishment, making the punishment

regime always binding. Thus, one only needs to guarantee that there will also be

no incentive to deviate during the contract regime. Lemmas 1, 2, and 3 reduce
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this condition of no-deviation to �hk;jii � Dhk;ji
i while Proposition 2 shows that this

is equivalent to �hj;kii � Dhj;ki
i and is brought down to the equilibrium constraints

for each player, as depicted in (9) and (10). To complete the characterization of

perfect equilibrium payo¤s, we invoke the de�nition of TTS, i.e. �hk;jiP > V̂ and

�
hj;ki
P > V̂ (individually rational condition (IRC)). We show later in the proof

of Theorem 1 (b) that these payo¤s above V̂ , while ful�lling condition (10), do

certainly exist.

Our goal in the next step is to pin down the lowest possible values of �M and

�P on which perfect equilibrium can still be satis�ed. A key to this is the result

of Lemma 4, presented at the end of the proof.

(Step 2.1) Set a correspondence �M : Z+ � Z+ ! &
��
0; ~�
��

de�ned by9

�M(k; j) =

(�
�M ; ~�

�
�
�
0; ~�
� ����� �

j
M � ~���M

~���k+1M

; for a given (k; j) 2 Z+ � Z+

and ~� 2 (0; 1)

)
:

Note that the lowest �M of the interval
�
�M ; ~�

�
is solved by the equality part

of (9).

(i) Fix j at jo. Then, as k increases, �M decreases (by Lemma 4(i)), which

expands the set �M(k; jo). Thus, �M is monotone increasing in k, i.e. �M(k; jo) �
�M(k + 1; jo).

(ii) Fix k at ko. Then, as j increases, �M increases (by Lemma 4(i)) and

approaches ~�. Thus, �M is monotone decreasing in j, i.e. �M(ko; j) � �M(ko; j +
1).

From (i) and (ii), �M is largest when k !1 and j = 1; hence, we solve from

(9) that the least �M , i.e. �M , is
~�
1+~�
. Thus, for any �nite k; j 2 Z+ that satis�es

(9), �M 2
�

~�
1+~�
; ~�
�
.

(iii) Finally, we show that P can likewise admit a pro�le where j = 1 and

k !1 by satisfying (10) and the IRC. Consider the strategy pro�le �h1;ki. Then,

k !1) �
h1;ki
P � Dh1;ki

P > V̂ , making (10) the only binding constraint. We write

9&
��
0; ~�
��

reads as the power set of the interval
�
0; ~�
�
.
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(10) as �k+jP � 1 + A �P (1��kP )
�P�~�

and as k ! 1, this implies that �h1;ki is supported
for as long as A � �1 + ~�

�P
.

(Step 2.2) Similarly, we set a correspondence �P : Z+ � Z+ ! &
��
~�; 1
��

de�ned by

�P (k; j) =

8<:(�P ; 1) � �~�; 1�
������ �

j
P � ��kP + A

1��kP
�k�1P (�P�~�)

; where (k; j) 2 Z+ � Z+;
~� 2 (0; 1) and A = V�Vc

V�V̂

9=; :
We argue in a similar fashion as above where in this case the lowest �P of the

interval (�P ; 1) is solved by the equality condition of (10). By Lemma 4 (ii), it

implies that �P increases in k, therefore �P (k; j) is monotone decreasing in k i.e.

�P (k; jo) � �P (k+1; jo). On the other hand, �P (k; j) is monotone increasing in j
i.e.. �P (ko; j) � �P (ko; j+1) since �P decreases in j. Thus, set �P (k; j) is largest
when k = 1 and j ! 1 (and this can easily pass the IRC, e.g. �hj;1iP > V̂ for

j !1). By plugging in these values in the equality of (10), we obtain the lowest �P
as �P =

(A+1)�
p
(A+1)2�4A~�
2A

. Since lim
A!�1

�P = 1 > lim
A!�1

�P

p
~� > lim

A!0
�P =

~�, this

implies that for any �nite k; j 2 Z+ that satis�es (10) and for A < 0, �P 2
�
~�; 1
�
.

Finally, we show that strategy pro�les �hj;1i and �h1;ji, where j ! 1, are both
admissible to player M . Suppose �M ! ~�, then we see that �jM � ~���M

~���2M
, ~�

j � 0
is satis�ed even if j !1.
(b)

Since �hk;jiM =
(V�Vc)(1��0kM)

1��0k+jM

+ Vc and
1��0kM
1��0k+jM

2 (0; 1) for any k; j 2 Z+ and

�0M 2
�
�M ;

~�
�
, we obtain �hk;jiM 2

�
Vc; V

�
. A similar argument also allows us to

show that �hj;kiM 2
�
Vc; V

�
.

