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Abstract

The stylized facts relevant to the analysis of economic growth tradition-

ally focus on the supply-side of the economy. Little reference is made

to mass consumption which has accompanied industrial revolutions, and

which today characterizes economic development in large emerging coun-

tries. This paper provides an endogenous growth model with bounded

learning by doing in each industry, where supply (structural change) and

demand (final consumption) interact to bring out a flying-wild-geese de-

velopment pattern. To that end, we relax the assumption of homothetic

preferences that neutralizes demand in the long-run. We discuss the im-

plications of income distribution for growth in a set up where a society

of mass consumption arises as a consequence of horizontal demand com-

plementarities and technological spillovers across industries. Inequalities

must be neither too high nor too low to let the time to each industry to

exhaust its learning potential and benefit the productivity gains associ-

ated with it. This yields an inverted-U relationship between inequality

and growth. The rate of growth ultimately depending on the size of the

middle class which creates the conditions for both mass consumption and

increasing productivity.
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1 Introduction

The twenty-first century marks the end of two centuries of hegemony of the
Western economies. A decentering of the world has already started from West
to East that disrupts the economic world balances. The growth in developing
Asian countries has so far found its origin mostly in the growth of factors of
production. However, just like China, India with 1,2 billions of people has an
internal market without equivalent in the Western world. Combined with the
emergence of a large middle class, its double-digit growth makes it a potential
area of substantial mass consumption. A recent report from McKinsey Global
Institute (2007) suggests that the middle class in India is expected to increase
from 5% of the population today to approximately 40% in the next two decades,
thus becoming the fifth most important market of the world. Moreover, the
share of consumption in the Indian GDP, around 60%, is already close to the
levels found in the U.S. and other industrialized nations, being substantially
higher than that in other emerging countries, including China.

The study of economic growth traditionally comes in a long-run perspective.
Thus, the supply side has so far been given the priority over the demand side.
However, this view is not designed to highlight the mechanisms induced by
mass consumerism on economic growth. This issue is nearly absent from both
neoclassical and new (endogenous) theories of growth. In his introduction of
the Handbook of Economic Growth (2005), Robert Solow regrets the lack of
interest of the profession for interactions between supply and demand in the
medium run. A proposed runway to investigate such interactions is to relax the
traditional assumption of homothetic preferences which neutralizes demand on
long-run growth; that is, to take into account the impact of household income
on the composition of his consumption basket, and consequently, the role of
the size of the market on those industries in which an economy will tend to
specialize. This orientation builds on the work of Kevin Murphy, Andrei Shleifer
& Robert Vishny (1989, henceforth MSV) who have formalized works on demand
linkages of early development economists such as Paul Rosenstein-Rodan (1943),
Albert Hirschman (1958), and Walt Rostow (1960) for whom a society of mass
consumption must be the final stage of economic development of a nation.

It was not until recently that models of growth have relaxed the assump-
tion of homothetic preferences in models of economic growth and structural
change. The adoption of a hierarchic structure of preferences where poor con-
sumers devote most of their expenditures toward low income elasticity goods
and its impact on economic growth is discussed, for instance, in Zweimüller
(2000) and Föllmi & Zweimüller (2006 and 2008). We follow in their footsteps.
Our setup allows for hierarchies of needs in consumption and economic growth
is an endogenous outcome of the economic system. It differs from them though
in two ways. On the one hand, technical progress is not driven by innovations.
There is no R&D sector as in Romer (1990) that generates blue prints for new
inputs (’new methods to satisfy wants’ in Zweimüller 2000) as a result of vol-
untary profit-motivated horizontal innovations. Instead, Technical progress is
a by-product of the economic activity, learning-by-doing being the source of
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productivity gains. It is assumed to take place only in those industries where
demand is high enough so that a firm becomes able to take advantage of inter-
nal economies of scale, i.e. to lower unit costs of production, thanks to mass
consumption. On the other hand, our modelling involves no saving/investment.
The present paper builds on the works of MSV and Matsuyama (2002). First, we
follow MSV static setup by introducing pecuniary externalities working via the
buying power of a middle class to eventually determine the extent of horizontal
complementarity across all industries of the economy. The implementation of
increasing returns technologies that are substituted for constant returns tech-
nologies is used as a metaphor for structural change. The kind of externalities
at work can be described using Matsuyama’s words (1995, 703):

“... Suppose the [middle class] increases its demand for monopolis-
tically competitive goods... Because prices exceed marginal costs,
such a shift in demand would increase the level of monopoly profits
in the economy and thus national income. This increased income
would generate additional demand for monopolistically competitive
goods, which further raises profits and income and so on...”

Secondly, this kind of argument which captures how one thing leads to an-
other is central to Matsuyama (2002) who shows what characteristics of the
distribution of income can lead to the emergence of an economy of mass con-
sumption. This economic development requires gains in productivity through
learning-by-doing which, by lowering prices, gives access to a consumption bas-
ket consisting of different goods depending on the household income, and not
necessarily to the consumption of a greater quantity of the same goods. Demand
spillovers between sectors then lead to a development process that is akin to a
flight of wild geese in which the industries take off one after the other via the
lower prices resulting from the learning process. With hierarchical preferences
which rank goods in order of priority, a greater variety of goods becomes avail-
able to households, and the income effect of lower prices leads new industries to
develop.

Our model shares with that of Matsuyama growth dynamics that result
from learning-by-doing. Recent empirical evidence by Wolff (2011) suggests a
strengthening of technological spillover effects in the US economy over the period
1958-2007. One characteristic of our model is that, similarly to Stokey (1988)
and besides demand complementarities, there are technological spillovers across
sectors that are ruled out in Matsuyama (2002). Our development process is
then similar to a flying geese pattern where the increasing returns technology
is implemented in industries one after the other. The flying geese model of
economic development was first coined by Kaname Akamatsu in the 1930s, and
gained popularity in the 1960s. It was initially based on the basis of Japan’s
experiences in catching up with theWest with demand linkages being the driving
force of development. Still, note that there is no international linkage in the
present model which remains a closed-economy growth model.

