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Abstract

We study a variation of the one sector stochastic optimal growth model with inde-
pendent and identically distributed shocks where agents acquire information that enables
them to accurately predict the next period’s productivity shock (but not shocks in later
periods). Optimal policy depends on the forthcoming shock. A "better" predicted real-
ization of the shock that increases both marginal and total product always increases next
period’s optimal output. We derive conditions on the degree of relative risk aversion and
the elasticity of marginal product under which optimal investment increases or decreases
with a better shock. Under fairly regular restrictions, optimal outputs converge in distri-
bution to a unique invariant distribution whose support is bounded away from zero. We
derive explicit solutions to the optimal policy for three well known families of production
and utility functions and use these to show that volatility of output, sensitivity of output
to shocks and expected total investment may be higher or lower than in the standard
model where no new information is acquired over time; the limiting steady state may also
differ significantly from that in the standard model.
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1 Introduction

Capital accumulation and economic growth are often affected by fluctuations that are exoge-
nous to economic decision makers. Models of economic growth under uncertainty capture
these exogenous fluctuations through aggregate technology shocks. In these models, at each
point of time, economic agents make their consumption and investment decisions on the basis
of commonly known probability distributions of future technology shocks (that are realized
after investment decisions are made). While the sources of these exogenous shocks are of-
ten left unspecified, in reality they are not necessarily external to society. To a significant
extent, they emanate from institutional, political or natural environments in which the econ-
omy operates.1 In today’s world, economic decision makers are often able to acquire detailed
information about these environments, and receive informed forecasts from experts as well as
signals from central banks and governments that allow them to make good predictions about
possible changes in these environments in the immediate future (though they may remain
very uncertain about changes in the distant future). It is important to understand how the
economic incentives for capital accumulation respond to better predictability of aggregate
"shocks" in the near future, and in particular how this affects macroeconomic aggregates in
the process of economic growth. This paper addresses these issues in an optimal stochastic
growth model.

The most widely used model of economic growth under uncertainty is the one sector
neoclassical stochastic optimal growth model2 due to Brock and Mirman (1972)3 which is
generally recognized as the stochastic analogue of the well known Ramsey-Cass-Koopmans
(RCK) model4 of deterministic optimal economic growth. In the Brock-Mirman model, the
aggregate production function depends on the realization of the current technology shock,
and the shocks are independent and identically distributed over time. In each period, af-
ter observing the current output, consumption and investment decisions are made prior to
the realization of the next period’s shock which, in turn, affects the output resulting from
investment (or, the return on investment). The subsequent literature on stochastic growth
has retained this information structure underlying the decision making process (even while
extending and generalizing the model in many directions).5

In this paper, we modify the information structure in the Brock-Mirman model in order to
capture the ability of agents to make better predictions of shocks in the immediate future. In
the modified model, before making their consumption and investment decisions in each period,
agents acquire new information that enables them to make a more informed prediction of the
realization of the shock next period (i.e. the shock affects the output resulting from current
investment). In order to bring out the effect of short run predictability in a stark fashion,
we assume that the prediction is perfectly accurate, i.e., agents foresee correctly the exact

1Examples include meteorological fluctuations, changes in legal and regulatory systems that govern the
conduct of business (for instance, the diversion of entrepreneurial talent to rent seeking activities) and alter
the cost of non-market inputs. See, Hansen and Prescott (1993).

2The model itself can be interpreted as one of decentralized "equilibrium growth" under technological
uncertainty in a competitive representative agent economy.

3Levhari and Srinivasan (1969) consider a version of this model with linear production function.
4Ramsey (1928), Cass (1965), Koopmans (1965).
5See, among others, Donaldson and Mehra (1983), Majumdar, Mitra and Nyarko (1989) and other references

cited in the survey by Olson and Roy (2006).
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realization of the next period’s shock6, but learn nothing about other future shocks. In
other words, there is no uncertainty about the (next period’s) output resulting from current
investment. However, no additional information is available about shocks in the periods
after the next; the agents’ beliefs about the probability distribution of shocks in these later
time periods remain unaltered. Thus, in the modified model, though there is no uncertainty
about next period’s technology, agents remain uncertain about the production technology
and therefore, the value of accumulation in later periods. We refer to this modified model as
"the model with short run prediction of shocks". Note that this model can be viewed as an
alternative stochastic version of the deterministic RCK optimal growth model.

Though the information structure in our model is a relatively minor modification of that
in the standard (Brock-Mirman) stochastic growth model, it leads to major qualitative dif-
ferences in the nature of optimal policy. In particular, optimal consumption and investment
decisions are now sensitive to the predicted realization of the forthcoming shock.

The main contributions of our paper are as follows. We characterize the sensitivity and
qualitative dependence of optimal decisions on the (predicted) realization of the next period’s
shock. In particular, when the total and marginal productivity are ordered by the realized
shock, we examine the effect of "better" realization of the shock on optimal current invest-
ment and the next period’s optimal output. While the next period’s optimal output always
increases with a better shock, optimal investment may increase or decrease with a better
shock depending on the curvature of the optimal value function. For the case of multiplica-
tive shocks, we outline conditions on the utility and production functions under which optimal
investment increases or decreases with a better shock. Our results indicate that investment
increases (and consumption declines) with a better shock if the degree of relative risk aversion
and the elasticities of total and marginal product are above a critical level.

We derive explicit solutions to the optimal policy functions for three well-known families
of utility and production functions, and compare the outcomes of our model to the standard
stochastic growth model with no prediction of forthcoming shocks. This allows us to under-
stand the effect of greater information about shocks. Note that these explicit solutions are
also likely to be very useful in applied macroeconomic research where the stochastic growth
model with these specific functional forms are used very widely.

Though availability of information about the next period’s shock makes optimal invest-
ment and consumption sensitive to the shock, it allows agents to absorb some of the variation
in shocks by adjusting their current consumption and investment. As a result, the transmis-
sion of volatility of the shocks to the next period’s output may be higher or lower compared
to the standard model. We show this in some specific examples where, depending on para-
metric conditions, information about the forthcoming shock may magnify or dampen output
volatility. Also, depending on parameters, the expected total investment may be higher or
lower than in the standard model. Our analysis indicates that information about forthcom-
ing shocks increases the role of the utility function in determining the qualitative nature of
economic outcomes as well as the comparative dynamics.

Finally, we study the important question of long run convergence of the economy in our
modified framework. We show that despite the dependence of optimal actions on the forth-
coming shock, under very similar restrictions as imposed in the standard stochastic growth

6We believe that most of our results can be extended to a more general framework where the decision maker
receives a possibly imperfect signal of the next period’s shock.
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model, the stochastic process of optimal outputs converges in distribution to a unique invari-
ant distribution whose support is bounded away from zero. This unique stochastic steady
state itself may, however, differ from that obtained in the standard model. Though the differ-
ence in information structure of the two models pertains only to the short run i.e., whether or
not one can predict the immediately forthcoming shock, differences in the economic processes
generated may persist in the long run.7

Our paper is organized as follows. Section 2 describes the model and contains some basic
results on existence and policy functions. In Section 3, we outline three well-known families
of utility and production functions for which we explicitly derive analytical solutions to the
optimal investment and consumption policy. In Section 4, we analyze the monotonicity of
output, investment and consumption in the predicted realization of the forthcoming produc-
tivity shock (in a general framework). Section 5 discusses the effect of information about
forthcoming productivity shocks and the ability to predict their realizations by comparing
the dynamic optimal policy of our model to that in the standard stochastic growth model; in
particular, we discuss the effect of information on investment, output, sensitivity of output to
the shock and the volatility of output. Section 6 discusses long run convergence properties.
Almost all formal proofs are relegated to the Appendix

Related Literature. Our paper is related to several strands of the existing literature. Don-
aldson and Mehra (1983) analyze a one sector model of optimal stochastic growth where the
technology shocks are generated by a stationary Markov process that may be correlated over
time, so that the realization of the shock in any period carries additional information about
the distribution of future shocks. Optimal consumption and investment may therefore depend
on the previous period’s random shock. They characterize the sensitivity and monotonicity of
optimal current decisions with respect to the previous period’s shock, as well as the long run
convergence properties of the economy; these are similar to some of the questions addressed in
our paper. However, there are significant differences. In our model, the technology shocks are
independent over time so that the realizations of past shocks themselves carry no information
about future shocks; optimal decisions depend on the (accurately predicted) realization of the
next period’s shock (rather than the previous period’s shock), and we study the dependence of
optimal policy on this predicted realization. Unlike the case of correlated shocks, in our model
the additional information that arrives each period pertains only to the short run, and does
not affect the distribution of shocks in later periods. Further, in our framework, the process
that generates accurate prediction of the forthcoming shock is independent of productivity;
in contrast, in the Donaldson-Mehra framework, the past period’s shock plays a dual role
of not only carrying news about future shocks, but also determining physical productivity,
output and therefore, the feasible set of consumption and production in the current period.
Our model is better designed to capture the fact that in the modern economy, the means
through which agents acquire information about and predict forthcoming aggregate shocks
(such as analysis/forecasts by experts or announcements by central authorities) may not have
any direct link to productivity. Also, our framework is much better suited to evaluate the

7The analysis in this paper confines attention to a framework where future utility is discounted. Some of our
results (and the approach to their proofs), particularly those pertaining to convergence to a unique invariant
distribution, can be extended to the undiscounted case. Other results, such as the one relating to monotonicity
of optimal investment with respect to better shock (whose proof is based on finite horizon approximation to
the infinite horizon model) may require significant additional work in order to be extended to the undiscounted
case.
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effect of "more information" on growth by comparing outcomes to that of the standard model
where agents do not acquire any additional information about future shocks.

There is a large literature on models of real business cycles where cyclical fluctuations are
related to imperfect forecasting of future productivity shocks by agents that observe signals
that are correlated with future shocks. While the idea goes back to Pigou (1927), much of the
literature is fairly recent where the focus is on explaining specific features of observed cycles
including booms and recessions, persistence of macroeconomic aggregates and co-movement in
output, investment and consumption.8 The basic model used in this literature is a variation
of the Brock-Mirman stochastic growth model where, as in our paper, agents observe signals,
albeit imperfect, of future shocks. However, there are significant differences. We do not seek
to generate cycles or explain any of the observed empirical regularities in the business cycles
literature; unlike models of business cycles where shocks are serially correlated, we assume
that productivity shocks are independent over time. Much of the analysis in this literature is
carried out assuming specific functional forms and using numerical simulations; in contrast,
our focus is on understanding capital accumulation and long run convergence in a general
theoretical framework; the examples are merely used to illustrate certain possibilities.

Another strand of literature that relates to our paper is the one that analyzes experimen-
tation and learning in a stochastic growth model9. In this literature, agents acquire (actively
or passively) signals over time that enable them to learn about unknown parameters affecting
the production function or the distribution of shocks in a Bayesian fashion. Unlike this litera-
ture, in our model there is no imperfect information about the structure of the economy (the
initial condition, the production function and the distribution of the shocks are fully known),
and therefore, there is no scope for structural learning.