For player P with �0P 2 (�P ; 1), the IRC is binding only for some pairs of k; j 2
Z+, such that �hk;jiP =

(V�Vc)(1��0kP )
1��0k+jP

+ Vc > V̂ , k < k(j) =
�

1
log �0P

�
log
�

1��
1���0jP

�
where � = Vc�V̂

Vc�V 2 (0; 1). This shows that when k < k(j), we have �
hk;ji
P > V̂ and

since 1��0kP
1��0k+jP

2 (0; 1), we clearly have �hk;jiP 2
�
V̂ ; Vc

�
. Similarly, it can be shown

that the IRC is satis�ed for pro�le �hj;kiP i¤ j < j(k) =
�

1
log �0P

�
log
�

�

1�(1��)�0kP

�
.
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Thus, when j < j(k), we have �hj;kiP 2
�
V̂ ; Vc

�
since 1��0jP

1��0j+kP

2 (0; 1).

Lemma 4. The real roots �M and �P of the equations �jM =
~���M
~���k+1M

and

�jP = ��kP + A
1��kP

�k�1P (�P�~�)
, respectively, that exist and belong to the interval (0; 1),

behave in the following manner with respect to k and j, for any k; j 2 Z+:
(i) @�M

@k
< 0 and @�M

@j
> 0 (ii) @�P

@k
> 0 and @�P

@j
< 0

Proof: Appendix

4.3. Sets of perfect equilibrium payo¤s

The result in Theorem 1 shows that for any discount factors between the in-

terval
�
~�;

~�
1+~�

�
forM and between (~�; 1) for P; there exists a combination of �nite

number of stages of tolerance (k) and cooperation (j) that can generate perfect

equilibrium payo¤s. Any combination of k and j that satis�es Proposition 2 there-

fore generates a distinct set of possible equilibrium payo¤s for both players under

the strategies
�
�
hk;ji
M ; �

hk;ji
P

�
and

�
�
hj;ki
M ; �

hj;ki
P

�
. Through the results of Lemma 5,

we graph some of these sets in Figure 2. Note however that for some combinations

of k and j, it is possible for P to generate payo¤s lower than V̂ and yet admits

the condition in Proposition 2. These strategy pro�les that yield such payo¤s vi-

olate the de�nition of TTS (individually rational condition) and are therefore not

equilibrium outcomes. On the other hand, there is no danger for M to fail the

individually rational condition since its payo¤ structure is always above Vc.

Lemma 5. For any given k; j 2 Z+, � 2 Z+nf1g; �M 2
�
�M ;

~�
�
, and �P 2

(�P ; 1) :

(i) �
hk;ji
M > �

hj;ki
M

(ii) �hj;kiP > �
hk;ji
P >

(iii) �hj;kiM > �
h�j;�ki
M and �hk;jiM < �

h�k;�ji
M

(iv) �hj;kiP > �
hj;�ki
P and �hk;jiP > �

h�k;ji
P

Proof : Appendix

Remark. Lemma 5 illustrates well how the use of strategies �hk;ji and �hj;ki

and the level of k and j a¤ect the players average payo¤s. The patient player,
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for instance, obtains higher payo¤ under the strategy �hj;ki than in �hk;ji for any

given k and j. Moreover, she is always better o¤ when the number of tolerant

stages (k) is kept as low as possible.

Figure 2: Each rectangular block in the �gure corresponds to a set of perfect

equilibrium payo¤s generated by the strategy �hk;ji or �hj;ki. The label hj = 2; k = 1i,
for example, denotes that the strategy �hj=2;k=1i is used.

5. Limit, Optimal, and Cooperative Tolerance

In this section, we study the case where a �xed �0M is set within the range�
�M ;

~�
�
vis-à-vis a �P that is very close to 1. The idea here is to answer the

question how long can a very patient player tolerate a given impatient person

in such a way that they still maintain an equilibrium payo¤ better than what

they will receive in a single stage-game. This notion of limit tolerance explores

the boundary to which PTTS can remain e¤ective and enforceable. Moreover, it

is also an interest to know how a patient player, in the course of setting o¤ers of

tolerance to the other, optimizes her returns. Thus, apart from generating superior

equilibria, she is also concerned of maximizing her average income without making

the other defect at any time of the game. Notice however that as the patient player

tries to increase her payo¤ towards Vc, the other�s payo¤ sinks towards Vc from
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above. This, in the end, leads us to conjecture the attainability of a cooperative

outcome.

