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I Introduction

Whether a permanent change in environmental and demographic systems affects the long-

run growth rate of an economy is an empirical question that many researchers and policy

makers have been interested in over the past decades. Moreover, it is also a distinguishing

characteristic between endogenous and exogenous growth models in the sense that the

‘change’ leads to a growth effect in the former class of models but only a level effect in

the latter (see, for example, Romer, 1986 and Lucas, 1988). Indeed, from the point of

view of a variety of economic and policy reasons1 it is important to understand how the

extent of such ‘change’ in environmental and demographic systems affect the long-term

pattern of economic growth. To understand the dynamics of such changes, an important

approach is to study the (co-)evolutionary pattern of environmental, demographic and

economic growth (in short, EDG) systems from temporal perspective. Apart from its

methodological appeal, time series characteristics of a growing system, such as EDG can

be modeled in light of modern economic growth theory. But interlinking empirics to

theory has not been so straightforward in this regard. In fact, the extant literature till

date has produced parallel analysis, i.e., either with a well-founderd theory investigating

the predictive performance of one of the variables in EDG on others (see for instance,

Dasgupta, 1995; Dasgupta and Heal, 1995; Soretz, 2003; Maler and Vincent, 2005, and

Henderson and Millimet, 2007, among others) or estimating a reduced form econometric

specification of the EDG system (for recent analysis, see for instance, Nguyen van and

Azomahou, 2007; Dinda and Coondoo, 2008).

An important aspect which has not been explicitly investigated in both theory and

empirics of EDG relationship is the effect of slowly-converging stochastic shocks. The

immediate effect of such shocks in any dynamic system can be gauged from the per-

ceptible changes it incurs on the long-run growth pattern.2 Additionally, a fractional

1The persistent emphasis on the negative consequences of rising volatility in environ-
mental and demographic systems have been duly stressed in various Inter-government
Panel for Climate Change (IPCC) reports. For details, please refer to http :
//www.ipcc.ch/publicationsanddata/publicationsanddatareports.shtml

2Emphasizing on the sizable impact stochastic shocks have on long-term economic growth Michelacci
and Zaffaroni (2000) investigate the importance of fractional dynamics of shocks in understanding con-
vergence of output.
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rate of convergence of shocks (i.e., having hyperbolic decay) in environmental (especially

environmental pollution) and demographic (especially population growth) systems may

imply a slower adjustment to the long-run equilibrium which also affects the speed of

adjustment in their co-evolutionary processes. While majority of research (as will be ex-

plained shortly) studying the impact of environmental and demographic stochasticities

on economic growth concentrate on either testing for unit root (and in a relatively small

number of cases the fractional integration) nature of pollution, population and economic

growth in cross country setting, understanding their implications within a conventional

growth framework appears less distinct. In this paper, we build a modified Solow-Swan

economy and study the implications of slowly-converging population and pollution shocks

on long-run economic growth.

Indeed, understanding the implications of convergence pattern of shocks within a

defined system is important both for pure academic and policy reasons or both. Although

neither of the individual systems in EDG framework can be studied while neglecting oth-

ers, recent research has invariably focused on ‘economy’ as being the central agent where

the effects of volatile demography and environmental growth is perceived. Although the

relationship can easily run from either direction3, research over the past decades have

tended to consider economy as the target variable and demography along with environ-

ment as impact variables. Investigating the relationship between population growth and

per capita income for instance, Boucekkine, de la Croix and Licandro (2002) showed that

the relationship is hump-shaped and that increases in longevity can be responsible for a

switch from a no-growth regime to a sustained growth regime. Dynamics between envi-

ronment and demographic components, such as, life-expectancy has also been explored in

numerous studies. Mariani et al. (2010) recently use an overlapping generations model

and show that environmental conditions affect life-expectancy which gives rise to the

possibility of multiple-equilibria so that some countries might be caught in a low-life-

expectancy and low-environmental quality trap. In light of the above, it is reasonable

3Ehrlich and Holdren’s (1971) I = PAT identity is one of the first to explain the logical relationship
between environmental impact (I), population (P), affluence (A), and technological efficiency (T). Which
one of the three factors act (upon) less on others actually defines the weight of the problem - i.e., whether it
is demography-pressure pull environmental problem or excess consumption-push environmental problem.
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to assume that demographic and environmental variations taken together can explain a

large part of the stochastic behavior of output fluctuations.

In light of the above, a natural question that arises is ‘how do stochastic shocks

in environmental and demographic systems affect transitional and evolutionary dynamics

of output growth?’ Can the rate of convergence of stochastic shocks in environmen-

tal and demographic systems determine convergence pattern of output (both at regional

and cross-country level)? What impact does the convergence rate of shocks in these

systems have on long-run output growth path of an economy? Answers to these ques-

tions are not always straightforward as conventional approach to modeling environmental

degradation, economic growth and population dynamics has invariably thrived on station-

ary relationship among these variables. Wherever the existence of stochastic shocks has

been considered, they are often based on the idea that the duration of these shocks are

‘duration-dependent’ and are of ‘one-off’ type such that a stochastic shock either escapes

certain period and becomes permanent thereafter. The slow convergence rate of shocks

with explicit temporal dynamics was evidently missing from modeling economic growth

with environment and demography being the main facilitators. Moreover, the interrela-

tionships among these variables (which we refer to here and in subsequent analysis as

EDG system) is exceedingly complex, often involving non-linear interactions. Therefore,

a stochastic shock in one of the variables may be argued not to completely wither-away

in others.

