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Abstract

Gilat Levy (2007a, AER) has argued that when experts are primarily motivated

by career concerns, sometimes the decision maker is better off not to announce

individual or collective votes recommending ideal actions but rather announce only

the final decision (for an appropriately chosen voting rule). That is, secrecy may

outperform transparency. If experts can be asked by the decision maker to vote

in sequence (as opposed to Levy’s simultaneous voting), it is shown that semi-

transparency, where only collective votes are announced but not their timing, weakly

dominates both secrecy and complete transparency (where individual votes and their

timing are announced). This result is shown in a Bayesian decision making setting

(with experts motivated by career concerns), rather than for specific voting rules.
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1 Introduction

Decision making procedures influence the advice given by experts motivated by career

concerns. For any given voting rule (say, an x% rule to select a decision), voting strate-

gies depend on whether individual experts’ votes are made public or remain secret with

only the aggregate decision announced. Gilat Levy (2007a,b) has argued that with secre-

tive voting experts are more likely to conform to pre-existing biases (either in the voting

rule or in the prior), while transparency often leads to contrarian voting. Conformity

under secrecy allows one to put the blame on others if the decision chosen goes wrong,

whereas by voting “the other way” under transparency one can appear smart. In both

papers, Levy assumed simultaneous voting. In this paper, we consider sequential rec-

ommendation by two experts according to an exogenous order chosen by the decision

maker, who then makes the optimal decision in a Bayesian manner (rather than, accord-

ing to a specific voting rule). Our main result is that a semi-transparent procedure where

experts’ collective recommendations are made public without revealing who made what

recommendation when leads to revelation of the experts’ signals and is better than both

complete transparency (with recommenders’ identities and the recommendation sequence

revealed) and secrecy (where only the final decision is announced).

To understand why an intermediate level of transparency might be an ideal envi-

ronment for information revelation, one has to go back to one of Levy’s reasons why

sometimes secrecy is better: with transparency one is inclined to vote against the prior

bias and this distortion is negated under secrecy.

2 Model

Consider the following game. There are two experts i ∈ {1, 2}, one decision maker D,

and one outside observer O. There are two states of the world, ω ∈ {a, b}. All players

have a common prior Pr(a) = q where q ∈
[
1
2
, 1
)
. So, the prior favors the state a. Expert

i receives a signal si ∈ {α, β}. The joint distribution of signal and state, given expert i’s

type ti ∈ {ξ, λ}, is as follows:

Table 1: Joint distribution of signal and state

a b
α qti (1− q)(1− ti)
β q(1− ti) (1− q)ti

As is normally understood, type denotes the quality of an expert’s signal: Pr(si = α | ω =

a) = Pr(si = β | ω = b) = ti. An expert infers the state from his signal using Bayesian

1



updating, e.g., Pr(ω = a | si = α, ti) = qti
qti+(1−q)(1−ti) . We assume that the distribution

of the experts’ signals conditional on the state are independent. Further, types are i.i.d.,

with Pr(ti = λ) = θ for i = 1, 2.

For later computations, below we report the joint distribution over state, signals and

expert types. Given our assumption on independence (of both signals and types), we

have (to facilitate reading we divide the distribution into two tables, and for only the

following tables let q′ = (1− q)):

Table 2: Joint distribution of state, signals and types

t1 = λ, t2 = λ t1 = λ, t2 = ξ t1 = ξ, t2 = λ t1 = ξ, t2 = ξ
a, α, α qθ2λ2 qθ(1− θ)λξ qθ(1− θ)λξ q(1− θ)2ξ2
a, α, β qθ2λ(1− λ) qθ(1− θ)λ(1− ξ) qθ(1− θ)ξ(1− λ) q(1− θ)2ξ(1− ξ)
a, β, α qθ2λ(1− λ) qθ(1− θ)(1− λ)ξ qθ(1− θ)(1− ξ)λ q(1− θ)2(1− ξ)ξ
a, β, β qθ2(1− λ)2 qθ(1− θ)(1− λ)(1− ξ) qθ(1− θ)(1− ξ)(1− λ) q(1− θ)2(1− ξ)2

Table 3: Joint distribution of state, signals and types

t1 = λ, t2 = λ t1 = λ, t2 = ξ t1 = ξ, t2 = λ t1 = ξ, t2 = ξ
b, α, α q′θ2(1− λ)2 q′θ(1− θ)(1− λ)(1− ξ) q′θ(1− θ)(1− ξ)(1− λ) q′(1− θ)2(1− ξ)2
b, α, β q′θ2λ(1− λ) q′θ(1− θ)(1− λ)ξ q′θ(1− θ)(1− ξ)λ q′(1− θ)2(1− ξ)ξ
b, β, α q′θ2λ(1− λ) q′θ(1− θ)λ(1− ξ) q′θ(1− θ)ξ(1− λ) q′(1− θ)2ξ(1− ξ)
b, β, β q′θ2λ2 q′θ(1− θ)λξ q′θ(1− θ)λξ q′(1− θ)2ξ2

All of the above are common knowledge. Each expert privately observes his signal

and is privately informed about his type. An expert i is randomly drawn by D, with

some non-degenerate probability, to move first. He casts a vote v1i ∈ {A,B} (subscript

denotes the expert and superscript denotes the timing of his move.) The vote is seen by

D and the second expert. The expert j then moves and casts a vote v2j ∈ {A,B} which

is also observed by D. (Thus, whenever we need to distinguish the experts by the timing

of their moves, we will denote the first mover by index i and the second mover by index

j. Also, sometimes i, j are used as ordinary labels for experts.)

Let the vote profile (v1i , v
2
j ) be denoted by v, where v ∈ V ≡ {A,B} × {A,B}.

After D makes the decision, the true state is revealed and D receives a payoff πD(d, ω),

where

πD(A, a) = πD(B, b) = 1, (1)

πD(B, a) = πD(A, b) = 0. (2)
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The decision maker D uses a Bayesian decision rule d : V → {A,B}. Roughly

speaking, D processes the information about the underlying state from the experts’ rec-

ommendations/votes, including the timing of votes, knowing that the experts are moti-

vated by how they are perceived by outsiders as able observers of the state. Based on

the information gathered applying Bayesian updating to the recommendations (together

with the experts’ strategies and her own strategy), D will choose a decision that is more

likely to correspond with the state.

Observer O has no action and attaches no intrinsic value to (d, ω) pairs. However,

the observer is interested in learning about the experts’ types perhaps because she might

hire one in some capacity in the future. Alternatively, the observer may be considered

to be an anonymous “playing field for experts” whereupon the experts want to make an

impression.1 Like in Levy (2007a), each expert’s payoff depends on O’s expectation of

the particular expert’s type.2 These expectations depend on what O observes. Let O

observe the realized state of the world and the decision taken by D. We consider three

cases which depend on what else is observed by O. The following assumption will be

maintained throughout the paper.

Assumption 1 (Threshold on expertise). 1 > λ > ξ > q ≥ 1/2.