Proposition 3. For a given �0M 2
�
�M ;

~�
�
and any �P close to 1:

(a) (Limit Tolerance) the maximum level of tolerance P can render to M (re-

gardless of payo¤s) for any j number of cooperative stages is

k� = Z

0@j
�
Vc � V̂

�
�
V̂ � V

�
1A ; (11)

where Z(x) is de�ned as the greatest integer less than x.

(b) (Optimal Tolerance) player P maximizes her income from a PTTS by of-

fering j� stages of cooperation and a 1-stage tolerance, i.e. max�P = �
hj�;1i
P ,

where

j� = eZ 1

log �0M
log

 
~� � �0M
~� � �02M

!!
; (12)

and where eZ(x) is the greatest integer less than or equal to x.
(c) (Cooperative Tolerance) the cooperative outcome (Vc; Vc) can be approxi-

mated as �0M ! ~�.

Despite the asymmetric payo¤s earned by players through a tolerant strategy

pro�le, cooperative outcome can almost be reproduced under certain conditions

(i.e. when �0M approaches ~� and when j is set at a high level). This result is

appreciated better when we recall that under the usual trigger strategy, when

�0M becomes just below ~�, the e¤ect is evident as the once achievable cooperative

outcome can no longer be supported by pure strategies and the game immediately

drops to a lower equilibrium
�
V̂ ; V̂

�
. Hence, in situations when �0M < ~�, the PTTS

not only can o¤er superior equilibria than the normal trigger strategy, but also can

achieve an almost-cooperative outcome.

23



Proof:
(a) We are interested in �nding

k� = sup
n
k 2 Z+

���n�hj;kiP � Dhj;ki
P

o
\
n
�
hj;ki
P > V̂

o
; for any j 2 Z+

o
as we consider the pro�le �hj;kiP . As �P ! 1, the condition

n
�
hj;ki
P � Dhj;ki

P

o
\n

�
hj;ki
P > V̂

o
leads to the inequality requirement �hj;kiP = (Vc�V ) j

j+k
+V > V̂ , for

any j; k 2 Z+. Rearranging, we obtain k < j
�
Vc�V̂
V̂�V

�
. In the case of pro�le �hk;jiP ,

the condition
n
�
hk;ji
P � Dhk;ji

P

o
\
n
�
hk;ji
P > V̂

o
leads to �hk;jiP = (V � Vc) k

k+j
+Vc >

V̂ as �P ! 1 and for any j; k 2 Z+. Rearranging, we get an identical result to
pro�le �hj;kiP above. Thus, k� is the highest integer less than j

�
Vc�V̂
V̂�V

�
, for any

j 2 Z+. And since pro�les �hj;k�i and �hk�;ji could easily pass the equilibrium
requirements for M , we have completed the proof for (a).

(b) By Lemma 5(ii), P receives a higher payo¤ from the pro�le �hj;ki than from

�hk;ji. Moreover, for any j, �hj;kiP is highest when k = 1 by Lemma 5(iv). Now, we

apply the condition
n
�
hj;1i
i � Dhj;1i

i

o
\
n
�
hj;1i
i > V̂

o
for both players. For P , we

see from (a) that as �P ! 1, this implies that k < j
�
Vc�V̂
V̂�V

�
. Once this is satis�ed,

any further increase in the number of cooperative stages,j, would never induce P

to deviate. This is not so, however, for M whose incentive not to deviate is given

by �0jM � ~���0M
~���0k+1M

, j �
�

1
log �0M

log
�

~���0M
~���0k+1M

��
. Thus, for k = 1, the highest j that

could still make M abide is j� = eZ� 1
log �0M

log
�
~���0M
~���02M

��
, where eZ(x) is the greatest

integer less than or equal to x .