There are basically two ways economists can address such complexity: either by

means of a full-blown theoretical model or through some reduced-form approach. The

former approach has been celebrated in works of Dasgupta and Heal (1995) and in recent

research e.g., Henderson and Millimet, 2007; Xepapadeas, 2003 and Soretz (2003). The

latter option is way too complex, as it is already quite challenging to build a convincing

economic growth model that takes population exogenous and does not model the envi-

ronment. Although theoretical models of economic growth incorporating demography or

the environment have been proposed in the literature, there are very few cases in which

all the three dimensions have been brought together. One such case, in which a dynamic
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general equilibrium model is simulated, is Dalton et al. (2008).4 The alternative is to use

some reduced-form approach based on the statistical analysis of time series (and cross-

sectional) data. Here there are a few alternative routes that can be taken, one of them

is for instance to estimate population-augmented Environmental Kuznets Curves (e.g.

Cole and Neumayer, 2006).

In this paper we follow a third approach, one that is a mix of the two aforemen-

tioned strategies. We first take a very simple growth model – the celebrated Solow-Swan

model – and modify it to include the dynamics of the labor input that depends upon

the growth rate of population. This rate in turn is made dependent upon environmental

quality.5 Finally, the dynamics of environmental quality is allowed to functionally related

to population growth. In so doing the link between environmental quality, population,

and then economic growth is established. What we explore here thus is the link running

from environment and population to output, although the reverse link is possible. How-

ever, the analytical results we derive in the paper would not change implications while

exploring the reverse causation of feedback effects.

Our idea is to model and examine the interrelationships among variables in the EDG

system using (long-memory) time series framework. In this setting, it would be possible to

examine if shocks in these systems were converging slowly, that is if they are characterized

by long-memory. Additionally, one may model the co-evolutionary paths of the systems in

the presence of slow-converging shocks such that the long-run equilibrium of these systems

will be governed by the rate of convergence of shocks. Thus persistent shock in one of the

systems would easily transcend to other systems making the co-evolutionary pattern of

the integrated system unpredictable and volatile. A simulation experiment is carried out

using an extended Solow-Swan economy with long-memory population growth.

The rest of the paper is structured as follows. Section II describes the basic frame-

work and argues why environment and demographic systems can be modeled in a long-

memory framework. In section III we provide analytical arguments of economic growth

4One should also add, for the sake of completeness, that a fourth factor should not be neglected, and
that is technological progress.

5One may consider reverse causality, however this will not significantly alter the implications of our
main argument.
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stochasticity arising from long-memory environmental and demographic systems. Empir-

ical results are described in section IV. Section V presents results of simulation of the

extended Solow-Swan economy. Section VI summarizes and discusses the implication of

the main findings.

II Basic framework

The objective of this section is to provide a basic setting under which non-stationary

relationship among environment, economic growth and demography can be studied. The

framework we use for illustration relies on the fact that population growth dynamically

depends on the growth of environmental quality as environmental degradation inflicts

adverse effect on fertility. In numerous research published in medical science, it has been

found that degrading environmental quality (especially the presence of common chemicals

in the home and workplace) affects human infertility to a great extent.6

On the other hand, economic growth depends on population growth with a lag due

to the inevitability that the economy takes time to respond to a shock in nt necessitating

thus the EDG to thrive on the natural feedback effects. Easterlin (1966) provided the

cornerstone of the widely discussed economic-demographic interactions with feedback ef-

fects. To motivate analysis, we specify a model which accounts for the negative effects

of accumulating pollution on the supply side through the reduction of labour produc-

tivity and population growth by environmental pollution. Let us consider an aggregate

Cobb-Douglas production function

Y (t) = K(t)α[A(t)N(t)]1−α, 1 < α < 0 (1)

with the standard notations: Y (t) the output at time t, K(t) the level of physical capital,

N(t) the labour input, A(t) the labour augmenting technical progress. Then, A(t)N(t)

6Dr. Hein Strokum, Institute of Sterility Treatment, Vienna, Austria in an interesting research pub-
lished in the American Journal of Industrial Medicine (Vol. 24:587-592, 1983) found that men experiencing
infertility were found to be employed in agricultural/pesticide related jobs 10 times more often than a
study group of men not experiencing infertility. It was also found that mothers who lived near crops
where certain pesticides were sprayed faced a 40 to 120 percent increase in risk of miscarriage due to
birth defects.
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is the effective labour. We denote g(E) the growth rate of labour augmenting technical

progress which depends on environmental quality E, with g′(E) < 0. This translates

the negative effects of accumulated pollution on labour productivity. The labour input is

governed by the growth rate of population, n(E) so that

N(t) = (1 + n(E))N(t− 1) (2)

where n(E) represents the growth rate of population that also depends on environmental

quality. We assume that n′(E) < 0. Both g(E) and n(E) imply that we can endogenize

technical progress and population growth in terms of environmental quality.

