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Abstract

International climate negotiations have made limited progress toward
the large greenhouse gas emission reductions required to stabilize the
earth's climate. However, individual countries and regions have imple-
mented various policies related to emission reduction including promotion
of renewable energy.

A simple game-theoretic model with three regions, (a region being a
country or group of countries such as the EU,) is solved numerically to
compare cost and deployment paths of solar photovoltaic (PV) energy un-
der di�erent assumptions. These assumptions include (1) un-coordinated
myopic actions by all regions (2) un-coordinated actions by all regions
but with some or all regions maximizing the present discounted value of
current and next period utility, and (3) co-ordinated actions (maximiza-
tion of the sum of present discounted utilities) by regions that sign a
treaty with others responding myopically. Regional governments' utility
functions are calibrated using observed deployment of solar PV under the
assumption that they are myopic. The historical learning rate of 22%,
slowing to 11% after three doublings of output, is used to model the e�ect
of deployment on cost reduction. It is shown that an international treaty
that includes the promotion of solar PV may result in signi�cantly faster
deployment and cost reduction than myopic unilateral actions. Forward-
looking Nash behavior has a similar e�ect. In the reference scenario that
assumes that fossil fuel prices remain constant, cost-competitiveness with
fossil-fuel-based electricity is achieved 4-8 years sooner under forward-
looking behavior that takes the learning rate into account than under
myopic un-coordinated actions. In this scenario, under cooperation, PV
accounts for 25% of world electricity output after 32 years.
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1 Introduction

International climate negotiations have made limited progress toward the large
greenhouse gas emission reductions required to stabilize the earth's climate.
However, individual countries and regions have implemented various policies
related to emission reduction including promotion of renewable energy. This
paper shows that policy coordination would enable acceleration of some existing
unilateral policies and investigates the extent to which this could happen in the
case of solar photovoltaic (PV) energy.

Solar PV deployment has grown rapidly as a consequence of policy initia-
tives in some countries (See Figure 1). These initiatives re�ect policy-makers'
preference for green over fossil energy. Although the cost of PV has been falling
rapidly, it is still about three times as expensive as fossil energy. Thus, promot-
ing PV comes at a cost. The actual deployments in various regions are a result
of trading o� the preference for green energy against its cost, and thus provide a
way to infer the strength of their respective policy-makers' preference for green
energy.

Figure 1: Growth of installed solar PV capacity between 2005 to 2010 [3].

We use data on deployments and costs of solar PV in the four-year period
2006-2010 to infer policy-makers' preferences for green energy. In this respect,
we depart from most of the literature on modeling the e�ects of policies, which
are either taken as exogenous, or are derived from a dynamic social welfare
optimization problem. In contrast, we are interested in examining the gains
from international cooperation given policy-makers' existing preferences.

The limited progress made by international negotiations in emissions reduc-
tions is partly a re�ection of the political in�uence of fossil-fuel industries that
resist any moves that would reduce their pro�tability over the horizon of their

2



managers, perhaps a decade or less. Solar PV promotion assumes importance in
this context since it is still a very small fraction of world electricity output, and
likely to remain so within the planning horizon of current managers. This makes
it more politically feasible than the most favored alternative of economists: car-
bon pricing. This is one reason that several countries or regions including China,
Japan, India, Malaysia and California have in the last year either introduced or
expanded existing solar PV promotion policies. Yet, due to the high learning
rate in solar PV, current policies that increase deployment can, by lowering
costs, have large e�ects on emissions in two or three decades.

Below, we model a game among policy-makers. Our motivation is that
agreement or even negotiation on renewable energy promotion policies can make
the e�ect of deployment on next-period costs salient for policy-makers, making
them more likely to take the e�ects of their current-period actions on next-
period costs into account. This, as our model simulations below show, can have
signi�cant e�ects on the speed with which costs fall and deployment occurs.
The main contribution of this paper is to quantify this e�ect of the move from
myopic to (limited to one-period ahead) forward-looking behavior. We eschew
modeling behavior that looks further into the future for two reasons. First, we
do not think it is realistic for actual policy-makers whose horizons are mostly
quite short. Second, by con�ning forward looking behavior to be at most one
period ahead, we ensure that our conclusions about the deployment path in
the �rst few periods are not a�ected by any changes in model parameters in
more distant periods. This lends a desirable robustness to the model that is not
present in models involving long-horizon dynamic optimization.