That is, even the “low” type expert’s signal is more informative than the unrefined

(prior) information available to D. If the low type were to receive signal β, his signal’s

value would not be washed out by a strong prior in favor of a in the sense that he would

always vote his signal if this was his only piece of evidence (see (7) and the follow-up

remark). The assumption is unlike that in Levy (2007a), where the bulk of action takes

place because it may be the case that q > ξ. We abstract from complications caused

by potentially “weak” experts (who would always agree with D) to highlight the role

played by sequential voting. However, as we will see in section 3, sequential voting will

endogenously affect the posterior beliefs of the second voter. As in herds, the information

content of the second voter’s signal may then be washed out by the first voter’s vote. It

is useful to define k, though we shall use this notation only later on:

k ≡ θλ+ (1− θ)ξ.

It is clear that λ > k > ξ. Assumption 1 also implies Fact 1 (as λ and ξ are strictly

greater than q and 1/2).

1In political debates a politician wants to impress fellow politicians or the party leader about his
predictive ability and insights by arguing in favor of certain policies; in corporate board meetings junior
managers may suggest appropriate marketing strategies to their division chief to outsmart a rival firm;
and so on.

2This is not a contest game where payoff to a player is decreasing in rivals’ performance. So the
experts do not directly compete with each other.

3



Fact 1. λ
1−λ >

k
1−k >

ξ
1−ξ >

q
1−q ≥ 1.

(What is the role of Fact 1, do we state it briefly?)

We now specify the various cases.

Case 1. [Semi-transparency] O observes the summary votes cast by the experts but

does not observe who cast what votes. Nor does she observe who moved first and who

moved second. Thus she can observe whether two, one or zero votes have been cast in

favor of A. We denote the summary votes as nA where n is either 2, 1 or 0. Thus O

observes a realization of the outcome, (nA, d, ω), and Bayes-updates her beliefs regarding

the experts’ types denoted by Pr(ti | nA, d, ω). The expected type of i is then

E(ti|nA, d, ω) = Pr(ti = λ | nA, d, ω)λ+ Pr(ti = ξ | nA, d, ω)ξ. (3)

This then is expert i’s payoff associated with the outcome (nA, d, ω).

Case 2. [Complete transparency] O observes the sequence of moves (which expert

moves first and which second) as well as the votes cast by the experts. In particular,

O observes a realization of the outcome, (v1i , v
2
j , d, ω), and Bayes-updates her beliefs

regarding the experts’ types denoted by Pr(ti | v1i , v2j , d, ω). The expected types of i and

j, and hence their payoffs, are

E(ti|v1i , v2j , d, ω) = Pr(ti = λ | v1i , v2j , d, ω)λ+ Pr(ti = ξ | v1i , v2j , d, ω)ξ

E(tj|v1i , v2j , d, ω) = Pr(tj = λ | v1i , v2j , d, ω)λ+ Pr(tj = ξ | v1i , v2j , d, ω)ξ.
(4)

Case 3. [Secrecy] O only observes a realization of the outcome, (d, ω), and Bayes-

updates to Pr(ti | d, ω). The expected type of i, and hence his payoff, is

E(ti|d, ω) = Pr(ti = λ | d, ω)λ+ Pr(ti = ξ | d, ω)ξ. (5)

Case 4. [(Levy) transparency] O observes the votes cast by each expert but not the

timing of votes so that the relevant outcome is (vi, vj, d, ω) and Bayes-updates her beliefs

regarding the experts’ types denoted by Pr(ti | vi, vj, d, ω). The expected types of i and

j, and hence their payoffs, are

E(ti|vi, vj, d, ω) = Pr(ti = λ | vi, vj, d, ω)λ+ Pr(ti = ξ | vi, vj, d, ω)ξ

E(tj|vi, vj, d, ω) = Pr(tj = λ | vi, vj, d, ω)λ+ Pr(tj = ξ | vi, vj, d, ω)ξ.
(6)

This completes the description of all our games. The concept of equilibrium is that

of Perfect Bayesian Equilibrium.

We start by analyzing Cases 1 and 2. Case 3 will be dealt with in section 4.
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3 When voting reveals signals

Our analysis from here onwards will focus on the key question of how different forms

of transparency of deliberations in decision making lead to experts revealing (or not

revealing) their signals. For an optimal decision to correspond with the state, the only

information D is going to rely on are the experts’ recommendations. Since experts’

types are private information, recommendations are useful in learning about the state

so long as those reflect the experts’ signals. The outsider will try to infer the quality of

experts’ signals (i.e. the experts’ quality) by comparing the recommendations against the

realized state. The experts will therefore strategically communicate their signals either

by making truthful recommendations or by recommending different from what their own

signals suggest, whichever helps them to project as high-quality experts.

We start by analyzing the experts’ beliefs about the underlying state when both

experts are assumed to reveal their signals, by voting their respective signals.3 That is,

when an expert’s signal is α he votes A, and when the signal is β he votes B.

Consider expert i who moves first. His beliefs conditional on his type and signal are

given by Pr(ω | s1i , ti) as follows (refer Table 1):

Pr(a | α, ti) = qti
qti+(1−q)(1−ti) > 1

2

Pr(b | α, ti) = (1−q)(1−ti)
qti+(1−q)(1−ti) < 1

2

Pr(a | β, ti) = q(1−ti)
q(1−ti)+(1−q)ti < 1

2

Pr(b | β, ti) = (1−q)ti
q(1−ti)+(1−q)ti > 1

2
.

(7)

The inequalities follow from Assumption 1 and Fact 1. Note that despite the bias in prior

belief in favor of state a (q > 1
2
), signal β reverses this belief for either type of expert.

Next consider expert j who moves second. Assuming that the expert who moves first

votes his signal, the second expert updates his beliefs conditional on ( s1i , s
2
j , tj), using

Tables 2 and 3, as follows (Assumption 1 and Fact 1 are used to establish the inequalities):

Pr(a | α, α, tj) =
qtj(θλ+(1−θ)ξ)

qtj(θλ+(1−θ)ξ)+(1−q)(1−tj)(1−θλ−(1−θ)ξ) > 1
2

Pr(b | α, α, tj) =
(1−q)(1−tj)(1−θλ−(1−θ)ξ)

qtj(θλ+(1−θ)ξ)+(1−q)(1−tj)(1−θλ−(1−θ)ξ) < 1
2

Pr(a | β, β, tj) =
q(1−tj)(1−θλ−(1−θ)ξ)

(1−q)tj(θλ+(1−θ)ξ)+q(1−tj)(1−θλ−(1−θ)ξ) < 1
2

Pr(b | β, β, tj) =
(1−q)tj(θλ+(1−θ)ξ)

(1−q)tj(θλ+(1−θ)ξ)+q(1−tj)(1−θλ−(1−θ)ξ) > 1
2

Pr(a | β, α, tj) =
qtj(1−θλ−(1−θ)ξ)

qtj(1−θλ−(1−θ)ξ)+(1−q)(1−tj)(θλ+(1−θ)ξ) > 1
2

Pr(b | β, α, tj) =
(1−q)(1−tj)(θλ+(1−θ)ξ)

qtj(1−θλ−(1−θ)ξ)+(1−q)(1−tj)(θλ+(1−θ)ξ) < 1
2

Pr(a | α, β, tj) =
q(1−tj)(θλ+(1−θ)ξ)

q(1−tj)(θλ+(1−θ)ξ)+(1−q)tj(1−θλ−(1−θ)ξ)

Pr(b | α, β, tj) =
(1−q)tj(1−θλ−(1−θ)ξ)

q(1−tj)(θλ+(1−θ)ξ)+(1−q)tj(1−θλ−(1−θ)ξ) .