Since we focus on population and environmental quality (where population exerts

some pressure on environment via consumption and production), the latter can be viewed

as a physical good. Following Aghion and Howitt (1998, Chap.5), we assume that there

is an upper limit to environmental quality, denoted by Emax. We measure E(t) as the

difference between the actual quality and this upper limit. Thus, environmental quality

will always be negative. The equation of motion of environmental quality is given by

Ė(t) = −θE(t)− ψn(E) (3)

where θE(t) > 0 in (3) indicates the maximum potential rate of recovery of the envi-

ronment, and ψ > 0 measures the environmental damage following from demographic

pressures. Furthermore, from sustainable economic perspective, we assume that environ-

mental quality also has a lower limit, Emin referred to as catastrophic. This, implies that

the optimal growth path, if it exists, will be constrained as

Emin ≤ E ≤ 0. (4)

The function A(t) describing the level of labour augmenting technical progress specified

as

A(t) = Ω(t)E(t)−β, β > 0. (5)
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This formulation has two parts. The first part like Solow (1956) and Swan (1956)

represents some exogenous portion of technical progress: Ω(t) = Ω(0)eµt where µ is its

constant rate of growth. The second part implies that as t → 1, and E(t) → ∞ nega-

tively (recall that E(t) is always negative), A(t) → 0. This means that more environmen-

tal pollution will lead labour productivity to decline increasingly more slowly and thus

approaches zero only asymptotically. It can be easily seen from relations (3) and (5) that

g(E) =
˙A(t)

A(t)
= µ− β

Ė

E
= µ+ βθ +

ψn(E)

E
(6)

from which one observes that g′(E) < 0 if n(E) = n. Since n(E) is not constant and

incorporates some stochastic feature, it will be useful to study its properties using a

flexible framework where stationarity of shocks is a limiting case of the broader problem.7

This can be done by describing relation (3) in a fractional integration framework such

that Ėt ≡ Et −Et−1 is re-written as (1−L)dEt where d is the integration parameter and

L is backward shift operator with LEt = Et−1. When d = 1, (1 − L)dEt is equivalent

to Ėt ≡ Et − Et−1. However, allowing d to assume a fractional value allows us to study

various convergence patterns of shocks which not only determines its growth dynamics but

also the evolutionary pattern of interacting systems, such as demography and economic

growth. Describing equation (3) by

(1− L)dEt = ϵt (7)

where ϵt ∼ (0, σ2) is a gaussian fractional noise, we may thus study shock convergence

pattern of this system by looking at the decay of the autocovariance function along with

the binomial expansion of (1− L)d:

(1− L)d =
∞∑
0

hjL
j = 1− dL+

d(d− 1)

2!
L2 − d(d− 1)(d− 2)

3!
L3 − ... (8)

7The reason why demographic and environmental systems are characterized by long-memory can be
traced to the fact that an growing system, small or big is often subject to continuous perturbations, the
accumulations of which in the long-run may result in a behavior of shocks which may not converge in
the long-run. Moreover, presence of such shocks in an interdependent system like EDG affect the whole
system’s evolutionary process.

8



h0 ≡ 1, Lj is backward operator j times, and hj ≡ (1/j!)(d + j − 1)(d + j − 2)(d + j −

3) · · · (d+1)(d). It may be noted from the above that the coefficient of lagged Et provides

the rate of declining weights. However, based on the non-integer values and sign of d, the

following memory properties are observed.

With d = 0 in the above, the process exhibits ‘short memory’ as the autocorrelations

in this case is summable and decay fairly rapidly so that a shock has only a temporary

effect completely disappearing in the long run. Long memory and persistence is observed

for d > 0. In this case, the shock affects the historical trajectory of the series. However,

greater is the magnitude of d, stronger is the memory and shock persistence. For d ∈

(0, 0.5), the series is covariance stationary and the autocorrelations take much longer

time to die out. When d ∈ [0.5, 1), the series is a mean reverting long-memory and non-

stationary process. This implies even though remote shocks affect the present value of

the series, this will tend to the value of its mean in the long run. For −1/2 < d < 0

the process is known to be fractionally over-differenced. In this case, there is still short

memory with summable autocovariances, but the autocovariance sequence sums to 0 over

(−∞, +∞). For d < −1/2 the series is covariance stationary but not invertible. And

finally, when d ≥ 1 the series is nonstationary and exhibits ‘perfect memory’ or ‘infinite

memory’. There is no unconditional mean defined for the series in this case. The process

defined by this value of d is non-stationary and non-mean reverting. In this case, the

mean of the series has no measured impact on the future values of the process.

III Stochasticity in economic growth

In this section we investigate if the presence of long-memory in environment and demo-

graphic variables imply a long-memory in economic growth. In other words, is it right to

argue that (possible) slow convergence of shocks in international output in recent studies

(e.g., Michelacci and Zaffaroni, 2000) can be attributed to the slow-convergent shocks

in environmental and demographic variables? To motivate such setting, recall that the

relation between environment and demography is expressed in a way that allows popu-

lation growth n to be a function of environmental quality E, which is both empirically
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well-supported and theoretically well-explored. Moreover, using conventional framework

of economic growth and demography literature per capita output growth, Y is assumed to

be functionally dependent on population growth n. A simple model of economic growth

viz., Solow-Swan economy8 is considered next to demonstrate how a long-memory in popu-

lation growth can affect growth behavior of the economy with environmental stochasticity

implicitly governing the dynamics of the demographic system.9

To begin with, recall the environmental growth equation:

(1− L)dEt = −θEt − ψnt (9)

then

Et = −ψnt
[
(1− L)d + θ

]−1
(10)

Observe that (3) is conceptualized to be a function of the level of environmental

quality and the evolution of population, viz., the population growth in the model. Here,

we assume that demographic pressure impacts upon environmental quality and this conse-

quently affects population growth via mortality and fertility changes. Thus, the equation

accommodates the feedback effect from demographic process to environmental quality.