(c) Since P is never constrained by any increase of the number of cooperative

stages for as long as k < j
�
Vc�V̂
V̂�V

�
, then we see that lim

�P!1
j!1

�
hj;ki
P =

(Vc�V )(1��jP )
1��j+kP

+V =

Vc. On the other end, one can also observe that lim
j!1

�
hj;ki
M = Vc: However,M has to

satisfy the condition �0jM � ~���0M
~���0k+1M

to generate perfect equilibrium points. Observe

that even if j !1, this condition for M can still be satis�ed when �0M ! ~� since

lim
�0M!~�

~���0M
~���0k+1M

= 0, for any k 2 Z+.
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6. Equilibrium Restoration

As in the previous discussion, ~� is de�ned as the smallest value of �M that

can support the cooperative outcome Vc in equilibrium under the normal trigger

strategy. In fact, as long as �M > ~�, not only Vc but all VMs in R that are above

Vc can be sustained in equilibrium when there is public randomization. Notice

also that each of these VMs has its corresponding threshold discount factor that

decreases as VM increases. Now, we de�ne:

~� = inf

�
~� 2 (0; 1)

���� ~� = V � VM
V � V̂

; for all VM 2 R such that vector (VM ; �) 2 R
�

(13)

Therefore, when M is extremely impatient such that �M < ~�, there is no

more payo¤ VM in R (i.e. feasible and individually rational) that can achieve

equilibrium. This complete loss of equilibrium payo¤s can nonetheless be restored

using PTTS which only manifests its greater e¢ ciency over the normal trigger

strategy in situations when an impatient player exists.

Theorem 2. (Equilibrium Restoration) For some �M < ~� such that there is

no more individually rational payo¤ that can be sustained in equilibrium by the

normal trigger strategy, there still exist some individually rational equilibria using

PTTS.

Proof:
Let V �M 2 R be the highest average payo¤ to M that can be sustained in

perfect equilibrium using the normal trigger strategy with public randomization,

if needed. Denote its corresponding discount factor threshold as ~�, such that

for every �M = ~� � ", for small " > 0, there is no more VM in R that can

be supported in equilibrium by the normal strategy. Pick two pure strategy

payo¤s: V being the highest possible and Vc being any pure strategy payo¤ in

R. Consider V 0M as an average payo¤ generated by a PTTS �hj;ki, such that

V 0M = �
hj;ki
M

�
Vc; V ; �M ; k; j

�
:10. By Theorem 1(a), we see however that equilib-

rium for M can still be obtained for all " � ~�
2
=
�
1 + ~�

�
. By Theorem 1(b), the

10By Proposition 2, the same result applies for both players if �hk;ji instead of �hj;ki is used.
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individually rational condition is satis�ed for both players. Thus, P receives simul-

taneously a payo¤ V 0P = �
hj;ki
P (Vc; V ; �P ; k; j) greater than V̂ , for some k; j 2 Z+.

And since payo¤ function is continuous in R2, the vector (V 0M ; V 0P ) always exists
for any ~� � " � �M < ~� and �P < 1.

7. Generalization to any Two-player Game

The main result in this section is presented in the following theorem.

Theorem 3. The results in Theorem 1 continue to hold for any two-person

game �1 (�M ; �P ) .

Theorem 1 restricts the result to prisoner�s dilemma game where punishment

regime is intrinsically a Nash equilibrium while Theorem 3 generalizes this result

to any two-person in�nitely repeated game. The main feature of the proof of the

latter is the typical simple punishment strategy proposed by Abreu (1988) that

imposes the same punishment for any deviation and which does not lead to an

escalating hierarchy of punishments as a result of dependence on past deviations.

Fudenberg and Maskin (1986) used this method in a form of limited punishment

which the proof of the above theorem tries also to employ.

The use of the minimaxing payo¤
�
V̂ ; V̂

�
in prisoner�s dilemma simpli�es sig-

ni�cantly the generation of equilibrium. In general, however, employing minimax-

ing payo¤ during the punishment regime may require mixed or correlated strate-

gies since direct pure-strategy actions may not be possible. In this scenario, we

simply assume that mixed strategies are observable or that there exists a public

randomization device that can attain the minimaxing payo¤
�
V̂M ; V̂P

�
so that

any deviation from these strategies can be detected. Unfortunately, the result of

Fudenberg and Maskin (1991), which shows the possibility of attaining it through

a cyclical set of pure-strategy actions, cannot be applied here since that result

requires all players to be very patient.

Proof:
De�ne a punishment regime (ála Fudenberg and Maskin, 1986) where both

players play their respective minimaxing payo¤s
�
V̂M ; V̂P

�
once a deviation occurs.
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Play this for z number of stages, enough to fully remove whatever the deviant has

gained, then both move back to the contract path. If there is any deviation while

in the punishment regime, then restart the punishment regime.