Our work is also related to the literature that examines the effects of ‘better information’
(Blackwell, 1953) on the behavior of economic agents and their interactive outcome. In an
overlapping generation model with investment in human capital, Eckwert and Zilcha (2004)
show that better information may either enhance, or reduce, the aggregate stock of human
capital along the equilibrium path, depending on the risk aversion parameters. Our model
deals with an infinitely lived representative agent and a more general structure of technology
and preferences. Some of our results on the effect of information on investment are comparable
to that obtained by Eckwert and Zilcha.

Finally, in the literature on optimal management of renewable resources under environ-
mental uncertainty where the basic model is similar to an optimal stochastic growth model.
Costello, Polasky and Solow (2001) examine the effect of better short run prediction of envi-
ronmental uncertainty on the optimal management of the resource; they impose a very specific
structure on their model so that optimal investment is independent of current capital stock
and output. Our framework is more general though it does not exactly fit a conventional
resource management model; however, our result on the effect of better realization of the
predicted shock on optimal investment is somewhat comparable to that obtained by Costello
et al.

8See, among others, important contributions by Danthine, Donaldson and Johnsen (1998), Beaudry and
Portier (2004, 2007), Schmitt-Grohe and Uribe (2008) and Jaimovich and Rebelo (2009),

9See, among others, Freixas (1981), Demers (1991), Mirman, Samuelson and Urbano (1993), and Koulova-
tianos, Mirman and Santugini (2009). Nyarko and Olson (1996) study a version of the model with imperfect
information and learning about the capital stock. See also, Majumdar (1982).
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2 Preliminaries.

We consider an infinite horizon one-good representative agent economy. Time is discrete and
is indexed by t = 0, 1, 2, .... At each date t ≥ 0, the representative agent observes the current
output yt as well as (an accurate prediction of) the realization of ρt+1, the random production
shock that affects the production function at the beginning period (t + 1); the shocks are
independent over time so that the realization of ρt+1 provides no additional information
about technology shocks in periods τ > t + 1. After this, the agent chooses the level of
current investment xt, and the current consumption level ct, such that

ct ≥ 0, xt ≥ 0, ct + xt ≤ yt

This generates yt+1, the output next period through the relation

yt+1 = f(xt, ρt+1)

where f(., .) is the "aggregate" production function. The economy begins with a given initial
stock of output y0 > 0 and a given (accurate prediction of) the realization of ρ1. The
capital stock depreciates fully every period. Given current output y ≥ 0, the feasible set for
consumption and investment is denoted by Γ(y) i.e.,

Γ(y) = {(c, x) : c ≥ 0, x ≥ 0, c+ x ≤ y}

Note that the prediction of next period’s shock does not affect the feasible set of consumption
and investment in the current period.

The following assumption is made on the sequence of random shocks:
(A.1) {ρt}∞t=1 is an independent and identically distributed random process defined on

a probability space (Ω,F , P ), where the marginal distribution function is denoted by F. The
support of this distribution is a compact set A ⊂ R.

The production function f is assumed to satisfy the following:
(T.1) For all ρ ∈ A, f(x, ρ) is concave in x on R+.
(T.2) For all ρ ∈ A, f(0, ρ) = 0.
(T.3) For each ρ ∈ A, f(x, ρ) is continuously differentiable in x on R++ and further,

f 0(x, ρ) = ∂f(x,ρ)
∂x >0 on R++ ×A.

(T.4) infρ∈A[limx→0 f 0(x, ρ)] > 1.
Assumptions (T.1)-(T.3) are standard monotonicity, concavity and smoothness restric-

tions on production. (T.4) ensures that the technology is productive with probability one in
a neighborhood of zero. Note that we do not require that the production functions be ordered
in the realization of the random shock though we will make that assumption in a later section.

Let β ∈ (0, 1) denote the time discount factor. Given the initial stock y0 > 0, the
representative agent’s objective is to maximize the discounted sum of expected utility from
consumption:

E

" ∞X
t=0

βtu(ct)

#
where u is the one period utility function from consumption.

Let R = R ∪ {−∞}. The utility function u : R+ → R satisfies the following restrictions:
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(U.1) u is strictly increasing, continuous and strictly concave on R+ (on R++ if u(0) =
−∞);u(c)→ u(0) as c→ 0.

(U.2) u is twice continuously differentiable on R++;u0(c) > 0, u00(c) < 0,∀c > 0.
(U.3) limc→0 u0(c) = +∞.
Assumptions (U.1) and (U.2) are standard. Note that we allow the utility of zero con-

sumption to be−∞. (U.3) requires that the utility function satisfy the Uzawa-Inada condition
at zero and ensures that optimal consumption and investment lie in the interior of the feasible
set.

The partial history at date t is given by ht = (y0, ρ1, x0, c0, . . . , yt−1, ρt, xt−1, ct−1, yt, ρt+1).
A policy π is a sequence {π0, π1, . . .} where πt is a conditional probability measure such
that πt(Γ(yt)|ht) = 1. A policy is Markovian if for each t, πt depends only on (yt, ρt+1). A
Markovian policy is stationary if πt is independent of t. Associated with a policy π and an
initial state (y, ρ) is an expected discounted sum of social welfare:

Vπ(y, ρ) = E
∞X
t=0

βtu(ct),

where {ct} is generated by π, f in the obvious manner and the expectation is taken with
respect to P .

The value function V (y, ρ) is defined on R++ ×A by:

V (y, ρ) = sup{Vπ(y, ρ) : π is a policy}.
Under assumption (T.4), it is easy to check that

−∞ < V (y, ρ),∀y > 0, ρ ∈ A.

We will assume that:
(V.1) V (y, ρ) < +∞, ∀y > 0, ρ ∈ A..
It is easy to check that (V.1) is satisfied if the technology exhibits bounded growth i.e.,

there exists K > 0 such that f(x,ρ)
x < 1 for all x > K and for all ρ ∈ A. Even if the

technology allows for unbounded expansion of consumption, (V.1) is satisfied if the utility
function is bounded above or, alternatively, the discount factor is small enough (smaller than
an asymptotic growth factor)10.

Important Note: Assumptions (A.1), (T.1) − (T.4), (U.1) − (U.3) and (V.1) hold
throughout the paper. Lemmas and propositions will specifically mention all additional as-
sumptions.

A policy, π∗, is optimal if Vπ∗(y, ρ) = V (y, ρ) for all y > 0, ρ ∈ A. Standard dynamic
programming arguments11 imply that there exists an optimal policy that is stationary and
that the value function V (y, ρ) satisfies the functional equation:

V (y, ρ) = sup
x∈Γ(y)

[u(y − x) + βEρ0V (f(x, ρ), ρ
0)], y > 0, ρ ∈ A. (1)

In the functional equation (1), ρ is the next period’s shock affecting the output from current
investment whose realization is predicted (correctly) prior to deciding on current consumption

10See, for instance, De Hek and Roy (2001).
11See, among others, Arkin and Evstigneev (1987), Stokey and Lucas (1989).
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and investment, while ρ0 is the shock that will affect the production function two periods later
(and whose realization, though unknown now, will be predicted accurately next period); the
expectation on the right hand side of (1) is taken with respect to the random variable ρ0.

Further, using the convex structure of the model and following standard arguments used in
the stochastic growth literature (see, for instance, Majumdar, Mitra and Nyarko, 1989) it can
be shown that there is a unique optimal policy and that for any ρ ∈ A, V (y, ρ) is continuous,
strictly increasing and strictly concave in y on R++. Further, the maximization problem on
the right hand side of (1) has a unique solution, denoted by x(y, ρ) and, in particular, for each
y > 0, ρ ∈ A,

x(y, ρ) = arg max
0≤x≤y

[u(y − x) + βEρ0V (f(x, ρ), ρ
0)] (2)

The stationary policy generated by the function x(y, ρ) is in fact the (unique) optimal policy,
and we refer to x(y, ρ) as the optimal investment function. c(y, ρ) = y−x(y, ρ) is the optimal
consumption function. Using small variations of well known arguments in the literature used
in the context of the standard stochastic growth model (see, for instance, Majumdar, Mitra
and Nyarko, 1989, Olson and Roy, 2006) we have the following lemmas:

Lemma 1 For all y > 0, ρ ∈ A, x(y, ρ) > 0 and c(y, ρ) > 0.

Lemma 2 For all ρ ∈ A, x(y, ρ) and c(y, ρ) are continuous and strictly increasing in y on
R++.

Further, using almost identical arguments to that in Mirman and Zilcha (1975), we have:

Lemma 3 V (y, ρ) is differentiable in y on R++ and it satisfies:

V 0(y, ρ) = u0[c(y, ρ)] for all y > 0, (3)

where V 0(y, ρ) denotes the partial derivative of V with respect to its first argument.

Using (2), (3), and the first order condition for an interior solution to the maximization
problem on the right side of (2), we immediately have the following version of the stochastic
Ramsey-Euler equation:

Lemma 4 For all y > 0, ρ ∈ A

u0(c(y, ρ)) = βf 0(x(y, ρ), ρ)Eρ0 [u
0(c(f(x(y, ρ), ρ0)))]. (4)

Observe that unlike the standard stochastic growth model, for any given y > 0, (4)
is required to hold for every possible realization ρ of the forthcoming shock. The term
βf 0(x(y, ρ), ρ) on the right hand side of (4) captures the marginal productivity of invest-
ment which is deterministic (given ρ), while the term Eρ0 [u

0(c(f(x(y, ρ), ρ0)))] captures the
future expected marginal valuation of the additional output created through investment; the
marginal valuation is stochastic because it depends on next period’s consumption which is
influenced by the (yet unknown) random shock ρ0 of the period after next.
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3 Optimal Policy: Explicit Solutions.

In this section, we outline three well-known families of utility and production functions for
which we explicitly derive analytical solutions to the optimal investment and consumption
policy functions.

3.1 CES Utility and Linear Production Function.

In this subsection, we consider an economy where the production function is linear and the
utility function exhibits constant elasticity of substitution:

u(c) =
c1−σ

1− σ
, σ 6= 1, σ > 0. (5)

= ln c, σ = 1. (6)

f(x, ρ) = ρx (7)

ρ = inf A > 1. (8)

The stochastic growth model with such a linear production technology was first analyzed by
Levhari and Srinivasan (1969), and this particular family of utility and stochastic production
functions has been extensively used in the literature on unbounded stochastic growth (see for
example, De Hek, 1999). We impose the restriction :

βE(ρ1−σ) < 1. (9)

which ensures the existence of an optimal policy. Recall that c(y, ρ), x(y, ρ) denote the optimal
consumption and investment functions. The optimal output next period is given by:

y0(y, ρ) = f(x(y, ρ), ρ) = ρx(y, ρ).