In our setup as in Matsuyama’s, learning-by-doing is bounded at the industry
level. It is therefore also appropriate to put our model in correspondence with
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the bounded learning model by Alwyn Young (1991). In Young, all goods are
not produced on a given date because they would be too expensive to produce.
As long as knowledge accumulates in the different industries, the increase of
knowledge reduces the labour unit cost of all goods including those goods whose
cost was previously prohibitive. There comes a time when these goods can be
produced at reasonable cost. In our model, all goods may be available as soon
as there exists a consumer for it. It is only in those sectors where demand is
strong enough to cover the fixed costs involved in the implementation of the
increasing returns technology that the learning takes place. Therefore, it is a
consequence of the substantial economic activity caused by mass consumption
in these industries. The Indian pharmaceutical industry, in particular in the
field of generic drugs, or its telecommunications industry provide examples of
the importance of the size of the internal market in the area of apprenticeship,
which is itself a source of increased knowledge-based productivity.

The paper is organized as follows. In Section 2, we present our model.
Section 3 characterizes the relationship between mass consumption, learning-by-
doing spillovers, and the steady-state rate of growth. The last section is devoted
to analyzing the conditions with regard to technological progress, which underlie
sustainable economic development when mass consumption and not population
growth harms the environment.

2 The model

2.1 Households’ non-homothetic preferences, wealth, and

budget constraint

The preference side is modeled via a utility function which is defined over a
continuum of indivisible goods q ∈ (0,∞) such that, at each date t,

Vt =

∫ ∞

0

1

q
xqtdq, (1)

where xqt as an indicator function which takes in values of either one or zero
according to:

xqt =

{
1 if the agent consumes q

0 otherwise
.

Thus, a household’s utility increases with the range of goods (0, q) it con-
sumes and not with the consumption of a single good q. Consumption is hierar-
chically structured; that is, needs are ordered so that the proportion of income
that households spend on lower-indexed goods or, equivalently, on goods with
lower income elasticities of demand, decreases with a household’s income. Dif-
ferent goods have different priorities in consumption and richer households can
consume more than the bundle of goods available to poorer households (Bertola,
Föllmi, and Zweimüller 2006, chapter 12).
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Human capital is the only input, and the economy is endowed with an
amount hL, where L is the entire population and h is the average level of
human capital in the economy, that we normalize to one. Moreover, hγ denotes
a household’s human capital endowment which is assumed to be constant over
time. It is given by

hγ = γhL = γL,

where γ is the share of human capital of a type-γ household, and γ ≤ γ < ∞.
The total stock of human capital in the economy is distributed according to the
cumulative distribution function G (γ) which is assumed to be exogenous and
constant over time. Therefore, each household is identified by its type γ. At
each date t, the labor income of a type-γ household is given by:

wthγ = wtγL,

where wt is the wage per unit of human capital.
The nominal income of a type-γ household is defined as

Y γt = γ(wtL+Πt),

where Πt is the aggregate amount of profits realized by all firms from all indus-
tries q in the economy. Profits are redistributed to households up to their type
γ.

Define (0, qγt ) as the set of goods purchased by a type-γ household. The
budget constraint which describes the consumption options available to this
household with income Y γt can be written as:

∫ qγt

0

pqtx
q
tdq = γ(wtL+Πt). (2)

2.2 Production technology and the equilibrium price

We assume that each good q can be produced with two production functions.
The former exhibits constant returns to scale (CRS). One unit of good q requires
α/At units of human capital, with α > 1 and At is knowledge-based productivity
at time t. The alternative production technology exhibits increasing returns to
scale (IRS). Formally, 1/At units of human capital are required to produce one
unit of good q. Nevertheless, in order to produce at such a marginal cost, a firm
must also be able to cover a fixed cost equal to F/At units of human capital.

On the one hand, each good q may be produced by a competitive fringe
of firms with the CRS technology. Then, the free-entry equilibrium number of
firms satisfies the zero-profit condition, and the equilibrium price is equal to the
average cost; that is,

pqt = pt = αwt/At. (3)

On the other hand, we show that if the distribution function G(γ) is smooth
enough which rules out perfect equality, there is a unique Nash equilibrium for a
monopoly implementing the IRS technology, which consists in setting the price
at the same level of the competitive fringe (see Appendix 1).
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2.3 Market demand and the output multiplier

Whenever the demand is high enough to cover the fixed cost, a good q will be
produced by a monopolist which will implement the IRS technology. Note that
if L > F/(α − 1), a good q is produced using the IRS technology if and only
if the demand for this good at time t, denoted Dq

t , is such that the following
minimum efficient scale is satisfied:

(α− 1)wt
At

Dq
t −

Fwt
At

≥ 0⇔ Dq
t ≥

F

α− 1
. (4)

At each time t, there is a marginal good q∗t such that the break-even condition
Dq∗t = F/(α−1) holds true. Note that Dq∗t is exogenous and constant over time.
Then, industries which produce goods q ≤ q∗t , respectively q > q∗t , use the IRS,
respectively the CRS, production technology. Following MSV, we define γ∗t as
the share of income held by this marginal household whose purchasing power
allows it to exactly purchase the range of goods (0, q∗t ), where

q∗t =
wtγ

∗
t (L+Πt/wt)

pt
=

At
α
γ∗t

(
L+

Πt
wt

)
, and

wt
pt
=

At
α
. (5)

We also define the upper class to be the set of households of type greater
than γ∗t . There is an amount N

∗
t of such households, where

N∗
t = (1−G(γ∗t ))L. (6)

Their purchasing power allows them to buy goods produced with the IRS
technology as well as goods with higher income elasticity of demand which are
produced using the CRS technology. We therefore have the following break-even
condition which is time-independent. We thus get rid of the t notation in both
variables N∗ and γ∗.

Dq∗t = N∗ = (1−G(γ∗))L =
F

α− 1
. (7)

New models of economic growth along the lines of Romer (1990) emphasize
the increase in available varieties of goods as a metaphor of economic growth.
Overall, what matters in the new theories of growth is the nature of imperfect
competition. Monopolistic competition with its zero-profit condition in equilib-
rium prevails extensively in new growth theories. Into our model, the variable of
interest is not the number of varieties produced in equilibrium, but the number
of goods produced with the IRS technology and, as a result, the equilibrium
profits generated by industries which are able to implement the IRS technology
allowing firms to achieve internal to the firm economies of scale.