(8)

3This, of course, need not be true in equilibrium.
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Unlike the rest, the last two probabilities can fall on either side of 1/2. Note that when

the second expert observes a contrarian signal and which also happens to be different

from the first expert’s signal, it is not clear which information – own or the other expert’s

signal – should dominate.

3.1 D’s optimal decision under semi-transparency

When voting reveals signals, D’s optimal decision will not be relevant for O’s assessment

of expert types. However, for later use we calculate D’s posteriors on the state and

derive a lemma regarding the optimal decision. For vote profiles (A,A), (A,B), (B,A)

and (B,B), D knows that the corresponding signals are (α, α), (α, β), (β, α) and (β, β).

D’s posteriors are then:4

Pr(ω = a | A,A) = q(θλ+(1−θ)ξ)2
q(θλ+(1−θ)ξ)2+(1−q)(1−θλ−(1−θ)ξ)2 > 1

2

Pr(ω = a | B,A) = q ≥ 1
2

Pr(ω = a | A,B) = q ≥ 1
2

Pr(ω = a | B,B) = (1−q)(1−θλ−(1−θ)ξ)2
q(θλ+(1−θ)ξ)2+(1−q)(1−θλ−(1−θ)ξ)2 < 1

2
.

(9)

We have the following lemma:

Lemma 1. Consider the case when voting reveals signals. If q > 1
2
, D selects B if

only if two votes are cast in favor of B; otherwise D selects A. When q = 1
2
, D is

indifferent between A and B when only one vote is cast in favor of A; otherwise D selects

the alternative voted by both the experts.

3.2 Full revelation under semi-transparency

Below we are going to argue that under semi-transparency the experts will truthfully

reveal their signals. Usually, under sequential voting, herding makes information aggre-

gation problematic. But if the voting sequence is not disclosed, the pressure of herding

is likely to be negated.5 Now the experts’ main concern would be to create a positive

impression of their collective ability. But why a supposedly low-ability expert, having

seen a vote that corresponds with the prior bias, is not to be tempted to ignore his own

contrarian signal and herd in order to improve the outsider’s belief on experts’ collec-

4To calculate these probabilities we can use Tables 2 and 3. For example consider Pr(ω = a | A,A).
Since experts reveal their signals, Pr(ω = a | A,A) = Pr(ω = a | α, α). This probability is a ratio where
the numerator is the sum of all columns entries in row two of Table 2. In the denominator we have this
sum plus the sum of all columns entries in row two of Table 3. This ratio is q. The other probabilities
can be derived similarly. (Check this footnote for accuracy.)

5With more than two experts, a case that we consider briefly later in the paper, there is going to be
some herding down the chain, but even there it can be shown that the maximum information revelation
will occur under semi-transparency.
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tive ability is still not very clear. We aim to clarify the intuitions for this apparently

non-intuitive result side-by-side the formal arguments.

Let us first estimate O’s beliefs about the experts’ types. Since collective votes are

announced and the votes reveal signals (by hypothesis), O can ignore D’s decision and

calculate her posteriors from the fundamental distributions given in Tables 2 and 3, as

follows:6

Pr(t = λ | 2A, a) = Pr(t = λ | 0A, b) = θλ
θλ+(1−θ)ξ

Pr(t = ξ | 2A, a) = Pr(t = ξ | 0A, b) = (1−θ)ξ
θλ+(1−θ)ξ

Pr(t = λ | 2A, b) = Pr(t = λ | 0A, a) = θ(1−λ)
θ(1−λ)+(1−θ)(1−ξ)

Pr(t = ξ | 2A, b) = Pr(t = ξ | 0A, a) = (1−θ)(1−ξ)
θ(1−λ)+(1−θ)(1−ξ)

Pr(t = λ | 1A, a) = Pr(t = λ | 1A, b) = θ

Pr(t = ξ | 1A, a) = Pr(t = ξ | 1A, b) = 1− θ.

(10)

Note that the beliefs, for any given pair of votes, are identical for both experts, given

that O does not observe the sequence of moves.

Thus when O sees two A votes (zero A vote) and the state is revealed as a (b), her

expectation of either expert’s type is

θλ

θλ+ (1− θ)ξ
λ+

(1− θ)ξ
θλ+ (1− θ)ξ

ξ =
θλ

k
λ+

(1− θ)ξ
k

ξ. (11)

This “expected type” is higher than the “prior expected type,” the latter being θλ+ (1−
θ)ξ. So this is beneficial to the experts. However, when O sees two A votes (zero A vote)

and the state is revealed as b (a), the experts loose out as O’s expectation now is:

θ(1− λ)

1− θλ− (1− θ)ξ
λ+

(1− θ)(1− ξ)
1− θλ− (1− θ)ξ

ξ =
θ(1− λ)

1− k
λ+

(1− θ)(1− ξ)
1− k

ξ. (12)

When O sees only one A vote, she learns nothing more about the experts’ types. The

expected type remains the same as the prior expected type:

Pr(λ | 1A, a)λ+ Pr(ξ | 1A, a)ξ = θλ+ (1− θ)ξ. (13)

We now look at the experts’ payoffs and the optimal strategies. We start with expert

j who votes second. If he casts a vote contrary to the first-period vote, then the outcome

6To calculate these posteriors consider, for example, Pr(t = λ | 2A, a). Since a is the revealed state of
the world, we confine ourselves to that part of the distribution in Table 2. With 2A being the summary
votes, we consider only row one. Then Pr(t = λ | 2A, a) is the ratio of the sum of elements in the first
two columns to the sum of elements in all the columns. This gives us

qθ2λ2 + qθ(1− θ)λξ
qθ2λ2 + qθ(1− θ)λξ + qθ(1− θ)λξ + q(1− θ)2ξ2

=
θλ[θλ+ (1− θ)]

θλ[θλ+ (1− θ)] + (1− θ)ξ[θλ+ (1− θ)]
=

θλ

θλ+ (1− θ)ξ
.
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for O is (1A, ω). Hence, irrespective of his signal or type, the expert’s payoff is as in (13).

Alternatively, if j votes the same as the first-period vote, his expected payoff can be

written as

Pr(ω = v | s1i , s2j , tj)
[
θλ

k
λ+

(1− θ)ξ
k

ξ

]
︸ ︷︷ ︸

>(13)

+ Pr(ω 6= v | s1i , s2j , tj)

<(13)︷ ︸︸ ︷[
θ(1− λ)

1− k
λ+

(1− θ)(1− ξ)
1− k

ξ

]
,

(14)

where ω = v denotes the vote matching the revealed state and ω 6= v denotes otherwise.

Compared to the case of opposite recommendations, uniform recommendation by the

experts will augment their payoffs if the recommended choice matches the state but

lower the payoffs if the state differs from the recommended alternative. So whether the

second expert makes the same recommendation (as the first expert) or not will depend

on his beliefs about the state.

This expression (14) can be rewritten as[
Pr(ω = v | .)θλ

k
+ Pr(ω 6= v | .)θ(1− λ)

1− k

]
λ+

[
Pr(ω = v | .)(1− θ)ξ

k
+ Pr(ω 6= v | .)(1− θ)(1− ξ)

1− k

]
ξ.