From (4):
(c(y, ρ))−σ = βρEρ0 [(c(y

0(y, ρ), ρ0))−σ] (10)

We conjecture that optimal policy function is linear in current output i.e., c(y, ρ) = λ(ρ)y.
Then,

y0(y, ρ) = ρ(1− λ(ρ))y, c(y0(y, ρ), ρ0) = λ(ρ0)ρ(1− λ(ρ))y

Thus, (10) can be re-written as:

(λ(ρ))−σ

βρ1−σ(1− λ(ρ))−σ
= Eρ0 [(λ(ρ

0))−σ]

Let μ = Eρ0 [(λ(ρ
0))−σ]. Then (λ(ρ))−σ

βρ1−σ(1−λ(ρ))−σ = μ, so that:

λ(ρ) =
1

1 + (μβ)
1
σ ρ

1−σ
σ

(11)
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and the optimal policy functions are given by:

c(y, ρ) = [
1

1 + (μβ)
1
σ ρ

1−σ
σ

]y (12)

x(y, ρ) = [
(μβ)

1
σ ρ

1−σ
σ

1 + (μβ)
1
σ ρ

1−σ
σ

]y, (13)

where the constant μ is implicitly determined by:

μ = E[(λ(ρ))−σ] = E[(1 + (μβ)
1
σ ρ

1−σ
σ )σ] (14)

i.e.,

E[(μ−
1
σ + β

1
σ ρ

1−σ
σ )σ] = 1 (15)

Note that the left hand side of (15) is strictly decreasing in μ and diverges to +∞ as
μ→ 0. Further, using (9), the left hand side of (15) converges to βE(ρ1−σ) < 1 as μ→ +∞.
Thus, there exists unique μ > 0 that solves (15). Further, from (14), we can see that μ > 1.

Suppose σ = 1. Then, (15) implies μ = 1
1−β and

c(y, ρ) = (1− β)y, x(y, ρ) = βy

which is independent of ρ. In other words, with a linear technology and logarithmic utility,
the optimal policy function is independent of the shocks.

For σ 6= 1, one cannot solve for the constant μ explicitly. However, one can obtain
considerable information from the implicit equation (15) defining μ.

Note that the above policy functions have been derived by using the Ramsey-Euler equa-
tion. To show that they are optimal, we need to verify that the transversality condition is
also satisfied i.e., βtEV 0(y∗t , ρt)→ 0 where {y∗t } is the stochastic process of output generated
by the optimal policy, given y∗0 = y0 and given ρ1. This is verified in the appendix.

3.2 Log Utility and Cobb-Douglas production function with exponential
shock.

In this subsection, we consider the economy where the utility function is logarithmic:

u(c) = ln c

and the production function is Cobb-Douglas exhibiting bounded growth.

f(x, ρ) = xρ,

where
0 < ρ = inf A ≤ ρ = supA < 1.

Note that the random shock is not multiplicative but rather affects the exponent of the Cobb-
Douglas production function. For the standard model with no additional information about
future shocks, explicit solution for the optimal policy function in this economy was obtained
by Mirman and Zilcha (1975). Note that f(x, ρ) is decreasing in ρ for x ∈ [0, 1] and increasing

9



in ρ for x ≥ 1. Further, f(x, ρ) < x for all x > 1 with probability one, so that given initial
conditions, all possible consumption and investment paths are uniformly bounded. Thus,
(V.1) is satisfied.

To obtain the optimal policy function, we conjecture that the optimal consumption func-
tion is linear in output and has the form c(y, ρ) = λ(ρ)y. The Ramsey-Euler (4) then implies:

1

λ(ρ)y
= βAρ[(1− λ(ρ))y]ρ−1Eρ0{ 1

λ(ρ0)[(1− λ(ρ))y]ρ
}

which yields
1

λ(ρ)
= 1 + βρbm, where bm = E{[λ(ρ0)]−1},

and taking the expectation on both sides with respect to ρ we have bm = 1
1−βE[(ρ] which implies

λ(ρ) =
1

1 + βρ[1− βE(ρ)]−1
=

1− βE(ρ)

1 + β[ρ−E(ρ)]
q

which is a decreasing function of ρ. Observe that E(ρ) < 1 and so, 0 < λ(ρ) < 1. The optimal
policy functions are given by:

c(y, ρ) = [
1− βE(ρ)

1 + β[ρ−E(ρ)]
]y (16)

x(y, ρ) = [
βρ

1 + β[ρ−E(ρ)]
]y, (17)

The transversality condition is easily verified as feasible paths are uniformly bounded.

3.3 Log Utility and Cobb-Douglas production function with multiplicative
shock.

In this subsection, we consider the economy where the utility function is logarithmic as before:

u(c) = ln c

and the production function is Cobb-Douglas with multiplicative shock:

f(x, ρ) = ρ xθ, 0 < θ < 1.

We assume that
0 < ρ = inf A.

For the standard stochastic growth model, explicit solution for the optimal policy function
for this case is contained in Mirman and Zilcha (1975). Note that the production function
is increasing in the shock. Further, given initial conditions, all possible consumption and
investment paths are uniformly bounded. Thus, (V.1) is satisfied.

To obtain the optimal policy function, once again we conjecture that the optimal con-
sumption function is linear in output and has the form c(y, ρ) = λ(ρ)y. Then, from (4):

1

λ(ρ)y
= βρθ[(1− λ(ρ))y]θ−1Eρ0{ 1

λ(ρ0)ρ[(1− λ(ρ))y]θ
}

10



which yields:

1

λ(ρ)
= 1 + βθ bm, where bm = E{[λ(ρ0)]−1},

and taking expectation on both sides with respect to ρ we have bm = 1
1−βθ which implies

λ(ρ) =
1

1 + βθ[1− βθ]−1
= 1− βθ.

which is independent of ρ. Observe that λ(ρ) ∈ (0, 1). The optimal policy functions are given
by:

c(y, ρ) = βθy, x(y, ρ) = (1− βθ)y.

The transversality condition is easily verified as feasible paths are uniformly bounded. Observe
that in this case, optimal consumption and optimal investment are independent of ρ.

4 Effect of More Productive Realizations of Shocks.

In this section, we analyze the monotonicity of output, investment and consumption in the
(predicted) realization of the forthcoming productivity shock. For this analysis to be mean-
ingful, it makes sense to confine attention to production functions that are ordered by the
realizations of the shock. Therefore, we focus on technologies where the total and the mar-
ginal product (resulting from any level of investment) are increasing in the shock. In that
case, higher realized values of the productivity shock can be interpreted as "better" or, more
productive.

4.1 Effect of Better Shocks on Investment and Consumption.

We begin by analyzing how optimal investment and consumption change when the predicted
realization of the forthcoming shock is better. Economic intuition suggests that there are two
effects when an agent foresees a better realization of the next period’s shock First, there is an
increase in the incentive to invest as the return on investment is higher. Second, there is an
increase in the incentive to increase current consumption because a lower level of investment
is enough to generate the same output next period. Which of these two effects dominates
ought to depend on the intertemporal elasticity of substitution which, in this model, is simply
the inverse of relative risk aversion.

The clearest illustration of this basic intuition is obtained by looking at the specific econ-
omy discussed in Section 3.1 where the production function is linear (given by (7) and (8))
and the utility function exhibits constant elasticity of substitution (given by (5) and (6)).
As we have seen, under assumption (9), the explicit form of the optimal investment policy
function is given by:

x(y, ρ) = [
(μβ)

1
σ ρ

1−σ
σ

1 + (μβ)
1
σ ρ

1−σ
σ

]y (18)

where μ > 1 is a constant (defined implicitly) and σ is the (constant) relative risk aversion.
One can directly verify from (18) the following proposition:

11



Proposition 5 Suppose that u exhibits constant relative risk aversion σ > 0, and that the
production function is linear i.e., f(x, ρ) = ρx with ρ > 1. Further, assume that βE(ρ1−σ) < 1.
Then, for any given y > 0, the (unique) optimal investment x(y, ρ) is strictly increasing in ρ
if σ > 1, strictly decreasing in ρ if σ < 1 and independent of ρ when σ = 1.

Proposition 5 indicates that capital and investment may not increase (and in fact, may
decrease) when exogenous fluctuations cause increase in productivity, or return on investment,
and this is anticipated by economic agents. Consumption preferences play a very important
role here.

It is of some interest to see if there are general conditions on technology and preferences
under which optimal investment increases or decreases with anticipation of a more productive
shock. To examine the issues involved, we confine attention to production functions where
the productivity shock is multiplicative. In particular, we impose the following assumption:

(T.5) The support A of the distribution F of productivity shocks is an interval [ρ, ρ] ⊂
R++. Further, f(x, ρ) = ρh(x) where h : R+ → R+ is twice continuously differentiable on
R++ and satisfies all properties needed to ensure (T.1)-(T.4).

Consider the functional equation of dynamic programming:

V (y, ρ) = max
0≤x≤y

u(y − x) + βEρ0 [V (ρh(x), ρ
0)] (19)

Using the uniqueness and interiority of optimal policy, it can be shown that the value func-
tion is twice continuously differentiable and that the optimal policy function is continuously
differentiable. Let

W (x, ρ) = Eρ0V (ρh(x), ρ
0) (20)

Fix y > 0. Consider ρ1, ρ2 ∈ A with ρ1 < ρ2, and let x1 = x(y, ρ1) and x2 = x(y, ρ2). Then,
clearly x1, x2 ∈ [0, y]. If x1 6= x2, then using (19) and (20):

u(y − x1) + βW (x1, ρ1) ≥ u(y − x2) + βW (x2, ρ1)

u(y − x2) + βW (x2, ρ2) ≥ u(y − x1) + βW (x1, ρ2)

so that
W (x2, ρ2) +W (x1, ρ1) ≥W (x1, ρ2) +W (x2, ρ1) (21)

If the function W (x, ρ) is supermodular on {(x, ρ) : 0 ≤ x ≤ y, ρ ∈ A}, then it is easy to
show that x1 ≤ x2. From (20), we have that Wxρ ≥ 0 and W is supermodular in (x, ρ) if

−V11(y, ρ
0)y

V1(y, ρ0)
≤ 1, for all y > 0, ρ0 ∈ A. (22)

Thus, W is supermodular if the relative risk aversion exhibited by the value function is below
1, and in that case, optimal investment is weakly increasing in the shock. Note that as optimal
policy is in the interior of the feasible set, using Theorem 1 of Edlin and Shannon (1998),
one can check that if Wxρ > 0,then optimal investment is strictly increasing in ρ if (22) holds
strictly. If the inequality in (22) holds the other way, W is submodular in (x, ρ) and in that
case, optimal investment is decreasing in ρ.Thus, we have:
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Lemma 6 Assume (T.5). (i) Suppose that

−V11(y, ρ)y
V1(y, ρ)

≤ (<)1, for all y > 0, ρ ∈ A. (23)

Then, for any y > 0, optimal investment x(y, ρ) is (strictly) increasing in ρ.
(ii) Suppose that

−V11(y, ρ)y
V1(y, ρ)

≥ (>)1, for all y > 0, ρ ∈ A. (24)

Then, for any y > 0, optimal investment x(y, ρ) is (strictly) decreasing in ρ..

Lemma 6 indicates the role of relative risk aversion in determining the monotonicity of
investment in productivity shock; however, the conditions in the lemma are in terms of the
risk aversion displayed by the value function which is endogenous to the model. To be useful,
we would like to have a condition in terms of the primitives of the model. It is, however,
difficult in general to derive bounds on the risk aversion displayed by the value function as
the elasticities of both utility and production functions play a role in the curvature of the value
function. The next proposition, which is one of the key contributions of the paper, provides one
such characterization under the additional assumption that the production function exhibits
bounded growth:

(T.6) limx→∞ ρh(x)
x < 1,where ρ = supA.