Aggregate profits in the economy are the sum of profits realized by those
industries which produce goods q in the range (0, q∗t ):

Πt = pt

∫ q∗t

0

Dq
t dq −

∫ q∗t

0

wt
At
(Dq

t − F )dq

= (α− 1)
wt
At

∫ q∗t

0

Dq
t dq −

wt
At

∫ q∗t

0

Fdq,
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where the demand for each good qt at time t is given by

Dq
t = (1−G(γqt ))L, (8)

and where γqt = ptqt/(wtL+Πt) is the share of income of the poorest house-
hold whose purchasing power is high enough to exactly purchase (0, qt).

Now combining the above profit expression with (5) and (6) yields

Πt
pt

=
At
αwt

(
(α− 1)

wt
At

∫ q∗t

0

Dqtdq −
wt
At

∫ q∗t

0

Fdq

)

=
α− 1

α

∫ q∗t

0

Dqtdq −
1

α

∫ q∗t

0

Fdq

=
α− 1

α

(wtL+Πt)

pt
T , (9)

where T = L
∫ γ∗
γ

γdG(γ) is defined as the share of income held by those

households of type smaller than γ∗ whose income is entirely devoted to purchase
goods of mass consumption, i.e. in the range (0, q∗t ). From this definition, we
deduce:

Πt
pt
=

α− 1

α

1

(1− α−1
α T )

wtL

pt
,

where the multiplier is defined by

M = 1/(1−
α− 1

α
T ),

which is independent of time.
The average real income per capita (yt) of the economy is therefore propor-

tional to the multiplier and the knowledge-based productivity at time t. It takes
the form

yt =
Yt
ptL

=
wtL+Πt

ptL
=

1

1− α−1
α T

At
α
. (10)

The higher T , the higher is yt. In the next section, we specify the rate of
growth of At so that we become able to study the implications of inequality for
growth and patterns of industrialization.

2.4 Accumulated experience at the industry level

It is assumed that learning by doing may occur only in those industries which
produce goods that are generated from the IRS technology. At each date t, such
learning leads to an accumulation of experience at the industry level denoted by
Eqt . We also assume that this accumulated experience diffuses instantaneously
to all other firms, i.e. there are intersectoral spillovers. Accordingly, the level of
knowledge-based productivity in the economyAt is the same in all industries and
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is equal to the sum of experiences gathered over time by all industries producing
goods q and having implemented the IRS technology. More specifically, we have:

At =

∫ q∗t

0

Eqt dq. (11)

We follow Thompson (2010) and adopt the following functional form for the
experience accumulated in industry q at each date t:

Eqt =

ε+ λẼ

∫ t

t∗q

Xq
vdv

1 + λ

∫ t

t∗q

Xq
vdv

, (12)

with λ > 0 that describes the learning rate. We assume that learning by
doing in every industry is bounded, the upper bound being defined by Ẽ which
is assumed to be exogenous and constant both across industries and over time.
Finally, t∗q denotes the date at which the IRS technology has been adopted for
the first time by the industry which produces good q, andXq

v denotes the level of
output achieved in this industry at time v. Thus, like in Melitz (2005), learning-
by-doing is bounded in each industry and the limit is represented by the upper
bound Ẽ. However, it is not bounded at the aggregate level; the learning which
occurs in one industry spills over across industries.

First, let us assume ε = 0, i.e. no learning occurred before a good q has
been produced with the IRS technology. We thus rewrite

Eqt =

λẼ

∫ t

t∗q

Xq
vdv

1 + λ

∫ t

t∗q

Xq
vdv

⇒

.
E
q

t

Eqt
=

Xq
t(

1 + λ

∫ t

t∗q

Xq
vdv

)∫ t

t∗q

Xq
vdv

.

As a result, Eqt is monotonically increasing and concave with an asymptote

equal to Ẽ. The above specification of learning reproduces the stylized facts on
the empirical functions of learning (Thompson 2010).

Secondly, and for ease of use, we adopt a linear approximation of (12). More
specifically, we define the experience accumulated in industry q at time t based
on the cumulative level of production since it has adopted the IRS technology.
This yields

Eqt =





λẼ

∫ t

t∗q

Xq
vdv if

∫ t

t∗q

Xq
vdv < 1/λ

Ẽ otherwise

. (13)

Note that as soon as

∫ t

t∗q

Xq
vdv ≥ 1/λ, learning in industry q has reached the

upper bound. Thus, at each time t, among those industries which use the IRS
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technology, we can distinguish between two groups of industries. The former
group includes those industries where learning-by-doing is exhausted and has
reached the upper bound Ẽ, whereas, in the latter group, we find these industries
where the accumulated experience has not reached yet the upper bound. This
group of industries lies within the range (q̃t, q

∗
t ), where q̃t is defined by

Eq̃t = Ẽ ⇔

∫ t

t∗
q̃t

X q̃t
v dv =

1

λ
,

and where t∗q̃t denotes the time at which good q̃t was first produced using
the IRS technology. In addition to q∗t , there exists another marginal industry
q̃t which is defined as the most recent industry at time t where learning was
exhausted. Similarly to the type-γ∗ household, there is therefore another key
marginal household of type γ̃t, with γ ≤ γ̃t ≤ γ∗, whose purchasing power
allows him to buy exactly the range of goods (0, q̃t). Therefore, if households of
type γ∗ and above constitute the upper income class, mass consumers may now
be divided into a low income class which includes households of type between
γ and γ̃t, and a middle income class where we find households of type ranking
from γ̃t to γ

∗.

3 Knowledge-based productivity growth

Knowledge-based productivity At is a function of the experience accumulated by
all industries in which learning occurs and already took place. We thus rewrite
(11) as

At =

∫ q∗t

0

Eqt dq = Ẽq̃t +

∫ q∗t

q̃t

Eqt dq.