(15)

Interpretation. The second expert believes that if he were to vote the same way as the

first expert, the outside observer would view him as :

• type λ with probability
[
Pr(ω = v | .) θλ

k
+ Pr(ω 6= v | .) θ(1−λ)

1−k

]
;

• type ξ with probability
[
Pr(ω = v | .) (1−θ)ξ

k
+ Pr(ω 6= v | .) (1−θ)(1−ξ)

1−k

]
.

Note that these probabilities depend not only on O’s ex-post beliefs, but also on the expert’s

own beliefs after observing the first-period vote. It is clear that if[
Pr(ω = v | .)θλ

k
+ Pr(ω 6= v | .)θ(1− λ)

1− k

]
> θ,

the second expert would vote the same way as the first expert. Otherwise he would cast

a contrarian vote.

The second expert will have the least incentive to vote truthfully if his signal is

different from one corresponding to the state favored by the prior as well as the first

expert’s vote (and the signal). This is when the incentive to herd is the strongest. Below

we first show that this type of herding will not happen. Then, in the Appendix, we rule

out other variants of non-truthful voting by the second expert.

Suppose the second expert, j, observes signal β and sees a first-period vote A. If he
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also votes A, he receives

πj(A,α, β, tj)

= Pr(a | α, β, tj)
[
θλ

k
λ+

(1− θ)ξ
k

ξ

]
+ Pr(b | α, β, tj)

[
θ(1− λ)

1− k
λ+

(1− θ)(1− ξ)
1− k

ξ

]
=

[
q(1− tj)λ+ (1− q)tj(1− λ)

q(1− tj)k + (1− q)tj(1− k)

]
θλ+

[
q(1− tj)ξ + (1− q)tj(1− ξ)
q(1− tj)k + (1− q)tj(1− k)

]
(1− θ)ξ, (16)

whereas by voting B he receives πj(B,α, β, tj) = θλ+ (1− θ)ξ.

It is easy to check that the weights associated with λ and ξ add up to one. Now, note

that as λ > k,

q(1− tj)λ+ (1− q)tj(1− λ)

q(1− tj)k + (1− q)tj(1− k)
< 1

⇔ q(1− tj)(λ− k) < (1− q)tj(λ− k)

⇔ tj
1− tj

>
q

1− q
,

which is true by Fact 1. So, the second expert will vote his signal when he sees a first-

period vote of A and had himself observed signal β.

Intuition. Since
tj

1−tj >
q

1−q , even a low-type expert is reasonably well-informed. That

is, if he observes a signal β he believes that state b is going to occur with a probability

greater than q. When he sees a first-period vote of A, he does update in favor of state a.

But the resulting posterior is not high enough for him to expect that O will view him as

type λ with a probability greater than θ.

We now consider expert i, who votes first. To ease the exposition, let

x ≡ θλ

θλ+ (1− θ)ξ
λ+

(1− θ)ξ
θλ+ (1− θ)ξ

ξ,

y ≡ θ(1− λ)

θ(1− λ) + (1− θ)(1− ξ)
λ+

(1− θ)(1− ξ)
θ(1− λ) + (1− θ)(1− ξ)

ξ,

H(ti) ≡ qtik + (1− q)(1− ti)(1− k) + qti(1− k) + (1− q)(1− ti)k = Pr(si = αi).

Due to Assumption 1,

x > k > y. (17)

Suppose expert i has observed signal α. If i votes A then, given that j votes his signal,

i’s payoff is

πi(A,α, ti) =
qtik

H(ti)
x+

(1− q)(1− ti)(1− k)

H(ti)
y +

qti(1− k) + (1− q)(1− ti)k
H(ti)

k.

9



If i votes B, his payoff is

πi(B,α, ti) =
(1− q)(1− ti)k

H(ti)
x+

qti(1− k)

H(ti)
y +

qtik + (1− q)(1− ti)(1− k)

H(ti)
k.

Now,

πi(A,α, ti) > πi(B,α, ti)

as,

(qtik)x+ (1− q)(1− ti)(1− k)y + (qti(1− k) + (1− q)(1− ti)k)k

> ((1− q)(1− ti)k)x+ qti(1− k)y + (qtik + (1− q)(1− ti)(1− k))k

as,

(qtik)(x− k) + (1− q)(1− ti)(1− k)(y − k)

> ((1− q)(1− ti)k)(x− k) + qti(1− k)(y − k)

as,

(qti − (1− q)(1− ti))k(x− k) > (qti − (1− q)(1− ti))(1− k)(y − k)

since qti − (1− q)(1− ti) > 0 (by Fact 1), k > (1− k) and x > k > y.

If i observes signal β, we have

πi(B,α, ti) > πi(A,α, ti)

as,

(1− q)tik)x+ q(1− ti)(1− k)y + ((1− q)ti(1− k) + q(1− ti)k)k

> (q(1− ti)k)x+ (1− q)ti(1− k)y + ((1− q)tik + q(1− ti)(1− k))k

as,

((1− q)tik)(x− k) + q(1− ti)(1− k)(y − k)

> (q(1− ti)k)(x− k) + (1− q)ti(1− k)(y − k)

as,

((1− q)ti − q(1− ti))k(x− k) > ((1− q)ti − q(1− ti))(1− k)(y − k)

since (1− q)ti − q(1− ti) > 0 (by Fact 1), k > (1− k) and x > k > y.

Collecting the above results we have:

Proposition 1 (Signal revelation). Under semi-transparency (where only the

collective votes are revealed without identifying who voted what and when) there exists an

equilibrium where both experts, regardless of their types, vote their signals.

[Need to add a discussion of the intuition behind signal revelation.]

[Our semi-transparency is more informative than what Levy (2007a) calls

secrecy but less informative than Levy’s transparency (where individual votes

10



are revealed). In contrast to Levy, we do not consider any specific voting

mechanism (our decision maker is a Bayesian).]

3.3 Impossibility of full revelation under complete transparency

As before, assume that the experts vote their signals. Consider O’s beliefs about the

experts’ types under complete transparency. O gets the same information as D (i.e., the

signals), so D’s decision can be ignored. The relevant posteriors, given that the experts

vote their signals (by hypothesis), are the same for both the experts, irrespective of the

timing of their votes:

Pr(t = λ | A, a) = Pr(t = λ | B, b) = θλ
θλ+(1−θ)ξ

Pr(t = ξ | A, a) = Pr(t = ξ | B, b) = (1−θ)ξ
θλ+(1−θ)ξ

Pr(t = λ | A, b) = Pr(t = λ | B, a) = θ(1−λ)
θ(1−λ)+(1−θ)(1−ξ)

Pr(t = ξ | A, b) = Pr(t = ξ | B, a) = (1−θ)(1−ξ)
θ(1−λ)+(1−θ)(1−ξ) .

(18)

Note that the only difference between the above beliefs and that in (10) is the absence

of separate specifications following two different votes by the experts (as the last two

specifications in (10)). Now O can observe who voted what (and when), so the updating

is based entirely on how an expert’s individual vote compares with the realized state and

the assumption that this expert will vote his signal (while the other expert may or may

not vote his signal).

Given the beliefs stated above, like in section 3.2, we can assert the existence of a

revealing equilibrium if voting their signals is indeed an optimal strategy for all types of

experts irrespective of when they vote. As O observes the sequence of moves, we specify

the experts’ payoffs according to the order of moves.