For � > 0 small enough, define:

κ = inf{x > 0 : max
ρ∈A

ρh(x) ≤ x}+ �. (25)

σ = inf
0<c<K

{−u
00(c)c
u0(c)

}, σ = sup
0<c<K

{−u
00(c)c
u0(c)

} (26)

Let η(x) be the sum of first and second elasticity of the production function defined by:

η(x) = [
h0(x)x
h(x)

− h00(x)x
h0(x)

], x > 0.

Note that if h(x) = xγ , 0 < γ < 1, then η(x) = 1, for all x > 0. Further, if h(x) = Bx
1+x where

B > 1, then η(x) = 1+2x
1+x > 1, for all x > 0. Finally, if h(x) = xα + xβ, 0 < α < 1, 0 < β < 1,

α 6= β, then η(x) < 1, for all x > 0.

Proposition 7 Assume (T.5) and (T.6).
(a) Suppose that σ ≥ 1 and η(x) ≥ 1 for all x ∈ (0, κ). Then, for every y ∈ (0, κ], optimal

investment x(y, ρ) is non-increasing in ρ on A.
(b)Suppose that σ ≤ 1 and η(x) ≤ 1 for all x ∈ (0, κ). Then, for every y ∈ (0, κ], optimal

investment x(y, ρ) is non-decreasing in ρ on A.

Proposition 7 provides a set of verifiable sufficient condition on technology and preferences
under which better shocks increase or decrease investment. From Lemma 6, we know that
complementarity between investment and shocks depends on the curvature of the value func-
tion. The latter, in turn, is influenced by the curvature of the production and utility functions.
For the specific case of the linear production and the CES utility function, we have seen in
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Proposition 5 that investment is increasing or decreasing in the shock depending on whether
relative risk aversion exhibited by the utility function is above or below 1. Proposition 7
shows that for a more general class of production technology, even if relative risk aversion is
not constant but uniformly bounded below by 1, investment is increasing in the shock as long
as the sum of the first and second elasticity of the production function is bounded below by 1.
Likewise, if relative risk aversion and the sum of the first and second elasticity of the produc-
tion function are uniformly bounded above by 1, then investment decreases and consumption
increases with a better shock. The degree of concavity of the utility and production functions
are important determinants of how capital formation responds to forthcoming shocks.

4.2 Effect of Better Shocks on Output.

We now analyze how output changes with an improvement in the predicted realization of the
shock next period. In the standard stochastic growth model where no additional information
about the forthcoming shocks is available prior to consumption-investment decisions, invest-
ment depends only on current output. As a result, next period’s output is always increasing
(decreasing) in the realization of next period’s shock as long as the total product is increasing
(decreasing) in the shock. In our framework, the next period’s shock is known to the decision
maker when she decides on consumption and investment, and we have seen in the previous
subsection, better productivity shock may reduce investment. Nonetheless, as we show next,
the output resulting from investment (that is adjusted to the shock) increases with a better
shock under fairly general circumstances.

Given the current shock ρ to the production function and the current output y, the output
next period is given by:

y0(y, ρ) = f(x(y, ρ), ρ)

We impose the following assumption on the production function to ensure that it is smooth
in the shock and that the total and marginal product are increasing in the shock.

(T.7) The support A of the distribution F of productivity shocks is a interval [ρ, ρ] ⊂ R.
f(x, ρ) is twice continuously differentiable on R++ ×A. Further, for any x > 0, ρ ∈ A,

∂f

∂ρ
> 0,

∂2f

∂ρ∂x
> 0.

Observe that assumption (T.7) allows for a more general class of production functions
than (T.5).

Proposition 8 Assume (T.7). Then, y0(y, ρ) is strictly increasing in ρ i.e., a better realiza-
tion of the forthcoming productivity shock leads to higher output.

The proof of this proposition is based on complementarity between the output next pe-
riod and the forthcoming productivity shock. Under assumption (T.7), higher realization of
the shock increases total and marginal productivity so that an increase in the anticipated
realization of next period’s shock reduces the current marginal cost (in terms of consumption
sacrifice) needed to attain any given level of output next period. Thus, while better shocks
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may increase or decrease investment, it increases aggregate output as long as both total and
marginal product are ordered by the realization of the shock.12

We now provide an example where the total product is ordered by the shock but the
marginal product is not; we show that the output next period is non-monotonic in the shock.

Example 9 Consider a version of the example considered in Section 3.2 where

u(c) = ln c, f(x, ρ) = x−ρ

where
−1 < ρ = inf A ≤ ρ = supA < 0.

Assume y0 ∈ (0, 1];this implies that consumption, investment and output paths lie in the
interval [0, 1] with probability one. Note that for any x ∈ (0, 1), the total product f(x, ρ) is
strictly increasing in ρ on A. If we define the random variableeρ = −ρ,
then the production technology reduces to the exact form described in Section 3.2, and the
optimal policy function is explicitly given by:

x(y,eρ) = [ βeρ
1 + β[eρ−E(eρ)] ]y

and therefore,

y0(y,eρ) = [ βeρ
1 + β[eρ−E(eρ)] ]ρyρ

By straightforward calculations we obtain that for 0 < y < 1:

d

deρ [ln y0(y,eρ)] = 1 + ln y + ln
βeρ

1 + β(eρ−E(eρ)) − βeρ
1 + β[eρ−E(eρ)]

< 1 + ln
βeρ

1 + β(eρ−E(eρ)) − βeρ
1 + β[eρ−E(eρ)]

which is < 0 for eρ close enough to zero. Choose the distribution of ρ such that E(ρ) = −12 ,
i.e., E(eρ) = 1

2 . Observe that, as y → 1,eρ→ 1, β → 1

d

deρ [ln y0(y,eρ)] = 1 + ln y + ln
βeρ

1 + β(eρ−E(eρ)) − βeρ
1 + β[eρ−E(eρ)]

→ 1 + ln
1

1 + (1−E(eρ)) − 1

1 + [1−E(eρ)]
=

1

3
+ ln

2

3
> 0

Therefore, there exists β ∈ (0, 1), y ∈ (0, 1) such that d
dρ [ln y0(y,eρ)] > 0 for eρ close enough

to 1. Fix any such β, y and choose ρ sufficiently close enough to −1 and ρ close enough to
zero. Then, using the above arguments, y0(y, ρ) is strictly increasing in ρ in a neighborhood
of ρ and strictly decreasing in ρ in a neighborhood of ρ. Thus, the optimal output next period
is non-monotonic in ρ.
12The smoothness assumption allows us to look at the effect of better shock on the net marginal benefit

from higher output next period (marginal current disutility and future marginal utility) in terms of the first
and second order derivatives of the utility and production functions. It should be possible to establish the
complementarity between the next period’s output and the shock even when the production function is not
smooth in the shock, though the conditions needed for that might be less transparent.
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5 Effect of Information about Shocks: Comparison with the
Standard Model.

In this section, we discuss the effect of information about forthcoming productivity shocks
and the ability to predict their realizations by comparing the optimal policy of our model
to that in the standard stochastic growth model where no additional information about the
realization of future productivity shocks is available to economic agents (before making their
consumption-investment decisions). For ease of notation, we shall refer to the standard sto-
chastic growth model (with no prediction of realization of future shocks) as the NP-model, and
to our model with short run prediction of the forthcoming shock as the P-model. We denote
the optimal investment function in the NP-model by bx(y), while, as before, we denote the
optimal investment function in the P-model by x(y, ρ).Much of the discussion in this section
is based on some of the parametric family of utility and production functions discussed in
Section 3. We will use the explicit solutions to the optimal policy obtained in these cases to
compare and illustrate certain qualitative possibilities.13

5.1 Effect on Investment

First, consider the effect on investment. We will show that the comparison of bx(y) with x(y, ρ)
is likely to depend on the specific realization ρ of the forthcoming shock. To illustrate this,
consider the economy with the specific utility and production functions described in Section
3.2 where u(c) = ln c, f(x, ρ) = xρ, 0 < ρ = inf A ≤ ρ = supA < 1; as we showed, the optimal
investment function in the P-model is then given by:

x(y, ρ) = [
βρ

1 + β[ρ−E(ρ)]
]y

In the NP-model with no information about the forthcoming shock, the optimal investment
function has been derived in Mirman and Zilcha (1975), and is given by :

bx(y) = βE(ρ)y

Observe that:

ρ ≥ E(ρ)⇐⇒ βρ

1 + β[ρ−E(ρ)]
≥ βE(ρ)

so that x(y, ρ) ≥ bx(y) if, and only if, ρ ≥ E(ρ). In other words, if the realization ρ of the
forthcoming shock is above average, then investment is higher in the P model where the shock
is predicted and the opposite is true when the realization is below average.

Next, consider the effect of information on the ex ante expected investment. Here again,
the comparison can go either way depending on the parameters of the model. To illustrate
this, we consider the specific case of a linear production technology and CES utility function
considered in Section 3.1 and described by (5)- (9). In our P-model, the optimal investment

13 In the absence of explicit solutions, it is difficult to compare the optimal policies generated by the two
models in terms of expected investment, volatility of output etc, as these require much more information about
the policy functions than what can be gleaned from the functional equation of dynamic programming and the
stochastic Ramsey-Euler equation.
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policy function is given by (13) and (15). In the NP-model, the optimal investment function
has been derived in the literature (see, for example, De Hek and Roy, 2001) and is given by

bx(y) = [βE(ρ1−σ)] 1σ y (27)

Proposition 10 Consider the economy with linear production function and CES utility func-
tion described by (5)− (9).

(a) If σ > 1, then Ex(y, ρ) < bx(y), i.e. from any level of current output y > 0, expected
current investment is lower in the P-model than in the NP-model.

(b) Suppose that βE(ρ) > 1. Then, there exists a range of admissible values of σ < 1 and
β ∈ (0, 1) such that Ex(y, ρ) > bx(y), i.e. from any level of current output y > 0, expected
investment is higher in the P-model than in the NP-model.

Proposition 10 illustrates the important role played by consumption preferences in deter-
mining the qualitative effect of information about forthcoming shocks on capital formation.
In particular, such information may increase or decrease (average) capital stocks depending,
among other things, on the degree of relative risk aversion.

5.2 Sensitivity of Output to Shock.

We now discuss the effect of information about the forthcoming shock on the sensitivity of
output to the random shock. Confine attention to the case where the random shock enters the
production function multiplicatively i.e., f(x, ρ) = ρh(x). In particular, assume that (T.5)
holds. In the standard stochastic growth model (the NP-model), the output next period
given current output y and for realization ρ of the random shock, is given by:

by(y, ρ) = ρh(bx(y))
and the elasticity of output with respect to ρ is then given by:

ηy,ρ =
ρby ∂by(y, ρ)∂ρ

=
ρh(bx(y))by = 1 (28)

On the other hand, in our P-model where the forthcoming shock is accurately predicted, next
period’s output is given by:

y0(y, ρ) = ρh(x(y, ρ))

so that the elasticity of output with respect to ρ in the P-model is given by:

ηy0,ρ =
ρ

y0
∂y0(y, ρ)

∂ρ
=

h0(x(y, ρ))
h(x(y, ρ))

∂x(y, ρ)

∂ρ
ρ+ 1. (29)

From (28) and (29),

ηy0,ρ ≥ ηy,ρ ⇐⇒
∂x(y, ρ)

∂ρ
≥ 0.