2 The Model

The policymaker of region i decides how much green energy to subsidize during
her tenure. The regions modeled are China, the EU and the rest of the world
(ROW). The policymaker weighs the perceived bene�t of a new deployment
of green energy against the cost of the annual stream of subsidies required to
support it. In the case that she is myopic, the policymaker weighs the perceived
bene�t in the current period against the current period cost (during her tenure)
of the stream of subsidies required. Assume that we know the energy demand Eti
of a region i in period t. We denote the incremental demand in each period by
eti. The policymaker can meet the new demand eti by deploying a combination of
new green energy gti at a levelized cost of ctgi, new fossil energy f ti at a cost of c

t
fi

or by retiring old fossil plants (with operating costs of ctoi) early and replacing
them with new green energy. ctfi and ctoi di�er by the stream of capital cost
payments that the new plants have to make to pay o� their capital investment.
If gti > eti, some of the old fossil plants will be prematurely retired in the current
period. We also assume that gti ≤ min(MEti , E

t
i−G

t−1
i ), this caps the maximum

green energy deployment to MEti in a given period, where, 0 ≤M ≤ 1 (we use
M = 0.2, i.e. at most 20% of energy demand can be replaced in the current
period).
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In the myopic case, the policymaker of region i in period t maximizes her
utility:

U ti = Bti − Cti

where, Bti is the bene�t of green over fossil energy from the policymaker's per-
spective and Cti is the cost of green over fossil energy. We assume

Bti = Bti log (1 + gti)

where Bti is the parameter that captures the strength of the policy-maker's
preference for green energy in period t and gti is the new green energy deployed
in period t.

The subsidy costs Cti are de�ned below:

Cti =


gti(c

t
gi − ctfi) if ctoi < ctfi ≤ ctgi and gti ≤ eti

eti(c
t
gi − ctfi) + (gti − eti)(ctgi − ctoi) if ctoi < ctfi ≤ ctgi and gti > eti

(gti − eti)(ctgi − ctoi) if ctoi ≤ ctgi < ctfi and gti ≥ eti
0 if ctgi < ctoi < ctfi

The subsidy costs refers to the �rst in a stream of subsidies (in each subsequent
period) that is required for a certain deployment of new green capacity to take
place. Henceforth, we'll assume that the cost of green and fossil energy is
independent of the region and a function of time (period) only, i.e. ctgi = ctg.
The subsidy cost structure re�ects the fact that the savings from not building
new fossil plants are greater than the savings from ceasing to operate old fossil
plants. Thus countries with fast growing energy demand will �nd it cheaper to
rapidly expand green energy production than those with slow growing energy
demand, as long as the cost of green energy remains above the operating cost
of fossil energy.

Learning by Doing and technological innovation can lead to a decrease in
the cost of green energy with increasing total deployment. It has been empiri-
cally observed in many technologies that the cost of the technology per unit of
production roughly changes as:

ctg = c0g

(
Gt−1

G0

)α
where 2α = 1− l

The cost of green energy in period t depends on the cumulative deployment Gt−1

in period t − 1. The learning rate l is the fraction by which the cost decreases
when cumulative deployment doubles. c0g is the initial cost of green energy
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and G0 and Gt are the initial and current cumulative green energy deployment
worldwide. More complicated learning functions are possible if the technology
goes through a succession of learning regimes with di�erent learning rates.

In the myopic case, the three regions maximize their utilities U ti and deploy
new green energy according to the cost of green energy at the beginning of the
current period which, as we saw above, is a function of the total green energy
deployment in the last period. In the myopic strategy, the regions do not take
into account that their current period deployment can lead to cost reduction in
the next period. Consequently, the actions of policy-makers in other regions are
irrelevant for policy-maker i's decision.

So far, it has been the case that ctf ≤ ctg and in all regions of the world,

gti ≤ eti. Using this fact, and assuming that policy-makers have so far acted
myopically, we can infer that in each region the optimal gti has been given by

gti =
Bti

ctg − cf
− 1.

Using the observed data on deployment and costs in the period 2007-2010 [3, 1],
Bi in that period can be inferred for three regions: the European Union (EU),
China, and the Rest of the World (ROW). We �nd that Bi was highest for
the EU at 16,290, and lowest for China at 949. Bi for the Rest of the World
was 3,905. Despite its low preference parameter, China is considered separately
because additions to total energy demand are expected to be larger in China
than anywhere else, as seen in Table 1. Consequently, China will account for a
large share of g once the cost of green energy reaches near parity with new fossil
energy but still remains signi�cantly more expensive than existing fossil energy.