We conclude from Lemmas 1-3 that any deviation could only be made most

rewarding for M during the very �rst stage of cooperation, while for P , it is

during the last stage of cooperation. This means that under a strategy pro�le�
�
hk;ji
M ; �

hk;ji
P

�
, the punishment regime could independently set in on the (k + 1)th

stage and on the (k+j)th stage forM and P , respectively. As before, to guarantee

a no-deviation game scenario, each player�s payo¤ over the entire game must be at

least as much as their respective highest (entire-game) deviation payo¤s. Hence,

�
hk;ji
M =

�
V � Vc

� �
1� �kM

�
1� �k+jM

+ Vc � V
�
1� �k+1M

�
+ 'M�

k+1
M ; (14)

where 'M = (1� �zM) V̂M + �zM�
hk;ji
M

�
hk;ji
P =

(V � Vc)
�
1� �kP

�
1� �k+jP

+ Vc � V + (Vc � V ) �kP +
�
V � V �P � Vc

�
+ 'P �

k+j
P

(15)

where 'P = (1� �zP ) V̂P + �zP�
hk;ji
P

In case a deviation occurs, 'M and 'P will be the respective discounted average

payo¤s of the two players during punishment regime, as computed based on the

mechanics described in the �rst paragraph of this proof. Notice that whenever

a player deviates during this regime, z increases since punishment regime starts

again. And since both 'M and 'M decline continuously as z increases, both players

will �nd no gain from deviating (or from not punishing) at this phase, thus, making

the punishment regime binding.

By the minimum level of z that satis�es equations (14) and (15), we are assured

that any gain from a one-shot deviation is neutralized and therefore not worth

taking in the end. Now, think of a largest one-shot deviation that requires an

almost in�nite number of stages, z, to wipe out the gain that the deviant has

obtained. This pushes down 'M and 'P to their respective limit value of V̂M and
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V̂P (i.e. since lim
z!1

'i = V̂i). By substituting V̂M and V̂P respectively to equations

(14) and (15), we reached the same no-deviation conditions given in Proposition

2 and can show subsequently the similar conditions, as in Theorem 1(b), that

generate individually rational outcomes. And since this result analogously applies

to pro�le
�
�
hj;ki
M ; �

hj;ki
P

�
, we have completed the proof.

8. Final Remarks

The PTTS presented here are not the only types of TTS that are sustainable in

perfect equilibrium. Other tractable forms of TTS, though maybe quite complex

in structure, may still prove to generate sets of equilibrium payo¤ (an escalating

contract path
�
V ; Vc; V ; V ; Vc; Vc; V ; V ; V ; Vc; Vc; Vc; :::

�
is one example). Moreover,

even within the realm of cyclical TTS, certain structures that are di¤erent from

the presented PTTS may also generate sets of equilibrium payo¤s. The problem,

however, is that some of them may not have a monotonic property (as in Lemma

3) which makes it di¢ cult to characterize the timing of the highest-yielding pos-

sible deviation. Consider the strategy pro�le with a recurrent contract structure�
V ; V ; Vc; V ; Vc; Vc; V ; V ; Vc

�
. For some values of �M and �P , it is possible forM to

have its highest temptation on the 5th period (instead of 3rd) while for P on the

6th period (instead of 9th). Therefore, when one is presented with a long unsys-

tematic contract path that is in�nitely repeated, the greatest possible temptation

to deviate may lie somewhere in the middle of the contract regime which would

be laborious to characterize. In the end, our treatment of equilibrium outcomes

for TTS in this paper is not exhaustive and is limited only to simple periodic

strategies.

Furthermore, our study is con�ned only to two-player games. It would still be

possible to �nd equilibrium payo¤s in an n-player case, provided that a periodic

contract that exhibits monotonic payo¤ streams is adopted (although not the only

means). However, the characterization of perfect equilibria may prove to be elusive

as it may require a more sophisticated punishment system when there is more than

one impatient player in a game. In this scenario, it seeks to determine how the

number of impatient players in�uence the equilibrium outcomes of an n-player
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game, given the players�varying discount factors. We leave these questions at this

moment open for further research.
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Appendix:

Proposition 2: (Equivalence) For any k; j 2 Z+, the PTTS
�
�
hk;ji
M ; �

hk;ji
P

�
and�

�
hj;ki
M ; �

hj;ki
P

�
constitute the same range of values of �M and �P that can support

the no-deviation condition during the contract regime of the repeated game. These

values are de�ned by the following conditions:

For player M : �jM � ~���M
~���k+1M

For player P : �jP � ��kP + A
1��kP

�k�1P (�P�~�)
, where A < 0

Proof: We prove this directly by showing that the simpli�ed form of �hk;jii �
D
hk;ji
i and �hj;kii � Dhj;ki

i are the same for each i.