Moreover, Et can be described by

(1− L)dΦ(L)Et = Θ(L)ϵt. (11)

L is the lag operator as defined before and Φ(L) = (1 + ϕ1L + ... + ϕpL
p) and Θ(L) =

(1−ϑ1L− ...−ϑqLq) are AR andMA polynomials respectively. Following the expressions

in (9) and (10), we re-write the population growth equation as a function of stochastic

8We emphasize that the results from this exercise need to be studied with caution due to the simplicity
of model assumptions of Solow-Swan economy especially because Solow-Swan model has no endogenous
(optimal) capital accumulation, and is based on exogenous saving rate and have no mechanism to de-
scribe evolution of technology. Nevertheless, our approach provides insights into the behavior of the
economic growth system while demographic system as endogenous with slow-converging shocks. The
results presented here are of statistical in nature. A more formal growth-theoretic implication would
have an interesting exercise, however, this is beyond the scope of this exercise.

9Mishra et al. (2010) studies consequences of long-memory population shocks on economic growth.
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environment:

nt = −Et
(
(1− L)d + θ

)
ψ−1 (12)

≡ −

Etψ [ ∞∑
j=0

Γ(j − d)

Γ(j + 1)
Γ(−d)Lj + θ

]−1
 (13)

Now since Yt is described by (1), then inducting the growth of population equation

with long memory in (12) in the production function it appears that

Yt = Kα
t

At
1− Et

[
ψ

∞∑
j=0

Γ(j − d)

Γ(j + 1)Γ(−d)
Lj + θ

]−1

Nt−1

1−α

(14)

We will use this modified production function along with savings and consumption func-

tion with an assumed depreciation rate of capital stock and proportion of labor and capital

for simulation. The investment, It and capital stock equations are described as

Kt+1 = (1− δ)Kt + It (15)

where capital stock is assumed to decline at a constant rate of δ(0 < δ < 1) per period.

Given that s is the fraction of Y to be invested, then

It = sYt (16)

and consumption is defined according to

Ct = (1− s)Yt (17)

The system of equations (14-17) describing modified Solow-Swan economy will be utilized

for simulation exercise in section 6.

Having described the output growth equation with stochastic long memory in pop-

ulation and environment, it is necessary to outline in brief the main results of variation

of d in this system. To elucidate, if we assume that environmental quality is governed by
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the mean of the process, i.e.,

Et = Ē + ϵt (18)

then the spectral density of Et is written as

fE(λ) =
σ2
ϵ

2π
(19)

However, if a stochastic shock persists in Et or in its growth, i.e., if (1−L)dEt = ϵt, then

the spectrum is governed by the stochastic memory in the environmental equation:

fE(λ) =
∣∣1− eiλ

∣∣−2d
fϵ(λ) =

∣∣∣∣2 sin λ2
∣∣∣∣−2d

fϵ(λ) (20)

where fϵ(λ) denotes the spectral density of the error term. The following results are

obtained which explain the dynamics of interrelationships among environment, economic

and population growth in the presence of stochastic shocks.

Proposition 1: Under the assumption of the environmental and economic growth system

described in Eqs. 1-3, the long memory in output growth, yt, can be described as a function

of long memory in the growth of environmental quality and population growth.

Proof:

Empirical verification has already proven that demography-push led environmental prob-

lems have inflicted substantial fluctuations to economic growth. Since long memory in

output growth can be written as

(1− L)dyt = ut (21)

with the usual restrictions of d on the real line. If yt is described by yt = ȳ + ut, i.e.,

the process is independently distributed around the mean, then the spectral density of

yt is fy(λ) = σ2
u

2π
. If shocks persist in yt and is characterized in long memory setting,
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then yt follows (1 − L)dyt = ut with the spectral density fy(λ) = |1 − eiλ|−2dfu(λ) =

|2sin(λ
2
)|−2dfu(λ), where fu(λ) is the spectral density of the error term. A natural way

to present whether, say yt is a short-memory or a long memory process, is to know

the shape of the spectral density of yt and decompose spectral frequencies according to

different components, in our case environment and population. Since we can define the

persistent properties of Et (growth of environment) and nt (growth of population) in terms

of long-memory process, then the possible source of long-memory in yt can be expressed

as a product of the stochastic long-memory components from Et and nt. Therefore,

the long-memory in yt, can be expressed as a product of fn(λ) and fE(λ), such that

fy(λ) = [(|1− eiλ|−2dfu(λ))(|1− eiλ|−2dfϵ(λ))], where ut and ϵt are the iid error processes

of population growth and environment. Thus the likelihood of a possible stochastic shock

in the output growth equation can be expressed as the joint likelihood of the stochastic

shocks from demographic and environmental system.

One can also express the variance in output growth as the sum of the variance of

environment and demographic system and the covariance between them such that

Var [yt] = Var [Nt] + Var [Et] + Cov [Et, Nt] (22)

As t→ ∞, the contribution of Et and Nt to the variance of yt increases and under deter-

ministic assumption there would be steady state equilibrium. However, under alternative

assumption of stochasticity, both Et and Nt tend to experience heavy spurts and the

spectral variance of their respective shocks contribute to the total variance of output.

Proposition 2:

If d is mean converging/covariance stationary, then it is possible to achieve g′(E) < 0

that is, change in output growth as a function of environmental growth is negative.

Proof:

Recall the relation where g(E) =
˙A(t)

A(t)
= µ−β Ė

E
= µ+βθ+ ψn(E)

E
), g′(E) < 0 if n(E) = n.