Consider expert i who moves first. If he observes α and votes A, his payoff is

πi(A,α, ti) =
qti

qti + (1− q)(1− ti)
x+

(1− q)(1− ti)
qti + (1− q)(1− ti)

y,

where x and y are as defined in section 3.2. If i votes B, his payoff is

πi(B,α, ti) =
(1− q)(1− ti)

qti + (1− q)(1− ti)
x+

qti
qti + (1− q)(1− ti)

y.

Since qti > (1− q)(1− ti) and x > y, we have πi(A,α, ti) > πi(B,α, ti).

Next suppose i observes β. If he votes B then his payoff is

πi(B, β, ti) =
(1− q)ti

(1− q)ti + q(1− ti)
x+

q(1− ti)
(1− q)ti + q(1− ti)

y,

11



whereas if he votes A then his payoff is

πi(A, β, ti) =
q(1− ti)

(1− q)ti + q(1− ti)
x+

(1− q)ti
(1− q)ti + q(1− ti)

y.

As ti
1−ti >

q
1−q , and x > y, we have πi(B, β, ti) > πi(A, β, ti). Hence, it is strictly optimal

for i to vote his signal, irrespective of his type, and this is true irrespective of whether j

(the second mover) will vote his signal or not.

Now consider the second expert j. Let g(α) = a and g(β) = b. If j sees a vote B by

i, then he knows that i has observed the signal β. Let j observe signal α. Then

Pr(g(α) | β, α, tj) =
qtj(1− θλ− (1− θ)ξ)

qtj(1− θλ− (1− θ)ξ) + (1− q)(1− tj)(θλ+ (1− θ)ξ)
.

If j votes A, his payoff is

πj(A, β, α, tj) = Pr(g(α) | β, α, tj)x+ (1− Pr(g(α) | β, α, tj))y,

where x and y, again, are as defined in section 3.2. If j votes B, his payoff is

πj(B, β, α, tj) = (1− Pr(g(α) | β, α, tj))x+ Pr(g(α) | β, α, tj)y.

So, signal α will be revealed by j if and only if πj(A, β, α, tj) ≥ πj(B, β, α, tj) :

qtj(1− θλ− (1− θ)ξ) ≥ (1− q)(1− tj)(θλ+ (1− θ)ξ)

i.e.,
q

(1− q)
tj

(1− tj)
≥ (θλ+ (1− θ)ξ)

(1− θλ− (1− θ)ξ)
.

Since q ≥ 1
2

and λ > ξ, this condition is always met for type λ. Thus the meaningful

(necessary and sufficient) condition is

q

(1− q)
ξ

(1− ξ)
≥ (θλ+ (1− θ)ξ)

(1− θλ− (1− θ)ξ)
. (19)

If this condition does not hold, then the “low” type who observes signal α will deviate

contrary to our truthful voting hypothesis and vote against the status-quo, even when

the status quo has a (reasonably) strong bias! This is due to the influence of the first

expert’s vote.

On the other hand, if the second expert j observes signal β, then

Pr(g(β) | β, β, tj) =
(1− q)tj(θλ+ (1− θ)ξ)

(1− q)tj(θλ+ (1− θ)ξ) + q(1− tj)(1− θλ− (1− θ)ξ)
.

Going through the same steps as above, we find that revelation of signal requires πj(B, β, β, tj) ≥

12



πj(A, β, β, tj) :

(1− q)tj(θλ+ (1− θ)ξ) ≥ q(1− tj)(1− θλ− (1− θ)ξ)

i.e.,
tj

(1− tj)
(θλ+ (1− θ)ξ)

(1− θλ− (1− θ)ξ)
≥ q

(1− q)
.

This restriction is always (strictly) satisfied due to Assumption 1.

Now we consider what happens when the second expert sees a first-period vote of A.

Let the second expert observe signal α. Then

Pr(g(α) | α, α, tj) =
qtj(θλ+ (1− θ)ξ)

qtj(θλ+ (1− θ)ξ) + (1− q)(1− tj)(1− θλ− (1− θ)ξ)
.

Going through the same steps as above, we find that revelation of signal requires πj(A,α, α, tj) ≥
πj(B,α, α, tj) :

qtj(θλ+ (1− θ)ξ) ≥ (1− q)(1− tj)(1− θλ− (1− θ)ξ)

i.e.,
q

(1− q)
tj

(1− tj)
(θλ+ (1− θ)ξ)

(1− θλ− (1− θ)ξ)
≥ 1.

This restriction is always (strictly) satisfied due to Assumption 1.

Now let the second expert observe signal β. Then

Pr(g(β) |, α, β, tj) =
(1− q)tj(1− θλ− (1− θ)ξ)

(1− q)tj(1− θλ− (1− θ)ξ) + q(1− tj)(θλ+ (1− θ)ξ)
.

Going through the same steps as before, we find that revelation of signal requires πj(B,α, β, tj) ≥
πj(A,α, β, tj) :

tj
(1− tj)

≥ q

(1− q)
(θλ+ (1− θ)ξ)

(1− θλ− (1− θ)ξ)
. (20)

This condition will never hold for type ξ as q ≥ 1
2
, λ > ξ and θ is non-degenerate.

The condition may also not hold for λ! We collect our results below.

Proposition 2. Under complete transparency there does not exist an equilibrium

where both experts, regardless of their types, will vote their signals.

We postpone the discussion of the intuition until after we present the equilibrium

(existence) result, to which we turn next.

4 Partial revelation under complete transparency

In this section we analyze the case of complete transparency. Given Proposition 2, one

should expect that the expert moving second will not always reveal his signal; the first

13



expert can be expected to reveal his signal.

Suppose, for the second period vote, O believes that the expert’s type is λ with

probability θ and ξ with probability 1 − θ. This is irrespective of what vote is cast.

Then it is optimal for both types of the second expert to vote A with any (uniform)

probability η, including η degenerate. This, in turn, justifies O’s beliefs. We call such

voting babbling . Collecting this observation, along with those following (19) and (20),

we establish the following equilibrium characterization result:

Proposition 3 (Transparency of expert deliberations). Consider com-

plete transparency with the individual votes and their timing observable to outsiders.

There exists an equilibrium with the following characteristics:

• Both types of the expert, who votes first, reveal the signal observed;

• If the first vote cast is B (against status quo) and q
(1−q)

ξ
(1−ξ) ≥

(θλ+(1−θ)ξ)
(1−θλ−(1−θ)ξ) , then

the second expert reveals his signal;

if the first vote cast is B and q
(1−q)

ξ
(1−ξ) < (θλ+(1−θ)ξ)

(1−θλ−(1−θ)ξ) , then the second expert

babbles;

• If the first vote cast is A (pro-status quo), then the expert voting second babbles.

Compared to semi-transparency, complete transparency fails to always induce truthful

recommendation. This is because of the familiar problem of herding: (i) if a low-type

expert moving second, with his identity as the second mover known to the outsider,

observes a signal that is different from the first-mover’s signal, he becomes apprehensive

in case his signal proves wrong and therefore strategically goes along with the first mover’s

recommendation – a case that we call weak herding ; (ii) in fact, if the second mover

observes a contrarian signal (i.e., one different from the prior bias) and also sees that the

first mover has voted different from his own signal, even a high-type second mover may

herd with the first mover – a case that we call strong herding. Either type of herding

throws out the truthful recommendation equilibrium, as observed in Proposition 2. The

self-fulfilling babbling equilibrium, which is always there, then becomes the only other

equilibrium (in a specific subgame). Note that in contrast, under semi-transparency,

because the second mover’s position is not known to the outsider, he does not need to

worry about the skepticism that a second mover is normally subjected to, i.e., that he

is perhaps a low-type expert given to the temptation of herding. Being free from such

skepticism, even a low-type second mover would rely on his signal being accurate and

thus recommend truthfully.
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5 Secrecy & information revelation

Under secrecy, we will show that in equilibrium experts may or may not always vote

their signals. For equilibrium characterization we need some algebraic results on the

parameters.