(A) �hk;jii � Dhk;ji
i :

a1) For player M :

�
hk;ji
M =

(V�Vc)(1��kM )
1��k+jM

+ Vc � V � (V � V̂ )�k+1M = D
hk;ji
M

) (V�Vc)(1��kM )
(V�Vc)�(V�V̂ )�k+1M

� 1� �k+jM (The denominator is always positive since
(V�Vc)
(V�V̂ ) =

~� > �k+1M )

) �k+jM � 1� ~�(1��kM )
(~���k+1M )

) �jM � ~���M
~���k+1M

.

a2) For player P :

�
hk;ji
P =

(V�Vc)(1��kP )
1��k+jP

+Vc � V�(V�Vc)�kP+(V�Vc)�
k+j�1
P �(V�V̂ )�k+jP = D

hk;ji
P

) (V�Vc)(1��kP )
1��k+jP

� (V � Vc)(1� �kP ) + (V � Vc)�
k+j�1
P � (V � V̂ )�k+jP
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) (V�Vc)(1��kP )
(V�V̂ )(1��k+jP )

� (V�Vc)
(V�V̂ ) (1� �

k
P ) +

~��k+j�1P � �k+jP

) (V�Vc)(1��kP )
(V�V̂ )(1��k+jP )

� ~���P
�P

) �k+jP � 1 + (V�Vc)
(V�V̂ )

�P (1��kP )
(�P�~�)

) �jP � ��kP + A
1��kP

�k�1P (�P�~�)
; where A = V�Vc

V�V̂ < 0:

(B) �hj;kii � Dhj;ki
i :

First, we note that in a no-deviation scenario, the strategy
�
�
hj;ki
M ; �

hj;ki
P

�
yields:

�
hj;ki
M =

(Vc�V )(1��jM )
(1��j+kM )

+ V and �hj;kiP =
(Vc�V )(1��jP )
(1��j+kP )

+ V .

Then, we write as follows the discounted payo¤ over the entire game of a one-

shot deviation scenario. Note from the analogue of Lemma 2 that starts with

cooperation that it is never pro�table to deviate during the stages of tolerance,

thus,

D
hj;ki
M = (1� �M)

 
qX
t=1

Vc�
t�1
M + V �qM +

1X
t=q+2

V̂ �t�1M

!
and

D
hj;ki
P = (1� �P )

 
rX
t=1

Vc�
t�1
P + V �rP +

1X
t=r+2

V̂ �t�1P

!
;

where q and r are again the numbers of stages given to cooperation by M and

P , respectively, just before defecting in the next stage. From Lemma 3, observe

that Dhj;ki
i = �i(�) when k is set to 0, for both i. This shows that Dhj;ki

i is also

monotonic in q and r, in a same manner speci�ed in Lemma 3, thus:

(b1) For player M , the highest deviation payo¤ occurs when q = 0:

�
hj;ki
M =

(Vc�V )(1��jM )
(1��j+kM )

+ V � V (1� �M) + V̂ �M = D
hj;ki
M

) ~�(1� �jM) � �M(1� �
k+j
M )) �k+j+1M � �M � ~� + ~��jM

) �jM(�
k+1
M � ~�) � �M � ~� ) �jM � ~���M

~���k+1M

:

(b2) For player P , the highest deviation payo¤ occurs when r = j � 1:
�
hj;ki
P =

(Vc�V )(1��jP )
(1��j+kP )

+ V � Vc + (V � Vc)�j�1P � (V � V̂ )�jP = D
hj;ki
P

) (Vc � V )(1� �jP ) �
h
(Vc � V ) + (V � Vc)�j�1P � (V � V̂ )�jP

i
(1� �j+kP )

) �jP (Vc � V )(�kP � 1) � �
j�1
P (V � Vc � V �P + V̂ �P )(1� �j+kP )

) �P
(V�Vc)
(V�V̂ ) (1� �

k
P ) � (�P � ~�)(�

j+k
P � 1)) �j+kP � 1 + A�P (1��

k
P )

(�P�~�)

) �jP � ��kP + A
(1��kP )

�k�1P (�P�~�)
; where A < 0.
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Comparing the results of (a1) with (b1) and (a2) with (b2), we conclude that

the conditions �hj;kii � D
hj;ki
i and �hk;jii � D

hk;ji
i constitute the same range of

values for �M and �P for every given k and j.