Thus, information about forthcoming shocks may increase or decreases the elasticity of output
with respect to the production shock and in the specific case of multiplicative shock, it depends
precisely on whether the optimal investment function x(y, ρ) in the P-model is increasing or
decreasing in ρ; as we have seen in the previous section, the latter depends, among other
things, on the extent of relative risk aversion and the elasticities of the production function.
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5.3 Volatility of Output

We now compare the P and the NP models with respect to dispersion or volatility of the
output next period (given the current level of output). This allows us to shed some light on
how information (about the forthcoming shock) may affect the transmission of volatility of the
shock to the output next period.Our analysis in this subsection will confine attention to the
economy discussed in Section 3.1 and described by (5) - (9) where the production function is
linear and the utility function is CES. In the P model, the optimal investment policy function
is given by (13) and (15), and the output next period is given by:

y0(y, ρ) = G(ρ)y

where

G(ρ) = [
(μβ)

1
σ ρ

1
σ

1 + (μβ)
1
σ ρ

1−σ
σ

]. (30)

As indicated in Section 5.1, for the NP-model, the optimal investment function is given by
(27) and the output next period is given by:

by(y, ρ) = [ρbk]y
where bk = [(Eβρ1−σ) 1σ ]. (31)

We compare the volatility of y0(y,ρ)
y = G(ρ) with that of y(y,ρ)

y = ρbk.
Let X and Y be two random variables and denote their zero-mean normalizations bybX = X −E(X) and bY = Y −E(Y ). We say that X is more volatile or dispersed than Y if

the distribution of bX is a mean-preserving spread of the distribution of bY .14
Proposition 11 Consider the economy with a linear production function and constant elas-
ticity of substitution utility function described by (5) - (9). Let G(ρ) be the function defined
by (30) and bk, the constant defined by (31). Then the following hold:

(a) If G0(ρ) ≤ bk and the degree of relative risk aversion σ > 1, then for any given level
of current output, output next period is more dispersed in the P-model than in the NP-model
i.e., information about forthcoming shock increases the volatility of output.

(b) If G0(ρ) ≥ bk and the degree of relative risk aversion σ < 1
2 , then for any given level

of current output, output next period is more dispersed in the NP-model than in the P- model
i.e., information about forthcoming shock decreases the volatility of output.

The proposition indicates under certain verifiable conditions on the parameters, informa-
tion about the forthcoming shock is likely to increase the volatility of output if relative risk
aversion is large, and decrease the volatility of output if risk aversion is small. Once again this
highlights the important role played by preferences in determining the effect of information
on the nature of macroeconomic outcomes in the growth process.

14This partial ordering of distributions with respect to dispersion is the Bickel-Lehman stochastic ordering
(Landsberger and Meilijson, 1994).
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6 Long Run Convergence

In this section, we discuss the long run behavior of the economy under short run prediction of
the forthcoming shock. In particular, we confine attention to the case where the production
technology exhibits bounded growth so that consumption, capital and output processes are
uniformly bounded. For such a technology, it is well known that in the standard stochastic
growth framework (NP-model), the optimal stochastic process of capital and output converge
in distribution to a globally stable invariant distribution (under certain regularity conditions).
In our model, where optimal investment in each period depends on both current output as well
as the predicted realization of the forthcoming shock, it is by no means obvious that similar
results should hold. We will show that under a set of assumptions that are comparable to ones
imposed in the standard framework, and independent of initial economic conditions, optimal
outputs converge in distribution to a unique invariant distribution whose support is bounded
away from zero.

Given the initial output y0 and the realization ρ1 of the production shock in period 1
(observed in period 0), the stochastic process of optimal outputs {yt}∞t=0 is determined by the
following law of motion:

yt+1 = f(x(yt, ρt+1), ρt+1), t ≥ 0.
Observe that given the optimal investment function x(y, ρ) and the initial condition (y0, ρ1),
y1 = f(x(y0, ρ1), ρ1) is a deterministic number. We can therefore equivalently study the
stochastic process of optimal outputs {yt}∞t=1 where the initial condition is y1. Note that
(using Lemma 1), y0 > 0 implies that y1 > 0 for all ρ1 ∈ A, and y1 = 0 for some ρ1 ∈ A if,
and only if, y0 = 0. Let:

H(y, ρ) = f(x(y, ρ), ρ).

H(y, ρ) is the optimal transition function that relates current output to the optimal output
next period for each realization of the random shock ρ. Since f(z, ρ) is continuous and strictly
increasing in z and x(y, ρ) is continuous and strictly increasing in y (Lemma 2), it follows
that H(y, ρ) is continuous and strictly increasing in y on R+. Further, H(0, ρ) = 0 and for
all y > 0, H(y, ρ) > 0 for all ρ ∈ A.

Given period 1 output y1 > 0, the stochastic process of optimal output {yt}∞t=1 is given by

yt+1 = H(yt, ρt), t ≥ 1. (32)

We will show that under certain conditions, for every y1 > 0, the stationary Markov process
{yt}∞t=1 as defined by (32) converges in distribution to a unique invariant distribution whose
support is bounded away from zero.

We begin by imposing the following assumption:
(T.8) Either A is finite or f(x, ρ) is continuous in ρ on A.
Let f(x), f(x) be defined by:

f(x) = max
ρ∈A

f(x, ρ), f(x) = min
ρ∈A

f(x, ρ).

It is easy to check using (T.8), that f(x), f(x) are continuous in x.
Next, we assume that the production function exhibits bounded growth:

(T.9) limx→∞ f(x)
x < 1.
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Let
K = sup{x : f(x) ≥ x}

Under assumptions (T.4) and (T.9), 0 < K <∞.
Using the optimality equation (1) and the Maximum Theorem, one can show that if f(x, ρ)

is continuous in ρ on A, x(y, ρ) and therefore H(y, ρ) = f(x(y, ρ), ρ) is continuous in ρ on A.
Let

H(y) = min
ρ∈A

H(y, ρ),H(y) = max
ρ∈A

H(y, ρ), y > 0.

Note that the minimum and the maximum above are well defined. Further, using the Maxi-
mum Theorem,H(y) andH(y) are continuous (and non-decreasing). H(y) andH(y) represent
the worst and best optimal transition functions (the lowest and highest possible values of next
period’s output over all possible realizations of next period’s shock, when current output is
y).

By definition, H(y) ≥ H(y) for all y.We now impose a mild condition on the optimal
transition functions:

(C.1) H(y) > H(y) for all y ∈ (0,K]
Condition (C.1) ensures that under the optimal policy, the distribution of next period’s

output is non-degenerate. There are various conditions on technology and preferences that
can ensure (C.1). For instance, if (T.7) holds, then from Proposition 8, H(y, ρ) is strictly
increasing in ρ so that (C.1) holds.

Next, we impose a condition on the "worst" optimal transition function:
(C.2) There exists α > 0 such that H(y) > y,∀y ∈ (0, α).
Condition (C.2) requires that when current output is small enough, the optimal output

next period is strictly higher than current output (i.e., the economy expands) even under the
worst realization of the production shock. This ensures that independent of initial condition,
long run output (and therefore the limiting distribution of output) is uniformly bounded
away from zero. The next lemma provides verifiable sufficient conditions on preferences and
technology under which (C.2) holds.

Let
ν(x) = inf

ρ∈A
f 0(x, ρ)

Lemma 12 Suppose that at least one of the following holds:

lim
x→0 inf ν(x)[

u0(f(x))
u0(f(x)− x)

] >
1

β
(33)

A is finite, ν(x)→ +∞ as x→ 0. (34)

Then, (C.2) holds i.e., there exists α > 0 such that H(y) > y,∀y ∈ (0, α).

The sufficient condition (34) for (C.2) is similar to conditions imposed in the standard
stochastic growth literature (for instance, Brock and Mirman, 1972) to ensure that the econ-
omy is uniformly bounded away from zero almost surely in the long run. Sufficient condition
(33) for (C.2) is similar to conditions used in Mitra and Roy (2006, 2010).

20



Example 13 To see how (33) may be satisfied consider the case of the CES utility function
given by (5) and (6) so that the marginal utility of consumption is given by:

u0(c) = c−σ, σ > 0.

Further, suppose that the random shock enters the production function multiplicatively f(x, ρ) =
ρh(x) and, in particular, (T.5) holds. Then, f(x) = ρh(x), f(x) = ρh(x), ν(x) = ρh0(x) and
(33) holds if:

ρh0(0)[
ρ

ρ
− 1

ρh0(0)
]σ >

1

β
.

This is satisfied for all β ∈ (0, 1), if h0(0) = +∞.

Define γ0,γ1 as follows:

γ0 = sup{y > 0 : H(y) ≥ y} (35)

γ1 = inf{y > 0 : H(y) ≤ y} (36)

Using condition (T.9), (C.1) and (C.2), it follows that γ0 and γ1 are well defined and:

0 < γ0 ≤ K, 0 < γ1 ≤ K.

γ0 is the largest positive fixed point of the worst transition function and γ1 is the smallest
positive fixed point of the best transition function.

The next lemma lies at the heart of the uniqueness of invariant distribution; it ensures
that every fixed point of the worst transition function H(y) lies below the smallest fixed point
of the best transition function H(y).

Lemma 14 Assume (T.8), (T.9), (C.1) and (C.2). Then, γ0 < γ1.

The rest of the steps leading to our main result follow similar arguments as in the existing
literature on the standard stochastic growth model. Let ξ denote the probability measure for
the random shock. For t ≥ 1, define ρt = (ρ1, ...., ρt) and let ξt be the joint distribution of ρt.
For each n ≥ 1 and ρn, define Hn(., ρn) by:

Hn(y1, ρ
n) = H(.....H(H(y1, ρ2), ρ3)....., ρn)

so that Hn(y1, ρ
n) is the realization of yn given y1 and ρn = (ρ2, ...., ρn). If μ is any probability

on R+, define the probability ξnμ on R+ by

ξnμ(B) =

Z
ξn({ρn : Hn(y1, ρ

n) ∈ B)dμ(y1)

where B is any Borel subset of R+. ξnμ is the distribution of yn when the distribution of y1
is μ. μ is an invariant probability if ξ1μ = μ. A subset S0 of R+ is said to be ξ−invariant if it
is closed and if

ξ({ρ ∈ A : H(y, ρ) ∈ S0 for all y ∈ S0}) = 1.
A subset S00 of S0 is a minimal ξ−invariant set if it is ξ−invariant and no strict subset of S00 is
ξ−invariant. Finally, define y to be a ξ−fixed point if ξ({ρ ∈ A : H(y, ρ) = y}) = 1. Following
standard arguments used in stochastic growth models, we have:
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Lemma 15 Assume (T.8), (T.9), (C.1) and (C.2). For any c ∈ (0, α), the interval [c,K] is
ξ−invariant and [γ0,γ1] is the unique minimal ξ−invariant interval in [c,K].Further, there
does not exist a ξ−fixed point in (0,K].