Now since, n(E) is stochastic and is given by Eq. 12, where (1−L)d is given by the power
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series expansion: (1−L)d =
∑∞

0 hjL
j = 1−dL+ d(d−1)

2!
L2− d(d−1)(d−2)

3!
L3−..., then g′(E) <

0 occurs when d has convergent properties in the sense that d ∈ (0, 0.5). Because with d ≤

1/2, the population growth series is covariance stationary with summable autocorrelation

function and which is positive, then (local) stability is achieved. Moreover, under the

assumption that n(E) = n, that is under deterministic setting population growth can at

least be zero and will be positive normally. This implies that the change in environmental

quality (g′(E) < 0) will be negative even under stochastic formulation where the sum

of stochastic shocks are added to a deterministic constant. The intuition is as long as

stochastic shocks accumulate and has convergent properties such that 0 < d ≤ 1/2, the

numerator still can be positive and therefore g′(E) < 0.

Proposition 3: Under the assumption that n(E) is stochastic and is characterized by

stochastic memories, n′(E) < 0 only if 0 < d < 1/2.

Proof:

This is a corollary of the main result. The explanation follows from result 2. The idea is

that stochastic population growth does not necessarily pertain to constant and positive

numerator as in Eq. 6. The conditions under which n′(E) < 0 can be given by the

convergence properties of the n(E) function under stochastic memory properties. n′(E) <

0 implies that a unit change in E will induce a negative response from population growth.

The converse is also true. To prove the proposition assume that d lies in the region

(1/2, 1) and second d ≥ 1, then the autocorrelation function is not summable and the

series exhibit non-stationary long-memory. There is no convergence of shocks to the mean

value, thus the growth of the population series has no constant value in the numerator.

Only when 0 < d < 1/2, (1−L)d =
∑∞

0 hjL
j = 1− dL+ d(d−1)

2!
L2− d(d−1)(d−2)

3!
L3− ... has

finite sum and has a positive constant on the numerator thus giving rise to n′(E) < 0.

Local stability and long-run convergence (to steady state) occurs only when the stochastic

Et and nt have (1 − L)d with d ∈ (0, 0.5). Chaotic EDG system occurs when d ≥ 1 due

to the high sensitivity of the system to their initial values and high non-linearity due to

14



propagation of shocks.

IV Empirical analysis

IV.1 Data characteristics

We discuss in this section the persistence behavior of aggregate population, pollution

and economic growth for a sample of OECD and non-OECD countries chosen according

to the highest volume of CO2 emissions. Pollution data is presented by national CO2

emission per capita, measured in metric tons. The data have been collected from Carbon

Dioxide Information Analysis Center (CDIAC) of the Oak Ridge National Laboratory (see

Marland et al., 2004). The aggregate population data, measured in thousand numbers has

been collected from Maddison (2004). Finally, the real GDP per capita series, measured in

thousand dollars in 2001 international prices, were extracted from the Penn World Table

6.1 (Summer and Heston, 2006). All data are annual time series. For OECD countries

CO2 emissions and aggregate population cover the period 1870-2003. The same variables

for non-OECD countries are available for the period 1900-2003. Finally, per capita GDP

for both OECD and non-OECD countries covers the period 1950-2003 as the historical

data before 1950 are not available for the chosen non-OECD countries.

Figures 1-4 present plots of population, CO2 and per capita real GDP for the cho-

sen OECD and non-OECD countries after logarithmic transformations. The real GDP

plots for OECD (Figure 3) and Non-OECD (Figure 4) countries show steady trends.

Fluctuations occur at different periods but OECD countries on the whole display sim-

ilar growth trend, where Non-OECD countries evince differential trends. The striking

common feature in figures 1-4 is that CO2 emissions display significant fluctuations for

both OECD and non-OECD countries whereas trend in population growth display steady

pattern reflecting contrasting features of the growth processes of population and pollu-

tion. Long-range temporal dependence pattern of population and CO2 emissions can be

discerned by looking at their autocorrelations functions. For both sets of countries, the

autocorrelation lag has been set to 24 indicating 24 years given our annual time series
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data for these variables. From figures 5-8, one can easily observed that autocorrelations

among observations are still strong and positive even at higher lag. The rate of decline of

autocorrelated lags are slow-paced indicating possible presence of long-memory in these

variables.

To explore equilibrium relationship among real GDP per capita, population and

pollution we model them in fractional co-integration framework. All data used for this

purpose range from 1950-2003. It is important to note that growth in the variables

are calculated by taking logarithmic differences between period t and t − 1. In case of

pollution growth, it may be described by ∆ ln(Et) = (1 − L) ln(Et) where ∆ = (1 − L)

and LEt = Et−1. Similarly, fractional difference of ln(Et) = ∆d ln(Et) = (1 − L)d ln(Et),

where d is estimated using either parametric or semi-parametric methods.

IV.2 Fractional (co-)integration in GDP per capita, pollution

and population

IV.2.1 Testing long-memory

To further investigate, our next step is to test for fractional integration for population

and CO2 emissions after log-transformation. Accordingly, we have estimated fractional

integration parameter d for the process (1 − L)dXit = uit where i represents population

and CO2 emissions. There exist many approaches for estimating d. Some of them are

parametric, in which the model is specified up to a finite number of parameters. However,

parametric approaches suffer from the drawback that unless correct model is specified, the

estimates are liable to be inconsistent. In fact, misspecification of short-run components

may invalidate the estimation of the long-run parameter. Thus, there may be some

advantages on estimating d with semiparametric techniques. In this paper, we have

employed Robinson’s (1995) gaussian semi-parametric procedure. This is primarily a

Whittle estimate (1951) in the parametric domain, considering a band of frequencies that
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degenerates to zero. The estimate is defined by

d̂ = arg mind

(
log V (d)− 2d

1

m

m∑
j=1

log ωj

)
(23)

where V (d) = 1
m

∑m
j=1 I(ωj) ω

2d
j , ωj =

2πj
T
, m
T
→ 0. I(ωj) is the periodogram of the raw

time series, m is bandwidth parameter and d ∈ (−0.5, 0.5). Under finiteness of the fourth

moment and other mild conditions, Robinson (1995) proved that
√
m(d̂−da) → N(0, 1/4)

as T → ∞, where da is the true value of d and with the additional requirement that

m → ∞ slower than T . Robinson (1995) showed that m must be smaller than T/2 to

avoid aliasing effects. One may also use other semi-parametric approaches such as log

periodogram regression of Geweke and Porter-Hudak (1983) or modified log-periodogram

regression of Kim and Phillips (2000). In Robinson’s (1995) approach we do not have to

assume Gaussianity to obtain an asymptotic normal distribution. The Whittle method is

argued to be more efficient than log-periodogram regression approaches.