Changes in At are the result of the experience accumulated in the economy
at time t; that is,

.
At = Ẽ

.

q̃t +

∫ q∗t

q̃t

.
E
q

tdq +E
q∗t
t
.
q
∗

t −Eq̃tt
.

q̃t

=

∫ q∗t

q̃t

.
E
q

tdq = λẼ

∫ q∗t

q̃t

Xq
t dq,

with
.
E
q

t =

{
λẼXq

t if E
q
t < Ẽ and q̃t < q ≤ q∗t
0 otherwise

⇔

.
E
q

t

Eqt
=





Xq
t /

∫ t

t∗q

Xq
vdv if E

q
t < Ẽ and q̃t < q ≤ q∗t

0 otherwise

.

The accumulated experience is therefore a by-product of the economic ac-
tivity in those industries where there is mass consumption. Given that Xq

t =
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(1−G(γqt ))L, the evolution of demand addressed to industry q is at the origin
of its learning curve. This yields

gt =

.
At
At
= λẼ

∫ q∗t

q̃t

Xq
t

At
dq = λẼ

∫ q∗t

q̃t

(1−G(γqt ))L

At
dq. (14)

At each time t, the rate of growth equals the amount of human capital
(excluding the fixed costs) required to produce the quantity Xq

t in industries
using the IRS technology and for which learning takes place.

Whereas q∗t evolves with time, recall that γ
∗ is constant over time and, using

(2) and (10), is equal to q∗t /ytL. It is useful to rewrite (14) to obtain:

gt = λẼ
ytL

At

∫ γ∗

γ̃t

(1−G(γ))Ldγ. (15)

An integration by parts shows that:

∫ γ∗

γ̃

(1−G(γ))Ldγ =

(
γ(1−G(γ))|γ

∗

γ̃t
+

∫ γ∗

γ̃t

γg(γ)dγ

)
L

= γ∗(1−G(γ∗))L− γ̃(1−G(γ̃t))L+ T − T̃t,

where T̃t =

∫ γ̃t

γ

γg(γ)Ldγ. The growth rate of At thus becomes:

gt = λẼL
M

α

[
γ∗N∗ + T −

(
γ̃tÑt + T̃t

)]
, (16)

where M/α = yt/At. Note that Ñ cannot exceed L. Therefore, there is a
maximum for gt which is equal to:

gmax = λẼL
M

α

[
γ∗N∗ + T − γL

]
. (17)

In our model, similarly to the static model of MSV without learning-by-
doing, γ∗N∗+T is the proportion of total income being spent in those industries
having implemented the IRS technology. This income share is time-independent.
The rate of growth at time t, therefore, depends positively on both the out-
put multiplier and the proportion of income which is spent in industries where
learning-by-doing is not yet exhausted. Put differently, (16) provides us with a
relationship between growth and mass consumption, where growth depends on
the share of aggregate real income held by those households of type between γ̃t
and γ∗. (See Figure 1 below which summarizes where expenditures of various
consumers go and depicts those industries where learning takes place.) One
more step is required to solve for the steady-state rate of growth. In the next
section, we identify the marginal household of type γ̃t in the steady state.
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Population

γ
γ∗γ

F
α − 1

N∗

L

γ∗ γ

L

T −

Tt


Tt

γ∗N∗

Learning by doing in infant industries at time t

Upper class:

Middle class:

Lower class:

N t

γ t

g tλE

γ t
L − N t

Nt − N∗

N∗

Figure 1: Implications of bounded learning and inequality for growth and structural
change.

4 Mass consumption and sustained growth in

the long run

4.1 The steady-state growth rate

In the steady state and as long as there is positive long-run growth, an industry
q goes through several stages. It begins with producing the good q with the
CRS technology. Then, it goes through that stage where it becomes at some
point in time the marginal industry q∗t , i.e. the highest indexed industry at

time t using the IRS technology. It produces q in an amount Xq∗

t = N∗. From
then on, it begins to accumulate experience. Its apprenticeship will continue
until exhaustion, that is, until it will have reached the upper bound Ẽ. At the
time t the industry just exhausted all its potential for learning, it becomes the
marginal industry q̃t whose good is purchased in quantity X q̃

t = (1−G(γ̃t))L.
One understands here that the experience accumulated by one industry before
it reaches Ẽ not only depends on the size and the rate of growth of its market,
but also of the time that elapsed between the moment when the industry has
adopted technology IRS and when it has exhausted its potential for learning.
Let us first note that in the steady state:

g =

.
At
At
=

.
yt
yt
=

.
q
∗
t

q∗t
= constant.
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Secondly, recall that at time t, an industry q such that q̃t < q < q∗t , is an
industry which has substituted the IRS technology for the CRS technology at
a time we denoted by t∗q anterior to time t. In the steady state, there exists a
relationship between this industry, indexed by q, and the marginal industry q∗t
which depends on the steady-state rate of growth. Formally, we have:

q ≡ q∗t∗q and q∗t = q∗t∗q exp
(
g
(
t− t∗q

))

⇒ q∗t = q exp
(
g
(
t− t∗q

))
, ∀q

⇒ q∗t /q̃t = exp(g(t− t∗q̃t)), (18)

where t∗q̃t is the time when the marginal industry q̃t first implemented the
IRS technology. Thus, we are able to convert the time interval (t∗q̃t , t) into a
range of industries (q̃t, q∗t ) in which learning takes place at time t. The number of
industries in which there is learning in the steady state is an increasing function
of both the growth rate g and the elapsed time between t∗q̃t and t.

Thirdly, using γqt = q/ytL, the rate of growth of demand for a good q > q
t

is given by:
.