In scenarios with two-period strategies, the policymaker maximizes the two
period utility

Vti = U ti + δU t+1
i ,

where δ is the discount factor for a single period.

With this forward-looking behavior, policy-makers are playing a game. In
this game, the choice of deployment gti in the current period would lower the
cost of green energy for all policy-makers in the next period due to learning.
Thus, compared to the myopic problem, in a Nash equilibrium of this game,
policy-makers would choose higher levels of gti in order to reap the bene�ts of
cheaper green energy next period. Since deployment this period is a public good
that lowers costs for all players next period, policy-makers could further increase
their payo�s by entering an agreement that would raise deployment above the
Nash equilibrium level.
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3 Simulations

In our simulations, we consider a set of scenarios using electricity demand pro-
jections (See Table 1) from the IEA [1] for China, the EU, and the rest of the
world (ROW). Solar PV deployments in the three regions are:

Region
Initial Green
Energy (TWh)

China 1.15
EU 38.98
ROW 12.92

We assume that the learning rate of solar PV will stay at 22% for the next three
doublings of global capacity and be 11% thereafter (We follow the assumptions
used by the Energy Information Administration but with a higher learning rate,
see [2, 4]). This is because most of the initial cost reduction comes from learning
in the photovoltaic cell part of the plant. The learning and cost reduction has
been slower in the `balance of the system' part that will come to constitute
a larger and larger share of the cost as the cost of the photovoltaic cell falls.
Each period is four years long, the typical tenure of a policymaker. We assume

Annual Total Energy (TWh)
Period China EU ROW World

0 4245 3332 13748 21325
1 5238.9 3442 15045.4 23726.2
2 6465.5 3555.6 16465.1 26486.2
3 7605.3 3675.6 17952 29232.9
4 8526.6 3802.5 19500.5 31829.6
5 9559.6 3933.7 21182.6 34675.8
6 10552 4061.1 22991.7 37604.8
7 11647.4 4192.6 24955.4 40795.4
8 12856.5 4328.4 27086.7 44271.6

Table 1: Electricity demand projections (TWh) from the International Energy
Agency ([1])

that all new deployments are in green energy when the cost of green energy
falls below the cost of new fossil energy. We also assume that when the cost
of green energy approaches and falls below that of old fossil energy, new green
energy is deployed and old fossil energy is retired prematurely, subject to the
cap in new green deployments stated above. This cap is set to 20% of the total
energy demand in that period. In allowing green energy to grow at this rate, we
are implicitly assuming that complementary institutional infrastructure (such
as time-of-day pricing) to shift demand to the daytime when solar energy is
available, and physical infrastructure such as long-distance lines for transmitting
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solar energy from sunlit to night-time areas will be put in place by the time solar
energy accounts for the bulk of electricity consumption. The simulation runs for
eight periods from 2010 to 2041. We use the same cost parameters in all regions
but we will consider di�erent cost trajectories in di�erent simulations. We also
consider simulations where a region's preference for green energy changes over
time. In each simulation we consider the following deployment strategies (or
scenarios): 1. all myopic, 2. the EU looks ahead one period, 3. EU and CHINA
play Nash, 4. all play Nash, 5. EU and CHINA cooperate, and 6. all cooperate.

3.1 The Reference Simulation

The Reference(R) simulation uses c0gi = $300/MWh, ctfi = $100/MWh and

ctoi = $65/MWh. The fossil energy costs are assumed constant throughout.
The preferences of the three regions have been calibrated to re�ect their 2006-
2010 deployments, assuming a 1. 22% learning rate, 2. 2010 cost of green
energy of $300/MWh, and 3. that deployments were myopic. We also assume
that the preference for green energy is constant. Most of the initial investment

Period Myopic
EU
looks
ahead

China
EU
Nash

All
Nash

China
EU co-
operate

All co-
operate

0 300.00 300.00 300.00 300.00 300.00 300.00
1 203.91 193.89 193.86 193.38 192.61 188.04
2 158.11 147.47 147.42 146.52 145.72 142.37
3 135.39 130.87 130.85 130.29 130.01 127.52
4 124.60 120.91 120.88 120.22 120.09 117.04
5 116.41 113.18 113.13 112.20 112.32 107.67
6 109.56 106.50 106.41 100.21 105.40 100.00