A choice must be made of the number of harmonic ordinates to be included in the

spectral regression. One of the innovations of Robinson’s estimator is that it is not re-

stricted to using a small fraction of the ordinates of the empirical periodogram of the

series. The estimator also allows for the removal of one or mode initial ordinates and for

the averaging of the peridogram over adjacent frequencies. Since some researchers have

found that exclusion of initial ordinates from the log-periodogram regression improves

the properties of tests, in this paper we have excluded two initial ordinates. A choice of

bandwidth, however, needs to be made, for which we have performed a Monte-Carlo sim-

ulation using Davidson’s (2010) time series modelling software and found that bandwidth

= 0.90 possess lowest bias.10

In tables 1 and 2 we present estimates of d for logarithm of total population and CO2

emissions in case of both OECD and non-OECD countries. The estimates are reported

for various bandwidths (τ = 0.70 − 0.90). The null hypothesis we test is d = 0, that

is short memory against an alternative hypothesis of long-memory. As is evident, all

estimates of d for both time series and for both group of countries indicate 1 > d > 0.5.

10We have not presented the detailed results here. However, these can be obtained from the authors.

17



Indeed, our choice of τ = 0.90, which is the default value of Robinson (1995) provides

us with the same conclusion. The implication is that the variables are characterized by

long-memory processes and therefore a shock in the series in the distant past will still

have a long-lasting influence on the present. The d estimates are however smaller than

1 indicating the long-memory persistence with the possibility of convergent shocks in

the long-run. No distinguishable results can be observed across OECD and non-OECD

countries’s magnitude of persistence for both population and CO2 emissions series as d

estimates are all greater than 0.5 but less than 1. The autocorrelation functions for the

values of d between 0.5 and 1 have same economic and statistical implications.

Table 1: Robinson’s (1995) semi-parametric estimation of d for CO2 emissions
(Note: H0: d = 0. Standard errors are in parentheses)

Tτ τ =0.70 τ =0.75 τ =0.80 τ =0.85 τ =0.90
Periodogram

Ordinates 25 33 41 51 65
OECD

USA 0.820
(0.051)

0.767
(0.041)

0.687
(0.041)

0.652
(0.034)

0.569
(0.034)

Japan 0.921
(0.060)

0.971
(0.050)

0.872
(0.041)

0.840
(0.031)

0.767
(0.029)

UK 0.838
(0.151)

0.794
(0.134)

0.775
(0.125)

0.634
(0.104)

0.532
(0.087)

France 0.708
(0.154)

0.708
(0.117)

0.760
(0.093)

0.749
(0.072)

0.714
(0.062)

Canada 0.999
(0.042)

0.929
(0.038)

0.863
(0.034)

0.818
(0.029)

0.745
(0.026)

Non-OECD
China 0.706

(0.134)
0.519
(0.154)

0.529
(0.131)

0.514
(0.137)

0.583
(0.126)

India 0.957
(0.018)

0.937
(0.020)

0.912
(0.019)

0.879
(0.018)

0.808
(0.022)

Brazil 1.004
(0.048)

0.972
(0.040)

0.954
(0.034)

0.906
(0.030)

0.829
(0.030)

South Africa 0.908
(0.024)

0.892
(0.023)

0.869
(0.020)

0.827
(0.020)

0.755
(0.023)

Mexico 1.077
(0.153)

0.987
(0.117)

0.930
(0.098)

0.871
(0.081)

0.789
(0.068)
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Table 2: Robinson’s (1995) semi-parametric estimation of d for total population
(Note: H0: d = 0. Standard errors are in parentheses)

Tτ τ =0.70 τ =0.75 τ =0.80 τ =0.85 τ =0.90
Periodogram

Ordinates 25 33 41 51 65
OECD

USA 0.958
(0.006)

0.941
(0.006)

0.909
(0.008)

0.860
(0.011)

0.774
(0.018)

Japan 0.965
(0.009)

0.946
(0.008)

0.913
(0.009)

0.862
(0.012)

0.775
(0.018)

UK 0.960
(0.022)

0.943
(0.019)

0.912
(0.017)

0.859
(0.017)

0.773
(0.021)

France 0.967
(0.046)

0.964
(0.034)

0.940
(0.026)

0.896
(0.021)

0.809
(0.023)

Canada 0.945
(0.010)

0.933
(0.008)

0.905
(0.008)

0.857
(0.011)

0.773
(0.017)

Non-OECD
China 0.999

(0.014)
0.971
(0.013)

0.941
(0.013)

0.896
(0.016)

0.814
(0.022)

India 0.987
(0.027)

0.969
(0.023)

0.934
(0.022)

0.893
(0.022)

0.810
(0.026)

Brazil 0.985
(0.008)

0.961
(0.009)

0.932
(0.011)