Lemma 4. The real roots �M and �P of the equations �jM =
~���M
~���k+1M

and

�jP = ��kP + A
1��kP

�k�1P (�P�~�)
, respectively, that exist and belong to the interval (0; 1),

behave in the following manner with respect to k and j, for any k; j 2 Z+:
(i) @�M

@k
< 0 and @�M

@j
> 0 (ii) @�P

@k
> 0 and @�P

@j
< 0

Proof:
(i) Let the �rst equation be rede�ned as an implicit function F (k; j; �M) :=

�M��k+j+1M

1��jM
= ~�. Then, @�M

@k
= � @F=@k

@F=@�M
and @�M

@j
= � @F=@j

@F=@�M
, where @F

@�M
6= 0 for any

�M 2 (0; 1) and k; j 2 Z+.
By di¤erentiating, we have

@F

@�M
=

(1� �jM)(1� (k + j + 1)�
k+j
M ) + j(1� �k+jM )�jM

(1� �jM)2

=
�k+jM

�
(k + 1)(�jM � 1)� j

�
+ (j � 1)�jM + 1

(1� �jM)2

We start by setting k = j = 1 which gives us @F
@�M

=
2�3M�3�2M+1
(1��M )2 > 0, for any

�M 2 (0; 1). We show that the numerator, denoted as z, further increases away
from zero when either k or j increases. First, @z

@k
= �k+jM [(�jM � 1) � ((k + 1)(1 �

�jM) + j) ln �M ]. For this expression to be positive, it must be that (�
j
M � 1) >�

(k + 1)(1� �jM) + j
�
ln �M ; or equivalently,

�1
ln �M

< (k + 1) +
j

(1� �jM)

Note that ln �M < 0 for all �M 2 (0; 1), and that the right hand side is least
when k = j = 1, i.e. �1

ln �M
< 2 + 1

(1��M ) , which is always true for all �M 2 (0; 1).
Thus, increasing k only increases the right hand side, making @z

@k
> 0. Next, we

32



show that @z
@j
> 0. Observe that,

z = �k+jM

�
(k + 1)(�jM � 1)� j

�
+ (j � 1)�jM + 1

> �k+jM

�
(k + 1)(�jM � 1)� j

�
+ (j � 1)�k+jM + 1

> �k+jM

�
(k + 1)(�jM � 1)� 1

�
+ 1

> 0 when k = j = 1; for all �M 2 (0; 1):

Although the �rst term is always negative, it approaches zero as j increases.

Thus, z > 0 for any k; j 2 Z+ and �M 2 (0; 1), which implies that @F
@�M

> 0.

Now, since ln �M < 0, for all �M 2 (0; 1); we see that @F
@k
=

��k+j+1M ln �M

1��jM
> 0 and

@F
@j
=

�j+1M (1��kM ) ln �M
(1��jM )2

< 0, for any k; j 2 Z+ and �M 2 (0; 1). Following the formula
above, we obtain @�M

@k
< 0 and @�M

@j
> 0.

(ii) Let the second equation be rede�ned as an implicit function G (k; j; �P ) :=

�P

�
1 +

A(1��kP )
(1��k+jP )

�
= ~�. Then, @G

@�P
= 1+ Aẑ

(1��k+jP )2
, where ẑ = (1��k+jP )

�
1� (k + 1)�kP

�
+

(k + j)(1� �kP )�
k+j
P . We will show that @G

@�P
> 0 for any k; j 2 Z+. First, observe

that

ẑ = 1� (k + 1)�kP + (k + j � 1)�
k+j
P � (j � 1)�2k+jP

> 1 + k�k+jP � (k + 1)�kP = 1 + �kP (k�
j
P � (k + 1))

> 0 for k = j = 1:

As k increases, ẑ remains positive and approaches 1; while as j increases, ẑ > 0

for as long as �P <
�

1
k+1

� 1
k , otherwise if ẑ � 0, we are done with @G

@�P
> 0 since A

is negative. Thus, when ẑ > 0, @G
@�P

> 0 i¤A � � (1��k+jP )2

ẑ
. To determine the least

lower bound of A, see that (a) as k ! 1 for any j, A � �1; (b) as j ! 1, the
bound is least when k = 1, i.e. A � � 1

1�2�P ; and (c) for k = j = 1, A � �(1+�P )
2.

By (b), A! �1 as �P ! (1=2)� and so
@G
@�P

> 0 for any k; j 2 Z+ and for A < 0.
Next, we see that @G

@k
=

A�k+1P (�jP�1) ln �P
(1��k+jP )2

< 0 and @G
@j
=

A�k+j+1P (1��kP ) ln �P
(1��k+jP )2

> 0 for

all �P 2 (0; 1) and k; j 2 Z+. Hence, from the analogous formula in (i), we have
@�P
@k
> 0 and @�P

@j
< 0.