Define the functions:

c(k) =
(1− k)(1 + k)q

k(2− k)(1− q)
, c−1(k) =

k(2− k)(1− q)
(1− k)(1 + k)q

.

It is easy to verify that c(k) is decreasing in k (c−1(k) is increasing in k),

c(1) = 0, lim
k→0

c(k) =∞, and c−1(0) = 0, lim
k→1

c−1(k) =∞.

Therefore there exists a k∗, k∗ = −1+(1+m2−m)
1
2

m−1 where m ≡ q
1−q , such that

c(k∗) = c−1(k∗) = 1.

Define k
−

(ξ) and k(ξ) such that

c(k
−

(ξ)) =
ξ

1− ξ
, c−1(k(ξ)) =

ξ

1− ξ
.

Since ξ
1−ξ > 1, c(k) is decreasing and c−1(k) is increasing, we have:

k
−

(ξ) < k∗ < k(ξ)

and,

λ

1− λ
>

ξ

1− ξ
≥ c(k) for k

−
(ξ) ≤ k ≤ k(ξ),

λ

1− λ
>

ξ

1− ξ
≥ c−1(k) for k

−
(ξ) ≤ k ≤ k(ξ).

In fact,

k
−

(ξ) =
−1 + (1 + l2 − l) 1

2

l − 1
, k(ξ) =

−1 + (1 + r2 − r) 1
2

r − 1
,

where l ≡ q

1− q
ξ

(1− ξ)
, r ≡?.

To see that k
−

(ξ) < k(ξ), note that the function −1+(1+x2−x)
1
2

x−1 is strictly increasing in x.

So k
−

(ξ) < k(ξ), as q
1−q

(1−ξ)
ξ

< q
1−q

ξ
(1−ξ) .
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Now, assume that the experts vote their signals. The only information that O will

have about the votes is through d. Recall, given that the experts vote their signals, D

selects B only if two votes are in favor of B; otherwise D selects A (Lemma 1). That is,

the Bayesian decision is essentially a B-unanimity rule, as per Levy’s (2007a) terminology.

(When q = 1
2
, for robustness, we assume that D selects A when votes are split.) Therefore

when d = A, O knows that one of three pairs of signals, (α, α), (α, β), (β, α), could have

resulted. When d = B, O knows that (β, β) resulted. O’s relevant posteriors are then:7

Pr(t = λ | A, a) =
θ[λ+ (1− λ)(θλ+ (1− θ)ξ)]

θ[λ+ (1− λ)(θλ+ (1− θ)ξ)] + (1− θ)[ξ + (1− ξ)(θλ+ (1− θ)ξ)]

Pr(t = λ | A, b) =
θ[(1− λ) + λ(1− θλ− (1− θ)ξ)]

θ[(1− λ) + λ(1− θλ− (1− θ)ξ)] + (1− θ)[(1− ξ) + ξ(1− θλ− (1− θ)ξ)]

Pr(t = λ | B, b) =
θλ

θλ+ (1− θ)ξ

Pr(t = λ | B, a) =
θ(1− λ)

θ(1− λ) + (1− θ)(1− ξ)
.

Note that Pr(t = ξ | A, a) = 1−Pr(t = λ | A, a), and likewise for the remaining posteriors.

Define

x′ = Pr(t = λ | A, a)λ+ (1− Pr(t = λ | A, a))ξ

y′ = Pr(t = λ | A, b)λ+ (1− Pr(t = λ | A, b))ξ

x′′ = Pr(t = λ | B, b)λ+ (1− Pr(t = λ | B, b))ξ

y′′ = Pr(t = λ | B, a)λ+ (1− Pr(t = λ | B, a))ξ.

The following two results summarize how the experts are likely to recommend the

optimal decision under secrecy:

Proposition 4 (Signal revelation). Consider secrecy (i.e., only D’s decision

is revealed but not the collective or individual votes or the vote timing). If θ is such that

k
−

(ξ) ≤ k ≤ k(ξ), then there exists an equilibrium where both experts vote their signals.

Otherwise, there does not exist such an equilibrium.

Proposition 5 (Incomplete revelation). Consider the case of secrecy and θ be

such that k /∈
[
k
−

(ξ), k(ξ)
]
. There exists an equilibrium where the first expert, irrespective

of his type, votes his signal. Following a vote of A, the second expert, irrespective of type,

votes his signal. Following a vote of B the second expert babbles, i.e., chooses a voting

strategy that is independent of his type or the signal.

7To alert the reader, here the first conditioning variable is the decision d.
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From the proof of Proposition 5 it should become clear that even for the intermediate

range of k in Proposition 4, there is a second equilibrium in which the second expert

babbles.

[We need to explain why the difference from semi-transparency – i.e., some-

times signal fails to be revealed here whereas there is full revelation under

semi-transparency. This explanation will indicate why semi-transparency per-

forms better in our environment and exactly where lies the difference from

Levy.]

6 Comparison of payoffs

We start by computing D’s equilibrium payoffs under Cases 1, 2 and 3.

In the equilibrium under Case 1, signal realizations (α, α), (α, β) and (β, α) are fol-

lowed by vote pairs (A,A), (A,B) and (B,A) (we are ignoring the order of voting). All

of these lead to d = A. Following d = A, if the state is a then D receives 1 and if the

state is b he receives 0. Signals (β, β) lead to d = B and if the state is b then he receives

1, otherwise 0. So D’s (ex-ante expected) payoff is,

π1
D = [Pr(a, α, α) + Pr(a, α, β) + Pr(a, β, α) + Pr(b, β, β)] .

Pr(a, α, α) is the sum of all probabilities in row one of Table 1. Likewise Pr(a, α, β),

Pr(a, β, α), and Pr(b, β, β) are, respectively, the sum of all probabilities in row two of

Table 1, in row three of Table 1, and in row four of Table 2.

In the equilibrium under Case 2, when q
(1−q)

ξ
(1−ξ) ≥

(θλ+(1−θ)ξ)
(1−θλ−(1−θ)ξ) , let the payoff of D

be denoted π31
D ; otherwise, let it be denoted by π32

D . Using arguments similar to above

and referring to the relevant equilibrium, we have

π21
D = [Pr(a, α, α) + Pr(a, α, β) + Pr(a, β, α) + Pr(b, β, β)] ,

π22
D = [Pr(a, α, α) + Pr(a, α, β) + Pr(b, β, α) + Pr(b, β, β)] .