X
q

t

Xq
t

=
g(γqt )γ

q
t

1−G(γqt )

.
yt
yt
, (19)

where Xq
t = (1−G(γqt ))L and g(γqt )/(1 − G(γqt )) is the number of house-

holds of type γqt relative to the number of households whose income is greater
thanγqt . Therefore, the income elasticity of demand for a good q is either zero for
industries indexed by q ≤ q

t
or equal to g(γqt )γ

q
t/ (1−G(γqt )) for all q > q

t
. We

face here a technical difficulty, the income elasticity of demand for a good q > q
t

evolves over time and depends on G(γqt ). At this stage, we choose to specify
the distribution of income G(γ) and adopt the Pareto distribution which ex-
hibits useful properties as a functional form for income distribution. We specify
G(γ) = 1− (γ/γ)β with β > 1 and γ ≥ γ > 0. The larger the value of parame-

ter β, the more equal the distribution of income. Note that
∫∞
γ

γdG(γ) = 1/L

which implies γ = (β−1)/βL, and that β = g(γqt )γ
q
t/ (1−G(γqt )). We therefore

have: .
X
q

t

Xq
t

= gβ, (20)

which is constant both over time and across industries q > q
t
1 . When β

increases, i.e. inequalities decrease, the growth rate of demand for a good q

1Note that in the Pareto case, we have:

γ∗N∗ = γ∗
(
β − 1

βLγ∗

)β
LandT = 1−

(
β − 1

βLγ∗

)β−1
.

One interesting property of the Pareto distribution in our framework is that:

β − 1

β
=
γ∗N∗

1− T
⇒ β =

1− T

1− (γ∗N∗ + T )
,
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increases more than proportionally with the rate of income growth. Indeed, the
higher β, the higher are γ and q

t
. Each extra unit of income then carries over

a smaller number of industries, leading each of them to grow at a higher rate.
On the one hand, using (2) and (10), we have:

γqt =

{
q/ytL for q > q

t
γ otherwise

,

where (0, q
t
) is the range of goods that all households are able to purchase

at time t.
Thus, in the particular case of G(γ) being a Pareto distribution, the level of

output in industry q at time t is:

Xq
t = (1−G(γqt ))L =

{ (
(β−1)yt
βq

)β
L for q > q

t

L otherwise
.

In the steady state yt = yt∗q exp(g(t− t∗q)) which yields:

Xq
t =

{ (
(β−1)L
βqL

)β (
yt∗q exp(g(t− t∗q))

)β
L for q

t
< q < q∗t ,

L otherwise
.

On the other hand, as long as experience accumulated in industry q has not

reached the upper bound Ẽ, i.e.,

∫ t

t∗q

Xq
vdv < 1/λ, we can write:

Eqt

Ẽ
= λ

∫ t

t∗q

Xq
vdv = λX

qt∗q
1

gβ

(
exp(gβ(t− t∗q))− 1

)
, (21)

where X
qt∗q is the demand addressed to industry q when it has first imple-

mented the IRS technology, i.e. N∗. We now make use of (18) in the Pareto
case:

q∗t = q exp(g(t− t∗q))⇒ exp(gβ(t− t∗q)) =

(
q∗t
q

)β
.

Replacing in (21) and using q = γqtytL, we obtain:

Eqt

Ẽ
=

λ

gβ
(Xq

t −N∗) .

First, the experience accumulated in industry q at time t is proportional to
the difference between the demand for q and the demand for q∗t . Secondly, E

q
t /Ẽ

where γ∗N∗/(1−T ) is the share of income spent by the upper class in goods produced with
the IRS technology relative to their income share in the economy. This property being valid
∀γ, we also have:

β − 1

β
=

γ̃Ñ

1− T̃
⇒ β =

1− T̃

1− (γ̃Ñ + T̃ )
.

13



depends positively on the learning rate. Thirdly, using (20), the experience
accumulated in industry q at time t is negatively related to the rate of growth
of demand for good q at time t. On the one hand, low inequality causes a high
rate of growth of demand. On the other hand, the lower inequality the less
time an industry has to accumulate experience before reaching a given level of
production Xq

t . Indeed, we have

Xq
t = N∗ exp(gβ(t− t∗q))

⇒ t− t∗q =
1

gβ
ln

(
Xq
t

Xq∗t

)

⇒ t− t∗q ≃
1

gβ

(
Xq
t

Xq∗t
− 1

)

⇒ t− t∗q ≃
1

gβ

(
Xq
t

N∗
− 1

)
.

Let us consider similar amounts of good q produced at time t in two economies

that differ only in gβ, i.e.
.
X
q

t/X
q
t . The above equality holds only if the economy

with the higher gβ exhibits a lower t∗q . In other words, the more equal economy
had more time to learn since good q has been produced with the IRS technology,
i.e. over the period (t∗q , t).

Whereas γ∗N∗ + T is exogenous depending only on the distribution of in-
come, γ̃Ñ and T̃ are determined simultaneously with the rate of growth g2 . Let
us use the outcome of the accumulated experience in the last sector for which
learning has been exhausted. We have:

Ẽ =
λẼ

gβ
(G(γ∗)−G(γ̃))L⇒

Ñ =
gβ

λ
+N∗. (22)

An increase in g, ceteris paribus, is associated with an increase in Ñ and
therefore in Ñ −N∗, i.e. of the number of mass consumers who purchase goods
for which learning-by-doing takes place at time t and is not yet exhausted. Now,
using the break-even condition (7) in (16) and (22), we obtain the following

system which allows us to determine the steady state rate of growth g and γ̃Ñ
(and T̃ ): 




g = λ
β

Ẽ
1+(α−1)(1−T )(T − T̃ )L

g = λ
β

((
1− N∗

L

)
−
(
1− Ñ

L

))
L

. (23)

The ratio of these two equations gives:

L

Ẽ
=

T − T̃

Ñ −N∗

ytL

At
,

2As g is constant in the steady state, it is also true for Ñ and T̃ . Henceforth, we get rid of
the t notation in these variables.
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where the right-hand side term of this equation is the average income of this
class of households whose type lies in the range (γ̃, γ∗).