Given y1 > 0, for t > 1, let Gt(.) denote the probability distribution function of yt. We
are now ready to state the main result of this section.

Proposition 16 Assume (T.8), (T.9), (C.1) and (C.2). Then, there is a unique invariant
probability measure μ on R++ for the stochastic process {yt}∞t=1 and the support of this prob-
ability measure is the non-degenerate interval [γ0,γ1] ⊂ (0,K) where γ0, γ1 are as defined in
(35) and (36). Further, independent of initial conditions, Gt(.), the distribution function for
the optimal output yt in period t, converges uniformly as t → ∞ to the distribution function
for the probability measure μ.

The proof of Proposition 16 follows directly from using Lemma 15 and showing that a
"splitting condition" due to Dubins and Freedman (1966) is satisfied.15

Though our qualitative result on convergence to a unique stochastic steady state (inde-
pendent of initial condition) is similar to that obtained in the standard stochastic growth
model (NP-model), the limiting steady states may differ significantly between the P and NP
models. This is illustrated in the following example.

Example 17 Consider the economy described in Section 3.2 where u(c) = ln c, f(x, ρ) =
xρ.We will assume that at each date t, ρt can attain one of two possible values:ρ = 0.25 or
ρ = 0.75 with probability 1

2 . We have seen that in our model with short run prediction of
forthcoming shock (P-model), the optimal investment policy function is given by (17) so that

H(y, ρ) = [
βρ

1 + β[ρ−E(ρ)]
]ρyρ.

Choose β = 0.5. Then, it is easy to check that H(y, ρ) > H(y, ρ) for all y ∈ (0, 1). Further, the
function H(y, ρ) has a unique positive fixed point. Setting H(y) = H(y, ρ) and H(y) = H(y, ρ)
(and using (35), (36)), we have

γ0 = [
βρ

1 + β[ρ−E(ρ)]
]

ρ
1−ρ = (

1

7
)3, γ1 = [

βρ

1 + β[ρ−E(ρ)]
]

ρ

1−ρ = (
1

3
)
1
3 .

As mentioned in Section 5.1, for the NP-model, the optimal policy function in this economy
is given by bx(y) = βE(ρ)y so that by(y, ρ) the optimal output next period is given by:

by(y, ρ) = f(bx(y), ρ) = [βE(ρ)y]ρ.
It is easy to check that given any y0 > 0, the stochastic process {yt}∞t=0 defined by yt+1 =by(yt, ρt+1) converges to a unique invariant distribution whose support is the interval [m,M ] ⊂
15 It should be possible to extend Proposition 16 to the undiscounted version of our model. For the proof of

this result, the optimization problem matters only to the extent that the optimal transition function H(y, ρ)
is increasing in y, needs to satisfy conditions (C.1) and (C.2), and that Lemma 14 needs to hold. It is easy
to check (using the undiscounted version of the stochastic Ramsey-Euler equation) that arguments in the
proof of Lemma 14 extend to the undiscounted model. Similarly, slightly modified versions of the sufficient
conditions on the utility and production functions under which (C.1) and (C.2) hold, should also work for the
undiscounted case.
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(0, 1) where m is the unique positive fixed point of the function [βE(ρ)y]ρ and M is the unique
positive fixed point of the function [βE(ρ)y]ρ and, in particular,

m = [βE(ρ)]
ρ

1−ρ = (
1

4
)3,M = [βE(ρ)]

ρ

1−ρ = (
1

4
)
1
3 .

Observe that γ0 < m < M < γ1.so that the support of the unique invariant distributions differ
between the two models.

Thus, even though the difference in information structure of the two models (P and NP
models) pertains only to the short run i.e., whether or not one can predict the immediately
forthcoming shock, significant differences in the long run stochastic steady state of the econ-
omy may result.

APPENDIX.

Proof of Lemma 2.
Proof. The arguments used to prove these claims are similar to those used in the NP op-

timal growth model. However, for completeness, let us prove explicitly the strict monotonicity
of x(y, ρ) in y. Similarly, one can verify that of c(y, ρ). Let 0 < y1 < y2 and let x1 = x(y1, ρ)
and x2 = x(y2, ρ) . Assume to the contrary that x2 ≤ x1.Since x2 ∈ [0, y2] in this case, due
to the uniqueness of the optimum, we can write that:

u(y1 − x1) + βEρ0{V [f(x1, ρ), ρ0]} ≥ u(y1 − x2) + βEρ0{V [f(x2, ρ), ρ0]}

u(y2 − x1) + βEρ0{V [f(x1, ρ), ρ0]} ≤ u(y2 − x2) + βEρ0{V [f(x2, ρ), ρ0]}
Since V 0(y1, ρ) > V 0(y2, ρ) we must have x2 6= x1 , namely, x2 < x1, hence using the above
two inequalities we obtain:

u(y2 − x1)− u(y1 − x1) < u(y2 − x2)− u(y1 − x2)

Denote: y2 = y1 +∆ , where ∆ > 0. Then:

u(y1 − x1 +∆)− u(y1 − x1)

∆
<

u(y1 − x2 +∆)− u(y1 − x2)

∆

which contradics the concavity of the utility function since y1 − x1 < y1 − x2.
Verification of Transversality Condition for the optimal policy in Section 3.1
Proof. Note that y∗t+1 = ρt+1[1− λ(ρt)]y

∗
t and therefore,

y∗t+1 = ρt+1[1− λ(ρt+1)]y
∗
t ≤ [

t+1Y
j=1

ρj(1− λ(ρj))]y
∗
0, t = 0, 1, ...

which implies that

V 0(y∗t , ρt) = u0(c(y∗t , ρt)) = [λ(ρt)y
∗
t ]
−σ = [λ(ρt)]

−σ[
tY

j=1

(ρj)
−σ(1− λ(ρj))

−σ]y0
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Since
1− λ(ρj) = (μβ)

1
σ ρ

1−σ
σ

j

1

1 + (μβ)
1
σ ρ

1−σ
σ

j

= (μβ)
1
σ ρ

1−σ
σ

j λ(ρj)

we have
(ρj)

−σ[1− λ(ρj)]
−σ = (μβ)−1ρ−1j [λ(ρj)]

−σ

so that

βtEV 0(y∗t , ρt) = βtE[(λ(ρt))
−σ][

tY
j=1

E[(ρj)
−σ(1− λ(ρj−1))

−σ]y0

= βt−1[E(ρ
1
σλ(ρ))−σ)]t−1 < βt−1[E(λ(ρ))−σ)]t−1, as ρ > 1,

= (βμ)t−1 → 0 as t→∞

as βμ = βE(ρ−σ) ≤ βE(ρ1−σ) < 1 (using (9) and ρ > 1).
Proof of Proposition 7
Proof. We will prove part (a). The proof of part (b) is essentially identical.
Set V 0(y, ρ) = u(y), y ∈ [0, κ], ρ ∈ A.and for t ≥ 1, define iteratively the functions V t(y, ρ)

on [0, κ]×A by
V t+1(y, ρ) = max

0≤,x≤y
{u(y − x) + δEρ0 [V

t(ρh(x), ρ0)]}. (37)

Note that V t is the value function for a finite horizon version of the dynamic optimization
problem (where there are t more periods left).

Step 1. We will show by induction that for all t ≥ 0 and ρ ∈ A,V t(y, ρ) is continuous and
concave in y on [0, κ], twice continuously differentiable in y,V t

1 (y, ρ) > 0 on (0, κ] and

−V
t
11(y, ρ)y

V t
1 (y, ρ)

≤ 1, y ∈ (0, κ], ρ ∈ A. (38)

By assumption, this holds for V 0(y, ρ) = u(y). Suppose that it holds for t = T. We will show
that this holds for t = T + 1.Consider the functional equation (37) for t = T. Using strict
concavity of u, strict concavity of h and concavity of V T (y, ρ) in y, it is easy to check that
there is a unique solution xT (y, ρ) to the maximization problem on the right hand side of
(37). Note that xT is the optimal investment policy function for a finite horizon version of the
dynamic optimization problem (where there are T more periods left). Further, using (U.3),
0 < xT (y, ρ) < y for all y ∈ (0, κ], ρ ∈ A. Using standard envelope arguments, one can then
show that V T+1(y, ρ) is continuous and concave in y on [0, κ], twice continuously differentiable
in y, V T+1

1 (y, ρ) > 0 and xT (y, ρ) is differentiable in y on (0,K]. Let cT (y, ρ) = y − xT (y, ρ).
Using the first order conditions for an interior solution to the maximization problem on the
right hand side of (37) and the envelope theorem it follows that for all ρ ∈ A, y ∈ (0, κ]:

V T+1
1 (y, ρ) = u0(cT (y, ρ)) = βρh0(xT (y, ρ))Eρ0 [V

T
1 (ρh(x

T (y, ρ)), ρ0)].

and differentiating through this identity with respect to y we have:

V T+1
11 (y, ρ) = u00(cT (y, ρ))cT1 (y, ρ) = βxT1 (y, ρ)[ρh

00(xT (y, ρ))Eρ0V
T
1 (ρh(x

T (y, ρ)), ρ0)
+{ρh0(xT (y, ρ))}2Eρ0{V T

11(ρh(x
T (y, ρ)), ρ0)}]
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This implies that

−V
T+1
11 (y, ρ)y

V T+1
1 (y, ρ)

= {−u
00(cT (y, ρ))
u0(cT (y, ρ))

cT (y, ρ)}[c
T
1 (y, ρ)y

cT (y, ρ)
]

≥ σ[
cT1 (y, ρ)y

cT (y, ρ)
] (39)

Further,

−V
T+1
11 (y, ρ)y

V T+1
1 (y, ρ)

= −βx
T
1 (y, ρ)y[ρh

00(xT (y, ρ))Eρ0V
T
1 (ρh(x

T (y, ρ)), ρ0) + {ρh0(xT (y, ρ))}2Eρ0{V T
11(ρh(x

T (y, ρ)), ρ0)}]
βρh0(xT (y, ρ))Eρ0 [V

T
1 (ρh(x

T (y, ρ)), ρ0)]

= xT1 (y, ρ)y[{−
h00(xT (y, ρ))
h0(xT (y, ρ))

+
ρh0(xT (y, ρ))

Eρ0 [V
T
1 (ρh(x

T (y, ρ)), ρ0)]
Eρ0{−V

T
11(ρh(x

T (y, ρ)), ρ0)
V T
1 (ρh(x

T (y, ρ)), ρ0)
ρh(xT (y, ρ))

V T
1 (ρh(x

T (y, ρ)), ρ0)
ρh(xT (y, ρ))

}]

≥ xT1 (y, ρ)y[{−
h00(xT (y, ρ))
h0(xT (y, ρ))

+
ρh0(xT (y, ρ))

Eρ0 [V
T
1 (ρh(x

T (y, ρ)), ρ0)]
Eρ0{σV

T
1 (ρh(x

T (y, ρ)), ρ0)
ρh(xT (y, ρ))

}]

=
xT1 (y, ρ)y

xT (y, ρ)
[η(xT (y, ρ)) + (σ − 1)h

0(xT (y, ρ))
h(xT (y, ρ))

]

≥ xT1 (y, ρ)y

xT (y, ρ)
. (40)

where the last inequality follows from the conditions in the antecedent that σ ≥ 1 and η(x) ≥ 1.
It follows from (39) and (40) that

−V
T+1
11 (y, ρ)y

V T+1
1 (y, ρ)

≥ max{x
T
1 (y, ρ)y

xT (y, ρ)
,
cT1 (y, ρ)y

cT (y, ρ)
} (41)

There are only two possibilities:

(a) cT1 (y,ρ)y

cT (y,ρ)
≥ 1

(b) c
T
1 (y,ρ)y

cT (y,ρ)
< 1.