In the equilibrium under Case 3, when k
−

(ξ) ≤ k ≤ k(ξ), let the payoff of D be denoted

π31
D ; otherwise, let it be denoted by π32

D . Using arguments similar to above and referring

to the relevant equilibrium, we have

π31
D = [Pr(a, α, α) + Pr(a, α, β) + Pr(a, β, α) + Pr(b, β, β)] ,

π32
D = [Pr(a, α, α) + Pr(a, α, β) + Pr(b, β, α) + Pr(b, β, β)] .
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Note that

π1
D = π21

D = π31
D , (21)

π22
D = π32

D . (22)

Now, π1
D − π22

D = Pr(a, β, α)− Pr(b, β, α) = k(1− k)(2q − 1). So,

π1
D = π21

D = π31
D ≥ π22

D = π32
D (with strict inequality when q >

1

2
). (23)

We have thus our central result on the question of ideal transparency from the decision

maker’s perspective:

Proposition 6 (Ideal transparency). D weakly prefers semi-transparency over

complete transparency and secrecy. The preference is strict over some parameter values.

[Compare this result with the result of Levy (2007a), who shows that

under an appropriate voting rule secrecy (somewhat parallel to our notion of

secrecy) is better than transparency (we don’t have an exact analog of Levy’s

transparency; our ‘complete transparency’ is Levy’s transparency plus who

voted when).]

To characterize preference over parameter values, we need some technical results.

Before proceeding further, we make the following observations to organize our comparison

better. Write the condition q
(1−q)

ξ
(1−ξ) ≥

(θλ+(1−θ)ξ)
(1−θλ−(1−θ)ξ) as

ξ

(1− ξ)
≥ k

1− k
1− q
q
≡ e(k). (24)

Define
∼
k such that

ξ

(1− ξ)
=

∼
k

1−
∼
k

1− q
q

.

Note that e(k), like c−1(k), is increasing in k. Also

e(k) > c−1(k), as
2− k
1 + k

< 1.

So,
∼
k < k(ξ).

We now provide the following ranking characterization:
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Proposition 7. Let q > 1
2
. If

∼
k < k

−
(ξ), then when k ≤

∼
k, D is indifferent between

semi-transparency and complete transparency which are strictly preferred over secrecy;

when k ∈
(∼
k, k
−

(ξ)
)
, D strictly prefers semi-transparency over both complete transparency

and secrecy (which give him equal payoff); when k ∈
(
k
−

(ξ), k(ξ)
)
, D is indifferent between

semi-transparency and secrecy which is strictly preferred over complete transparency;

when k > k(ξ), then D strictly prefers semi-transparency over complete transparency

and secrecy which give him equal payoff. If
∼
k > k

−
(ξ), then when k ≤ k

−
(ξ), D is indif-

ferent between semi-transparency and complete transparency which are strictly preferred

over secrecy; when k ∈
(
k
−

(ξ),
∼
k
)
, D is indifferent between semi-transparency, complete

transparency and secrecy; when k ∈
(∼
k, k(ξ)

)
, D is indifferent between semi-transparency

and secrecy which are strictly preferred over complete transparency; when k > k(ξ), then

D strictly prefers semi-transparency over complete transparency and secrecy which give

him equal payoff.

A Appendix

Proof: (Remainder of the argument that the second expert will vote his signal

under semi-transparency)

In section 3.2, we ruled out what we consider offers the strongest incentives for herding:

expert j, having privately observed signal β and a first-period vote of A, votes for A as

well.

The other type of herding where expert j, having observed signal α and the vote B

by i, votes for alternative B, can also be ruled out as follows.

Expert j knows that s1i = β (given our hypothesis that the first expert will vote his

signal), so if j votes A then πj(A, β, α, tj) = θλ+ (1− θ)ξ. If he votes B, he receives

πj(B, β, α, tj) = Pr(b | β, α, tj)
[
θλ

k
λ+

(1− θ)ξ
k

ξ

]
+ Pr(a | β, α, tj)

[
θ(1− λ)

1− k
λ+

(1− θ)(1− ξ)
1− k

ξ

]
=

(1− q)(1− tj)k
(1− q)(1− tj)k + qtj(1− k)

[
θλ

k
λ+

(1− θ)ξ
k

ξ

]
+

qtj(1− k)

(1− q)(1− tj)k + qtj(1− k)

[
θ(1− λ)

1− k
λ+

(1− θ)(1− ξ)
1− k

ξ

]
.
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Compared against (16), observe that

πj(B, β, α, tj) < πj(A,α, β, tj),

if Pr(b | β, α, tj) < Pr(a | α, β, tj)

i.e., if
(1− q)(1− tj)k

(1− q)(1− tj)k + qtj(1− k)
<

q(1− tj)k
q(1− tj)k + (1− q)tj(1− k)

i.e., if (1− q)2 < q2

i.e., if q >
1

2
,

which is true by assumption. Further, it was shown that πj(A,α, β, tj) < θλ + (1− θ)ξ,
so

πj(B, β, α, tj) < θλ+ (1− θ)ξ = πj(A, β, α, tj).

Thus, once again the second expert will not herd and instead vote his signal.

Let us next consider the scenario that the second expert observes signal β and sees

a first-period vote B. He knows that s1i = β. So if j votes A then πj(A, β, β, tj) =

θλ+ (1− θ)ξ. If he votes B, he receives

πj(B, β, β, tj)

= Pr(b | β, β, tj)
[
θλ

k
λ+

(1− θ)ξ
k

ξ

]
+ Pr(a | β, β, tj)

[
θ(1− λ)

1− k
λ+

(1− θ)(1− ξ)
1− k

ξ

]
(A.1)

=
(1− q)tjk

(1− q)tjk + q(1− tj)(1− k)

[
θλ

k
λ+

(1− θ)ξ
k

ξ

]
+

q(1− tj)(1− k)

(1− q)tjk + q(1− tj)(1− k)

[
θ(1− λ)

1− k
λ+

(1− θ)(1− ξ)
1− k

ξ

]
.

Therefore,

πj(B, β, β, tj) > πj(A, β, β, tj),

if
(1− q)tjθλ

(1− q)tjk + q(1− tj)(1− k)
λ+

q(1− tj)θ(1− λ)

(1− q)tjk + q(1− tj)(1− k)
λ > θλ

i.e., if
(1− q)tjλ+ q(1− tj)(1− λ)

(1− q)tjk + q(1− tj)(1− k)
> 1

i.e., if (1− q)tj(λ− k) > q(1− tj)(λ− k)

i.e., if
tj

1− tj
>

q

1− q
,

which is true due to Fact 1. So j will vote his signal.

Finally, suppose j has observed signal α and a first-period vote A. He knows that

s1i = α. So j’s expected payoff from voting B is πj(B,α, α, tj) = θλ + (1− θ)ξ, whereas
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by voting A (his signal) he receives

πj(A,α, α, tj) = Pr(a | α, α, tj)
[
θλ

k
λ+

(1− θ)ξ
k

ξ

]
+Pr(b | α, α, tj)

[
θ(1− λ)

1− k
λ+

(1− θ)(1− ξ)
1− k

ξ

]
.

(A.2)

Comparing (A.1) and (A.2), and given that πj(B, β, β, tj) > πj(A, β, β, tj) (as estab-

lished above) and πj(B,α, α, tj) = πj(A, β, β, tj), we can conclude that

πj(A,α, α, tj) > πj(B,α, α, tj),

if Pr(a | α, α, tj) > Pr(b, β, β, tj)

i.e., if
qtjk

qtjk + (1− q)(1− tj)(1− k)
>

(1− q)tjk
(1− q)tjk + q(1− tj)(1− k)

i.e., if q2 > (1− q)2 (after simplifying)

i.e., if q >
1

2
,

which is true by assumption. Thus, when the second expert sees a first-period vote A

and his own signal is α, he votes his signal.