In Figure 2, we depict one possible solution of (23). The northeast quadrant
of Figure 2 depicts the Lorenz curve which describes the level of inequality
in the economy. On the x-axis, one finds the cumulative share of households
from lowest to highest incomes and the cumulative share of aggregate income
is plotted on the y-axis. Recall that Ñ − N∗ represent the size of the middle
class whose demand is responsible for the experience accumulated in the sectors
(q̃t, q

∗
t ), and thereby growth in equilibrium. The northwest quadrant is the

depiction of the first equation of (23) where the long-run rate of growth is an
increasing function of both the multiplier M and the income share held by
households whose type lies in the range (γ̃, γ∗), i.e. T − T̃ . In the southeast
quadrant, we depict the second equation of (23). Using the 45◦-line in the
southwest quadrant allows us to determine the steady state rate of growth.
Permanent changes in the level of inequality (β) may be represented by shifts
of the Lorenz curve which will have effects on the steady state rate of growth.

4.2 Inequality and sustained growth in the long run

However, for there to be a positive growth in the long run requires that certain
conditions be met. Let us rewrite Ñ asmin(N∗+gβ/λ,L) into the first equation
of (23), we obtain:

⇒ g =
1

β



(
min(gβλ +N∗, L)

L

)(β−1)/β

−

(
N∗

L

)(β−1)/β

 ẼλL

1 + (α− 1)
(
N∗

L

)(β−1)/β .

(24)
Let us perform the following change in variables: n∗ = N∗/L and b =

(β − 1)/β. Keep in mind that with the Pareto distribution, (β − 1)/β is equal
to γ∗N∗/(1 − T ). The higher the ratio, the more the society can be regarded
as egalitarian. Equation (24) can be written as:

F
(
g, b, Ẽ

)

= Ẽ



(
min (g, (1− n∗)(1− b)λL)

+n∗ (1− b)λL

)b

− (n∗ (1− b)λL)b


 (1− b)λL− g ((1− b)λL)

b
(
1 + (α− 1) (n∗)

b
)

= 0,

where
g

(1− b)λL
+ n∗t ≤ 1⇔ g ≤ (1− n∗t ) (1− b)λL.

Thus, for g = (1− n∗t ) (1− b)λL, we have

F ((1− n∗t ) (1− b)λL) = (1−b)1+bλL1+b
(
Ẽ(1− (n∗)b)− ((1− n∗t ) + (α− 1) (n

∗)b)
)
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β
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1 − N/L


T

Figure 2: Inequality and the rate of growth in the steady state.
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⇒ F ((1− n∗t ) (1− b)λL) ≤ 0 iff Ẽ ≤
(1− n∗t ) 1 + (α− 1) (n

∗)
b

1− (n∗)b
.

Moreover,

F (0, b, Ẽ) = 0,

Fg(g, b, Ẽ) = Ẽb
(
(g + n∗ (1− b)λL)b−1

)
(1− b)λL− ((1− b)λL)b

(
1 + (α− 1) (n∗)b

)
,

Fgg(g, b, Ẽ) < 0,∀β > 1.

As long as g ≤ (1− n∗t ) (1− b)λL, for the rate of growth to be strictly positive,
we therefore need the following condition to be satisfied:

Fg(0, b, Ẽ) = Ẽb (n∗)b−1 ((1− b)λL)b−((1− b)λL)b
(
1 + (α− 1) (n∗)b

)
> 0⇔

Ẽb (n∗)b−1 − 1− (α− 1) (n∗)b > 0⇔

Ψ
(
b, Ẽ

)
= bẼ − (n∗)1−b − (α− 1)n∗ = bẼ −

((
F

(α− 1)L

)1−b
+
F

L

)

First, let us define H
(
b, Ẽ

)
such that H

(
b, Ẽ

)
= bẼ with H

(
0, Ẽ

)
= 0,

H
(
1, Ẽ

)
= Ẽ, and Hb

(
b, Ẽ

)
= Ẽ. Secondly, we also define Γ (b) such that

Γ(b) = (n∗)1−b+(α− 1)n∗, with Γ (0) = αn∗, Γ (1) = 1+(α− 1)n∗ = 1+F/L,

Γ′ (b) = − (n∗)1−b ln (n∗) > 0, and Γ′′ (b) = (n∗)1−b (ln (n∗))2 > 0.
Then, we have

Ψ(0, Ẽ) = −

(
1 +

1

α− 1

)
F

L
= −

α

α− 1

F

L

Ψ(1, Ẽ) = Ẽ − 1−
F

L
� 0⇔ Ẽ � 1 + F

L

Ψb(b, Ẽ) = Ẽ −

(
(α− 1)L

F

)b−1
ln

(
(α− 1)L

F

)
� 0

⇔ Ẽ �
(
(α− 1)L

F

)b−1
ln

(
(α− 1)L

F

)

Ψbb(b, Ẽ) = −

(
(α− 1)L

F

)b−1(
ln

(
(α− 1)L

F

))2
< 0

In a perfectly egalitarian allocation of human capital, i.e. β →∞⇒ b→ 1,
we define Ẽ∗∗ such that

F ′(1) = 0⇒ Ψ(1) = 0⇒

H
(
1, Ẽ

)
= Γ(1)⇔ Ẽ∗∗ = 1 + (α− 1)n∗ = 1 +

F

L
.
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Because Ψbb(b, Ẽ) < 0, Ψb(b, Ẽ) will be negative for all b, when

Ψb(0, Ẽ) = E −

(
(α− 1)L

F

)−1
ln

(
(α− 1)L

F

)
< 0⇔

Ẽ <

(
(α− 1)L

F

)−1
ln

(
(α− 1)L

F

)
.

We can also deduce that when

Ψb(0, Ẽ) > 0,

and

Ψ(1, Ẽ) = Ẽ − 1−
F

L
> 0⇔ Ẽ > 1 +

F

L
,

there is a bc such that b ≤ bc ⇒ g = 0 and b > bc ⇒ g > 0.
On the other hand, the concavity of the function Ψ implies that if Ψb(0, E) >

0 and

Ψb(1, Ẽ) = Hb

(
1, Ẽ

)
− Γ′ (1) =

= Ẽ − ln

(
(α− 1)L

F

)
> 0,

then the function is increasing in the interval (0, 1) and the maximum of Ψ(b,E)
is on the boundary of this interval. However, when

Ẽ < ln

(
(α− 1)L

F

)
,

there is an internal maximum (bẼ), that is defined by the following equation

Ψb

(
bẼ, Ẽ

)
= 0⇐⇒ Hb

(
bẼ, Ẽ

)
= Γ′

(
bẼ
)

⇔ Ẽ =

(
1

n∗

)bẼ−1
ln(1/n∗).