If (b) holds,:

cT1 (y, ρ) ≤ (
cT (y, ρ)

y
) = 1− xT (y, ρ)

y

so that

xT1 (y, ρ) = 1− cT1 (y, ρ) ≥
xT (y, ρ)

y

which implies:
xT1 (y, ρ)y

xT (y, ρ)
≥ 1.

Thus:

max{x
T
1 (y, ρ)y

xT (y, ρ)
,
cT1 (y, ρ)y

cT (y, ρ)
} ≥ 1 (42)
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Using this in (41) implies that (38) holds for t = T + 1. This completes Step 1.
Step 2. We now show that for all t, xt(y, ρ) is non-increasing in ρ (where xt(y, ρ) is the

unique solution to the maximization problem on the right hand side of (37)). Let

W (x, ρ) = Eρ0V
t(ρh(x), ρ0) (43)

Observe that for any given ρ0 ∈ A, V t(ρh(x), ρ0) is twice continuously differentiation in (x, ρ)
on (0, κ]×A and

∂2V t(ρh(x), ρ0)
∂x∂ρ

≤ 0
if

−V
t
11(ρh(x), ρ

0)
V t
1 (ρh(x), ρ

0)
ρh(x) ≥ 1.

It follows from (38) in Step 1, therefore that

∂2

∂x∂ρ
W (x, ρ) ≤ 0 (44)

on {(x, ρ) : 0 < x ≤ y, ρ ∈ A}.Fix y > 0. Consider ρ1, ρ2 ∈ A with ρ1 < ρ2, and let
x1 = xt(y, ρ1) and x2 = xt(y, ρ2). We claim that x1 ≥ x2.To see this, suppose to the contrary
that x1 < x2. Clearly x1, x2 ∈ (0, y). Using (37) and (43) and the uniqueness of solution to
the maximization problem on the right hand side of (37):

u(y − x1) + βW (x1, ρ1) > u(y − x2) + βW (x2, ρ1)

u(y − x2) + βW (x2, ρ2) > u(y − x1) + βW (x1, ρ2)

so that
W (x2, ρ2) +W (x1, ρ1) > W (x1, ρ2) +W (x2, ρ1)

which violates (44).Thus, xt(y, ρ) is non-increasing in ρ for all t.
Step 3.For every y ∈ (0, κ], xt(y, ρ) → x(y, ρ) as t → ∞. This follows from Proposition

16.2 in Schäl (1975) that provides a condition under which optimal policy functions for finite
horizon dynamic optimization problems converge to the optimal policy function for the infinite
horizon problem as the horizon becomes infinitely large.

Finally, as xt(y, ρ) is non-increasing in ρ for every t, the (pointwise) limit x(y, ρ) is non-
decreasing in ρ.

Proof of Proposition 8
Proof. Let h(y, ρ) be defined implicitly on R+ ×A by:

f(h(y, ρ), ρ) = y (45)

Thus, h(y, ρ) is the investment required to attain output y next period when realization
of the forthcoming productivity shock is ρ.It is easy to check that h is twice continuously
differentiable on R++ ×A and that,

h1 =
1

f1
(46)

h2 = −f2
f1

< 0 (47)
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and

h12 = − 1

(f1)2
[f11h2 + f12] (48)

< 0, since f12 > 0 (using (T.7)).

As ρ is observed prior to making investment decision, one can re-write the dynamic optimiza-
tion problem as one where, given current output and realization ρ of next period’s shock, the
agent determines next period’s output y0. The functional equation of dynamic programming
can then be written as:

V (y, ρ) = max
0≤y0≤f(y,ρ)

u(y − h(y0, ρ)) + βEρ0 [V (y
0, ρ0] (49)

Fix y > 0. Consider ρ1 < ρ2, ρ1, ρ2 ∈ A and let y0 = z1 be optimal from state (y, ρ1) and
y0 = z2 optimal from state (y, ρ2).We first show that z1 ≤ z2. Suppose, to the contrary, that
z1 > z2. Since z1 ≤ f(y, ρ1), z2 < f(y, ρ1). Further, z1 ≤ f(y, ρ1) < f(y, ρ2).From functional
equation and the uniqueness of optimal actions:

u(y − h(z1, ρ1)) + βEρ0 [V (z1, ρ
0] > u(y − h(z2, ρ1)) + βEρ0 [V (z2, ρ

0]
u(y − h(z2, ρ2)) + βEρ0 [V (z2, ρ

0] > u(y − h(z1, ρ2)) + βEρ0 [V (z1, ρ
0]

so that

u(y − h(z1, ρ1))− u(y − h(z2, ρ1)) > u(y − h(z1, ρ2))− u(y − h(z2, ρ2)) (50)

Let
φ(z, ρ) = u(y − h(z, ρ)).

Note that
φ1 = −u0(y − h(z, ρ))h1

and
φ12 = −u0(y − h(z, ρ))h12 + u00(y − h(z, ρ))h1h2 > 0

From (50)
φ(z1, ρ1) + φ(z2, ρ2) ≥ φ(z1, ρ2) + φ(z2, ρ1)

which leads to a contradiction as φ12 > 0. Next, we claim that, in fact, z1 < z2. To see this,
suppose to the contrary that

z1 = z2 = z.

Then (under assumption of uniqueness of optimal actions) since ρ1 < ρ2,

x(y, ρ1) = x1 > x(y, ρ2) = x2

where
f(x1, ρ1) = f(x2, ρ2) = z.

From the Ramsey-Euler equation (4), we have:

u0(y − x1) = βf1(x1, ρ1)Eρ0 [u
0(z − x(z, ρ0))]

u0(y − x2) = βf1(x2, ρ2)Eρ0 [u
0(z − x(z, ρ0))]
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so that
u0(y − x1)

u0(y − x2)
=

f1(x1, ρ1)

f1(x2, ρ2)

Observe that since f11 < 0, f12 ≥ 0, x1 > x2, ρ1 < ρ2,

f1(x1, ρ1) < f1(x2, ρ1) ≤ f1(x2, ρ2)

while using strict concavity of u,

u0(y − x1) > u0(y − x2)

leading to a contradiction. This completes the proof.
Proof of Proposition 10
Proof. (a) Rewriting the expression for x(y, ρ) in (13) we obtain that:

Ex(y, ρ) = [1−E
1

1 + μ
1
σ (βρ1−σ)

1
σ

] y (51)

Let A = (βμ)
1
σ , G(ρ) = A

A+ρ
1
σ
. Differentiating G(ρ) twice we obtain that sign{G00(ρ)} =

sign{−m(m− 1)(ρm +A) + 2m2ρm} > 0 for m = 1
σ and σ ≥ 1. Let z = βμρ1−σ, then

1

1 + μ
1
σ (βρ1−σ)

1
σ

=
1

1 + (z)
1
σ

= G(z)

which is strictly convex in z so that using Jensen’s inequality:

EG(z) = E
1

1 + (z)
1
σ

> G(Ez) =
1

1 + (Ez)
1
σ

and using this in (51)

Ex(y, ρ)

y
< 1− 1

1 + μ
1
σ (Eβρ1−σ)

1
σ

=
(Eβρ1−σ)

1
σ

μ−
1
σ + (Eβρ1−σ)

1
σ

(52)

Now, we show that for σ ≥ 1 we have :

μ−
1
σ + (Eβρ1−σ)

1
σ ≥ 1. (53)

Define, H(z) = [B + z
1
σ ]σ where B = μ−

1
σ , z = βρ1−σ. Then,

signH 00(z) = sign{σ − 1
σ

z
1
σ + (

1

σ
− 1)(B + z

1
σ )} ≤ 0

for σ ≥ 1. Therefore, using Jensen’s inequality:

μ−
1
σ + (Eβρ1−σ)

1
σ = H(E(z)) ≥ EH(z)

= E[(μ−
1
σ + β

1
σ ρ

1−σ
σ )σ] = 1,
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using (15). This establishes (53). Using (53) in (52) we obtain:

Ex(y, ρ)

y
< (Eβρ1−σ)

1
σ =

bx(y)
y

and this establishes the first part of the proposition.
(b) Consider σ < 1. For low values of σ, the condition (9) may not hold. However, it is

easy to check that since βEρ > 1, there exists 0 < bσ < 1 such that (Eβρ1−σ)
1
σ = 1 and

therefore, (9) holds for σ > bσ. Further, there exists h ∈ (0, 1), such that bσ < 1
2 for β ∈ (0, h).

Define,
L(z) = [1 +Dz

1
σ ]−1 ; where D = μ

1
σ and z = βρ1−σ

Differentiating this function twice we obtain that:

sign{L00(z)} = sign{1− 1
σ
+
2

σ
[

Dz
1
σ

1 +Dz
1
σ

]}

Consider β ∈ (0, h) so that bσ < 1
2 and consider σ ∈ (bσ, 12) . Using (15), we have that μ −→ 1

as β −→ 0. Further, z = βρ1−σ → 0 as β → 0. Thus, by choosing β small we can guarantee

that Dz
1
σ

1+Dz
1
σ
is sufficiently small for all ρ, so that L00(z) < 0.Using the strict concavity of L(z)

we attain:

Ex(y, ρ)

y
= E[1− 1

1 + μ
1
σ (βρ1−σ)

1
σ

] = E[1− L(z)]

> [1− L(E(z))] = 1− 1

1 + μ
1
σ (Eβρ1−σ)

1
σ

=
(Eβρ1−σ)

1
σ

μ−
1
σ + (Eβρ1−σ)

1
σ

(54)

Now, we show that for σ < 1 we have :

μ−
1
σ + (Eβρ1−σ)

1
σ < 1. (55)

Define, H(z) = [B + z
1
σ ]σ where B = μ−

1
σ , z = βρ1−σ. Then,

signH 00(z) = sign{σ − 1
σ

z
1
σ + (

1

σ
− 1)(B + z

1
σ )}

= sign{( 1
σ
− 1)B} > 0

for σ < 1. Therefore, using Jensen’s inequality:

μ−
1
σ + (Eβρ1−σ)

1
σ = H(E(z)) < EH(z)

= E[(μ−
1
σ + β

1
σ ρ

1−σ
σ )σ] = 1,
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using (15). This establishes (55). Using (54) and (55), we have

Ex(y, ρ)

y
> (Eβρ1−σ)

1
σ =

bx(y)
y

.