Lemma 5: For any given k; j 2 Z+, � 2 Z+nf1g; �M 2
�
�M ;

~�
�
, and �P 2
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(�P ; 1) :

(i) �
hk;ji
M > �

hj;ki
M

(ii) �hj;kiP > �
hk;ji
P

(iii) �hj;kiM > �
h�j;�ki
M and �hk;jiM < �

h�k;�ji
M

(iv) �hj;kiP > �
hj;�ki
P and �hk;jiP > �

h�k;ji
P

Proof:
(i) Suppose �hk;jiM ��hj;kiM � 0. Then, (V�Vc)(1��

k
M )

1��k+jM

+ Vc� (Vc�V )(1��jM )
(1��j+kM )

� V � 0.

) (V �Vc)
�
(1��kM )
(1��k+jM )

+
(1��jM )
(1��k+jM )

� 1
�
� 0) (V �Vc)(1� �jM)(1� �kM) � 0.

Since V � Vc > 0 and that for any �kM ; �
j
M 2 (0; 1) for any �nite k; j 2 Z+, the

above inequality is a contradiction, thus �hk;jiM � �hj;kiM > 0.

(ii) Suppose �hj;kiP ��hk;jiP � 0. Then, (Vc�V )(1��
j
P )

(1��j+kP )
+ V � (V�Vc)(1��kP )

(1��k+jP )
� Vc � 0.

) (Vc� V )
�

(1��jP )
(1��j+kP )

+
(1��kP )
(1��j+kP )

� 1
�
� 0) (Vc� V )(1� �kP )(1� �

j
P ) � 0.

Since Vc > V and with the similar argument as (i) above, we have a contradic-

tion. Therefore, �hj;kiP � �hk;jiP > 0.

(iii) Suppose �hj;kiM � �h�j;�kiM . Then, we have:

�
hj;ki
M =

(Vc�V )(1��jM )
(1��j+kM )

+ V � (Vc�V )(1���jM )

(1���(j+k)M )
+ V = �

h�j;�ki
M

) (1��jM )
(1��j+kM )

� (1���jM )

(1���(j+k)M )
since Vc � V < 0

) (1��j+kM )(1+�j+kM +�
2(j+k)
M +:::+�

(��1)(j+k)
M )

(1��j+kM )
� (1��jM )(1+�

j
M+�

2j
M+:::+�

(��1)j
M )

(1��jM )

) �jM(1 � �kM) + �
2j
M(1 � �2kM) + ::: + �

(��1)j
M (1 � �(��1)kM ) � 0, which is

a contradiction since all terms are positive for �M 2 (0; 1); k; j 2 Z+, and � 2
Z+nf1g. Hence, �hj;kiM > �

h�j;�ki
M .

Similarly, suppose �hk;jiM � �h�k;�jiM . Then,

�
hk;ji
M =

(V�Vc)(1��kM )
1��k+jM

+ Vc � (V�Vc)(1���kM )

1���(k+j)M

+ Vc = �
h�k;�ji
M

) (1��k+jM )(1+�k+jM +�
2(k+j)
M +:::+�

(��1)(k+j)
M )

(1��k+jM )
� (1��kM )(1+�kM+�2kM+:::+�

(��1)k
M )

(1��kM )

) �kM(1� �
j
M) + �

2k
M(1� �

2j
M) + :::+ �

(��1)k
M (1� �(��1)jM ) � 0, also a contra-

diction.

(iv) Suppose �hj;�kiP � �hj;kiP . Then �hj;�kiP =
(Vc�V )(1��jP )
(1��j+�kP )

+ V � (Vc�V )(1��jP )
(1��j+kP )

+

V = �
hj;ki
P

34



) 1

(1��j+�kP )
� 1

(1��j+kP )
) �j+�kP � �j+kP , a contradiction for all �P 2 (0; 1);

k; j 2 Z+, and � 2 Z+nf1g. Hence, �hj;�kiP < �
hj;ki
P .

Suppose �h�k;jiP � �hk;jiP . Then, �h�k;jiP =
(V�Vc)(1���kP )

(1���k+jP )
+ Vc � (V�Vc)(1��kP )

(1��k+jP )
+ Vc

) (1� ��kP )(1� �
k+j
P ) � (1� ��k+jP )(1� �kP ); since V � Vc < 0

) (1 � �jP )(�kP � ��kP ) � 0, which is not true for any �P 2 (0; 1) and

� 2 Z+nf1g.
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