This completes our argument that j will always vote his signal, assuming that i has

voted his signal. ||

Proof Proposition 4. Suppose experts vote their signals. Let the first expert i observe

signal α. If he votes A then irrespective of what the second expert votes, d = A. So the

expert receives a payoff:

πi(A,αi, ti) =
qtik

H(ti)
x′ +

(1− q)(1− ti)(1− k)

H(ti)
y′ +

qti(1− k)

H(ti)
x′ +

(1− q)(1− ti)k
H(ti)

y′.

If he votes B then d depends on whether j observes α or β. This payoff can be written

as:

πi(B,αi, ti) =
qtik

H(ti)
x′ +

(1− q)(1− ti)(1− k)

H(ti)
y′ +

qti(1− k)

H(ti)
y′′ +

(1− q)(1− ti)k
H(ti)

x′′.

Substituting terms and with some algebra we obtain:

πi(A,αi, ti) ≥ πi(B,αi, ti)

⇔ q

(1− q)
ti

1− ti
[Pr(λ | A, a)− Pr(λ | B, a)] ≥ k

1− k
[Pr(λ | B, b)− Pr(λ | A, b)]

⇔ ti
1− ti

≥ c−1(k).
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Let i observe signal β. Then,

πi(B, βi, ti) ≥ πi(A, βi, ti)

⇔ ti
1− ti

k

1− k
[Pr(λ | B, b)− Pr(λ | A, b)] ≥ q

(1− q)
[Pr(λ | A, a)− Pr(λ | B, a)]

⇔ ti
1− ti

≥ c(k).

But ti
1−ti ≥ c−1(k) and ti

1−ti ≥ c(k) if and only if k
−

(ξ) ≤ k ≤ k(ξ).

Now consider the second expert j. If he sees a first-period vote of A then he knows

that d = A, so he is indifferent between voting A and voting B. Thus, it is optimal for j

to vote his signal.

Suppose j sees vote B. He knows that i voted his signal, so si = β. Let j observe

signal α. Then,

πi(A, βi, αj, tj) ≥ πi(B, βi, αj, tj)

⇔ q

(1− q)
tj

1− tj
[Pr(λ | A, a)− Pr(λ | B, a)] ≥ k

1− k
[Pr(λ | B, b)− Pr(λ | A, b)]

⇔ tj
1− tj

≥ c−1(k).

Let j observe signal β. Then,

πi(B, βi, βj, tj) ≥ πi(A, βi, βj, tj)

⇔ tj
1− tj

k

1− k
[Pr(λ | B, b)− Pr(λ | A, b)] ≥ q

(1− q)
[Pr(λ | A, a)− Pr(λ | B, a)]

⇔ tj
1− tj

≥ c(k).

But then again,
tj

1−tj ≥ c−1(k) and
tj

1−tj ≥ c(k) if and only if k
−

(ξ) ≤ k ≤ k(ξ). �

Proof of Proposition 5. To calculate equilibrium beliefs about the experts’ types, suppose

the experts follow their respective strategies as specified (the optimality of strategies to

be verified later). Then, for vote pairs (A,A) and (A,B), the decision maker will choose

d = A (Lemma 1). If the first expert votes B (i.e. for vote pairs (B,A) and (B,B)), the

decision maker will select d = B based only on the first expert’s vote; the second vote is

uninformative. Hence for O the beliefs are as follows (note that they are the same as in

(18)):

Pr(t = λ | A, a) = Pr(t = λ | B, b) = θλ
θλ+(1−θ)ξ

Pr(t = ξ | A, a) = Pr(t = ξ | B, b) = (1−θ)ξ
θλ+(1−θ)ξ

Pr(t = λ | A, b) = Pr(t = λ | B, a) = θ(1−λ)
θ(1−λ)+(1−θ)(1−ξ)

Pr(t = ξ | A, b) = Pr(t = ξ | B, a) = (1−θ)(1−ξ)
θ(1−λ)+(1−θ)(1−ξ) .
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The beliefs are applicable to both experts, given that neither the experts’ identities nor

the timing of moves are revealed.

Recall, from section 3.2, that

x ≡ θλ

θλ+ (1− θ)ξ
λ+

(1− θ)ξ
θλ+ (1− θ)ξ

ξ ,

y ≡ θ(1− λ)

θ(1− λ) + (1− θ)(1− ξ)
λ+

(1− θ)(1− ξ)
θ(1− λ) + (1− θ)(1− ξ)

ξ .

Now consider expert i who moves first. Let him observe α. If he votes A, he receives

πi(A,α, ti) =
qti

qti + (1− q)(1− ti)
x+

(1− q)(1− ti)
qti + (1− q)(1− ti)

y.

If he votes B, his payoff is

πi(B,α, ti) =
(1− q)(1− ti)

qti + (1− q)(1− ti)
x+

qti
qti + (1− q)(1− ti)

y.

Since qti > (1− q)(1− ti) and x > y, we have πi(A,α, ti) > πi(B,α, ti). Now suppose he

observes β. If he votes B, his payoff is

πi(B, β, ti) =
(1− q)ti

(1− q)ti + q(1− ti)
x+

q(1− ti)
(1− q)ti + q(1− ti)

y.

If he votes A, he receives

πi(A, β, ti) =
q(1− ti)

(1− q)ti + q(1− ti)
x+

(1− q)ti
(1− q)ti + q(1− ti)

y.

As ti
1−ti >

q
1−q , and x > y, we have πi(B, β, ti) > πi(A, β, ti). Hence, it is strictly optimal

for i to vote his signal, irrespective of his type. Now, given a first-period vote of A, the

second expert j knows that d = A. His payoff remains unchanged whether he votes A or

B. So j voting his signal is optimal. Similarly, if the first vote is B, j’s vote is immaterial

and d = B. Hence again, j’s payoff remains unchanged whether he votes A or B. So it

is optimal for j to babble. �

Proof of Proposition 7. Let
∼
k < k

−
(ξ). Suppose k ≤

∼
k, then ξ

(1−ξ) ≥ e(k), but ξ
(1−ξ) < c(k).

So, the equilibrium payoffs of D are π1
D, π

21
D and π32

D . And we have π1
D = π21

D > π32
D , which

is what the Proposition states. Let k ∈
(∼
k, k
−

(ξ)
)
, then ξ

(1−ξ) < e(k), and ξ
(1−ξ) < c(k).

So, the equilibrium payoffs of D are π1
D, π22

D and π32
D . And we have π1

D > π22
D = π32

D ,

which is what the Proposition states. When k ∈
(
k
−

(ξ), k(ξ)
)
, we have ξ

(1−ξ) < e(k), but

ξ
(1−ξ) > c−1(k) and ξ

(1−ξ) > c(k). So, the equilibrium payoffs of D are π1
D, π22

D and π31
D .

And we have π1
D = π32

D > π22
D and the Proposition holds true. When k > k(ξ), we have
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ξ
(1−ξ) < e(k) and ξ

(1−ξ) < c−1(k). So, the equilibrium payoffs of D are π1
D, π22

D and π32
D .

We then have π1
D > π22

D = π32
D as claimed in the Proposition. Similar arguments can be

used to verify the Proposition when
∼
k > k

−
(ξ). �
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