7 103.15 99.68 99.57 88.95 98.01 88.85
8 94.52 88.15 88.10 82.39 87.37 82.33

Table 2: ctg decreases over time with increasing cumulative capacity. Recall that
deployment of green energy in the current period is determined by the cost in
the previous period. Period 0 refers refers to the initial condition data at the
start of the simulation. The costs given for period i are the end of period costs
that determine the next period's deployment. We note that looking ahead one
period can lead to an additional 5%-10% reduction in the cost of green energy.
The numbers in boldface show when the cost of green energy is at or below the
cost of new fossil energy.

in reducing the cost of green energy comes from the region with the highest
preference for it: the EU. This can be seen by comparing the global green energy
deployment in the EU looks ahead scenario with the China EU Nash or
the All Nash scenarios in the early periods. These investments require support
in the form of subsidies. The `baton' is passed to fast growing regions like
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Period Myopic
EU
looks
ahead

China
EU
Nash

All
Nash

China
EU co-
operate

All co-
operate

0 53.1 53.1 53.1 53.1 53.1 53.1
1 155.8 179.3 179.4 180.6 182.6 195.3
2 316.8 384.7 385 391.7 397.7 424.4
3 572.3 700.2 700.9 718.9 728.4 817.3
4 937.9 1121.4 1123.1 1160.3 1167.6 1360.6
5 1405.5 1661.7 1665.7 1749.7 1738.8 2235.3
6 2015.3 2385.4 2397.1 3425.9 2536.9 3469.5
7 2885.4 3535.9 3558.7 6961.1 3910.3 7007.6

8 4851.7 7345.1 7369.3 10980.7 7743.3 11030

Table 3: Gt, the global green energy deployment increases considerably when
regions look ahead one period and, either play Nash or cooperate. The numbers
in boldface show the jump in deployment when the cost of green energy at the
end of the previous period (see Table 2 is equal to or below the cost of new
fossil energy. The global deployment of green energy increases from 11% in the
Myopic case to 25% when all three regions cooperate.

China and the rest of the world as the cost of green energy approaches, and
subsequently, falls below the cost of new fossil energy. Compare the green
energy deployment in periods 6 and higher between All Nash, All cooperate
and the others. Here, deployment of green energy replaces the deployment of
new fossil energy. This holds true for all scenarios. In scenarios where regions
look ahead one period, there is more subsidy provided in all regions though
the subsidy per unit of green energy is substantially reduced due to the higher
deployment, and lower cost of green energy.

3.2 Sensitivity Analysis

We construct simulations where we change one or more assumptions of the
Reference simulation. The cost of fossil energy can rise as a result of scarcity
due to resource exhaustion, and/or carbon taxes. We assume a CO2 intensity
of 0.5 tCO2/MWh, about halfway between coal and gas. Finally, the cost can
also fall with the discovery of new resources or technologies to extract currently
uneconomical resources (e.g. shale gas in the US). We consider the following
cost numbers (see Table 4) for simulations with falling and rising fossil fuel costs,
assumed to be constant across regions.

The costs of new fossil energy and old fossil energy are two signi�cant thresh-
olds of the model. A region with a low preference for green energy will deploy
signi�cant amounts of green energy only when the cost of green energy ap-
proaches or goes below the cost of new fossil energy. At the second threshold,
new green deployment not only meets incremental energy demand but also re-
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Reference
(R)

Rising Fossil
Costs (F)

Falling Fossil
Costs (C)

Period New Old New Old New Old

1 100 65 100 65 100 65
2 100 65 100 65 100 65
3 100 65 105 70 95 60
4 100 65 110 75 95 60
5 100 65 120 85 90 55
6-8 100 65 120 85 85 50

Table 4: Cost assumptions for the Reference, Rising Fossil Costs (C) and Falling
Fossil Costs (F) simulations.

Reference (R) Pref 1 (P1) Pref 2 (P2)

Period China EU ROW China EU China EU

1 949.3 16290 3905 949.3 16290 949.3 16290
2 949.3 16290 3905 3905 16290 3905 8145
3-8 949.3 16290 3905 3905 16290 7810 8145

Table 5: Data for simulations with 1. China's preference level increased to
match the rest of the world's (ROW) and 2. China's preference level increased
to twice ROW's and EU's preference is halved. ROW's preference remains
constant across scenarios.

places old fossil capacity which is prematurely retired. A region with a high
preference for green energy is less a�ected by these thresholds directly.