This completes the proof.
Proof of Proposition 11
Proof. We begin by observing that for σ > 1, G(ρ), as defined in (30), satisfies G0 >

0, G00 < 0 so that G is strictly increasing and strictly concave on [ρ , ρ].We want to show that
if G0(ρ) ≤ bk, then bkρ− E[bkρ] is a mean-preserving spread of G(ρ) − E[G(ρ)]. For this, it is
enough to show that each expected utility maximizing risk averse decision maker will prefer
the random variable G(ρ)−E[G(ρ)] than bkρ−E[bkρ] (see, Rothschild and Stiglitz,1970). Let
U be any strictly concave and non-decreasing utility function on R; without loss of generality,
let U be differentiable. Then,

E{U(G(ρ)−E[G(ρ)])− U(bkρ−E[bkρ]}
≥ E{U 0(G(ρ)−E[G(ρ)])[G(ρ)−E[G(ρ)]− [bkρ−E[bkρ]]}
= Cov{U 0(G(ρ)−E[G(ρ)]), G(ρ)− bkρ} ≥ 0

where the non-negativity of the covariance follows from the fact that U 0 is decreasing, G0 > 0
and G0(ρ)− bk ≤ G0(ρ)− bk ≤ 0 which together imply that U 0(G(ρ)− E[G(ρ)]) is decreasing

in ρ while G(ρ)− bkρ is weakly decreasing in ρ. Thus, y0(y, ρ) = G(ρ)y is more dispersed thanby(y, ρ) = bkρy. This completes proof of part (a). Next, we prove part (b). We can verify that
for σ < 1

2 we have G
00 > 0 so that G is strictly increasing and strictly convex on [ρ , ρ].

We want to show that if G0(ρ) ≥ bk, then G(ρ) − E[G(ρ)] is a mean-preserving spread ofbkρ−E[bkρ].As before, let U be any strictly concave and non-decreasing utility function on R;
without loss of generality, let U be differentiable. Then,

E{U(G(ρ)−E[G(ρ)])− U(bkρ−E[bkρ]}
≤ E{U 0(bkρ−E[bkρ])[G(ρ)−E[G(ρ)]− [bkρ−E[bkρ]]}
= Cov{U 0(bkρ−E[bkρ]), G(ρ)− bkρ−E[G(ρ)]−E[bkρ]}
≤ 0

where the negativity of the covariance follows from the fact that U 0 is decreasing and G0(ρ)−bk ≥ G0(ρ)−bk ≥ 0 which together imply that U 0(bkρ−E[bkρ]) is decreasing in ρ while G(ρ)−bkρ
is weakly increasing in ρ. Thus, by(y, ρ) = bkρy is more dispersed than y0(y, ρ) = G(ρ)y. This
completes proof of part (b).

Proof of Lemma 12.
Proof. Suppose that, contrary to the lemma, there exists a strictly positive sequence

{yn}∞n=1 → 0 such that
H(yn) ≤ yn,∀n. (56)

Let {xn}, {ρn} be defined by
xn = x(yn, ρn),H(yn) = f(xn, ρn).
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Since, xn ≤ yn,{xn}→ 0. From the Ramsey-Euler equation:

u0(c(yn, ρn)) = βf 0(x(yn, ρn), ρn)Eρ0{u0(c(f(x(yn, ρn), ρn), ρ0))}
= βf 0(xn, ρn)Eρ0{u0(c(f(xn, ρn), ρ0))} (57)

First, suppose that (33) holds. Then, from (57)

u0(c(yn, ρn)) ≥ βf 0(xn, ρn)u
0(f(xn, ρn)), since c(f(xn, ρn), ρ

0) ≤ f(xn, ρn),∀ρ0

and since c(yn, ρn) = yn − xn ≥ f(xn, ρn)− xn, we have

u0(f(xn, ρn)− xn) ≥ βf 0(xn, ρn)u
0(f(xn, ρn))

and therefore,∀n

1 ≥ βf 0(xn, ρn)
u0(f(xn, ρn))

u0(f(xn, ρn)− xn)
≥ βν(xn)

u0(f(xn))
u0(f(xn)− xn)

,

which contradicts (33). Next, suppose that (34) holds. From (57):

u0(c(yn, ρn)) = βf 0(xn, ρn)Eρ0{u0(c(f(xn, ρn), ρ0))}
= βf 0(xn, ρn)Eρ0{u0(c(H(yn), ρ0))}
≥ βν(xn)Eρ0{u0(c(H(yn), ρ0))}
≥ βν(xn)Eρ0{u0(c(yn, ρ0))}, using (56)
≥ βν(xn)u

0(c(yn, ρn)) Pr{ρ0 = ρn}
≥ βν(xn)u

0(c(yn, ρn))q where q = min
r∈A

Pr{ρ0 = r}

and as q > 0,we have

ν(xn) ≤ 1

βq
,∀n

which contradicts (34).
Proof of Lemma 14
Proof. Suppose not. Using (C.1), γ0 6= γ1. Therefore,

γ0 > γ1.

Since H(y) and H(y) are continuous, using (C.2), γ0 > γ1 > α > 0 so that

H(γ0) = γ0,H(γ1) = γ1.

This implies that for all ρ ∈ A,

f(x(γ0, ρ), ρ) ≥ H(γ0) = γ0. (58)

f(x(γ1, ρ), ρ) ≤ H(γ1) = γ1. (59)

From (4):

u0(c(γ0, ρ)) = βf 0(x(γ0, ρ), ρ)Eρ0{u0(c(f(x(γ0, ρ), ρ), ρ0))}
≤ βf 0(x(γ0, ρ), ρ)Eρ0{u0(c(γ0, ρ0))},∀ρ ∈ A (using (58))
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so that by taking expectation with respect to ρ on both sides of the above inequality we have:

Eρ[u
0(c(γ0, ρ))] ≤ βEρ[f

0(x(γ0, ρ), ρ)]Eρ0{u0(c(γ0, ρ0))}
and noting that ρ, ρ0 are i.i.d. random variables we have:

βEρ[f
0(x(γ0, ρ), ρ)] ≥ 1

and since γ0 > γ1, strict concavity of f(x, ρ) in x and the fact that x(y, ρ) is strictly increasing
in y implies that:

βEρ[f
0(x(γ1, ρ), ρ)] > 1. (60)

Once again from (4):

u0(c(γ1, ρ)) = βf 0(x(γ1, ρ), ρ)Eρ0{u0[(c(f(x(γ1, ρ), ρ), ρ0))}
≥ βf 0(x(γ1, ρ), ρ)Eρ0{u0(c(γ1, ρ0))},∀ρ ∈ A (using (59)),

so that by taking expectation with respect to ρ on both sides of the above inequality we have:

Eρ[u
0(c(γ1, ρ))] ≥ βEρ[f

0(x(γ1, ρ), ρ)]Eρ0{u0(c(γ1, ρ0))}
and noting that ρ, ρ0 are i.i.d. random variables we have:

βEρ[f
0(x(γ1, ρ), ρ)] ≤ 1

which contradicts (60).
Proof of Lemma 15
Proof. For any y ∈ [c,K], H(y, ρ) = f(x(y, ρ), ρ) ≤ f(y, ρ) ≤ K with probability one

and further H(y, ρ) = f(x(y, ρ), ρ) ≥ f(x(c, ρ), ρ) = H(c, ρ) ≥ H(c) > c, with probability
one. Thus, [c,K] is ξ−invariant. From Lemma 14, [γ0,γ1] is a closed sub of [c,K] for any
c ∈ (0, α). Further, for any y ∈ [γ0,γ1], H(y, ρ) ≤ H(γ1, ρ) ≤ H(γ1) = γ1 with probability
one and further, H(y, ρ) ≥ H(γ0, ρ) ≥ H(γ0) = γ0 with probability one. Thus, [γ0, γ1] is
ξ−invariant.

We now show that is no ξ−invariant closed interval that is a strict subset of [γ0, γ1].
Suppose not. Then there exists a ξ−invariant closed interval [s, r] ( [γ0, γ1]. Then, either
s > γ0 or r < γ1 or both. If s > γ0, then H(s) < s. This implies there exists ρ(s) ∈ A
such that f(x(s, ρ(s)), ρ(s)) < s.If A is finite, then ξ{ρ = ρ(s)} > 0 which immediately
contradicts ξ−invariance of [s, r]. If A is not finite, then using (T.8) there exists δ > 0, such
that H(s, ρ) < s, for all ρ ∈ A ∩ (ρ(s) − δ, ρ(s) + δ) and since ρ(s) ∈ A, ξ{ρ : ρ ∈ A∩
(ρ(s) − δ, ρ(s) + δ)} > 0. This contradicts ξ−invariance of [s, r]. If r < γ1, then H(r) > r.
This implies there exists ρ(r) ∈ A such that f(x(r, ρ(r)), ρ(r)) > r. If A is finite, then ξ{ρ =
ρ(r)} > 0 which immediately contradicts ξ−invariance of [s, r]. If A is not finite, then using
(T.8), there exists δ > 0, such that H(r, ρ) > r, for all ρ ∈ A∩ (ρ(r) − δ, ρ(r) + δ) and since
ξ{ρ : ρ ∈ A∩ (ρ(r)− δ, ρ(r) + δ)} > 0, we have a contradiction to the ξ−invariance of [s, r].

Next, we argue that there is no other closed sub-interval of [c,K] that is minimal ξ−invariant.
To see this, suppose there is such an interval [s, r] 6= [γ0, γ1]. If r < γ1, then H(r) > r and by
the same argument as at the end of the last paragraph, we obtain a contradiction. Therefore,
r ≥ γ1. As [γ0, γ1] is a minimal ξ−invariant interval, [s, r] is not a subset of [γ0, γ1]. As
[s, r] is a minimal ξ−invariant interval, [γ0, γ1] is not a subset of [s, r]. Together these imply
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that γ0 < s that, in turn, implies that H(s) < s. Using the same argument as in previous
paragraph, we obtain a contradiction.

Finally, we observe that as γ0 < γ1,H(y) > y for all y ∈ (0, γ1) so that (using similar
argument as above), ξ({ρ ∈ A : H(y, ρ) > y}) > 0. Similarly, as γ0 < γ1,for all y ≥ γ1 > γ0,
H(y) < y so that ξ({ρ ∈ A : H(y, ρ) < y}) > 0. Thus, there there does not exist a ξ−fixed
point in (0,K]

Proof of Proposition 16
Proof. The proof is based on an appeal to results originally contained in Dubins and

Freedman (1966, Corollary 5.5)16 and adapted by Majumdar, Mitra and Nyarko (1989). In
particular, we use Theorem 10 in Majumdar, Mitra and Nyarko (1989) that can be reported
as follows (using our notation):

Let S0be a ξ−invariant closed interval in [0,K]. Suppose that for ξ−a.e. ρ in A, H(., ρ)
is continuous and non-decreasing on S0 and there are no ξ−fixed points in A.If there is a
unique minimal ξ−invariant closed interval in S0 then for some integer n, ξn splits and the
conclusions of Theorem 9 hold i.e., there is one and only one invariant probability μ on S0

and for each probability bμ whose support is a subset of S0, the distribution function of ξnbμ
converges uniformly to the distribution function of μ.

Choosing S0 = [c,K] for any c ∈ (0, α) and [γ0,γ1] as the candidate unique minimal
ξ−invariant closed interval in S0, the proposition follows from Lemma 15.
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