0.889
(0.014)

0.808
(0.021)

South Africa 0.589
(0.296)

0.969
(0.379)

0.751
(0.304)

0.731
(0.235)

0.593
(0.203)

Mexico 0.997
(0.015)

0.971
(0.013)

0.940
(0.014)

0.895
(0.016)

0.812
(0.022)

IV.3 (Fractional-)cointegration analysis

In order to test if environmental pollution, population growth and per capita income

growth are fractionally co-integrated, we adopt the two-step strategy as in Caporale and

Gil-Alana (2004, 2005) and discussed succinctly in Gil-Alana and Hualde (2009). The

strategy is to employ Robinson (1995) test for fractional integration of a time series in

various stages. Accordingly, in the first step, we test for the order of integration of each

series, and if they are found to be of the same order, we test, in the second step, the order

of integration of the estimated residuals of the cointegration relationship. Let us call

ϵt, the estimated equilibrium errors among three series, real GDP per capita, aggregate

population and CO2 emissions for each country:

ϵt = ln(Yt)− α̂1 lnPt − α̂2 lnEt (24)
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where Yt, Pt and Et are real GDP per capita, population and CO2 emissions respectively

and α̂ are the OLS estimator of the cointegrating parameter. Let us consider the model:

(1− L)d+θ = ut (25)

where ut is a I(0) process ; we applied the Robinson (1995)’s testing procedure in order

to test the null hypothesis H0 : θ = 0 against the alternative H1 : θ < 0. If the null

hypothesis is rejected, it implies that the equilibrium error exhibits a smaller degree of

integration than the original series: Yt, Pt and Et are thus fractionally cointegrated. On

the opposite, if the null hypothesis is not rejected, the series are not cointegrated because

the order of integration of θ is the same as the order of the original series. As a first step

to testing this hypothesis, we have saved residuals from regression of real GDP per capita

on total population and CO2 emissions for each country.11 Due to the unavailability

of real GDP data before 1950 for some countries and for the sake of comparison, the

regression has been run for the truncated sample over the period 1950-2003. In the next

step, the equilibrium errors ϵ̂i where i is indexed for each country, are tested for short or

long-memory using Robinson’s (1995) semi-parametric log periodogram regression. Table

3 presents results of the d estimates of equilibrium errors for each country. It is observed

that at τ = 0.9, the default value as in Robinson (1995), USA, Japan and UK have

d < 0.5 implying that shocks in the equilibrating mechanism will converge and that there

is a stable co-movement among GDP per capita, population and CO2 emissions in these

countries. For others, we find that d values range from 0.572 - 0.959, that is 1 > d > 0.5.

The co-movement of GDP, population and CO2 emissions in these countries contain non-

stationary long-memory with a possibility of mean convergence in the long-run. Among

countries with values of d in the range 0.5-0.9, China has highest d (0.959) for equilibrium

errors, while South Africa has the lowest d value (0.572). All d values are statistically

significant at 5 percent significance level.

11The detailed results have not been reported here but are available with the authors.
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Table 3: Robinson’s (1995) semi-parametric estimation of d for estimated equilibrium
errors

(Note: H0: d = 0. Standard errors are in parentheses)

Tτ τ =0.70 τ =0.75 τ =0.80 τ =0.85 τ =0.90
Periodogram

Ordinates 25 33 41 51 65
OECD

USA 0.217
(0.085)

0.233
(0.069)

0.287
(0.081)

0.205
(0.070)

0.183
(0.069)

Japan 0.443
(0.314)

0.449
(0.252)

0.635
(0.175)

0.452
(0.166)

0.426
(0.115)

UK 1.191
(0.331)

0.920
(0.334)

0.752
(0.249)

0.648
(0.209)

0.448
(0.162)

France 1.023
(0.464)

1.051
(0.373)

1.190
(0.255)

1.112
(0.223)

0.896
(0.205)

Canada 1.074
(0.330)

1.046
(0.265)

1.066
(0.214)

1.004
(0.171)

0.711
(0.169)

Non-OECD
India 1.065

(0.238)
0.919
(0.220)

0.5915
(0.222)

0.847
(0.199)

0.665
(0.153)

China 0.394
(0.121)

0.483
(0.128)

0.993
(0.233)

1.467
(0.307)

0.959
(0.284)

Brazil 1.039
(0.262)

0.978
(0.214)

0.943
(0.218)

0.683
(0.217)

0.680
(0.152)

South Africa 0.894
(0.486)

0.775
(0.400)

0.725
(0.259)

0.761
(0.208)

0.572
(0.172)

Mexico 1.488
(0.435)

1.104
(0.452)

1.006
(0.288)

0.813
(0.247)

0.687
(0.235)

V Simulation experiments

The simulation experiment carried out in this section aims to lend additional support

for the long-memory dynamics of Economy-Demography-Environment framework. The

simulation economy closely follows the modified Solow-Swan growth model by embedding

stochastic long-memory characters. Our idea is to show that as stochastic shocks move

from convergent to high degree of non-convergence, i.e., as d moves from 0 to 1, the re-

sponse of the economy and the environment over time becomes fairly stochastic in nature.