As a consequence, if the function Ψ
(
b, Ẽ

)
evaluated at point

(
bẼ , Ẽ

)
is neg-

ative, it will be negative in the interval b ∈ (0, 1) and Fg(0, b, Ẽ) < 0. On the
other hand, if

Ψ
(
bẼ, Ẽ

)
> 0⇔ H

(
bẼ
)
> Γ

(
bẼ
)
,

and at the same time Ẽ < ln
(
(α−1)L
F

)
and Ẽ < Ẽ∗∗ there are an interval

bc1 < b < bc2, such that

Ψ
(
bẼ, Ẽ

)
> 0, ∀b ∈

[
bc1, bc2

]
,

Ψ
(
bẼ, Ẽ

)
= 0, ∀b ∈

(
0, bc1

)
∪
(
bc2, 1

)
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In this case, there exist a level Ẽ∗ such that





Ψb
(
bm, Ẽ∗

)
= 0⇐⇒ Hb

(
bm, Ẽ∗

)
= Γ′ (bm)

Ψ
(
bm, Ẽ∗

)
= 0⇐⇒ H

(
bm, Ẽ∗

)
= Γ(bm)

bm < 1

⇔





(
1
n∗

)bm−1 ln(1/n∗)
Ẽ∗

= 1

1
n∗ =

(1/n∗)b
m

bmẼ∗
+ (α−1)

bmẼ∗

bm < 1

.

Let us rewrite the first equation in the following way,

(
1

n∗

)bm
=
(1/n∗) Ẽ∗

ln(1/n∗)
,

and replace it in the second equation

⇒ bm =
1

ln(1/n∗)
+
(α− 1)

Ẽ∗ 1
n∗

.

we thus obtain the threshold value Ẽ∗ such that:

(
1

n∗

)
(

1
ln(1/n∗)

+ (α−1)

E∗ 1
n∗

)

ln(1/n∗)

(1/n∗) Ẽ∗
− 1 = 0,

bm =
1

ln(1/n∗)
+
(α− 1)

Ẽ∗ 1
n∗

< 1

But the condition bm < 1 is compatible with Ẽ∗ ≤ Ẽ∗∗, if and only if

Ψb
(
1, Ẽ∗∗

)
< 0⇔ Hb

(
1, Ẽ∗∗

)
− Γ′ (1) < 0

⇔ Ẽ∗∗ − ln

(
(α− 1)L

F

)
< 0

⇔ 1 +
F

L
< ln

(
(α− 1)L

F

)

Thus, as long as the below inequality holds, three cases may arise:

1 +
F

L
< ln

(
(α− 1)L

F

)
,

1. Case #1
Ẽ < Ẽ∗ ⇒ g = 0,∀β > 1.
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2. Case #2

Ẽ∗ < Ẽ ≤ Ẽ∗∗,∋ 1 < βc1 < βc2 such that

i) if β ≤ βc1 ⇒ g = 0;

ii) if βc1 < β < βc2 ⇒ g > 0;

iii) if β ≥ βc2 ⇒ g = 0.

3. Case #3

Ẽ > Ẽ∗∗, ∋ βc > 1 such that

i) if β ≤ βc ⇒ g = 0;

ii) if β > βc ⇒ g > 0.

Otherwise, if 1 + F/L > ln ((α− 1)L/F ), only the cases #1 and #3 may
arise.

As summarized in Figure 3, in Case #1, whatever the degree of equality,
the potential for learning relatively to the size of the population (L), fixed costs
(F ), and to the marginal cost in competitive industries (α), is too weak to
yield positive growth in the long-run. In Case #3 instead, as soon as inequality
is not too high, the learning potential in those industries that implement the
IRS technology is substantial enough to generate a positive steady state rate of
growth. Case #2 is more sensitive since inequality must neither be too low nor
too high so that there is sustained growth.

5 Mass consumption, output multiplier, and sus-

tainable economic development

Let us start with an analysis of Fred Pearce3 , freelance journalist in England
and entitled, "Consumption dwarfs population as main environmental threat":

"Take carbon dioxide emissions - a measure of our impact on cli-
mate, [...] Stephen Pacala, director of the Princeton Environment
Institute, calculates the the world’s richest half-billion people -that’s
about 7 percent of the global population- are responsible for 50 per-
cent of the world’s carbon dioxide emissions. Meanwhile the poorest
50 percent are responsible for 7 percent of emissions... For a wider
perspective of humanity’s effects on the planet’s life support sys-
tems, the best available measure is the "ecological footprint", which
estimates the area of land required to provide each of us with food
clothing, and other resources, as well as to soak up our pollution...
They show that sustaining the lifestyle of the average American takes
9.5 hectares, ... and the Japanese, 4.9. The world average is 2.7

3http://e360.yale.edu/content/feature.msp?id=2140
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b = β − 1/β
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E
∗
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Γb = n∗1−b + α − 1n∗

Case #1

Case #2

Case #3

Figure 3: Income distribution and positive steady-state growth rates.
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hectares. China is still below that figure at 2.1, while India and
most of Africa are at or below 1.0... The carbon emissions of one
American today are equivalent to those of four Chinese, 20 Indians,
or 250 Ethiopians."

Following the example of Brock & Taylor (2010), it is assumed that the total
emission of pollutants at time t by all industries is given by:

ǫt = e(At)

∫ ∞

0

Xq
t dq = e(At)ytL,

with e(At), the emission of pollutants per unit of output, and eAt(At) < 0.
The pace of change in the stock of pollution (Pt) is described by:

.
P t = ǫt − θPt,

and θ a parameter of regeneration of the environment which reflects a mech-
anism opposite to that of depreciation). On the one hand, as the economic
activity increases, we observe a worsening of the quality of the environment.
On the other hand, the higher the stock of knowledge, the more we are able to
save the quality of the environment per unit of goods produced.