Another set of parameters that we vary is the preference for green energy
Bti in the three regions. In simulation Pref 1 (P1), we raise the preference
parameter of China to that of the rest of the world. In simulation Pref 2 (P2),
we raise China's preference parameter to twice that of the ROW and halve the
EU's preference for green energy. In Pref 1 we see that a higher preference for
green energy in China leads to a faster decrease in the cost of green energy. This
is due to the higher deployment in the initial periods as China is more willing to
subsidize green energy. In Pref 2 we see that higher preference for green energy
in China can even compensate for a reduction in the preference parameter in
Europe.
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Rising Fossil Costs (F) Falling Fossil Costs (C)
Myopic All Optimized Myopic All Optimized

Period Cost Deploy. Cost Deploy. Cost Deploy. Cost Deploy.

0 300 53.1 300 53.1 300 53.1 300 53.1
1 203.91 155.8 188.02 195.4 203.91 155.8 188 195.4
2 158.11 316.8 142.36 424.5 158.11 316.8 142.37 424.4
3 134.69 590.1 125.37 904 136.02 556.7 128.66 774.8
4 122.13 1056.5 112.62 1711.1 125.79 886.4 119.36 1210.9
5 99.28 3621.3 93.85 5060.1 118.74 1249.1 113.02 1675.2
6 88.38 7235.1 85 9121.8 113.58 1627 108.4 2147.6
7 82.2 11132.7 76.34 17280.9 109.25 2050.1 104.42 2681.8
8 74.5 19987 71.21 26135.2 105.51 2522.2 101.22 3228

Table 6: The numbers in boldface and underlined italics mark the periods when
the cost of green energy crosses 1. cost of new fossil ($120/MWh) and 2. cost of
old fossil ($85/MWh) respectively. Note the jump in green energy deployment
in the subsequent period. These thresholds are not reached in the case of Falling
Fossil Costs so the progress in cost reduction is slow.

3.3 Observations and Discussion

The model proposed in this paper produces a large number of possible trajec-
tories for the evolution of green energy. This is a result of the interplay of the
various parameters, model inputs and options: changing preference for green
energy, no or limited foresight and the changing cost of fossil fuels. The learn-
ing rate for green energy is another important variable though we have preferred
to keep it unchanged throughout all simulations. We have also kept the cap on
maximum green deployment in a given period constant across all simulations.
Some robust conclusions that can be drawn form the simulations are:

• A policy making environment with some foresight can produce a faster
decline in the cost of green energy. The cost reaches parity with the cost
of new fossil energy 4-8 years before a scenario with myopic policymakers
only.

• Scenarios with a one period look ahead (a foresight of 4 years) lead to costs
that are 5%-10% lower than the corresponding myopic scenario, especially
in the initial stages of the model when the fastest declines occur.

• As expected, full cooperation between regions produce the fastest decline
in the cost of green energy.

• The progress achieved by the two or three-region Nash games are quite
close to that of the full cooperation scenario.

The last conclusion is particularly pertinent, since it is unlikely that all
regions or countries of the world will sign on to an agreement. We conclude
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Reference (R) Pref 1 (P1) Pref 2 (P2)
Period Cost China EU Cost China EU Cost China EU

0 300 1.2 39.0 300.0 1.2 39.0 300 1.2 39.0
1 193.86 5 143.0 193.8 5.2 142.8 197.03 5.3 134.7
2 147.43 14.4 298.6 143.0 50.9 296.4 150.81 55.7 235.0
3 130.85 33.7 513.9 127.1 148.5 522.3 129.8 233.6 355.1
4 120.88 64.1 780.0 116.3 309.6 801.7 117.6 562.1 484.0
5 113.13 110.3 1090.4 107.1 626.0 1136.8 106.24 1281.2 641.8
6 106.41 187.6 1448.0 98.5 1174.9 1536.2 96.7 2273.2 840.3
7 99.57 334.7 1854.7 88.1 2270.3 2038.0 87.74 3368.7 1099.5
8 88.1 1543.8 2324.9 81.9 3479.4 2741.8 82.05 4577.8 1456.7

Table 7: We compare the Reference, Pref 1 and Pref 2 simulations for the sce-
nario where China and EU play a two period Nash game and ROW is myopic.
Note the di�erence between the numbers in boldface between the di�erent simu-
lations. In the Reference simulation, China's green energy deployments increase
drastically only when the cost goes below the cost of new fossil capacity. In the
other two cases, China has a higher preference for green energy and deploys
early.

that negotiation on co-ordinating policies among a few large jurisdictions can
have a signi�cant e�ect on the time by which cost parity with new fossil plants
is achieved, if, as seems likely, coordination triggers forward-looking behavior.
Since any one region's actions, by itself, have a more modest e�ect on cost
reduction, forward-looking behavior in the absence of coordination is less likely.
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