Different regimes of change for economy and environment arise due to shifting patterns

of stochastic memory from convergence to high degree of non-convergence. Our standard

Solow-Swan economy has global assumption about labor and capital usage in production

(that is, 2/3rd and 1/3rd) in line with many empirical research. The depreciation rate has

been kept constant following the tradition of constant scrapping rule. Time dimension is

set to 50 years so that the effect of long memory can be gauged over five decades.
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From Figures 9-17, we observe interesting features of the response of environment

to long-memory shocks. Essentially, three distinct patterns can be noted. For instance,

we observe that depending on the value of d, there is a change of regime starting from

approximately year 15-16 (cf. figures 9 and 12). So, there are basically two regimes for

the first type. Figures 10 and 11, 13 and 14 depict different pattern (one regime with

no change). The third pattern is observed in Figure 14 where now, two dates matter,

year 8 and year 12. There are a total of three phases: before year 8, between year 8 and

year 12, and after year 12. Moreover, for this third pattern, in each phase, the place of

curves varies depending on d. Thus, before year 8, the curve for d = 1 is above all curves.

Between year 8 and year 12, the curve for d = 1 is below all curves, and after year 12,

we still obtain the same curve ranking as in phase 1 (before year 8). So, here, we have in

total 3 regimes. So, generally, we can say that there exists a chaotical dynamic structure

depending on the sensitivity of the initial values.

From the above, it appears that response of output and environment to long mem-

ory shock varies with the level of d values. The output growth equation which embeds

stochastic features of environment and population growth responds to the long-memory

shock in expected pattern: that stochastic shocks to environment and demography would

result in stochasticity in output growth in the long-run. From environmental perspective

we observed that the stochasticity of pollution growth, broadly the environmental sys-

tem grows over time. That is what we observe for the output figures. Regimes changes

are also presented in Figures 15-17 where distinction is made between one regime with

no regime change. To summarize, the simulation experiment carried out for a modified

Solow-Swan economy shows that economy-demography and environmental interactions

are exceedingly complex and that the persistence of stochastic shocks in one system eas-

ily filters into the others, accelerating over time and pressing the system to behave in a

stochastic pattern in the long-run. Different regime changes observed in our experiment

due to variations in the magnitudes of the long-memory parameter indicate how initial

distribution can change the growth profile while stochastic shocks move from convergence

to non-convergence. Different economic and thus environmental systems would thus be

observed depending on how fast d moves from 0 to 1 and how initial values change.
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VI Conclusion

We modeled the dynamics of interactions between economy-demography-environmental

systems under slowly-convergent shocks. It was demonstrated that presence of long mem-

ory in environment and population gave rise to long-memory in economic growth. Time

series characteristics of population, economic growth and pollution series were exploited

emphasizing on the fact that the evolutionary paths of the series are bound to contain

perturbations, the effect of which may extend beyond mean reversion. The source of

stochasticity in economic growth in this paper, was therefore illustrated to result from

persistence of shocks in population and environmental systems. It was shown that the

possible mean reversion of persistent shocks in economic growth will depend upon the

shock convergence pattern in both population and environmental systems. Empirical

illustration for a set of highly polluting OECD and non-OECD countries evinced that

pollution and population series displayed high degree of persistence, often reflecting non-

mean convergence.

The co-evolutionary path of the three environment, demographic and economic

growth system was modeled using fractional co-integration framework. It was found

that the equilibrium error from the regression of economic growth on environment and

population displayed stochastic long-memory, implying that unless volatility and stochas-

ticity in population and environmental systems are checked, economic growth system will

tend to be more chaotic across globe. Simulation experiment for a modified Solow-Swan

economy provided additional support to our proposition that rate of convergence of de-

mographic and environmental shocks would determine the rate of convergence of output

shocks. Regime changes in economy and environment were observed to be consequences

of the presence of persistence in environment and demographic system.
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Appendix: Figures

Figure 1: Logarithmic plots of CO2 emissions and population: OECD countries
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Figure 2: Logarithmic plots of CO2 emissions and population: Non-OECD countries
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Figure 3: Logarithmic plots of real GDP: OECD countries
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Figure 4: Logarithmic plots of real GDP: Non-OECD countries
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Figure 5: Autocorrelation functions for CO2 emissions: non-OECD countries
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Figure 6: Autocorrelation functions for CO2 emissions: OECD countries
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Figure 7: Autocorrelation functions for total population: non-OECD countries
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Figure 8: Autocorrelation functions for total population: OECD countries
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Figure 9: Simulation of the dynamics of the environment demographic growth system.
[Left]: Response of environment to long-memory shock. [Right]: Response of output to
long-memory shock.

Figure 10: Simulation of the dynamics of the environment demographic growth system.
[Left]: Response of environment to long-memory shock. [Right]: Response of output to
long-memory shock.
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Figure 11: Simulation of the dynamics of the environment demographic growth system.
[Left]: Response of environment to long-memory shock. [Right]: Response of output to
long-memory shock.

Figure 12: Simulation of the dynamics of the environment demographic growth system.
[Left]: Response of environment to long-memory shock. [Right]: Response of output to
long-memory shock.
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Figure 13: Simulation of the dynamics of the environment demographic growth system.
[Left]: Response of environment to long-memory shock. [Right]: Response of output to
long-memory shock.

Figure 14: Simulation of the dynamics of the environment demographic growth system.
[Left]: Response of environment to long-memory shock. [Right]: Response of output to
long-memory shock.
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Figure 15: Simulation of the dynamics of the environment demographic growth system:
two regimes. [Left]: Response of environment to long-memory shock. [Right]: Response
of output to long-memory shock.

Figure 16: Simulation of the dynamics of the environment demographic growth system:
three regimes. [Left]: Response of environment to long-memory shock. [Right]: Response
of output to long-memory shock.
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Figure 17: Simulation of the dynamics of the environment demographic growth system:
one regime with no regime change. [Left]: Response of environment to long-memory
shock. [Right]: Response of output to long-memory shock.
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