Furthermore, we assume that P is an upper limit that pollution shall not
exceed without producing an environmental disaster that would be irreversible.
Therefore, we must have:

0 ≤ Pt ≤ P , ∀t.

In the steady state, we have:

.
P t = 0⇒ P ∗t =

ǫt
θ
et

.
yt
yt
= −eAt(At)

At
e(At)

.
At
At

,

and (see above),

.
Y t
Yt
=

.
At
At
⇒−

eAt(At)At
e(At)

= −1⇒ e(At) =
ξ

At
, avec ξ > 0.

Thus, to the question, is a sustainable environment compatible with eco-
nomic growth in a society of mass consumption? The answer is yes, but the
steady state is contingent on neutralizing the effect of the increased production
("scale effect") created by mass consumerism on the quality of the environment,
by technical progress ("technical effect ") source of more efficient and cleaner
technologies per unit of output. Improving the environment occurs here as a
by-product of technological progress.

Moreover, if we want to avoid an environmental catastrophe, the following
condition must be met:

P ∗t =
e(At)ytL

θ
=

ξ

θ

ytL

At
=

ξ

θ

M

α
L ≤ P.
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In other words, pollution is a nondecreasing function of the population size
and of the multiplier. Despite the positive impact of mass consumption on
the rate of long-term growth, too many mass consumers may produce pow-
erful enough demand spillover effects so that the economy may experience an

ecological disaster while being on a balanced growth path, i.e. such that
.

P t = 0.
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7 Appendix 1: Price equilibrium

Proof. On the one hand, at time t, a monopolist entering the market for a
particular good q cannot set a price higher than the competitive price without
giving way to a competitive fringe of firms. On the other hand, could he seriously
consider to increase its profits by lowering its price unilaterally below pt =
αwt/At, i.e., while all other firms keep their price unchanged? The answer is
no, as long as the marginal profit satisfies the following condition:

∂πqt
∂p̂qt

=
∂D̂q

t

∂p̂qt

(
p̂qt −

wt
At

)
+ D̂q

t > 0⇔−
∂D̂q

t

∂p̂qt

p̂qt

D̂q
t

(
p̂qt −wt/At

p̂qt

)
< 1, (25)

with p̂qt ≤ pt, and where D̂
q
t is the effective demand for good q produced at

p̂qt . In other words, the price elasticity of demand multiplied by the price-cost
margin should not exceed unity.

Let us define q̂ ≤ q such that

Vt =

∫ ∞

0

1

q
xqtdq, (26)

1

q

1

p̂qt
=
1

q̂

1

pt
⇒ q̂ =

p̂qt
pt
q.

Among the first category of households, customers for the variety of good q
include all those which are rich enough to buy q̂, i.e., households of type γ ≥ γq̂t ,
with

γq̂t
(
wthtLt + πt

)
=

γq̂t =
ptq̂

wthtLt + πt
=

p̂qt q

wthtLt + πt
, .

Therefore, the effective demand for good q produced at price p̂qt , is

D̂q
t = (1−Gj(γ

q̂
t ))L.

Let g(γ) be the density of type-γ households and β(γ) = g(γ)γ/(1−G(γ)).
The price elasticity of demand for good q can be written as follows

−
∂D̂q

t

∂p̂qt

p̂qt

D̂q
t

=
g(γq̂t )p̂

q
t qL(

wthtLt + πt
)
(1−G(γq̂t ))L

(27)

=
γq̂tg(γ

q̂
t )

(1−G(γq̂t ))

= β(γq̂t ).

First, we can show that using (25) and (27), we have:

−
∂D̂q

t

∂p̂qt

p̂qt

D̂q
t

(
p̂qt −wt/At

p̂qt

)
= β

(
γq̂t

)( p̂qt −wt/At
p̂qt

)
< β

(
γq̂t

)(pt −wt/At
pqt

)
= β

(
γq̂t

)(α− 1
α

)
.

25



Therefore the following inequality provides a sufficient condition for ruling out
price-cutting equilibria:

β
(
γq̂t

)(α− 1
α

)
< 1⇒−

∂D̂q
t

∂p̂qt

p̂qt

D̂q
t

(
p̂qt −wt/At

p̂qt

)
< 1 (28)

Indeed, as long as (25) is satisfied, when a firm with access to IRS technology
in industry q aims to cut the price below αwt/At, it is not able to expand its
customer base to such an extent as to compensate the loss in the rate of profit
per customer, thus discouraging price-cutting. In our framework, such condition
results in (28). The income distribution should not degenerate around any type-
γ.

Let us define G(γ) to be the Pareto distribution which has the following
useful properties: (i) β (γ) = β ∀γ, and (ii) γ

−
= (β − 1) / (βL). Then, the

condition becomes

β

(
α− 1

α

)
< 1⇐⇒ β <

α

α− 1
⇐⇒

β − 1

β
<
1

α
⇐⇒ b <

1

α
. (29)

where, in the text, we have defined b = (β − 1)/β
On the other hand, when β(α− 1)/α > 1⇔ b > 1/α, the price equilibrium

is equal to

−
∂D̂q

t

∂p̂qt

p̂qt

D̂q
t

(
p̂qt −wt/At

p̂qt

)
= 1⇒ β

(
p̂qt −wt/At

p̂qt

)
= 1⇒

p̃qt =
β

β − 1
wt/At =

1

b
wt/At < pt = αwt/At.

In the case of a Pareto distribution, the Gini coefficient is equal to 1/(2β − 1).
Thus, the inequality (β − 1)/β > 1/α yields

Gini <
α− 1

α+ 1
.

Let us consider a mark-up (α−1)/α which is equal to 0.2 which means α = 1.25.
In this particular case for α, the above inequality is such that Gini < 0.11. As
soon as Gini < 0.11, the equilibrium price will differ from αwt/At being equal
to

pt =
β

β − 1

wt
At

.

Gini coefficients across countries reveal that the assumption (β− 1)/β < 1/α is
more realistic. In this article, we therefore work with this assumption and the
price in equilibrium is determined by pt = αwt/At.
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